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Abstract 

Ai’t-Kaci, H., A. Podelski and G. Smolka, A feature constraint system for logic programming with 

entailment, Theoretical Computer Science 122 (1994) 263-283. 

We introduce a constraint system called FT. This system offers a theoretical and practical alternative 
to the usual Herbrand system of constraints over constructor trees. Like Herbrand, FT provides 

a universal data structure based on trees. However, the trees of FT (called feature trees) are more 

general than the constructor trees of Herbrand, and the constraints of FTare of finer grain and of 

different expressiveness. The essential novelty of FT is provided by functional attributes called 

features which allow representing data as extensible records, a more flexible way than that offered 

by Herbrand’s fixed arity constructors. The feature tree structure determines an algebraic semantics 

for FT. We establish a logical semantics, thanks to three axiom schemes presenting the first-order 

theory FT. We propose using FT as a constraint system for logic programming. We provide 
a test for constraint unsatisfiability, and a test for constraint entailment. The former corresponds 

to unification and the latter to matching. The combination of the two is needed for advanced 

control mechanisms. We use the concept of relative simplification of constraints, a normalization 

process that decides entailment and unsatisfiability simultaneously. The two major technical 

contributions of this work are: (i) an incremental system performing relative simplification for 

FT that we prove to be sound and complete; and (ii) a proof showing that FT satisfies indepen- 

dence of negative constraints, the property that conjoined negative constraints may be handled 

independently. 

R&umt 

Nous presentons un systeme de contraintes appele FT. Ce systeme constitue une alternative 
theorique et pratique a Herbrand, le systeme usuel de contraintes sur les arbres a constructeurs. 
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Comme Herbrand, FT fournit une structure de don&es d’arbres. Cependant, les arbres de FT 

(appelis arbres A traits) sont plus g&kraux que les arbres $ constructeurs de Herbrand, et 

les contraintes de FT sont d’une granularit plus fine et d’expressivitb diffkrente. L’innovation 

essentielle de FT est dhe B des attributs fonctionnels appelks traits qui permettent de rep&enter 

les don&es sous forme de structure d’enregistrement extensible, de man&e plus flexible que 

celle oflerte par les constructeurs d’aritC fixe de Herbrand. La structure d’arbre g traits dktermine 

une skmantique algtbrique pour FT. Nous ktablissons une skmantique logique, grlce A trois 

schtmas d’axiomes prkentant la thtorie du premier ordre FT. Nous proposons d’utiliser FT 
comme un systtme de contraintes pour la programmation logique. Nous produisons un critkre 

de satisfaisabilitk de contrainte, et un crittre de validation d’implication de contrainte. Le 

premier correspond g l’unification et le deuxiime au filtrage. La combinaison des deux est 

nkessaire pour des mkanismes de contriYe avands. Nous utilisons le concept de simplification 

relative, un processus de normalisation qui dtcide simultankment la validation d’implication et la 

non-satisfaisabilitt. Les deux contributions techniques majeures de ce travail sont: (i) un 

systtme incrtmental effectuant la simplification relative pour FT, que nous dtmontrons 

&tre cohkrent et complet; et (ii) une preuve montrant que FT jouit de I’indtpendance des 

contraintes negatives, proprittk qui permet g des contraintes Ggatives conjointes d’btre trait&es 

si%parkment. 

1. Introduction 

An important structural property of many logic programming systems is the fact 

that they factorize into a constraint system and a relational facility. Colmerauer’s 

Prolog II [lo] is an early language design making explicit use of this property. CLP 

(constraint logic programming [12]), ALPS [lS], CCP (concurrent constraint pro- 

gramming [23]), and KAP (Kernel Andorra Prolog [ll]) are recent logic program- 

ming frameworks that exploit this property to its full extent by being parameterized 

with respect to an abstract class of constraint systems. The basic operation that these 

frameworks require of a constraint system is a test for unsatisfiability. In addition, 

ALPS, CCP, and KAP require a test for entailment between constraints, which is 

needed for advanced control mechanisms such as delaying, coroutining, synchroniz- 

ation, committed choice, and deep constraint propagation. LIFE [5,6], formally 

a CLP language, employs a related, but limited, suspension strategy to enforce 

deterministic functional application. Given this situation, constraint systems are 

a central issue in research on logic programming. 

The constraint systems of most existing logic programming languages are vari- 

ations and extensions of Herbrand [16], the constraint system underlying Prolog. The 

individuals of Herbrand are trees corresponding to ground terms, and the atomic 

constraints are equations between terms. Seen from the perspective of programming, 

Herbrand provides a universal data structure as a logical system. 

This paper presents a constraint system FT, which we feel is an intriguing alterna- 

tive to Herbrand both theoretically and practically. Like Herbrand, FT provides 

a universal data structure based on trees. However, the trees of FT (called feature 

trees) are more general than the trees of Herbrand (called constructor trees), and the 

constraints of FT are of a finer grain and of different expressiveness. The essential 
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novelty of FT is due to functional attributes called features, which provide for 

record-like descriptions of data avoiding the overspecification, intrinsic in Herbrand’s 

constructor-based descriptions. For the special case of constructor trees, features 

amount to argument selectors for constructors. 

Constructor trees are useful for structuring data in modern symbolic programming 

languages; e.g., Prolog and ML. This gives the more flexible feature trees an interest- 

ing potential. More precisely, feature trees model extensible record structures. They 

form the semantics of record calculi like Cl], which are used in symbolic programming 

languages [5] and in computational linguistics (see e.g. [3,24,8]). Generally, these 

extensible record structures allow hierarchical representation of partial knowledge. 

They lend themselves to object-oriented programming techniques [3]. 

