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Abstract. This article presents a syntactic calculus of  partially-ordered data type structures and 
its application to computation.  A syntax of record-like terms and a type subsumption ordering 
are defined and shown to form a lattice structure. A simple 'type-as-set '  interpretation of these 
term structures extends this lattice to a distributive one, and in the case of  finitary terms, to a 
complete Brouwerian lattice. As a result, a method for solving systems of  type equations by 
iterated rewriting of  type symbols is proposed which defines an operational semantics for K B L - - a  
Knowledge Base Language. It is shown that a KBL program can be seen as a system of equations. 
Thanks to the lattice properties of  finite structures, systems of simultaneous type equations are 
shown to admit least fixed-point solutions. An operational semantics for KBL is described as 
term rewriting. Fan-out rewriting, a particular rewriting computation order related to the conven- 
tional outermost term rewriting which rewrites symbols closer to the root first, is defined and 
shown to be maximal. Correctness with respect to least fixed-point semantics of  KBL's operational 
semantics, as defined by fan-ont rewriting, is discussed. Finally, extensions and further research 
directions are sketched. 

Key Words: Partially-ordered types, type inheritance, type equations, algebraic semantics, graph- 
rewriting systems. 
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Maurice  Nivat ,  Preface to Irene Gessarian's lecture notes on 
algebraic semantics [30]. 

1. Introduction 

1.1. Disclaimer 

It has yet again become clear to the author that ideas from virtually mutually 
exclusive branches of computer science may contribute constructively to one another. 
On one hand, universal algebra has been rather successful at formalizing, explicating, 
and thus predicting the behavior of computational concepts. On the other hand, 
artificial intelligence (AI) has made undeniably intriguing contributions towards 
comprehending rather esoteric--and thus inherently very hard and very controver- 
s ia l -phenomena related to human intelligence seen as a computational process. 
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Thus, we feel compelled to begin this article with a disclaimer pertaining to a certain 
scientific attitude. 

Amongst the varied fauna and flora thriving in the circles of research in computer 
science, there is a particular breed whose members, self-proclaimed or not, are 
commonly known as 'AI researchers'. Whatever life-forms that breed really encom- 
passes, where they live, what criterion they indeed fill to adhere to the species, is 
the subject of a rather uninteresting and fruitless on-going debate. An interesting 
observation, however, is the fact that a large number of them practice their trade 
favoring rather empirical, as opposed to formal, methods. A potential explanation 
for this, in our opinion, is that their quest has an almost alchemical nature. By that 
token, much of their contribution suffers from a certain despite by the formalists, 
especially of the 'pure type'. Among many possible reasons, a likely one is their 
choice of words which are perhaps a bit too pretentious for the sterner classicists 
of theoretical computer science (e.g., artificial intelligence, epistemological engineer- 
ing, knowledge representation, knowledge base, expert systems, etc.). Be that as it 
may, the result of this state of affairs is mutual exclusion of ideas. 

Now, being not so clever (brave?) as to be in either camp, this author wishes to 
voice the clear and loud disclaimer that it is clearly a loss of scientific opportunity 
to isolate such disciplines---especially for so trivial and vain reasons. Research is 
mining a gold field, and a formal scientific method leading to replication of empirical 
results through a systematic and minute study of even the wildest idea makes as 
obvious sense as an ore refinement process. 

The nature and direction of this reported research is precisely such an effort of 
cross-fertilization of ideas: on the one hand, the ideas and insights evolved out of 
'knowledge representation' in AI; and on the other hand, the rigor and formal tools 
crafted in the study of algebraic semantics of recursive program schemes. The 
outcome of the exercise is a better understanding (at least in the author's mind) of 
great intuitions put forth by some members of the AI community, as well as an 
impressive show of power of thd abstract tools developed mostly by the French 
school of algebra for a clear formal explanation of new challenges in computer 
science. Further, the exercise has even led to new practical enhancements (read, 
'running software') of some computation processes and architectures [2]. 

1.2. Organization of  contents 

Following a survey of related approaches to set this work's motivation, the first 
part of this article focuses on syntactic properties of record-like data type structures. 
A syntax of structured types is introduced as labelled infinite trees, which may be 
seen as extrapolated from the syntax of first-order terms as used in algebraic 
semantics [14, 30, 31]. However, since the terms defined here are not to be interpreted 
as operations, the similarity is purely syntactic. A calculus of partially ordered record 
structures is presented. It is then extended to variant record structures through a 
powerlattice construction. The second part deals with solving recursive type 
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equations in a lattice of variant records. An operational semantics of type structure 
rewriting is first informally described. Then, a fixed-point semantics is discussed. 
Finally, a discussion of the correctness of the former with respect to the latter 
concludes the main point. Extensions and further research are ultimately sketched 
as a conclusion. 

2. Motivation and background 

The area of semantics of data types has experienced growing interest in the last 
decade. A recent, albeit already dating, compendium of technical approaches cover- 
ing the latest research in this topic can be found in [34]. The notion of partially 
ordered data types has just begun being the focus of intense research. Although it 
would be quite presumptuous here to attempt a complete survey of what has been 
and is being done, this section gives a rapid overview of a few major approaches. 

2.1. Semantic networks 

It has often been the case in artificial intelligence (AI) research that naive 
experimentation with intuitive ideas has led to some interesting concepts. Such 
experimentations dealing with ways of representing commonsense knowledge in a 
computer brought about the notion of semantic network In 1968, Quillian [54] 
proposed a computer representation of associative memory. What he was suggesting 
was a graph-theoretic denotation of'concepts' as vertices and ' conceptual associations' 
as edges. Soon after, Minsky [46] introduced a theory of frames, essentially record- 
like data structures, related together by a so-called 'Is-A" link meant to import or 
'inherit' information from one frame to another. A set of so-related frames was 
called a conceptual taxonomy or knowledge base. In the years that followed, many 
AI and database researchers proposed a flurry of semantic network models and 
languages along the lines of these early ideas [21]. 

Figure 1 shows an example of a piece of 'knowledge base', expressed using 
KL-ONE [8], one among the most popular semantic network formalisms. The ellipses 
are called concept nodes, and denote generic entities. The squares are called role 
nodes, and denote attributes of the concept to which they are attached. The diamonds 
are called role/value maps and capture equality constraints among roles. The double 
arrows are called inheritance links and denote the 'Is-A' relation among concepts 
and roles. The single arrows are value restriction links pointing to the concept 
restricting a role instance. The dashed arrows are called focus/subfocus chains and 
denote sequences of attributes linked by the English "of" connective, and constituting 
two arms of a role/value map. Among other things, the network in Fig. 1 expresses 
that an employee is a person, that a self-employed person is an employee who is 
her own boss, and that a locally-employed person works in the city where she lives. 

Although formally naive, the notion of semantic network has had great practical 
appeal as it is intended to capture some sort of "static inference', using frames as 
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Fig. 1. Example of  a KL-ONE semantic network. 

generic types specifying templates or patterns whose instances inherit properties by 
'pointer chasing', as opposed to "dynamic inference', carried out by a theorem prover 
or a database query language. Unfortunately, as can easily be understood by looking 
at Fig. 1, semantics of semantic networks is at best approximate, and it becomes 
quickly intractable to maintain, let alone debug, even relatively small databases of  
this nature. For this reason, the notion of semantic network has been subject to a 
controversy, even among AI researchers, where logic programming proponents have 
decried the very concept as being an unnecessary and semantically unclean notational 
variant of the first-order predicate calculus. ~ We next briefly examine some of these 
proposals. 

2.2. The first-order logic approach 

The glaring lack of formal semantics for semantic networks has induced certain 
AI and database researchers [5, 16, 36] to use the well-established first-order 
predicate calculus to formalize conceptual taxonomies. 

There are essentially two ideas. One [5] proposes to use first-order logic as a 
metalanguage to describe a semantic network. The subsumption relation is denoted 
by a SUBTYPE binary precficate. Of course, to reflect the fact that this is an ordering, 
axioms for transitivity must be added. Another predicate ROLE, is a ternary one: 
ROLE(t1, r, h) asserts that a h has a role r which is a t2. Ground objects are declared 
to be of some type of a TYPE predicate, as in TYPE(o, t), denoting that the object 

But see [32] for a vehement, as well as entertaining, counterpoinL 
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o is of type t. Thus, the authors of [5] make their case by showing that a semantic 
network can be expressed as first-order sentences involving these predicates. 

The other proposal [16, 36] may roughly be summed up as follows. Since links 
in a network can be viewed as binary relations, and since a predicate denotes a 
relation, then a semantic network is nothing but a set of logical formulae involving 
only binary predicates, constants, and logical variables. A binary predicate ISA is 
used to assert that an object is of a certain type, as in ISA(socrates, human). The 
subsumption relation is defined as logical implications, as in 

ISA(x, human) ~ ISA(x, animal). 

Attributes are expressed by assertions of the form A(t~, t2) meaning that tl has 
an attribute A of type t2, as in FRIEND(socrates, plato). 

In addition, to achieve a better abstraction power (in particular incomplete 
information, and limited temporal reasoning), a first-order event calculus is necessary. 
Thus, all predicative actions (verbs) and assertions are made in relation to some 
existential event. That is, rather than GIVES(john, mary, book) they propose to write 

EVENT(el,giving) & AGENT(el , john)  & RECIPIENT(el ,mary) & 
OBJECT(el, book). 

In both of the foregoing proposals, it is argued that first-order logic theorem 
provers are thus sufficient to implement sophisticated knowledge bases in a semanti- 
cally pure fashion. The idea is indeed difficult to challenge. 

Nevertheless, the 'static' inference motivation is definitely lost. Further, doing 
everything in first-order logic may even introduce inefficiency of computation. This 
is made clear by taking an example. Let us suppose that PROLOG is given a type 
system along the above lines, and consider the typed tplus operation defining addition 
on integers: 

tplus(X: integer, Y: integer, Z : integer) 

becomes 

tplus(X, Y, Z)  :- isa(X, integer), isa( Y, integer), plus(X, Y, Z), 
isa(Z, integer). 

Obviously, nesting this operation many times over in a sequence of calls to 'tplus' 
so that, for instance, the result of one becomes argument of the next, leads to grossly 
redundant (run-time) type checking. It is however semantically immaculate. 

A work strongly related to ours is one that this author has just recently learned 
about [58]. Rounds and Kasper present a Kripke-style semantics for a logic of 
record structures for linguistic information. Their syntactic calculus is a strict 
subcalculus of ours, and theirs is a model-theoretic semantics. Their contribution 
is a completeness theorem for their calculus. However, the same comment that we 
made earlier on the use of logic for type structure semantics applies in this case as 
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well. Namely, the motivation for such work and concepts as inheritance among type 
structures and logical deduction is precisely one which aims at taking some computa- 
tional burden off the back of a logic by using a semantically equivalent, albeit 
pragmatically more practical, order-sorted logic. In addition, it encourages such 
subtle misconceptions as the belief that any logic is semantically equivalent to its 
unsorted version. A blatant counterexample is shown in [2] where an order-sorted 
PROLO~ is shown to be of a strictly larger semantic model variety since sorts may 
accommodate limited forms of disjunctions and negations---which are disallowed 
in Horn logic. 