Let us suppose that we want to say that x is a wine whose grape is riesling and 

whose color is white. To do this in Herbrand, one may write the equation: 

x= wine(riesling, white,y, , . . , y,) 

with the implicit assumption that the first argument of the constructor wine carries 

the “feature” grape, the second argument carries the “feature” color, and the remain- 

ing arguments yl,. , y” carry the remaining “features” of the chosen representation of 

wines. The obvious difficulty with this description is that it says more than we want to 

say; namely, that the constructor wine has n+2 arguments and that the “features” 

grape and color are represented as the first and the second argument. 

The constraint system FT avoids this overspecification by allowing the description 

x : wine[grape => riesling, color * white] (1) 

saying that x has sort wine, its feature grape is riesling, and its feature color is 

white. Nothing is said about other features of x, which may or may not exist. 

The individuals of FT are feature trees. A feature tree is a possibly infinite 

tree whose nodes are labeled with symbols called sorts, and whose edges are 

labeled with symbols called features. The labeling with features is deterministic in that 

all edges departing from a node must be labeled with distinct features. Thus, every 

direct subtree of a feature tree can be identified by the feature labeling the edges 

leading to it. The constructor trees of Herbrand can be represented as feature trees 

whose edges are labeled with natural numbers indicating the corresponding argument 

positions. 

Examples of feature trees are shown in Fig. 1. All but the second and third feature 

tree in Fig. 1 satisfy the description (1). 

The constraints of FT are ordinary first-order formulae taken over a signature that 

accommodates sorts as unary predicates and features as binary predicates. Thus the 

description (1) is actually syntactic sugar for the formula: 

wine(x) A 3y(grape(x, y) A riesZing( y)) 

A 3y(color(x, y) A white(y)). 
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Fig. 1. Examples of Feature Trees. 

The set of all rational feature trees is made into a corresponding logical structure 

r by letting A(x) hold if and only if the root of x is labeled with the sort A, and letting 

f(x, y) hold if and only if x has y as direct subtree via the feature f: The feature tree 

structure r fixes an algebraic semantics for FT. 
We will also establish a logical semantics, which is given by three axiom schemes 

fixing a first-order theory FT. Backofen and Smolka [7] show that Y is a model of FT 
and that FT is in fact a complete theory, which means that FT is exactly the theory 

induced by Y. However, we will not use the completeness result in the present paper, 

but show explicitly that entailment with respect to F is the same as entailment with 

respect to FT. 
The two major technical contributions of this paper are (i) an incremental simplifi- 

cation system for entailment that is proven to be sound and complete, and (ii) a proof 

showing that the “independence of negative constraints” property [9,16,17] holds 

for FT. 
The incremental entailment simplification system is the prerequisite for FT’s use 

with either of the constraint programming frameworks ALPS, CCP, KAP or LIFE 

mentioned at the beginning of this section. Roughly, these systems are concurrent 

thanks to a new effective discipline for procedure parameter-passing that we could 

describe as “call-by-constraint-entailment” (as opposed to Prolog’s call-by-unification). 

The independence property is important since it means that negative constraints on 

feature trees can be solved (exactly like in Colmerauer’s work on disequations over 

infinite trees [9]). Namely, thanks to independence, a conjunction with more than one 

negated constraints 4 A 1 $J 1 A ... A 14, can be solved by testing separately each 

negated constraint +i for entailment, for i= 1, . . . . n. This, of course, is done by our 

simplification system for entailment. 
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One origin of FT is Ai’t-Kaci’s $-term calculus [l], which is at the heart of the 

programming language LOGIN [3] and further extended in the language LIFE [S] 

with functions over feature structures, thanks to a generalization of the concept of 

residuation of Le Fun [4].’ Other precursors of FT are the feature descriptions found 

in unification grammars [15,14] developed for natural language processing, and also 

the formalisms of Mukai [19,20] (for a thorough survey of precursors in this field, 

cf. [S]). These early feature structure formalisms were presented in a nonlogical form. 

Major steps in the process of their understanding and logical reformulation are the 

articles [22,25,13,24]. Feature trees, the feature tree structure Y-, and the axiomatiz- 

ation of Y were first given in [7]. The idea of relative simplification of constraints was 

first introduced and used in [6] to explain the behavior of functions as passive 

constraints in LIFE. 

The paper is organized as follows. Section 2 defines the basic notions and discusses 

the differences in expressivity between Herbrand and FT. Section 3 gives a basic 

simplification system that decides satisfiability of positive constraints. The material of 

Section 4 is not limited to FT but discusses the notion of incremental entailment 

checking and its connection with the independence property and negation, Section 5 

gives the entailment simplification system, proves it sound, complete and terminating, 

and also proves that FT satisfies the independence property. 

2. Feature trees and constraints 

To give a rigorous formalization of feature trees, we first fix two disjoint alphabets 

Y and 9, whose symbols are called sorts and features, respectively. The letters A, B, C 

will always denote sorts, and the letters f; g, h will always denote features. Words over 

9 are called paths, The concatenation of two paths v and w results in the path VW. The 

symbol E denotes the empty path, VE = EV = v, and fl* denotes the set of all paths. 

A tree domain is a nonempty set D E P* that is prefix-closed; that is, if VW ED, then 

ND. Thus, it always contains the empty path. 

A feature tree is a mapping t : D+Y from a tree domain D into the set of sorts. The 

paths in the domain of a feature tree represent the nodes of the tree; the empty path 

represents its root. The letters s and t are used to denote feature trees. 

When convenient, we may consider a feature tree t as a relation, i.e., tcF* x Y, 

and write (w, A)Et instead of t(w) = A. (Clearly, a relation t E 8” x Y is a feature tree if 

and only if D = {w I3A :(w, A)E~) is a tree domain and t is functional; that is, if (w,A)~t 

and (w,B)~t, then A=B.) As relations, i.e., as subsets of F* x 9, feature trees are 

r Le Fun [4] is an extension of Prolog seen as a constraint logic programming system over Herbrand 
terms extended with applicative expressions. Le Fun’s constraint solver achieves implicit coroutining 

thanks to an automatic suspension mechanism called “residuation” delaying equations with insuffi- 
ciently instantiated function arguments. Resumption is triggered asynchronously by function argument 

matching. 
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partially ordered by set inclusion. We say that s is smaller than (or, is a pre$x- 
subtree of; or, subsumes; or, approximates) t if s c t. 

The subtree wt of a feature tree t at one of its nodes w is the feature tree defined by 
(as a relation): 

wt := {(u, A) 1 (WV, A)a). 

If D is the domain of t, then the domain of wt is the set w - ’ D = {v 1 WUE D}. Thus, wt is 
given as the mapping wt : w-‘D-9 defined on its domain by wt(v)= t(wu). A feature 
tree s is called a subtree of a feature tree t if it is a subtree s = wt at one of its nodes w, 
and a direct subtree if WEF. 

A feature tree t with domain D is called rational if (i) t has only finitely many 
subtrees and (ii) t is finitely branching; that is: for every WED, WF n D = (wf~ D j&F-> 
is finite. Assuming (i), the condition (ii) is equivalent to saying that there exist finitely 
many features fi, . . . . fn such that Ds{ji, . . . . f”}*. 

Constraints over feature trees will be defined as first-order formulae. We first fix 
a first-order signature Y ~9 by taking sorts as unary and features as binary relation 
symbols. Moreover, we fix an infinite alphabet of variables and adopt the convention 
that x, y, z always denote variables. Under this signature, every term is a variable and 
an atomic formula is either a feature constraint xfy (f(x,y) in standard notation), 
a sort constraint Ax (A(x) in standard notation), an equation x A y, I (“false”), or 
T (“true”). Compound formulae are obtained as usual by the connectives A, V , +, 

t-f, 1 and the quantifiers 3 and V. We use 54 and ?4 to denote the existential and 
universal closure of a formula 4, respectively. Moreover, V(4) is taken to denote the 
set of all variables that occur free in a formula 4. The letters 4 and $ will always 
denote formulae. In the following we will not make a distinction between formulae 
and constraints; that is, a constraint is a formula as defined above. 

YtiF-structures and validity of formulae in Y w.F-structures are defined as usual. 
Since we consider only Y&g-structures in the following, we will simply speak of 
structures. A theory is a set of closed formulae. A model of a theory is a structure that 
satisfies every formula of the theory. A formula $J is a consequence of a theory 
T(T+ 4) if ~~ holds in every model of T. A formula 4 is satisjable in a structure d if 
%$ holds in &. Two formulae 4, $ are equivalent in a structure d if ~(&-+$) holds in 
&‘. We say that a formula 4 entails a formula $ in a structure d [theory T] and write 
4 +& $[4 I=r $1 if i(4-+$) holds in ,rB; i.e., d I=v(4-$) [is a consequence of T; i.e., 
FT+q(4+$)]. A theory Tis complete if for every closed formula d, either 4 or 14 is 
a consequence of T. 

The feature tree structure F is the Yw.F-structure defined as follows: 
l the domain of F is the set of all rational feature trees; 
l tEA” if and only if t(E)=A (t’s root is labeled with A); 
l (s, t)Ef3 if and only if feDS and t =fs (t is the subtree of s at f). 
Roughly, the Herbrand constraint y=A(x1,x2), where A is a binary constructor 
symbol, and the feature constraint Ay A ylxl A y2x,, where A is a sort and 1,2, . . . are 
features, correspond to each other. (We will see later that this correspondence is 
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a formal one for satisfiability, but not for entailment.) Now it becomes clear what we 

mean by saying that feature constraints are finer grained. Also, feature trees are more 

general in the sense that they satisfy more constraints. For example, no constructor 

tree y satisfies both y=A(xl,xz) and ~~=A(xi,x~,x~). 

Next we discuss the expressivity of our constraints with respect to feature trees (that 

is, with respect to the feature tree structure Y) by means of examples. The constraint: 

-l3 Y (XfY) 

says that x has no subtree at f; i.e., that there is no edge departing from x’s root that is 

labeled with f: To say that x has subtree y at path fi . . fn, we can use the constraint: 

321 . . . 3Z,_1(XfiZ, AZ1 fzz2A ... AZ,_IfnY). 

Now let us look at statements we cannot express. One simple unexpressible statement 

is “y is a subtree of x” (i.e. “3 w: y = wx”). Moreover, we cannot express that x is smaller 

than y. Finally, if we assume that the alphabet P of features is infinite, we cannot say 

that x has subtrees at features fi, . ..,fn but no subtree at any other feature. In 

particular, we then cannot say that x is a primitive feature tree; that is, has no proper 

subtree. 

The theory FTO is given by the following two axiom schemes: 

(Axl) VxVyVz(xfy A xfi + y&z) (for every feature S), 

(Ax2) Vx(AxABx + I) (for every two distinct sorts A and B). 

The first axiom scheme says that features are functional and the second scheme says 

that sorts are mutually disjoint. Clearly, Y is a model of FT,. Moreover, FT, is 

incomplete (for instance, 3x(Ax) holds in Y but not in other models of FTo). We will 

see in the next section that FT, plays an important role with respect to basic 

constraint simplification. 

Next we introduce some additional notation needed in the rest of the paper. This 

notation will also allow us to state a third axiom scheme that, as shown in [7], extends 

FT, to a complete axiomatization of Y. 

Throughout the paper we assume that conjunction of formulae is an associative and 

commutative operator that has T as neutral element. This means that we identify 

4 A ($ A 0) with GA ($ A d), and 4 A T with $J (but not, e.g., xfv A xjy with xfy). 

A conjunction of atomic formulae can thus be seen as the finite multiset of these 

formulae, where conjunction is multiset union, and T (the “empty conjunction”) is the 

empty multiset. We will write $ c 4 (or $~4, if ti is an atomic formula) if there exists 

a formula II/’ such that $ A II/’ = 4. 

We will use an additional atomic formula xft (‘7 undefined on x”) that is taken to 

be equivalent to 13y(xfy), for some variable y (other than x). 