2.3. The initial algebra approach 

An abstract data type is defined to represent the essential properties of a data 
type in complete abstraction of how the data type may be implemented. For example, 
whether a set is implemented as a linear list, as an array, or as a tree, is not relevant 
for the abstract meaning of the set data type. Hence, universal algebra provides 
sufficient tools for a mathematically elegant and powerful Characterization of types. 
Indeed, initial algebra semantics [24, 25, 44] provides precisely this kind of charac- 
terization by defining a data type as the initial algebra in the variety induced by a 
set of equations. The approach actually uses the concept of multi-sorted algebra 
which is a straightforward generalization of a Z-algebra endowed with a set of sorts, 
and whose operation symbols are indexed by strings of such sons. Thus, a function 
symbol f of arity n has a sort s l . . .  s,, sn+l where si, i = 1 , . . . ,  n is the sort of the 
ith argument of the operation corresponding to f, and s,+~ is the sort of the value 
returned by this operation. 

Many programming languages have been implemented which are based on this 
idea: the better known are OBJ [26], AFFIRM [47], and CLu [38]. Among these, 
only OBJ has also integrated the notion of partially ordered types based on the 
lattice-theoretic properties of algebras and extension of sorts to be partially ordered 
[22]. Figures 2 and 3 suggest the way subtyping is achieved in OBJ. Figure 2 defines 
an abstract data type specification 2 of a ring, and Fig. 3 defines a distributive ring 
(i.e., a ring whose additive law is distributive on the multiplicative law) as subtype 
of a ring. The uses primitive imports the definition of the previously defined type. 

The initial algebra approach is surely one of the most mathematically solid theories 
of data types proposed today. It however addresses issues which are concerned with 
abstract notions of types, and neglects to consider implementation issues. 

2.4. The denotational approach 

The denotational semantics of programming languages is essentially based on the 
work of Scott [59, 62]. Programs are interpreted as continuous functions between 

2 Actually, of  a family of  such ADTs: a variety of  finitely-presented equational algebras. 
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theory RING 
sorts ring 
fns 

_+_: ring, ring-~ ring (asso¢ eomm id: 1) 
_*_: ring, ring-~, ring (assoe eomm id: 0) 
_-_:  ring -~ ring 

X, Y, Z :  ring 
axioms 

X + ( - X ) = 0 .  
X * ( Y + Z ) = ( X *  Y ) + ( X * Z ) .  

endth 

Fig. 2. An OBJ sL~cification of a ring structure. 

theory DRING uses RING 
sorts dring 
subsorts dring < ring 
Y a i ~  

X, Y, Z :  dring 
axioms 

x+(Y,Z)--(x+ Y).(x+z). 
endth 

Fig. 3. An OBJ specification of  a distributive ring structure. 

complete lattices, also called domains [60]. 3 Thus, the meaning of a program is 
defined as the least fixed point of the continuous function denoted by the program. 4 
Defining the interpretation domains as complete lattices offers the possibility to 
define so-called reflexive domains which are domains isomorphic to lattice constructs 
of themselves and other domains (generally involving product, sum, and continuous 
function operations). Recursive domain equations are thus guaranteed to have 
well-defined solutions. 

Followers of Scott have essentially adopted two ways of defining the meaning of 
data types. The first is the original definition proposed by Scott himself in [59] and 
identifies a data type to a retract, which is an involutive continuous function. Scott 
proposes to model everything in a universal domain Po~, defined as the powerset of 
the natural numbers ordered by inclusion. Thus, a function on Po, is represented 
by its graph; that is, the set of pairs of antecedents and images, which may hence 
be recursively enumerated as sets of integers. By a bijective number coding of sets 
(G6del numbering), Scott thus shows that P¢o is isomorphic to the lattice of con- 
tinuous functions on PoJ, and by this token explains why such apparent paradoxes 

3 Complete partial orders (cpo's) are often more appropriate than lattices to model  fixed-point 
computation as explained in [53, 66]. 

4 "Fixed-point semantics" is the other name for this approach to programming language semantics. 
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as applicat ion of  a function to itself are not at all paradoxical and can be very well 
interpreted in PoJ. Furthermore, any domain can be obtained as the image of  P~o 
by a suitable retract, thus justifying the definition of  a data type as a retract. Since, 

by definition, a retract is a fixed point  of  the evidently continuous function which 
maps a funct ion f on PoJ to the function for ,  it follows that the retracts of  PoJ 
ordered by set inclusion form a complete sublattice. However, this ordering clearly 
does not correspond to containment  of  image-domains by retracts. A more appropri- 
ate ordering on retracts of  P¢o denoting subtyping is defined as: 

r ~ r' iff r = r o r '  = r '  o r ,  

that is, r is a subtype of  r' if  and only if r is a retract of r'(Pto). Unfortunately, the 

set of retracts of  Pro does not have a lattice structure for this ordering. At best, if  

two retracts commute, their glb is given by their composition. Application of  the 
semantics of  data types as retracts can be found in [17, 41]. 

Another  denotat ional  approach to the formal semantics o f  data types is one which 
defines them as ideals of  a semantic domain and is due to MacQueen and Sethi 
[39, 40]. For example, let us suppose that Bool is a (flat) domain of truth values, i.e., 

Bool  = {_L, true, false ,  T} 

and that Int is a (flat) domain of  integers. Then, we can define a domain of  values 

Val as the reflexive domain solution of  the following domain equation: 

Val  = Bool  + Int + Val  x Va l  + [Val  --> Val]  + {wrong}, 

where wrong is the value of  inconsistent objects. Hence, a type in this domain is 

formally defined as an ideal of  Val which does not contain the wrong value. 
This is, in our opinion, one of  the most adequate approaches to partially ordered 

types since it defines in a clear way a complete lattice of types ordered by inclusion. 
It is however essentially aimed at expressing the meaning of  higher-order functional 

types. Nevertheless, as shown by Cardelli [12], it offers a powerful and elegant 
model to define a semantics of  partially ordered record-like type structures with 

inheritance of  attributes. In the context of  the MacQueen-Sethi  type model, Cardelli 

defines what  he calls flexible record types. Essentially, a flexible record is an finite 
indexing of  types, that is something which may be represented as an association list 
of label indices and types. One can inductively define Cardelli 's flexible record types 

as follows. Given a countably infinite set of  label symbols and atomic types like 
integer, string, boolean, etc., as primitive types, then a construct of  the form 

(11" t l , . . . ,  ln:tn), n>~O, is a flexible record if  the li's are indexing labels and the 
t~'s are atomic or flexible record types, for n t> 0. The type ( ) is the top element, 
and is the least informative type. Such indexings may be viewed as functions from 
labels to types which map all labels to T except for a finite set of labels (finite 
partial functions).  Thus, flexible records are partially ordered using the function 
ordering. As a result, a complete lattice of record types is obtained, with easy and 

~m~,um voor Wi,~r~. ~- en InformerS< 
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practical rules to compute meets and joins. As will be seen, Cardelli's model of 
partially ordered record structures is close to the one we shall introduce. However, 
it fails to offer equality among parts of a record, and is given a different semantics 
than ours. 

3. Concrete data type structures 

Sections 2.1 and 2.3 presented two extreme approaches to the problem of object 
representation. On the one hand, the semantic network approach is the intuitive, 
perhaps naive, attempt to provide physical data structures for a programmer to 
capture one's concepts into concrete records. On the other hand, the algebraic 
approach is concerned with abstract foundations and properties of the meaning of 
data types, regardless of how they may be physically implemented. Thus, it favors 
a systematic study, perhaps to the detriment of presenting a simple and straightfor- 
ward motivation to the layperson. 

Section 2.2 described some attempts to fill the gap between intuitive representations 
and clear semantics through the use of first-order logic. Granting that logic both 
shares semantic clarity with the algebraic approach, and possesses simple expressive 
elegance to please intuition, my main criticism of this trend of research is that it 
goes against the primary motivation for the use of data type in programming. As 
illustrated then, we argued that if information about domains of objects is handled 
by the same logic formalism used for computation, the very notion of data type as 
static information to be factored out of dynamic computation is lost. 

In yet another attempt to fill the same gap, we propose in this section that naive 
data structures like records can be of great power if formalized in a way to have 
clear meaning and to make them amenable to manipulations which are congruent 
with that meaning. Thus, a calculus of concrete data types can be developed which 
offers the simple representational capability inherent to record-like structures and 
semantic networks, and which bears a clear denotation of data types as domains 
of elements. In this section, an approach is motivated by means of a close look at 
the practical use of first-order terms as a potential data model. 

3.1. Desideratum 

Almost all programming languages provide for some notion of structured data 
type, even if only as an after-thought. Examples are record types in ADA [37], 
PASCAL [33], ALGOL-W [61], structures in C [35], flavors in ZETALISP [65] and 
INTERLISP [64], first:order terms in PROLOO [13], frames in FPa. [56], concepts in 
K~-ONE [8], etc. These are meant as a facility to encapsulate attributive information, 
and their syntactic appearance is characterized as variations on sets of attribute/value 
pairs. 
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3.2. A dialectic approach 

3.2.1. Thesis 
Subtyping is concerned with capturing the notion of subsumption 5 among concrete 

objects. Thus, we would like to define a notational system for representing approxima- 
tions of objects of which one conceives in one's mind. Moreover, we want this 

system to contain some mechanism which could automatically classify thus 
represented objects in a fashion which is congruent with their interpretation as 
approximations. 

An example of such a system is provided by first-order terms or trees in universal 

algebra and logic. In PROLOG [13], the underlying logic model means first-order 
terms as functions. However, operationally, term structures are uninterpreted con- 
structors. Hence, one finds it very practical to use them as record structures, com- 

pletely forgetting their functional semantics. For example, we would like to express 

the fact that a person has a name, a birth date, and a sex. Representing a thus 

specified generic person as a term could be person(x, y, z). Then, by a convention 
remembered at interpretation, the symbol person at the root of a term denotes a 

person object, and the variables x, y, z as place markers for a person's name, date 
of birth, and sex, respectively. The classification mechanism in this model is term 
instantiation. The meaning of variables is that they stand for incomplete information 

and may be substituted for by terms. Thus, person('Hassan', y, z) denotes any person 
named 'Hassan', and person('Hassan', date(14,june, y), z) designates any person 

named 'Hassan' and born the 14th of June. The term appearing as the date of birth 
in the latter 'person' illustrates the substitution process. If we choose to define a 

type to be a first-order term as shown, and the type classification ordering to be 
term instantiation, then we have at hand a type system as wished. Indeed, the types 

thus defined form a lattice whose meet operation (i.e., greatest lower bound) is 
first-order unification [57], and whose join operation (i.e., least upper bound) is 

first-order anti-unification, or generalization [55]. PROLOG programmers are well 
familiar with this model which is unlike any other available in conventional program- 
ming languages and turns out to be very handy in practice. 