Only for the formulation of the third axiom we introduce the notion of a solued- 
clause, which is either T or a conjunction 4 of atomic formulae of the form xfv, Ax or 

xft such that the following conditions are satisfied: 

(1) if Axe+ and BxE~, then A=& 
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(2) if xfv~qt~ and xfi~+, then y=z; 

(3) if xfv~4, then xft#& 

Given a solved-clause 4, we say that a variable x is dependent in C$ if C#J contains 

a constraint of the form Ax,xfy or xft, and use 9V(4) to denote the set of all 

variables that are dependent in 4. 

The theory FT is obtained from FT, by adding the axiom scheme: 

(Ax3) v 3 XC#I (for every solved-clause (p and X = @V(4)). 

Theorem 2.1. The feature tree structure r is a model of the theory FT. 

Proof. We will only show that Y is a model of the third axiom. Let X be the set of 

dependent variables of the solved-clause 4, X=SV(C$). Let M be any Y-valuation 

defined on V(4)-X; we write the tree a(y) as t,. We will extend CI on X such that 

s,aI=+. 
Given XEX, we define the “punctual” tree t, = { (E, A)}, where AEY is the sort such 

that AxE$, if it exists, and arbitrary, otherwise. Now we are going to use the notion of 

tree sum of Nivat [21], where w- ’ t = ((WV, A)I(u, A)Et} (“the tree t translated by w”), 

and we define: 

a(x)= iJ{w-' tyjxsy for some yE”f(4),wE9*}. 

Here the relation % is given by: x Ax, and xw-fy if x%y’ and ylfy~& for some 
y’~V(4) and some fEF. Since: 

C((X)=U(W-la(y)l . ..I 

and, for a node w of a(x), wa(x)=a(y), it follows that E(X) is a rational tree and that 

y,ui=4J. q 

For another proof of this theorem see [7], which also proves that FT is a complete 

theory if the alphabets of sorts and features are infinite. 

A practical motivation for the assumption on the infiniteness of B (and of 9’ as 

well) is the need to account for dynamic record field updates. It turns out that this 

semantical point of view has advantages in efficiency as well. Thus, the algorithms we 

present in this paper for entailment and for solving negative constraints on feature 

trees rely on the infiniteness of g and Y. 

3. Basic simplification 

A basic constraint is either I or a possibly empty conjunction of atomic formulae of 

the form Ax, xfy, and x A y. The following five basic simplification rules constitute 
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a simplification system for basic constraints, which, as we will see, decides whether 

a basic constraint is satisfiable in F. 

(1) 
XfYAXfZA4 

xfzAy~zA~ 

(2) 
AxABxA$ 

I 
A#B 

(3) 
AxAAxAq5 

AxA4 

(4) 
xAyA4 

x-yn$[x+y] 
x~Vy(4) and x#y 

The notation @[x-y] is used to denote the formula that is obtained from 4 by 

replacing every occurrence of x with y. We say that a constraint 4 simplijies to 

a constraint $ by a simplification rule p if 4/$ is an instance of p. We say that 

a constraint C$ simplifies to a constraint tj if either C$ = $ or C$ simplifies to $ in finitely 

many steps each licensed by one of the five simplification rules given above. 

Example 3.1. In order to check whether the two feature descriptions x [f=~- u : A] and 

y[f* v: A] are unifiable, in the sense of [3], we will simplify the basic constraint 

xjiiAyfvAAuAAvAz~.xAy~z. 

The following basic simplification chain leads to a solved constraint (which, as 

shown in [24,5], exhibits unifiability): 

x_fiuAyfvAAuAAvAz~xAy~z 

= xfuAyfvAAuAAvAzAxAy&x (by rule 4) 

= XfuAxfvAAuAAvAz-xAy&x (by rule 4) 

=S xfvAAuAAvAuAvAzzxAy&x (by rule 1) 

* xfvAAvAAvAu~vAz~xAy~x (by rule 4) 

=> xfvAAvAu-vAz-‘xAy-x (by rule 3) 

Using the same steps up to the last one, the constraint xfu A yfv A Au A Bv A z A x A y 

A-z simplifies to I (in the last step, rule 2 instead of rule 3 is applied). 

Proposition 3.2. If the basic constraint 4 simplifies to $, then FT, (= 4 c-f $. 

Proof. The rules 3,4 and 5 perform equivalence transformations with respect to every 

structure. The rules 1 and 2 correspond exactly to the two axiom schemes of FTO and 

perform equivalence transformations with respect to every model of FT,. 0 
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We say that a basic constraint 4 binds a variable x to y if x -YE+ and x occurs only 

once in 4. At this point it is important to note that we consider equations as ordered; 

that is, assume that x A y is different from y A x if x # y. We say that a variable x is 

eliminated, or bound by c$, if C$ binds x to some variable y. 

Proposition 3.3. The basic simplijcation rules are terminating. 

Proof. First observe that the simplification rules do not add new variables and 

preserve eliminated variables. Furthermore, Rule 4 increases the number of eliminated 

variables by one. Hence, we know that if an infinite simplification chain exists, we can 

assume without loss of generality that it only employs the rules 1,3 and 5. Since rule 1 

decreases the number of feature constraints “xfv”, which is not increased by rules 3 

and 5, we know that if an infinite simplification chain exists, we can assume without 

loss of generality that it only employs rules 3 and 5. Since this is clearly impossible, an 

infinite simplification chain cannot exist. 0 

A basic constraint is called normal if none of the five simplification rules applies to 

it. A constraint $ is called a normal form of a basic constraint 4 if 4 can be simplified 

to $ and $ is normal. A solved constraint is a normal constraint that is different 

from 1. 

So far we know that we can compute for any basic constraint 4, a normal form $ by 

applying the simplification rules as long as they are applicable. Although the normal 

form I,+ may not be unique for 4, we know that 4 and $ are equivalent in every model 

of FTo. It remains to show that every solved constraint is satisfiable in Y. 