32.2. Antithesis 
There is however a certain amount of inflexibility inherent to the definition of 

types as terms. Firstly, a term is a finitely branching tree. In particular, it has a fixed 
number of arguments. If  we want to extend the definition of  a person to have also 
a marital status, we must entirely redefine the type 'person' to take one more 
argument, and hence revise all previously used instances of a person. Secondly, a 

term has a fixed order of arguments. This is very convenient to interpret consistently 
position within a term as having a fixed meaning. For example, in a 'person'-term, 
the first argument is once and for all meant to denote the person's name. Indeed, 

5 We are borrowing this term from Plotkin [52]. Although his definition is different from what will 
be presented here, it inspired its approach. 
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this is also taken advantage of by the unification process; i.e., in order to match, 
two terms are expected to have their corresponding subterms in the same order. 
This is the same principle used in most programming languages to pass procedure 
parameters. As a result, one must constantly keep in mind the original intended 
interpretation of the order of  arguments. Thirdly, type subsumption as one-way 
pattern-matching is forcing a common syntactical pattern for all terms in a chain in 
the lattice. For example, if we define a type student(x, y, z), then we cannot express 
that we also intend a student to be a person since a type is identified by its constant 
root symbol and 'student' is distinct from 'person'. Finally, there is no provision in 
the definition of a term for specifying any restriction on the pattern of subterms. For 
example, restricting the name of a person to terms whose root symbols belong to, 
or better yet do not belong to a given set, is not syntactically possible. 

The foregoing shortcomings of the first-order term model of types make it look 
rather limited. However, it has appeal because of its solid formal grounds and its 
simplicity. It would be of great advantage if this model of types could be enhaneed 
so that it may keep its elegance and sound formal basis, lend itself to a powerful 
interpretation scheme, and yet overcome the limitations explicated above. 

3.2.3. Synthesis 
We propose to modify the notion of a type by extrapolating on the classical 

definition of a term. Let us first relax the fixed-arity constraint, i.e., a term may have 
an unbounded number of arguments. Next, let us relax the fixed-position constraint 
by explicitly indexing or labelling the arguments. The reader familiar with ADA 
[37] will note that this language allows a procedure call's actual parameters to be 
specified either by position, or possibly out of order by explicit labelling. However, 
in ADA all actual parameters must be present at run-time, possibly by default. In 
our case, since a type can now have a potentially infinite number of  attributes, all 
that is ever needed is to specify only those which are relevant at any given time. 
For example, person(name ~ ' H a s s a n ' )  denotes the type of persons named 'Hassan', 
and pe r son ( sex ,ma le )  stands for the type of male persons. Furthermore, let us 
assume some partial ordering on the root symbols. This can easily be extended to 
an ordering on terms in a way very similar to a homomorphic extension. For example, 
if the symbols 'person' and 'student' are such that student < person, then we can 
consistently say that s tudent (name~ 'Hassan ' ,  s e x , m a l e )  is a subtype of per- 
son(name~ 'Hassan ' ,  s e x , m a l e ) .  

The idea behind this kind of extension of a term is based on the concept of 
multi-sorted terms with the very peculiar difference that the sorts are implicitly 
denoted by terms themselves. This is quite a new formal window through which to 
look at data and program structures that makes them syntactically undistinguishable, 
and it forces rethinking of many related familiar notions. The concepts of variable 
and symbol which are central in programming as well as formal languages are to 
be construed in a completely different yet more general way. A variable in a first-order 
term term has two distinct purposes: it is a wild card and a tag. As a wild card, it 
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specifies that any term may be substituted for it; and as a tag, it constrains all 
positions in the term where it appears to be substituted for by the same  term. We 
contend that these two roles ought to be explicitly separated. In fact, we shall try 
to explain that if symbols are partially ordered, the familiar notion of variable has 
but the restrictive designation of a term which is a maximal  element. Symbols, and 
extended terms for that matter, may be specified as upper bound constraints within 
other terms. We shall try and show how a natural extension of a partial ordering 
on the symbols may be consistently defined on extended terms. Such classical 
operations as variable substitution, term unification, etc. also take on a radically new 
interpretation, of which the familiar well-known notions are but special cases. 

4. A calculus of type subsumption 

The notion of subtyping has recently been integrated as a feature in some 
programming languages, although in a limited fashion. For example, in PASCAL it 
is provided only for so-called simple types like enumeration or range types. For 
more complex types, in general, subtyping is not implicitly inferred. For example, 
in ADA, one must declare explicitly most subtyping relationships. This is true even 
in those formalisms like KL-ONE [8] or OBJ [26] where subtyping is a central 
feature. The only formalism which may be used for implicit subtyping is provided 
by first-order terms in PROLOG as first-order term instantiation. However, even this 
representation is limited as a model for partially ordered type structures. Neverthe- 
less, it is of great inspiration for what is desired, which is a practical system of type 
structures which must have at least as much expressive power as offered by, say, 
classical record structures, as well as the capability of efficiently automating subtyp- 
ing inference, and the construction of new structures from old ones. 

A specific desideratum can be informally sketched as follows. A structured data 
type must have: 
• a head symbol  which denotes a class of objects being restricted; 
• attributes (or fields, or slots, etc.) possessed by this type, which are typed by 

structured types themselves; 
• coreference constraints between attributes, and compositions thereof, denoting the 

fact that the same substructure is to be shared by different compositions of 
attributes. 

Then, a type structure tl is a subtype of a type structure t2 if and only if: 
• the class denoted by the head of t~ is contained in the class denoted by the head 

of re; and, 
• all the attributes of t2 are present in t~ and have types which are subtypes of their 

counterparts in t2; and, 
• all the coreference constraints binding in t2 are also binding in tl. 

For example, if the symbols 'student', 'person', 'austin', 'cityname' denote sets of  
objects, and if student < person and austin < cityname denote set inclusion, then 
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the type 

s tuden t ( id~  name(last ~ X : string); 
domicile===> Y: address(c i ty~ austin); 
f a t h e r ~  person(id ~ name(last ~ X) ;  

domic i le~  Y)) 

should be a subtype of 

pe rson( id~name;  
domic i l e~  address(c i ty~ cityname); 
f a t he r , pe r son ) .  

The letters X and Y in this example denote coreference constraints as will be 
explained. Formalizing the above informal wish is what this section attempts to 
achieve. 

4.1. A syntax of structured types 

Let Z be a partially ordered signature of type symbols with a top element T, and 
a bottom element _L. Let ~ be a set of label symbols, and let 3" be a set of tag 
symbols, both nonempty and countably infinite. We shall represent type symbols 
and labels by strings of characters starting with a lower-case letter, and tags by 
strings of characters starting with an upper-case letter. 

A simple 'type-as-set' semantics for these objects is elaborated in [4] and summar- 
ized in Appendix D. It will suffice to mention that type symbols in ,S denote sets 
of objects, and label symbols in ~ denote the intension of functions. This semantics 
takes the partial ordering on type symbols into set inclusion, and label concatenation 
into function composition. Thus, the syntax of terms introduced next can be inter- 
preted as describing commutative composition diagrams of attributes. 

In a manner akin to tree-addressing as defined in [14, 27, 28], we define a term 
domain on .~ to be the skeleton built from label symbols of such a commutative 
diagram. This is nothing other than the graph of arrows that one draws to picture 
functional maps. Formally, we have the following definition. 

4.1. Definition. A term (or tree) domain A on ~ is a set of finite strings of labels 
of LP such that (1) A is prefix-closed: 

Vu E ~* ,  Vv ~ ~ * ,  if ttv E A, then u E A; 

and (2) A is finitely branching: 

if u E A, then {u.a E A l a E Le} is finite. 

It follows from this definition that the empty string ~ must belong to all term 
domains. Elements of a term domain are called (term) addresses. Addresses in a 
domain which are not the prefix of any other address in the domain are called 
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leaves. The empty string is called the root address. For example, if ~ =  
{a, b, c, d, e,f,, g, h}, a term-domain on ~ may be 

Aa = {e, b, b.c, b.d, b.e, a, a.g, h, h.a, h.a.f}. 

A term domain need not be finite; for instance, the regular expression A2 = 
a(ba)*+ (ab)*, where a, b s L¢, denotes a regular set which is closed under  prefixes 
and finitely branching; thus, it is a term domain and it is infinite. 

Given a term domain d and an address w in A, we define the subdomain o f  A at 
address w to be the term domain A \ w  = {w'[ w.w'~ A}. In the last example,  the 
subdomain at address b of A1 is the set {e, c, d, e} and the subdomain of  A2 at 
address a.b is A2 itself. 

4.2. Definition. A term domain A is a regular term domain if the set of  all sub- 
domains of A defined as Subdom(A)=  { A \ w  I w ~ A} is finite. 

In the previous examples, the term domain A~ is a finite (regular) term domain,  
and A2 is a regular infinite term domain since Sul~lom(A2)= {A2, b.A2}. In this 
article, we shall consider only regular term domains. 

The 'flesh' that  goes on the skeleton defined by a term domain consists of  signature 
symbols labelling the nodes which are arrow extremities. Keeping the 'arrow graph" 
picture in mind, this stands for information about the origin and destination sets 
of  the arrow representation of functions. As for notation, we proceed to introduce 
a specific syntax of terms as record-like structures. Thus, a term has a head which 
is a type symbol, and a body which is a (possibly empty) list of pairs associating 
labels with terms in a unique fash ion- -a  (partial) function. An example of  such an 
object is shown in Fig. 4. 

person(id=Oname; 
born ~ date( day :=~integer; 

month~monthname; 
year. integer);  

fa ther .person)  

Fig. 4. An example of a term structure. 

The domain of  a term is the set of  addresses which explicitly appear  in the 
expression of  the term. For example, the domain of the term in Fig. 4 is the set of  
addresses 

{e, id, born, born.day, born.month,  born.year, father}. 

The example in Fig. 4 shows an expression which one may intend to use as a 
data structure for a person. The terms associated with the labels are to restrict the 
types of  possible values that may  be used under each label. However, there is no 
explicit constraint, in this particular structure, among the substructures appearing 
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person(id~name(last~X : string); 
born =>date(day=Ointeger; 

month~monthname; 
y e a r ,  integer); 

father=:~person(id ~ name(last ~ X :string))) 

Fig. 5. An example of tagging in a term structure. 

under  distinct labels. For  instance,  a pe rson  bear ing a last n a m e  which is not  the  

same as his father 's  would  be a legal ins tance o f  this structure. In order  to capture  

this sort of  constraints,  one can tag the addresses  in a term structure, and enforce 

identically tagged addresses to be  ident ical ly  instantiated.  For  example,  if, in the  

above example ,  one is to express that  a person ' s  father 's last name  must  be the  

same as that  person ' s  last name,  a bet ter  representa t ion  may be the term in Fig. 5. 

4.3. Definition. A term is a tr iple (A, t#, ~-) where  a is a term doma in  on Le, ~ is a 

symbol funct ion  from ~ *  to Z such that  ~ ( ~ * - A ) =  {Y}, and  ~" is a tag funct ion  

from A to 3-. A term is finite (respectively regular)  if its domain  is finite (respectively 

regular). 

Such a defini t ion il lustrated for  the  term in Fig. 5 is captured in Table 1. N o t e  

the syntactic sugar implicit ly used  in Fig. 5. Namely ,  we shall omit  writing explicit ly 

tags for addresses  which  are not  shar ing theirs. In  the sequel,  by ' term'  will be m e a n t  

' regular term' .  

4.4. Definition. Given  a t e rm  t = (A, ~/,, ~') and  an address w in A, the subterm o f  t 

at address w is the  term t \ w  = (A \w ,  ~b\w, ¢ \w)  where  0 \ w  : .Y* -> ,Y and ~-\w : A \ w  --> 

3" are def ined by 

Vw'  s w(w')  = 

vw'  a \ w ,  = 

Table 1 
(a, ~, ¢)-Definition of the term in Fig. 5. 

Addresses Symbols Tags 
(A) (¢,) (~) 

person Xo 
id name X1 
id.last string X 
born date X2 
born.day integer X 3 
born.month monthname X4 
born.year integer X 5 
father person X6 
father.id name X7 
father.id.last string X 
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From these definitions, it is clear that t \e  is the same as t. In the example of Fig. 

5, the subterm at address father.id is n a m e ( l a s t e X : s t r i n g ) .  

Given a term t = (A, ~, ~-), a symbol f, (respectively, a tag X, a term t') is said to 

occur in t if  there is an address w in A such that ~ , ( w ) = f  (respectively, ~-(w)= X, 
t \  w = t'). The following proposition is immediate and follows by definition. 6 

4.5. Proposition. Given a term t = (A, d/, ~-), the following statements are equivalent: 
(1) t is a regular term; 
(2) the number of subterms occurring in t is finite; 
(3) the number of symbols occurring in t is finite; 
(4) the number of tags occurring in t is finite. 

4.6. Definition. In a term, any two addresses bearing the same tag are said to corefer. 
Thus, the coreference relation r of  a term t = (A, ~,, ~-) is a relation defined on A as 
the kernel of the tag function ~'; i.e., K = Ker(~')= ~'o~'-1. 

We immediately note that r is an equivalence relation since it is the kernel of  a 
function. A r-class is called a coreference class. For example, in the term in Fig. 5, 

the addresses father.id.last and id.last corefer. It follows from Proposition 4.5 that  
a coreference relation on a regular term domain has finite index. 

A term t is referentially consistent if  the same subterm occurs at all addresses in 
a coreference class. That is, if c~ is a coreference class in A/K, then t \w  is identical 
at all addresses w in c¢. Thus, if a term is referentially consistent, then by definition, 

for any wl, w2~ A, if ~-(w~) = 7"(w2) then, for all w such that Wl.We A, we must have 
necessarily w2.w ~ A also, and ~'(wl .w) = ~'(w2.w). Therefore, i f a  term is referentially 
consistent, K is in fact more than a simple equivalence relation: it is a right-invariant 
equivalence--a  right-congruencemon A. That is, for any two addresses w~ and 14,2, 

if  w~rw2, then w~.wKw2.w for any w such that w l . w e A  and w2.weA.  

4.7. DefinRion. A well-formed term (henceforth, wft) is a term which is referentially 

consistent. 

We can use this property to justify another  syntactic convention. Namely, 

whenever a tag occurs without a subterm, what is meant is that the subterm elsewhere 
referred to in the term by this tag is implicitly present. If there is ne  such subterm, 
the implicit subterm is understood to be T. For example, in the term 

f o o ( l l ~ X ;  1 2 ~ X  :bar; I 3 0  Y; 14~ Y) 

the subterm at address l~ is 'bar',  and the subterm at address /4 is T. In fact, we 
shall never write explicitly the symbol T in a term. 

This syntactic convention makes it also possible to consider infinite terms such 
as the one shown in Fig. 6, where a cyclic tagging occurs at addresses father and 

6 Also established in [14] for regular first-order terms. 
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person(id~name(last ~ X:  string); 
born~date(day~integer;  

month~monthname; 
year . integer) ;  

f a ther~  Y: person(id~ name(last~ X); 
son~person(fa ther~ Y))) 

Fig. 6. An example of cyclic tagging in a term structure. 

father.son.father. Syntactically, cycles may also be present in more pathological 
ways such as illustrated in Fig. 7, where one must follow a complex path of  
cross-references. 

A term is referentially acyclic if there is no cyclic tagging occurring in it. A cyclic 
term is one which is not referentially acyclic. Thus, the terms in Figs. 6 and 7 are 
not referentially acyclic. 

A wit is then best pictured as a labelled directed graph as illustrated in Fig. 8 
which is the graph representation of  the wft 

Xo: Xl :A(12  x2; 
13 ~ f 3 ) ;  

14 x2; 
15::~ f4(16::# X~; 

: A; 
Is =~ X3 ; 
g Xo)). 

As will be seen later, the similarity of  the graph in Fig. 8 with a finite-state diagram 
is not coincidental. 

The set of  well-formed terms will be denoted by °ff'3~3", and the subset of  °/f3:3" 
of  acyclic wft's by °W3~3.  

We shall not give any semantic value to the tags aside from the coreference classes 
they define. The following relation a on °ff'3~3" is to handle tag renaming. This 
means that a is relating wft 's which are identical up to a renaming of  the tags that 
preserves coreference classes. 

4.8. Definition. Two terms tl = (AI, 0~, ~'1) and t2 = (A2, 02, ~'2) are alphabetical 
variants of  one another (noted h a h)  i fand  only if (1) A~ = A2; (2) Ker(~'l) = Ker(¢2); 

and (3) 01 = 02. 

foe(l, ~x~:  foo~(k~X2); 
l:~ X2 : foo2(k2~X3); 

I~X~: foe, (~ ~ X~+,); 

k ~ X .  :foo.(k.~X~)) 

Fig. 7. An example of complex cyclic tagging in a term structure. 
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@ 
Fig. 8. Graph representation of a wft. 

Interpreting these structures as commutative diagrams between sets, it follows 
that the symbols T and ± denote, respectively, the whole universemthe least informa- 
tive type--and the empty set-- the overdefined, or inconsistent, type. 7 Hence, a term 

in which the symbol _k occurs is to be interpreted as inconsistent. To this end, we 
can define a relation 0 on 3V3~3, called bottom smashing, where q 0 t2 if  and only 
if _k occurs in both q and t2, to be such that all equivalence classes except [±] are 
singletons. Clearly, if _k occurs in a term, it also occurs in all terms in its a-class. 
Hence, by the way they have been defined, the relations a and ~ are such that their 
union -~ = a w ~ is an equivalence relation. Thus, we have the following definition. 

4.9. Definition. A O-type is an element of  the quotient set g' = °l¢'3~3-/~-. An acyclic 
0-type is an element of  the quotient set q% = ~tr3~t3/---. 

4.2. The subsumption ordering 

The partial ordering on symbols can be extended to terms in a fashion which is 
reminiscent of  the algebraic notion of  homomorphic extension. We define the subsump- 
tion relation on the set g' as follows. 

4.10. Definition. Let tl 

t2 subsumes tl, and we write t~ ~< t2, if and only if either, tl ~ ± or 

A2 ~ A1, 

Ker(~2) _~ Ker(~), 

Vw 01(w) 02(w). 

= (A~, 01, ~'x) and h = (A2, 02, ~'2) be two wft's. We say that 

(1) 

(2) 

(3) 

It is easy to verify that a subsumption relation on ~ is defined by [tl]~<[t2] if 
and only i f  q ~< t2 is well-defined (i.e., it does not depend on particular class 

See Appendix D. 
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representatives) and it is an ordering relation, s The reader is invited to verify the 
claim made in the example at the beginning of Section 4. 

This notion of subsumption is related to the (in)famous IS-A ordering in semantic 
networks [8, 9]. It expresses the fact that, given a e-type t, any ~-type t' defined 
on at least the same domain, with at least the same coreference classes, and with 
symbols at each address which are less than the symbols in t at the corresponding 
addresses, is a subtype of t. Indeed, such a t' is more specified than t. 

The 'homomorphic' extension of the ordering on ~ to the subsumption ordering 
on gt can be exploited further. Indeed, if least upper bounds (lub) and greatest lower 

bounds (glb) are defined for finite nonempty subsets of ,Y, then this property carries 
over to gt. 

4.11. Theorem. I f  the signature ,~ is a lattice, then so is ~. 

Proof. We must define lubs and glbs of ~O-types. The easier of these is the join and 
is defined as q U 6 = (A, t#, z) such that 

A = A1 n A2, 

~" : A --> :3" is such that K e r ( , )  = K1 n K2, 

Vw a, ¢,(w) = O,(w) v ,#2(w). 

(4) 

(5) 

(6) 

It is clear that the intersection of A1 and A2 is itself a term domain, and the largest 
such that is contained in both. Now, recall that the intersection of the coreference 
relations K1 and K2 is also the greatest equivalence relation which is contained in 
both. That it is also right-invariant is obvious since, for all wl and WE in .~*, 

W~(K~ C~ K2)W2 iff WIK~W2 and WIK2W2 

which implies, for all w in ~ * ,  

W 1.wK lw2.w and Wl.WK2W2.W, 

which is equivalent to 

w,.w(,q n K )w2.w. 

Now, by (6), to all addresses in the symmetric difference of the two term domains 
is assigned the symbol T; thus, the condition in Definition 4.3 requiring that 
~b(-~*-A) = T is met. 

As for ¢ at an address w in A, (6) guarantees that the symbol ¢(w) be the least 
in ,~ which is greater than both symbols at this address in both terms. By Proposition 
4.5, there are only finitely many such symbols, and since ,~ is a lattice, they admit 
a lub. 

Finally, (6) preserves referential consistency since each (K~ c~ K2)-class is assigned 
a consistent symbol, provided that is the case for each K~-class and K2-class. 
Therefore, conditions (4)-(6) do define a lub for two e-terms. 

s This justifies that, in the sequel, we shall conventionally denote a ~-type by one of its class 
representatives, understanding that what is meant is modulo tag renaming and bottom smashing. 
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Defining the meet operation needs a little more work. The union of two term 

domains being a term domain,  it is safe to say that the term domain of the greatest 

lower bound of  tl and t2 must at least contain the union A = A~ u A2. Also, by a 

similar argument,  the coreference relation must contain at least the smallest 

equivalence relation on A containing both K1 and K2; namely, the relation 

U (K o " - = K 2 )  , 
n ~ O  

where K~ is the reflexive extension of K~ from Ai to A, for i = 1, 2. 
Recall again that  taking the transitive closure of the composition of the extended 

relations is indeed the least equivalence on the union domain A whose restrictions 

to A~ and A2 contain K~ and r2. Yet, this is not quite sufficient since it is not 

guaranteed that  this relation be right-invariant, as shown in the examples in Figs. 

9 and 10. 

Therefore, it is necessary to close X SO that it be a right-congruence. That  is, A 

and r must be completed by incrementally adding, to any r-class C in the part i t ion 

of A, any string w~.w such that there exists some w2 in A such that w~ r w2 and 

A~ = {~, a, b, c, d} 
x2 = {{e}, {a, b}, {c, d}} 

'~2 = {~, a, b, c, b.e, ~e}  

r2 = {{e}, {a}, {b, c}, {b.e, c.e}} 

A = A1 u A2 = {e, a, b, c, d~ b.e, c.e} 

K1 ~ = {{e}, {a, b}, {c, d}, {b.e}, {c.e}} 

K2 ~ = {{e}, {a}, {b, c}, {b.e, c.e}, {d}} 

K = (K~OK~)* = {{e}, {a, b, c, d}, {b.e, c.e}} 

~t,J = {{~}, {a, b, c, d}, {a.e, b.e, ~e, ~e}} 
A [*] = {e, a, b, c, d, a.e, b.e, ~e, d.e} 

Fig. 9. An example of  acyclic right-invariant closure construction. 