Every basic constraint 4 has a unique decomposition 4 = & A 4o such that C& is 

a possibly empty conjunction of equations “x A y" and ~$o is a possibly empty 

conjunction of feature constraints “xfv” and sort constraint “Ax”. We call & the 

normalizer and & the graph of 4. 

Proposition 3.4. A basic constraint q5# I is solved if and only if the following 
conditions hold: 

(1) an equation x-y appears in 4 only if x is eliminated in 4; 
(2) the graph of C/I is a solved clause; 
(3) no primitive constraint appears more than once in 4. 

Proposition 3.5. Every solved constraint is satisjable in every model of FT. 

Proof. Let C$ be a solved constraint and d be a model of FT. Then we know by axiom 

scheme Ax3 that the graph & of a solved constraint 4 is satisfiable in an FT-model 

d. A variable valuation CL into & such that &‘, CI +~$o can be extended on all 

eliminated variables simply by tx(x)=c(( y) if X-YGC#J, such that d, a +b. 0 

The following theorem states that basic simplification yields a decision procedure 

for satisfiability of basic constraints. 



A feature constraint system for logic programming with entailment 273 

Theorem 3.6. Let II/ be a normal form of a basic constraint 4. Then 4 is satisjable in 

Yifandonlyif$#l. 

Proof. Since 4 and $ are equivalent in every model of FT, and Y is a model of FT,, it 

suffices to show that $ is satisfiable in Y if and only if I) # 1. To show the nontrivial 

direction, suppose I) # 1. Then I) is solved and we know by the preceding proposition 

that $ is satisfiable in every model of FT. Since Y is a model of FT, we know that $ is 

satisfiable in Y. 0 

The next theorem implies the elementary equivalence of all models of FT with respect 

to satisfiability of basic constraints. Namely, satisfiability in any of the models of FT 
means satisfiability in all of them. Also, it is sufficient to test satisfiability in the model 

F alone. Finally, only the first two axioms are relevant for satisfiability. 

Theorem 3.7. For every basic constraint ~+6 the following statements are equivalent: 

9bz4 o 3model d of FTo: J&‘+~c$ o FT(=~$J 

Proof. The implication 132 holds since Y is a model of FT,. The implication 351 

follows from the fact that Y is a model of FT. It remains to show that 2*3. 

Let 4 be satisfiable in some model of FT,. Then we can apply the simplification 

rules to C$ and compute a normal form I) such that 4 and I) are equivalent in every 

model of FTO. Hence, $ is satisfiable in some model of FT, . Thus I) # I, which means 

that $ is solved. Hence, we know by the preceding proposition that $ is satisfiable in 

every model of FT. Since 4 and I) are equivalent in every model of FT, c FT, we have 

that C#J is satisfiable in every model of FT. Cl 

4. Entailment, independence and negation 

In this section we discuss some general properties of constraint entailment. This 

prepares the ground for the next section, which is concerned with entailment simplifi- 

cation in the feature tree constraint system. 

Throughout this section we assume that & is a structure, y and 4 are formulae that 

can be interpreted in &, and that X is a finite set of variables. 

We say that y disentails C$ in JCJ’ if y entails 1 C$ in &. If y is satisfiable in &‘, then 

y cannot both entail and disentail 3x4 in &. We say that y determines C$ in _zJ if 

y either entails or disentails 4 in &. 

Given y, 4 and X, we want to determine in an incremental manner whether y entails 

or disentails 3x4. Typically, y will not determine 3x4 when 3x4 is considered first, 

but this may change when y is strengthened to y A y’. To this end, we use the concept of 

relative simplification of constraints first introduced in [6]. The basic idea leading to 
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an incremental entailment checker is to simplify 4 with respect to (relatively to) the 

context y and the local variables X. Given y, X and 4, simplification must yield 

a formula rc/ such that: 

The following facts provide some evidence that this is the appropriate invariant for 

entailment simplification. 

Proposition 4.1. Let y I=& 3 X4 - 3 XI/J. Then 
(1) y I=& 3x4 $ and only if y I=.& 3X$; 
(2) y+&lClX4 if and only if y(=&l33x$; 
(3) if $=I, then y+&~13Xqf1; 
(4) if 3 X$ holds in -Qz, then y +& 3X$. 

Statements (1) and (2) say that it does not matter whether entailment and disentail- 

ment are decided for C$ or rc/. Statement (3) gives a local condition for disentailment, 

and statement (4) gives a local condition for entailment. The entailment simplification 

system for feature trees given in the next section will in fact decide entailment and 

disentailment by simplifying such that the condition of statement (4) is met in the case 

of entailment, and that the condition of statement (3) is met in the case of disentail- 

ment. 

In practice, one can ensure by variable renaming that no variable of X occurs in y. 

The next fact says that then it suffices if entailment simplification respects the more 

convenient invariant: 

This is the invariant respected by our system (cf. Proposition 5.4). 

Proposition 4.2. Let X n V(y) = 8. Then, 

(1) !f ~I=YAA-YAA, then yl=&jXIl/, 
(2) y +&-I 3 X&J if and only if y A C/I is unsatisjable in d. 

That is, the conjunction y A qb is satisfiable if and only if y either entails 3x4, or it 

does not determine 3x4. 

The independence of negative constraints [9,16,17] is an important property of 

constraint systems. If it holds, simplification of conjunctions of positive and negative 

constraints can be reduced to entailment simplification of conjunctions of positive 

constraints. In order to see why, observe that y A 1 41 A e.. A c#J,, is unsatisfiable if and 

only if y entails 4r V ... V 4.. 

To define the independence property, we assume that a constraint system is a pair 

consisting of a structure d and a set of basic constraints. From basic constraints one 
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can build more complex constraints using the connectives and quantifiers of predicate 

logic. We say that a constraint system satisfies the independence property if: 

y +d 3x141 V ... V 3X,4, if and O?ZlJJ if Ii: y )=d !IXi+i 
for all basic constraints y, bl, . . ., 4, and all finite sets of variables X 1, . . , X,. 