A 1 = a ( b a ) * + ( a b ) *  

r l  = {a(ba)*, (ab)*} 

A2 = {e, a, c} 
r2-- {{~}, {a, c}} 
A = A ! u A 2 = a(ba)* + (ab)* + c 

K~ = {a(ba)*,  (ab)*,  {c}} 

~ = {{~}, {4 c}} u U {u} 
u~(ab)++(ba) ÷ 

K = (K~OK2~) * ---- {a(ba)* + c, (ab)*} 

K [*] = {(a + c)(ba)*,  ((a + c)b)*} 

a [*J = (a + c)(ba)* + ((a + c)b)* 

Fig. 10. An example of  cyclic right-invariant closure construction. 
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W2.W E C. Formally, this is achieved by constructing the following sequence of 
relations on ~ * :  K t°]= K, and for n > 0, 

,~ . l  = ~ t . - , l  L) {<u.w, v.w> ~ (.~*)21 u~ t ' - ~  v}. 

It is immediate to verify that by its very construction, the limit 
o o  

K[*] = U K[n] 
n=0  

of this sequence is right-invariant, and the least such that contains g. Now, taking 

At,J= L/(-~*/K c-J) 

we obtain the right term domain. 
Finally, the symbols for each class of  this closure are computed as the meets in 

~; of the sets of symbols associated to all the addresses in the class by each term's 
0-functions. Again by Proposition 4.5, and because 2 is assumed to be a lattice, 
this is well-defined. This clearly preserves referential consistency, and guarantees 
the maximal consistent symbol for each class. 

In summary, t~ I] t2 = ( A, ~, ~') such that 

A = ( A  l L) - 4 2 ) [ * ]  , (7) 
e 

I-: A --~ 9- is such that Ker(1") = K [*], (8) 

V[w]~ ~/~t , l ,  ¢,([w])= A {¢,,(u)I u E[w], i= 1,2}. (9) 
It is thus established that conditions (7)-(9) define a glb, modulo smashing the term 
to J_ anytime condition (9) would produce the symbol _L. Therefore, U is a jo in  

operation and n is a meet  operation with respect to the subsumption ordering defined 
in Definition 4.10. [] 

Let us illustrate these lattice operations U and r] with an example. Figure 11 
shows a signature which is a finite (non-modular)  lattice. Given this signature, the 
two types in Fig. 12 admit as meet and join the types in Fig. 13, respectively. 

I- pers~~~~~monarch 
.JJ  .... 1 

[ 

Fig. 11. A signature which is a lattice. 
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child(knows~ X: person(knows ~queen; 
hates ~ Y: monarch); 

hates~child(knows~ Y; 
likes~ wickedqueen); 

l ikes~X) 

adult(knows=:=~ adult(knows=~witch); 
hates ~ person(knows~ X :  monarch; 

likes~X)) 

Fig. 12. Two wit's. 

person(knows~person; 
hates ~ person( knows ~ monarch; 

likes~monarch)) 

teenager(knows ~ X: adult(knows~wickedqueen; 
hates ~ Y: wickedqueen); 

hates~child(knows~ Y; 
likes~ Y); 

l ikes~X) 

Fig. 13. Lub and glb of the two types in Fig. 12. 

The meet and join operation on . ~  are essentially extensions of  the unification 
[31, 57] and generalization [55] operations on regular first-order terms. Indeed, 
these operations are special cases of  our definitions when (i) Z is a fiat lattice, (ii) 
a coreference class may contain more than one element iff all of  its elements are 
leaves and (iii) the symbols occurring at these leaves are restricted to be Y. An 
efficient S-term unification algorithm is detailed in [2, 3]. 

An important remark is that the set Wo of acyclic ~,-types also has a lattice structure. 

4.12. Theorem. I f  2 is a lattice, then so is go. However, qt o is not a sublattice of  qt. 

Proof. The proof is immediate and only sketched. The join operation qt0 is the 
same as in qt, but the meet operation is modified so that if the glb in qt of two 
acyclic terms contains a cycle, then their glb in qto is _L. 

It is thus clear that qto is not a sublattice of qt since the meet in qt of two acyclic 
wft's is not necessarily acyclic. This is similar to the so-called 'occur-check" in 
unification of first-order terms. Consider, for example, 

h=f(l  X:f; 

and so 

hHt2=f ( l~X: f (13~X) ;  12~X). [] 
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4.3. A distributive lattice of  types 

Keeping in mind a ' type-as-set '  interpretation of  the calculus of ~-types, 9 we must 
yet wonder whether lattice-theoretic properties of  meet and join reflect those of 
intersection and union. Unfortunately,  this is not the case with ~. Indeed, the lattice 
of ~b-types is not so convenient as to be distributive, even if the signature ,~ is itself 
distributive. 

For example, consider the flat (distributive) lattice .~ = {T, a,f ,  &}. Clearly, 

but 

f H ( f ( l ~ a ) U a ) = f  

( f[qf ( l~a))U(f lqa)  = f ( l ~ a ) .  

This shows that ~/¢'~- is not distributive. 1° 
This is not the only ailment of ~//-~rj- as a type system. Recall that in order to 

obtain the benefit of a lattice structure as stated in Theorem 4.11, there is a rather 
strong demand that the type signature Z be itself a lattice. For a signature that 
would be any poset, this nice result is unfortunately lost. Although in practice 
programs deal with finite sets of  atomic types, it is quite unreasonable to require 
that all meets and joins of  those atomic types be explicitly defined. What  should 
be typically specified in a program is the minimal amount of  type information which 
is to be relevant to the program. Clearly, such a signature of type symbols should 
be not necessarily more than a finite, incompletely specified poset of  symbols. 

It is hence necessary to go further than the construction of ~¢'~:~r in order to 
obtain a satisfactory type system which would not make unreasonable demand for 
atomic type information. Fortunately, it is possible not to impose so drastic demands 
on ~, and yet construct a more powerful lattice than ~//'~:~-; i.e., a distributive lattice. 

The idea is very simple, and  is based on observing that the join operation in g'  
is too 'greedy'. Indeed, if one wants to specify that an object is of type ' foo'  or 'bar '  
when no explicit type symbol in ~ is known as their lub, then this object is induced 
to be of  type T. Clearly, there is a loss of  information in this process since it is not 
correct to infer that the given object is of the least informative type,--'anything'--just 
because ,~ does not happen to contain explicitly a symbol for the lub of  ' foo'  and 
'bar'. All that can be correctly said is that  the given object is of  disjunctive type 
fooUbar. 

We next define such a more adequate type lattice. It m a y b e  construed as a very 
simplistic powerdomain construction to handle indeterminacy [51]; in our case, 
variant records. All the formal details can be found in Appendix C. 

Given a poser $, the set 2 ~s) of  finite nonempty subsets of  maximal elements of 
S is called the restricted power of  S. If  S is a Noetherian poset, the set 2 ts] of  all 
such subsets of maximal elements is called the complete restricted power of  S. Given 

9 See Appendix D. 
10 A similar result pertaining to subsumption o f  first-order clauses was pointed out by Plotkin in [52]. 
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a Noetherian poset S, and some subset S' of S, the set [S'] is the set of maximal 
elements of S'. 

We shall call ~ the set 2 t~q, and Eo the set 2 t~'ol. Clearly, ~0 is a subset of E. We 
shall write a singleton {t} in ~ simply as t. 

As explained in Appendix C, subsumption among elements of E is defined as 
T~ ~ T2 if and only if every ~-type in T1 is subsumed by some if-type in T2. 

Let us define a notational variant of elements of £ which has the convenience of 
being more compact syntactically. Consider the object shown in Fig. 14. The syntax 
used is similar to the one which has expressed ~-types. However, sets of terms 
rather than terms may occur at some addresses. 

person(sex~{male, female}; 
f a the r~  Y: person(sex ~ male); 
mother ~ Z:  person(sex~ female); 
pa ren t~  { Y, Z}) 

Fig. 14. Example of an e-term. 

This notation may be viewed as a compact way of representing sets of ~b-types. 
For example, the object in Fig. 14 represents a set of four ~b-types which can be 
obtained by expansion, keeping one element at each address. Such terms are called 
6-terms. 

An e-term can be transformed into a set of t/,-types--its t~-expansion. The ~b- 

expansion of an 6-term is the set of all possible ~-types which can be inductively 
obtained by keeping only one ~b-type at each address. The reader familiar with 
first-order logic could construe this process as being similar to transforming a logical 
formula into its disjunctive normal form. A detailed 6-expansion algorithm is 
described in [4]. 

We are now ready to construct a distributive lattice of 6-types. First, we relax the 
demand that the signature ~S be a lattice. Assuming it is a Noetherian poset we can 
embed it into a lower semi-lattice 2 t:~l preserving existing glb's. Then, we can define 
the meet operation on ~ so that whenever the meet of two symbols in not a singleton, 
the result is expanded using ~-expansion. 

4.13. Theorem. I f  the signature ,Y is a Noetherian poser, then so is the lattice ~o; but 

the lattice ~ is not Noetherian. 

Proof. We must show that there is no infinitely ascending chain in qSo. By definition 
of the subsumption ordering, this means that there must not be infinitely descending 
chains of @-term domains and coreference relations, as well as no infinitely ascending 
chains of symbols in Z. The latter is assumed by hypothesis. As for the former two 
conditions, it is clear that they are true since term domains for wft's in qt o are finite 
sets of addresses. 
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However, this is no longer true if we consider the infinite regular domains of 
wft's in 1/,. The following counterexample exhibits an infinitely ascending chain of 
wft's in ~ .n  

For any a in -Y and any f #  _L in ~Y, define the sequence t, = {A,, 0,, 7-,) (n > 0) 
as follows: 

A.=a*,  0.(A.)  = f  

A./K. = a . /Ker(~ ' . )= {{~}, {a} , . . . ,  {a"-l}, a".a*}. 

This clearly defines an infinite strictly ascending sequence of regular wft's since, for 
all n > 0, 

An+ leT.an" On(A )~n+l(An+l), Kn+l= Kn" 

In our syntax, this corresponds to the infinite sequence: 

t o = X : f ( a ~ X ) ,  

tl = f ( a ~ X : f ( a ~ X ) ) ,  

t2 = f ( a ~ f ( a ~ X  : f ( a ~ X ) ) ) ,  

t , = f ( a : O f ( a = = > . . . f ( a = ~ X : f ( a ~ X ) ) . . . ) )  ( n +  1 a's), 

[] 

We define two binary operations Fq and U on the set ~o. For any two sets 7"1 and 
T2 elements of ~o: 

T r-] T== [{t, ^ t=lt, T=}], (lo) 

where ^ is the meet operation defined on q'0. 
The following pair of theorems are corollaries to Theorem C.4 of Appendix C. 

Indeed, for any poset 2~ containing T and J_, we have the following theorem. 

4.14. Theorem. The poset ~o of finitary O-types is a distributive lattice with meet [7, 
with join U, and admits {T} as greatest element and {_L} as least element. 

It is not possible to define lattice operations (10) for ~ because qt is not Noetherian. 
Indeed, the set of  maximal elements of  arbitrary poset elements in 2 cannot be 
defined. However, if only finite sets of  regular wft's are considered, then we have 
our next theorem. 

ax This counterexample is due to Dowling (private communication). 
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4.15. Theorem. The poset 2 (~') of finite sets of incomparable regular wfi' s is a distribu- 
tive lattice. 

However, 2 (~') is not complete. It is also true that the subset 2 (%) of 2 (~') is a 
distributive lattice, but it is not a sublattice of ~. In general, the glb of elements of 
2 (%) is a lower bound of the glb of these elements taken in 2 (~'). 

The last result of  this section is a corollary to Theorem C.7, and is important for 
the next section. 

4.16. Theorem. I f  the signature ,Y is a Noetherian poser, then the lattice 9~o of  all sets 
of finitary wfl' s is a complete Brouwerian lattice. 

Let us answer a question that might be hovering in the reader's mind. ~2 The fact 
that the lattice Eo is a complete Brouwerian lattice will be needed for showing the 
existence of solutions of systems of simuRaneous equations. Unfortunately, Theorem 
4.16 does not hold for E, the lattice of all regular terms, since the lattice ~ is not 
complete. Hence, the results described in the rest of this article are stated only for 
finitary wft's. 

5. Solving equational type specifications 

Consider the equations in Fig. 15. Each equation is a pair made of a symbol and 
an ~-term, and may for now intuitively be understood as a definition. We shall call 
a set of such definitions a knowledge base. ~3 

5.1. Definition. A knowledge base is a function from ? to ~o which is the identity 
everywhere except for a finite subset of ,Y -{_l_, T}. 

For reasons made practical later, we shall further define a particular form of 
knowledge base which we shall call canonical. Namely, we are interested in those 
knowledge bases which take symbols of ,Y either into a non-atomic O-term (i.e., an 
element of g'o--Y), or into a non-singleton set of symbols of ,Y. More formally, we 
have the following definition. 

5.2. Definition. A knowledge base ~ is canonical or in standard form if 

Vsl e ~, Vs2 ~ ~, ~ ( s l )  c ~(s2) ~ s~ = s2 

and, for all s in .Y, either ~ ( s ) e  q%-.Y, or ~ ( s ) e 2  [~-~s~]. 

~2 Namely, 'So wha t? . . . ' .  
~3 Or type spedfication, or type schema . . . .  Nevertheless, 'knowledge base' is a defiberate choice since 

what is defined is in essence an abstract semantic network. 
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list = {nil, cons}; 
append = {(front~nil ;  

b a c k ~ X  : list; 
w h o l e . X ) ,  

(front ~ cons(head ~ X; 
t a i l ~  Y); 

b a c k ~  Z :  list; 
w h o l e . c o n s ( h e a d . X ;  

t a i l ~  U); 
p a t e h ~ a p p e n d ( f r o n t ~  Y; 

b a c k ~ Z ;  
w h o l e ~  U))} 

Fig. 15. A specification for appending two lists. 

In words, in a canonical knowledge base no two distinct right-hand sides may 
contain one another; and a right-hand side of an equation can either be a single 
¢,-term or a set of signature symbols. 

The knowledge base in Fig. 15 is not canonical. Indeed, neither X~(append)  s gto 
nor ~ ( a p p e n d )  ~ 2 t~l. 

However, the reader will verify that the knowledge base shown as in Fig. 16 is 
in standard form. Indeed, any knowledge base ~ can be put in standard form as 
follows. For all f ~ ,~, 

(1) if ~ r~( f )  is not a singleton, then replace any ~b-type element t of ~ ( f )  
which is not a symbol in ~ by a new symbol s not already in ~ and augment the 
knowledge base with ~ ( s )  = t; 

(2) if X ~ ( f ) ~  .~, replace all occurrences of g in X ~  by f, and delete g from .,~; 
(3) if ~ ( f )  ___ X~(g ) ,  for some g s Z, remove X ~ ( f )  from ~ ( g ) ,  replace it 

with a new symbol s not already in Z and augment the knowledge base with 
X (s) = 

list = {nil, cons}; 

append = {append0, append 1 }; 

append0 = {front~nil ;  
b a c k ~  X : list; 
w h o l e . X ) ;  

appendl = ( f r o n t ~ c o n s ( h e a d ~ X ;  
t a i l s  Y); 

b a c k ~ Z  : list; 
whole=~eons(head ~ X; 

t a i l ~  U);  
p a t c h ~ a p p e n d ( f r o n t ~  Y; 

b a c k ~ Z ;  
w h o l e ~  U)) 

Fig. 16. A canonical specification for appending two lists. 
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Hence, without loss of generality, we shall only consider knowledge bases in 
standard form. We shall now justify the need for restricting our attention only to 
canonical knowledge bases. 

So far, the partial ordering on Z has been assumed predefined. However, given 
a knowledge base such as the one in Fig. 16, it is quite easy to quickly infer a 
minimal consistent such ordering. For example, examining the knowledge base in 
Fig. 16, it is evident that this example's signature must be a superset of the set 

{list, cons, nil, append, append0, appendl} 

and that the partial ordering on Z must be such that 

nil < list, cons < list, 

append0 < append, appendl < append. 

We shall call such a minimal consistent strict ordering an implicit symbol ordering. 
Now, the reason for introducing a standard form is that this ordering can be, 
automatically extracted from the specification of a canonical knowledge base as 
explained in the following definition. 

5.3. Definition. Given a canonical knowledge base ~ its implicit symbol ordering 
is the least strict ordering relation < on 2~, if  one exists, such that 

(1) if  ~ ( f ) = g ( l ~ h ; . . .  ; ln~t~), t h e n f < g ;  
(2) if  ~r~(f)  = {f~, . . .  ,f,,), then f~ < f  for all i = 1 , . . . ,  n. 

Naturally, that such an ordering exists is subject to circularity checks. Thus, we 
use the following definition. 

5.4. Definition. A (canonical) knowledge base is well-defined if and only if it admits 
an implicit symbol ordering. 

The knowledge base in Fig. 16 is well-defined. It specifies four types. The next 
section describes how to use this type information computationaUy. Intuitively, an 
interpretation of an E-type in the context of this knowledge base is obtained by 
'rewriting' defined symbols in the given type according to the specifications. 

5.1. A KBL interpreter 

Given a well-defined knowledge base ~/'~, we define an interpreter for KBL by 
three rules of'computation' of a functional ~ ~ which maps ~o into ~0. Interpreting 
E-types is done by 

n 

[[{ t l , . . . ,  t n } ~  = [_] [[ t i ~  (11) 

and for ~-types by 

If(ll t,; . , .  ; . . .  ; 

(12) 
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In other words, Rules (11) and (12) 'evaluate' e-types as follows: 
(1) a set of 0-types is evaluated by evaluating all its elements and keeping only 

maximal elements; 
(2) a ~b-type is evaluated by first evaluating its subterms, then by expanding its 

root symbol; i.e., substituting the root symbol by its knowledge base value by taking 
the meet of this value .and the 0-type whose root symbol has been erased (replaced 
by T). 

They define an operational semantics which reflects the 'type-as-set' semantics of 
e-types and 0-types described in Appendix D, in the sense that they compute unions 
and intersections of sets. The symbol substitution process is to be informally 
interpreted as importing the information encapsulated in the symbol into the context 
of another type. 

Let us trace what this interpreter does, one step at a time, on an example. Consider 
the knowledge base in Fig. 16, and the following 'input': 

append( front ~ cons(head ~ 1; 
tail =~ cons (head ~ 2; 

tai l~nil)) ;  
back~cons(head~3;  

tail~nil)).  

This is a 0-term with a root symbol defined by X~. Hence, applying Rule (12), 
the interpreter expands 'append' into the set {append0, appendl}, to yield 

{appendO( front ~ cons (head ~ 1; 
tail~cons(head ~ 2; 

tail==>nil)); 
back~cons(head~3;  

tail==~nil)), 
appendl (front==),cons(head~ 1; 

tail~cons(head=~2; 
tai l~nil)) ;  

back=:> cons(head~ 3; 
tail==~nil))}. 

Using Rule (11), each of these two e-terms is further expanded according to the 
definitions of their root symbols. Thus, the first one (append0) yields ± since the 
glb of the subterms at address 'front' is ±. Hence, by the maximal restriction 
operation, we are left with only 

(front ~ cons(head~ 1; 
t a i l~cons(head~2;  

tail~nil));  
back~cons(head~3;  

tai l~nil) ;  
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whole ~ cons (head ~ 1; 
t a i l ~  U); 

patch ~ append (front ~ cons (he ad ~ 2; 
tai l~nil) ;  

back ~ cons (head ~ 3; 
tai l~nil) ;  

who le~  U)). 

This expansion process continues, again using Rule (12) to expand the subterm at 
address 'patch '14 

(front ~ cons(head ~ 1; 
t a i l ~  cons(head~2,  

tai l~nil)) ;  
back~cons (head~3 ;  

tai l~nil) ;  
w h o l e ~  cons(head~ 1; 

tail ~ cons ( head ~ 2; 
t a i l ~  U)); 

p a t c h ~  (front ~ cons(head ~ 2; 
ta i l~ni l ) ;  

back~cons (head~3;  
ta i l~ni l ) ;  

patch ~ append( front ~ nil; 
b a c k ~  cons (head ~ 3; 

ta i l~ni l) ;  
who le~  U); 

whole ~ cons (head ~ 2, 
t a i l ~  U))). 

Finally, the following term is obtained which cannot be further expanded. As 
one could intuitively expect, the interpretation of 'append' for the given input has 
thus produced a type whose 'whole' attribute is the result of a list concatenation of 
its 'front' to its 'back' list attributes. The attribute 'patch' represents the history of 
the computation. 

(front ~ cons(head~ 1; 
t a i l ~  cons(head~2; 

ta i l~ni l)) ;  
back~cons (head~3 ;  

tai l~nil) ;  
who le~cons (head~  1; 

t a i l~cons (head~2;  

14 We shall omit mentioning the details of cleaning-up .L by maximal restriction. 
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t a i l ~  cons(head ~ 3; 
ta i l~ni l ) ) ) ;  

p a t c h ~  (front ~ cons(head~2;  
ta i l~ni l ) ;  

b a c k ~ c o n s ( h e a d ~ 3 ;  
ta i l~n i l ) ;  

p a t c h ~  ( f ront~ni l ;  
back:=> cons ( h e a d ~  3; 

ta i l~ni l ) ;  
w h o l e ~ c o n s ( h e a d ~ 3 ;  

ta i l~ni l ) ) ;  
whole ~ cons(head ~ 2; 

tail :=> cons (head ~ 3; 
ta i l~ni l ) ))) .  

At this stage, it is beneficial to put things into perspective. Following is a discussion 
on the nature of  the model of computation of KBL and how it relates to term 
rewriting and  nondeterministic recursive program schemes. 

5.2. Graph rewriting 

Computation in KBL amounts essentially to some sort of directed acyclic graph 
(DAG) rewriting. In fact, it bears much resemblance with computation with non- 
deterministic program schemes [15, 49], and macro-languages and tree grammars 
[30]. This section presents a formal characterization of computation in KBL along 
the lines of the algebraic semantics of tree grammars [6, 30]. Symbol rewriting 
presented in this section is very close to the notion of second-order substitution 
defined in [14] and macro-expansion defined in [30]. 