Proposition 4.3. If a constraint system sat&ties the independence property, then the 
following statements hold (y, 4 and bl, . . . . q& are basic constraints): 

(1) yAl!lX,+,A ... A13X,& unsatisjiable in SZ! if and only if 3: yI=~Xi~i; 

(2) if YAl3XldJlA ... A13X,cj, is satisfiable in &, then YAT~X,C#J, A ... 

AT~X,&,~=,EIXC#I if and only ifr+,3X~$. 

5. Entailment simplification 

We will now use the general setting of the previous section for the specific case of 

feature tree constraints. Throughout this section we assume that y is a solved 

constraint and X is a finite set of variables not occurring in y. We will call y the 

context, the variables in X local, and all other variables global. Relative simplification 

is always carried out with respect to the context. 

If T is a theory and 4 and $ are possibly open formulae, we write 4 k T $ (read: 

4 entails $ in T) if v(4-+$) holds in T. 
The next theorem expresses the same observations stated before Theorem 3.7 

regarding disentailment rather than satisfiability. 

Theorem 5.1. For every basic constraint 4, the following equivalences hold: 

Y+~~~XC$ if and only if ykFTo 13x4 if and only if ~I=r~l3Xq5. 

Proof. Implication “223” holds since FT, E FT. Implication “3=> 1” holds since Y is 

a model of FT. To show implication “1*2”, suppose y I=Yl 3x4. Then we know by 

Proposition 4.2 that y A Q, is unsatisfiable in Y. Thus, we know by Theorem 3.7 that 

y A C#I is unsatisfiable in every model of FT,. Hence, we know by Proposition 4.2 that 

Y l==FTo13X4. 17 

For every basic constraint 4 and every variable x we define 

ox:= y, if x&ye4 and x is eliminated, 

x, otherwise. 

A basic constraint 4 is X-oriented if x& ye4 always implies XEX or y#X. A basic 

constraint C#J is pivoted if x& ye4 implies that x is eliminated in 4 (and then y is 

a “pivot”). 
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The following entailment simplification rules simplify basic constraints to basic 

constraints with respect to a context y and local variables X. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

4 
&l~~V Acp 1 

FfuAYfvEY, 

b=cbu, 4uith 

$X-oriented and pivoted 

i AxAByGyA+, qSx=C#ly, A#B 

AxA 
- ‘JYWAdh dY=x 

4 

x~yA$ 

i 

x ZY, XEY, =“lr(4), 
x+yAc#~[x+-y] (XEX or y$X) 

x&yAqt~ 

y~xAc$ 
x4X, YEX 

4 

4 [X+-Y1 
XlyEy, XEY(c#g 

x~xAc#~ 

We say that a basic constraint r#~ simplijies to a constraint C#J with respect to y and X if 

+= $ or C$ simplifies to I++ in finitely many steps each licensed by one of the eight 

simplification rules given above. The notions of normal and normal form with respect 
to y are defined accordingly. 

Example 5.2. Assume, in the context of functions in LIFE [6] (the case of guarded 

Horn clauses [lS] is quite similar), that a function fun is defined in the form 

fun@, z) + . . . , and that it is called as fun(x [fk-u : A], y[fav : B]). That is, the actual 

parameter pair of feature descriptions (x [f*u : A], y [fav : B]) has to be tested upon 

matching of (and incompatibility with) the formal parameter pair (z,z). (This is in 

order to know whether that function call fires, fails, or residuates.) As shown in [24,5], 

this corresponds to testing whether the context y=xfu A yfv A Au A Bu entails the 

guard ?lz(x~zAy~z). 
Let X = {z}. Then we have the following simplification chain with respect to y 

and X: 

by rule E6 
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=.Py,x z&xAy&x by rule E5 

=7,X u~vAz~xAy~x by rule E2 

=JY,X I by rule E3 

Let us now take as context 7 = xjii A yfi A Au. Then J= u G v A z G x A y G x is normal 

with respect to 7 and X. We shall see that this normal form tells us that F does not 

determine 6. If jj gets strengthened either to 7 A Bv (as above), or to 7 A x + y, then the 

strengthened context does determine: it disentails in the first and entails in the second 

case. The basic normal form of y” A x &y is yjii A Au A v G u A x & y; with respect to this 

context 6 simplifies to z i y. 

In the previous example, q5=z~xAy~x simplifies to 4i=u*v A z&xAy~x 

with respect to y =xfu A yfi A Au A Bv and X= {z}. This corresponds to a basic 

simplification as follows: 

=xjiiAyfvAAuABv Az~xAy~x 

=sxfuAxfuAAuABv Az~xAysx (by rule B4) 

=sxfvAAuABvAu&u Az~xAy~x (by rule Bl) 

= Y’A& 

We observe that y A qf~~ is equal to y’ A c#J;, modulo renaming y by @i y= x and u by 

4i u = v, and modulo the repetition of xfv. 

Lemma 5.3. Let 4 simplify to 41 with respect to y and X, not using rule E6 (in an 

entailment simplijication step). Then y A 4 simpl$es to some y’ A 4; which is equal to 

y Ac$, up to variable renaming and repetition of conjuncts. 

Proof. Clearly, each entailment simplification rule, except for E6, corresponds dir- 

ectly to a basic simplification rule (namely, El and E2 to Bl, E3 to B2, E4 to B3, E5 

and E7 to B4, and ES to B5). 

If the application of the entailment simplification rule to 4 relies on a condition of 

the form 4x=y or +x=+y, where x#+x or y#+y, then X&~XE~ or y&+yEd, and 

rule B4 is first applied to y A& eliminating x by 4x(y by 4~). 