We show that a KBL program can be seen as a system of equations. Thanks to 
the lattice properties of finite wft's, we establish that such systems of equations 
admit a least fixed-point solution. The particular order of  computation of KBL 
informally presented in the previous section is formally defined. We call it fan-out 
computation order, which rewrites symbols closer to the root first. This order of 
computation is also shown to be maximal, in the sense that it yields 'greater' ~-types 
than any other order of computation. The complete correctness of fan-out rewriting 
of KBL with respect to its least fixed-point semantics is also established. That is, 
we show that the fan-out normal form of a term is equal to the least fixed-point 
solution. 

5.2.1. Wft substitution 
We introduce and give some properties of the concept ofwft  substitution. Roughly, 

given a wft t such that a symbol sf occurs at address u in t, one can substitute some 
other wft t' for f at address u in t by 'pasting-in' t' in t at that address. 

Given a wft t = (A, ~,, ~r) and some string u in ~* ,  we define the wft u.t to be the 
least wft which contains t at address u. This can be better visualized as the wft 
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obtained by attaching the wft t at the end of the string u. That is, u.t = (u.A, u.¢, u.7), 
where 
• u.a = { w ~ * [ w = ~ v ,  v~a}; 

U . $ ( w ) = ~ O ( V )  if  W=U.V, 
[T otherwise; 

• u . , :  u.A -> J is such that u.~(v) = u . , ( w )  iff v = u.v', w = u.w' and ~'(v') = r(w'). 
Let ui ( i =  1 , . . . ,  n) be. mutually non-coreferring addresses in  A and let f~ ( i =  

1 , . . . ,  n) be symbols in ,~. Then, the wft t[ul : f ~ , . . . ,  u~ :f~] is the wft (A, ~b, ,), 
where ~b coincides with ~b everywhere except for the coreference classes of the ui's, 
where ~b([ul])=f~ for i =  1 , . . . ,  n. It is clear that the term thus obtained is still 
well-formed. 

5.5. Definition. Let t = (A, ¢, ~') be a wft and  u some address in A, and let t' be 
some other wft. The term t [ t ' /u]  is defined as 

t[ t ' / u ] =  t[u : T]f lu. t ' .  

This operation must not be confused with the classical tree grafting operation 
which replaces a subtree with another tree. The operation defined above super-imposes 
a term on a subterm with the exception of the root symbol of that subtree which 
becomes equal to the root of the replacing tree. In particular, note that _1_ may result 
out of such a substitution. 

As an example of wft substitution, if  t is the wft 

( f r o n t ~ c o n s ( h e a d ~ X 1  : 1; 
t a i l ~ X 2 :  cons(head~2;  

tail:=~nil)); 

b a c k ~ X 3  : cons(head~3;  
t a i l~n i l ) ;  

whole =:~ cons(head ~ X 1; 
t a i l ~ X 4 ) ;  

patch =:~ append( f ron t~  X2; 
b a c k ~ X 3 ;  
whole=~X4)) 

and t' is the wft 

(front ~ cons (head ~ X; 
t a i l ~  Y); 

back=~Z; 
w h o l e . c o n s ( h e a d . X ;  

t a i l ~  U); 
p a t c h ~ a p p e n d ( f r o n t ~  Y; 

b a c k ~ Z ;  
w h o l e ~  U)), 
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then tit '~patch] is the wft 

( f ron t~cons (head~X1 : 1; 
t a i l ~ X 2 :  c o n s ( h e a d . X 5 :  2; 

tail==>X6: nil)); 
b a c k ~ X 3  : cons(head~3;  

ta i l~ni l ) ;  
whole=Ocons(head~X1; 

t a i l ~ X 7 :  cons (head .X5 ;  
t a i l~X4) ) ;  

pa t ch~  ( f ron t~X2 ;  
b a c k ~ X 3 ;  
patch ~ append(front ~ X6; 

b a c k ~ X 3 ;  
w h o l e . X 4 ) ;  

w h o l e . X 7 ) ) .  

Next, we give a series of'surgical' lemmas about this substitution operation which 
will be needed in proving key properties of KBL's computation rule. In all the 
proofs of these lemmas, we shall omit considering the trivial cases where ± may 
result from substitutions since none of the stated lemmas will be affected by these 
situations. 

The first lemma states the intuitively clear fact that which address is picked out 
of a coreference class in a substitution does not affect the result. This situation is 
made clearer when depicted as in Fig. 17. 

%% 

Fig. 17. Substitution at coreferring addresses. 

5.6. Lemma. Let t = (A, ~,, ~') and t' be wft's, and let ul and u2 be two coreferring 

addresses in A. Then, 

( t[ t~'/Ul])[ it/U2] = t[ it/Ul] = t[t'/ U2] = ( t[ at/U2])[ t;'/Ul]. 
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ProoL Since u~ and us corefer in t, we can write 

t[u~ :T] = t[u2: T] (13) 

and thus, clearly, 

t[u~ :T] n ul.t'= t[u2: T] ~ us.t'. 

That is, t[t'/u~] = tit'~u2]. Since ul and us still corder in this wft, the same steps 

as above yield 

( t[ t ' l  u,])[ t 'l u d  = ( t[ t ' l  ud)[ t ' /  u,]. 

Now, by (13), 

(t[ t ' /u ,])[  us: T] = (t[ t ' /u , ] ) [u ,  : T] 

and therefore, by coreference of  u~ and u2, 

( t[ t'/ ud)[  us : y]N us.t' = ( t[ t'/ ud) [  ul : T]• Ul.t'; 

that is, 

( t[ t ' /  ud)[  t'/ u d  = ( t[ t ' /  ud)[  t'/ ud  = t[ t ' /  u,]. [] 

5.7. Definition. An address u covers an address v in a wft if there exists an address 

u' in [u] such that v = u ' .w for some w # e in ~* .  That is, in other words, u covers 

v in t if  u ~ Iv] and v occurs in t \u .  

Next, it is important to analyse the extent to which a sequence of  substitution 
operations is affected by the particular order in which they are performed. 

Specifically, order of two substitutions will not matter if the addresses do not cover 
each other; however, order of  substitutions will matter if one of the two addresses 

covers the other. We first need a small technical lemma. 

5.8. I.emma. If u and v are addresses in a wft t which do not cover each other, then, 

for  any wft  t', 

(t[u :T][I u.t')[v :T] : t[u :T, v : T]fl tit'. 

Proof. Since the term t is acyclic and addresses u and v do not cover each other, 

they do not  corefer in t. Moreover, it is clear that  v ~ u.A',. Hence, in the least 
coreference merging, K,, and K, 2 addresses u and v still do not corefer (or a cycle 

would occur and the meet would be _l_). Therefore, changing the symbol at address 
v in t to T before or after taking the meet of  t[ u:  T] and u. t' yields the same result. [ ]  

The next lemma gives a sufficient condition for commutativity of wft substitution. 

5.9. Lemma. Let t = (A, ~, I'), t l ,  and ts be wft's, and let u l ,  us be two addresses in 
A which do not cover each other. Then, 

( t [ t , /  u,])[ t d  ud = (t[ t J  ud)[ t , / u d .  
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Proof. By definition, 

(t[t~/y~])[t2/u2] = (t[u~ :T] n ul .t~)[u2 :T] fl u2.t2 

which, by Lemma 5.8, is equal to 

( t[ul  :T, u2 : T] I1 ul .tl) [1 u2.t2. 

But clearly, 

t [ u l : T ,  u2:T]= t[u2:T, ul:T]. 

Hence, by associativity and commutativity of n, and using Lemma 5.8 again in the 
reverse direction, this must be equal to ( t [ t2 /u2])[h /u l ] .  [] 

The second lemma complements the previous one and shows that the order of 
substitution matters for covering addresses. However, the wft resulting from perform- 
ing first the 'outermost' substitution subsumes the wft resulting from performing 
the 'innermost' substitution first. 

5.10. Lemma. I f  two addresses u~ and u2 in a wft t are such that u 1 covers u2, then 

( t[ tel u2])[ t,I u,] <<. ( t[ t,I ud)[ t2l u2] 

f o r  any wft  t~ and t 2 . 

Proof. Because of associativity and commutativity of term domain union and 
coreference closure, it is clear that the order of performing the substitutions will 
not affect the resulting domains and coreferences. Therefore, the only things that 
may differ in the results are the symbols at addresses ul and u2. The picture in Fig. 
18 may help illustrate the argument. 

For address u~, performing the substitution at u~ first leaves there the symbol 
0,1(e). Therefore, performing next the substitution at u2 will not affect this symbol 
since u~ covers u2 and the acyclic condition prevents the address u~ in t from being 
affected by some lower coreference. Following the Same argument, the reverse order 
of substitutions yields first ~,,(ul) at address u~, then 0z,(e). Hence, the eventual 
symbol at ul is unaffected by the order of performing the substitutions. 

However, this is not the case for u2. Indeed, substituting at u~ first, then at u2 
eventually yields the symbol Ot~(e) at u2. On the other hand, if substituting at u2 
first yields a symbol f, this symbol may be further coerced down when substituting 
at u~. [] 

The objective of these lemmas is to help show that the particular order of 
performing substitution performed by the KBL interpreter yields an e-type that 
subsumes all C-types obtained by any other order of computation. Next, the f an -ou t  

computation Theorem 5.13 will be proved to that effect, using the above technical 
lemmas. 
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t. 

Fig. 18. Substitutions at covering addresses. 

The following not ion will be useful in expressing an ordering on the addresses 
of  a wft. The radius of  an address is a measure of  how 'close to the root '  an address 
is; that is, the shortest (in length) in its coreference class. Given a string u in ~Y*, 

lu[ denotes its length; i.e., the number  of  labels which constitute u. 

5.11. Definition. Let t = (A, ~b, ~-) be a wft; then, the radius of an address u in A is 

defined as p(u)= min~t.~l([vl). That such a minimum number exists for all classes 

is obvious. 

Recall that Lemma 5.6 states that a substitution can be performed at any address 
in a coreference class with the same result. For this reason, it will be implicit in all 
substitutions henceforth considered that  the address at which the substitution is 

performed is of minimal length in its class. 

5.12. Definition. A sequence of addresses ui, i = 1 , . . . ,  n of a wft t is in fan-out 
order if and only if  i < j  implies p(ui) <~ p(uj). 

For example, in the wft 

17 x :A; 

(14) 

the sequence e, 15.16, 14, 15.17, i1.13 is in fan-out order. However, the sequence ~, 

15./6,/4, 11 33, 15 is not. 
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We shall lighten our notation by writing t[ h /  u,][ t2/ u2] rather than ( t [h /u~] )  

[ t /ud. 