When comparing y A q51 and y’ A q5;, renamings take account of these variable 

eliminations. Note that, if the rule applied to 4 is E2, then y’ has one feature constraint 

xfu less than y-which, after renaming, has a repetition of exactly this constraint. 0 

Proposition 5.4. If #J simplljies to $ with respect to y and X, then y A 4 and y A II/ are 

equivalent in every model of FT,. 



278 H. Ai’t-Kaci et al. 

Proof. Follows from Lemma 5.3 and Proposition 3.2. 

Proposition 5.5. The entailment simplijcation rules are terminating, provided y and 
X are fixed. 

Proof. First we strengthen the statement by weakening the applicability conditions 

$y= x in rules El and E4 to 4y = 4x. Then from Lemma 5.3 follows: (*) Each 

entailment simplification rule applies to $1 with respect to y and X if and only if it 

applies to 4; with respect to y’ and X-except possibly for E5, when the corresponding 

variable has already been eliminated in an “extra” basic simplification step. 

If y’ has one conjunct of the form xfu less than y, then (*) still holds; regarding a new 

application of E2 this is ensured by its (therefore so complicated . ..) applicability 

condition. 

With Condition (*), it is possible to prove by induction on n: For every entailment 

simplification chain 4, @1, . . . , (bn with respect to y and X, there exists a “basic plus rule 

E6” simplification chain y A 4, y 1 A 4;) . . , yn + k A & + k, where k 3 0 is the number of 

“extra” variable elimination steps. Since, according to Proposition 3.3, basic simplifi- 

cation chains are finite, so are entailment simplification chains. q 

So far we know that we can compute for any basic constraint Q, a normal form 

$ with respect to y and X by applying the simplification rules as long as they are 

applicable. Although the normal form II/ may not be unique, we know that y A 4 and 

y A $ are equivalent in every model of FT,,. 

Proposition 5.6. For every basic constraint 4 one can compute a normal form $ with 
respect to y and X. Every such normal form $ satisjies: y bs 3x4 if and only if 
yks3X$, and y+FT3X+ if and only if Y(=~~CIX\C/. 

Proof. Follows from Propositions 5.4, 5.5, 4.2 and 4.1. q 

In the following we will show that from the entailment normal form $ of 4 with 

respect to y it is easy to tell whether we have entailment, disentailment or neither. 

Moreover, the basic normal form of y A 4 is exactly y A rc/ in the first case (and in the 

second, where y A I = I), and “almost” in the third case (cf. Lemma 5.3). 

Proposition 5.7. A basic constraint d, # I is normal with respect to y and X if and only 
if the following conditions are satisfied: 

(1) 4 is solved, X-oriented, and contains no variable that is bound by y; 
(2) if ~$x=y and xfiey, then yfi$4 fir every v; 
(3) if &x=4y and xfuq and yfv~y, then CPU=&; 
(4) if &x=y and Ax~y, then By+4 for every B; 
(5) if $x=+y and Axey and By~y, then A=B. 
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Lemma 5.8. If 4 # I is normal with respect to y and X, then y A 4 is satis$able in every 
model of FT. 

Proof. Let 4 # I be normal with respect to y and X. Furthermore, let y = yN A yo and 

c$=& A& be the unique decompositions into normalizer and graph. Since the 

variables bound by yN occur neither in yo nor in c$, it suffices to show that 

yG A & A & is satisfiable in every model of FT. 
Let &(yo) be the basic constraint that is obtained from yo by applying all bindings 

of &. Then yo A & A & is equivalent to & A &(yo) A 4o and no variable bound by 

& occurs in &(yo) A do. Hence, it suffices to show that &(yo) A qf~~ is satisfiable in 

every model of FT. With conditions 225 of the preceding proposition it is easy to see 

that &(yo) A & is a solved clause. Hence, we know by axiom scheme Ax3 that 

&(yo) A do is satisfiable in every model of FT. 0 

The following theorem states that relative simplification yields a decision procedure 

for disentailment of basic constraints. 

Theorem 5.9 (Disentailment). Let $ be a normal form of 4 with respect to y and X. 
Then ~/=~-13Xqb if and only if $=1. 

Proof. Suppose $ = I. Then y +r 13X$ and hence y krl 3x4 by Proposition 5.7. 

To show the other direction, suppose y 1=3l 3 X4. Then y kY1 3X$ by Proposition 

5.7 and hence y A $ unsatisfiable in Y by Proposition 4.2. Since 5 is a model of FT 
(Theorem 2.1) we know by the preceding lemma that $ = I (since $ is assumed to be 

normal). q 

We say that a variable ,Y is dependent in a solved constraint C#J if 4 contains 

a constraint of the form Ax, xfy or x G y. (Recall that equations are ordered; thus y is 

not dependent in the constraint x A y.) We use 9V(4) to denote the set of all variables 

that are dependent in a solved constraint 4. 

In the following we will assume that the underlying signature Ytig has at least 

one sort and at least one feature that does not occur in the constraints under 

consideration. This assumption is certainly satisfied if the signature has infinitely 

many sorts and infinitely many features. 

Lemma 5.10. Let c$~, . . . . &, be basic constraints difSerent from I, and X1, . . . . X, be 
jinite sets of variables disjoint from Y(y). Moreover, for every i= 1, . . . , n, let 4i be 
normal with respect to y and Xi, and let upi have a dependent variable that is not in Xi. 
Then y A~3X,~1 A ... AT 3X,,& is satisjiable in every model of FT. 

Proof. Let y = yN A yG be the unique decomposition of y into normalizer and graph. 

Since the variables bound by yN occur neither in yo nor in any pi, it suffices to show 



280 H. kit-Kaci et al. 

that yGAi3X14r A ... A -J 3 X,&, is satisfiable in every model of FT. Thus, it 

suffices to exhibit a solved clause 6 such that yo E 6 and, for every i = 1, . . ., n, V(d) is 

disjoint with Xi and 6 A 4i is unsatisfiable in every model of FT. 
Without loss of generality we can assume that every Xi is disjoint with V(y) and 

V(&j) - Xj for all j. Hence, we can pick in every 4i a dependent variable xi such that 

X,$X, for any j. 

Let zi, . . ..zk be all variables that occur on either side of equation X~G~EC#Q, 

i= 1, . . . , n (recall that xi is fixed for i). None of these variables occurs in any Xj, since 

every hi is Xi-oriented. Next we fix a feature g and a sort B such that neither occurs in 

y or any bi. 

NOW 6 is obtained from y by adding constraints as follows: if AXi~~i, then add Bxi; 

if Xify~~i, then add Xifr; to enforce that the variables zi, . . . , zk are pairwise distinct, 

add: 

zkgzk- 1 A “. Azzgzl AzlgT. 

It is straightforward to verify that these additions to y yield a solved clause 6 as 

required. 0 

Proposition 5.11. If cj is solved and WV($) GX, then FT\=?3X4. 

Proof. Let $=& A & be the decomposition of C#I in normalizer and graph. Since 

every variable bound by 4 is in X, it suffices to show that 73x4, is a consequence of 

FT. This follows immediately from axiom scheme Ax3 since & is a solved clause. 0 

The following theorem states that relative simplification yields a decision procedure 

for entailment of basic constraints. 

Theorem 5.12 (Entailment). Let $ be a normal form of C#I with respect to y and X. Then 
Y+~~XC#I if and only if $#l_ and PV($)&X. 

Proof. Suppose y + F 3x4. Then we know y (= F 3 X$ by Proposition 5.6, and thus 

y A 13 X$ is unsatisfiable in F. Since y is solved, we know that y is satisfiable in 

F and hence that y A 3X$ is satisfiable in F. Thus II/ # I. Since y A 13X$ is 

unsatisfiable in F and F is a model of F T, we know by Lemma 5.10 that Qc ($) E X. 

To show the other direction, suppose II/ # I and 9V(lC/) G X. Then F T + V 3X$ by 

Proposition 5.11, and hence F I= q3X$. Thus y kY 3X$, and hence y I=Y 3X4 by 

Proposition 5.6. 0 

The next theorem shows that it does not matter whether entailment of basic 

constraints is interpreted in the algebraic semantics (i.e., in the feature tree structure 

F) or in the logical semantics (given by the axioms of FT). Now, of course, the third 

axiom is necessary (take, for example, as context the true constraint T). 
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Theorem 7. Let 4 be a basic constraint. Then y +r 3x4 if and only ify I=FT 3x4. 

Proof. One direction holds since Y is a model of FT. To show the other direction, 

suppose y l=Y 3x4. Without loss of generality we can assume that 4 is normal with 

respect to y and X. Hence, we know by Theorem 5.12 that 4 # I and ?~V($)EX. 

Thus, FT/=i3X4 by Proposition 5.11 and hence ~+~~3Xd. 0 

We finally show that our constraint system enjoys the property which allows one to 

solve conjunctions of negative constraints through relative simplification. 

Theorem 5.14 (independence). Let 41, . . . . I#I” be basic constraints, and X1, . . . . X, be 
Jinite sets of variables. Then, 

Ykf-3X141 v ... V 3X,4, if and only if 3i: y I=s3Xi~i. 

Proof. To show the nontrivial direction, suppose y I=Y 3X, 4i V ... V 3X,&. With- 

out loss of generality we can assume that, for all i= 1, . . . , n, Xi is disjoint from V(y), pi 

isnormalwithrespecttoyandXi,and~i#I.SinceyAl3X,~,A ... AlYX,&is 

unsatisfiable in Y and Y is a model of FT, we know by Lemma 5.10 that 

3V(&)cXk for some k. Hence, y 1=‘3 3X,6, by Theorem 5.12. 0 

6. Conclusion 

We have presented a constraint system FT for logic programming providing 

a universal data structure based on rational feature trees. FT accommodates record- 

like descriptions. We think that these are superior to the constructor-based descrip- 

tions of Herbrand in that they allow expressing partial knowledge in a more flexible 

way. 

The declarative semantics of FT is specified both algebraically (the feature 

tree structure Y) and logically (the first-order theory FT given by three axiom 

schemes). 

The operational semantics for FT is given by an incremental constraint simplifica- 

tion system, which can check satisfiability of and entailment between constraints. 

Since FT satisfies the independence property, the simplification system can also check 

satisfiability of conjunctions of positive and negative constraints. 

We see four directions for further research. 

First, FT should be strengthened such that it subsumes the expressivity of rational 

constructor trees [9, IO]. As is, FT cannot express that x is a tree having direct 

subtrees at exactly the features fi, . . . . fn. It turns out that the system CFT [26] 
obtained from FT by adding the primitive constraint 

X{fl, . . ..fn) 
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(x has direct subtrees at exactly the features f 1 . . ..fn) has the same nice properties as 
FT. In contrast to FT, CFT can express constructor constraints; for instance, the 
constructor constraint X&A(Y,Z) can be expressed equivalently as 
Ax A x(1,2} AxlyAx22, if we assume that A is a sort and the numbers 1,2 are 
features. 

Second, it seems attractive to extend FT such that it can accommodate a sort lattice 
as used in [l, 3,4,5,25]. One possibility to do this is to assume a partial order Q on 
sorts and replace sort constraints Ax with quasi-sort constraints [A]x whose declar- 
ative semantics is given as 

[A]x- v Bx. 
BSA 

Given the assumption that the sort ordering < has greatest lower bounds if lower 
bounds exist, it seems that the results and the simplification system given for FT carry 
over with minor changes. 

Third, the worst-case complexity of entailment of basic constraints checking in FT 
should be established. We conjecture it to be quasi-linear in the size of y and 4, 
provided the available features (finitely many) are fixed a priori. 

Lastly, implementation techniques for FT at the level of the Warren abstract 
machine [2] need to be developed. 
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