5.13. Theorem. Let  t be a wft, and U = {u~, . . . , un} a set o f  mutually non-coreferring 

addresses o f t  such that the sequence {u~}['=~ is in fan -ou t  order. Let  ~r be a permutation 

o f  the set { 1 , . . . ,  n} such that {u,,(0}~'__ 1 is also in fan-ou t  order. Then, f o r  any set o f  

wft '  s { tl , . . . , t~}, 

t[t,/ u,] . . . [ t . /  u .]  = t[ t~(1)/ u~.o)] . . . [ t~(,)/  U~r(,,)]. (15) 

Moreover, i f  the permutat ion 7r destroys fan-ou t  order, then 

t [ t l /  Ul ] . . . [ t n /  Un ] ~ t[  t ,r(1)/  U,ro ) ] . . . [ t~(  n ) /  U,~( ~ ) ]. (16) 

Proof. To prove (15), we observe that since the sequences {ui} and {u,~(o} are both 
fan-out permutations of U, each must be partitioned into a sequence of m subsequen- 
ces Uj and U~(i), respectively, where 1 <~ m ~< n and j = 1 , . . . ,  m, where ~ is a 
permutation of tile set { 1 , . . . ,  m}, such that 
• all addresses in each subsequence have equal radius; and, 
• for every j = 1 , . . . ,  m, subsequences Uj and U,(j) have same size. 

Now, by the acyclicity condition and the fact that the u~'s are mutually non- 
coreferring, all addresses in a subsequence must be mutually non-covering. By 
Lemma 5.9, this means that the difference of order of substitutions between a pair 
of subsequences Uj and U~(j), for any fixed j, does not affect the result. Whence 
(15) follows. 

Now, if ~r perturbs the fan-out order, pairs of addresses u,~(o and u,~(j) (1 ~< i < j  
n) in the sequence may be such that u,~(o covers u,,(i ). By Lemma 5.10, each of 
these pairs will contribute to 'decrease' the ultimate wft. Hence, fan-out order of 
substitution is one which yields the maximal wft. And this entails (16). [] 

Symbol substitution is extended to e-types as follows: for any t in ~o, any T in 
~o, and any u in At, 

t [T/u]= [_J t i t ' / u ] .  
t '~ T 

5.2.2. Symbol-rewriting systems 

5.14. Definition. A symbol  rewriting system (SRS) on ,~ is a system S of n equations 
S:{si = Ei}i~=l, where s i e ~  and E~e~o, for i =  1 , . . . ,  n. 

Given such a system S, the subset E = { s ~ , . . . ,  sn} of ,~ is called the set of 
S-expandable symbols. Its complement N = ,~ - E is called the set of non-S-expand- 

able symbols. The same notion of canonical SRS is obviously definable as that of 
a knowledge base. 

An example of an SRS is given in Fig. 16. In there, we have 

E = {list, append, append0, appendl}, N = {nil, cons}. 
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Let S:{s~ = E~}7=~ be an SRS. It defines a one-step rewriting relation --> on ~0 as 
follows. 

5 .15 .  D e f i n R i o n .  7"1--> T2 if and only if there exist a wft t e T~, some address u in 
At, and some index i e { 1 , . . . ,  n} for which ~,(u) = s~, such that 

T2=(T~-{ t } ) l  l t[Ei/u].  

In words, this expresses the fact that the e-type T2 is obtained from the e-type 
T~ by picking out some element of 7"1, substituting for one of  its occurrences of 
some expandable symbol the right-hand side of this symbol in S, and adjoin the 
result to the set, keeping only maximal elements. This process is illustrated by the 
first step of the trace of KBL shown in Section 5.1. 

We shall denote by ~k  (k~>0) the relation --> composed with itself k times, and 
by ->* the reflexive and transitive closure of ->; that is, the relation Uk°°__0 _>k. 

The notation for the sets 1/, of ~b-types and ~ of E-types has hitherto been implicitly 
understood to depend on the signature of symbols Z. Since it will now become 
necessary to make this dependency more explicit, we shall use the notation gt[,y] 
and ~[,Y ]. 

5.16. Definition. Let S be an SRS, and T be an e-type. The S-normal form of T is 
defined as 

./¢( T) = L..] { T' e ~o[ N] [ T -~ T'}. 

That is, the lub of all terms containing no more expandable symbols which can 
be rewritten from T. Since ~o is a complete lattice, this is well-defined. 

Notice that a normal form is defined as a join of all possible rewritings of an 
e-type. Thus, by Theorem 5.13, we can and will, without loss, restrict this definition 
to sequences of rewritings in fan-out order only. 

To lighten notation, we shall use vector notation to denote elements of ~ the 
set of n-tuples of e-types; e.g., T =  ( T 1 , . . . ,  Tn), where T~ e ~o (i = 1 , . . . ,  n). Hence, 
a symbol rewriting system S of n equations is denoted by a single vector equation 
s = E. Given such an SRS, we shall use either indices in {1 , . . . ,  n} or the symbols 
si to index the components of a vector T in ~ ;  i.e., T~, = T~. There should be no 
confusion since the si's will be assumed distinct. Vector rewriting is the appropriate 
obvious extension to vectors of e-types of the -* relation, and so is the definition 
of vector normal form .~'(T). 

Given an SRS S : s =  E and a wft t, X(t, s) denotes the set of (minimum radius) 
addresses in t whose symbols are S-expandable. That is, 

X(t, s) = {u ~ At [d/t(u) = si, for some i = 1,. . .- ,  n}. (17) 

All indexing of X(t ,  s )  = { u l , . . . ,  us} will henceforth be implicitly assumed to be 
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fan-out indexings; that is, such that the sequence { u l , . . . ,  Urn} is in fan-out order. 
For example, taking the wit t of  (14) and s = (f2, f4,  fs) we have X( t, s) = { ll, 15,/5./7}. 

Our objective here is to define the operation of  applying a fan-out sequence of 
substitutions of e-types to a wft t at all expandable  addresses of t. This operation 
is denoted t[T/s] and defined as: 

t[  T /  s ] = t[ T~,g,,,)/ Ul ] . . . [ T,g. ,s)/  u= ], (18) 

where {ul, • . . ,  Us} = X(t, s). By Theorem 5.13, it is evident that this is a well-defined 
operation. It will be important  to keep in mind that (18) is essentially a finite meet 
of wit's. We shall condense notation of  (18) to 

t[  T /  s] = t[ T, ,o,) /  u]. ,~xo.,) .  

Let us illustrate this operation on a small example. We are interested in the 
expression of  tiT/s], taking s = (s~, s2) and T = (/'1, T2) with 

t = sl(ll~s2; 13~Sl),  

T l = { f ( l l ~ X ;  12~X) ,g} ,  T2=sl(12~X; 13~X). 

The set of  expandable addresses for s in t thus is X(t, s) = {e, 11, 13} corresponding 
to the sequence of symbols (in fan-out order) Sl, s2, s~. Hence, the sequence of 
substitutions starts with s~ at e: 

{f(l~==>X:s2; 12~X; 13~s,), 

g(l,==>s2; /3~Sl)}, 

then continues with s2 at It: 

{f(  ll=~ X : s~(12=~ Y; /3=> Y); 12==> X; 13~ s1), 

g(I t~s~(12~X; 13~X); /3==>s0}, 

and finally ends with sl at /3:  

{f(  ll:::> X : sl(12=:> Y; 13=~ Y); 

12~X; 

la==>f(ll=~ Y:IG 12==~ Y)), 

g( I t ~  st(12~ X; 13:=~X); 

13~s,(12~ Y; 13~ Y)), 

f (  ll=~ X : s,(12=*, Y; 13=:~ Y); 

12~X; 
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g(I ,~s , (12~X; 13~X); 

13 g)} 

which is the value of t[ T/s]. 
This operation is extended to £~, i.e., to vectors of e-types, as follows: T[T'/s] 

is the vector of £~ whose ith component is defined as 

(TIT'/s]),= [.] t[T'/s]. (19) 
te T i 

5.17. Definition. An element T of £~ is a solution of the equation s = E if and only 
if E[T/s]= T. 

We now proceed to show that an SRS viewed as a system of equations in E~ 
always has a solution which corresponds to the least fixed-point of a vector function 
from £~ to itself. Such a function ~ is defined for an SRS s = E as 

~( T) = E[ T~ s]. (20) 

5.18. Proposition. The function ~: from £~ to itself defined by (20) is continuous. 

Proof. From (19) and the definition of wft substitution, it is evident that any 
component of 3~(T) is a join of finite meets. By isotonicity of lattice operations, it 
is thus clear that 3~ is monotone. 

To prove that it is also continuous, we must show that 3~ preserves lub's of infinite 
chains. Although notation makes it cumbersome to express, the argument is straight- 
forward and follows by recalling the property of complete Brouwerian lattices stated 
as Theorem B.2 in Appendix B. Indeed, by definition, 

, 

eeEi ~e(u) ueX(e,s) 

where ~i is the ith component function of ~. Thus, by definition of the product 
lattice operations in terms of the operations on component lattices, 

° 

Now, by Theorem B.2 we know that in £o joins are completely distributive on 
meets. Hence, 

Therefore, 

k = O  i 

t oO :r,, = U  
k=O 

[] 
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As a result, Tarski's Least Fixed-Point Theorem [63] guarantees that ~: has a 
least fixed point given by 

of) 

Y~:= ~*(.I.)= [_] ~=k(.I.); 
k = 0  

that is, since E[Y~:/s] = Y~:, we showed that Y~: is the least solution of the equation 
s = E .  

Let us take again a small example to illustrate. Consider the single (non-canonical) 
equation: 

tree = {leaf, node( lef t . t ree;  r ight . t ree)},  

where leaf<tree and node<tree. We thus have, ~=tre~(1)={leaf}, then ~ c ( ± )  is 
given by 

{leaf, node( lef t . leaf ;  right==~leaf)} 

and so ~t3rc~(1) is 

{leaf, 
node( lef t . leaf ;  r igh t . l ea f ) ,  
node( lef t . leaf ;  

right ~ node( left ~ 1 ear; 
r igh t . leaf ) ) ,  

node (left ~ node (left ~ leaf; 
r igh t . l ea f ) ;  

right=>leaf), 
node (left ~ node (left ~ leaf; 

r igh t . l ea f ) ;  
f i gh t~  node(left ==~leaf; 

r ight . leaf) )}  

and so on. 
The reader can now see that the successive powers of the 'tree' component function 

~= generate all possible binary trees. Indeed, the meaning of the type 'tree' is precisely 
~tr~(1), the infinite set (E-type) of all such terms. Hence, effectively solving type 
equations gives a constructive meaning to reeursively defined types. 

The reader may wonder at this point how the example given in Section 5.1 
(appending two lists) is related to computing a vector fixed point. Naturally, the 
explanation is that, given a knowledge base Yf~ and an c-type input E, we can add 
a new equation of the form ?= E, where ? is a special query symbol not already in 
Z. Then, the answer to the query is the component (Y~:)? of the solution of the 
augmented system. 

5.2.3. Correctness 

In order to establish that the fixed-point solution of an SRS does correspond to 
the value computed by KBL, it is necessary to establish the correctness of the KBL 
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interpreter. Namely, one must show that the normal form obtained by infinite 
rewritings is equal to the least solution of the system of equations. 

We first need two technical lemmas; namely, Lemmas 5.19 and 5.20. These lemmas 
make intuitive sense and are extrapolations of similar facts for tree-grammars. 
Although we have developed proof sketches which reduce these lemmas further to 
be consequences of more elementary ones, we have not yet satisfied ourselves with 
the correctness of these proofs--which are rather complicated, and ought to be 
simplerJ 5 Before stating these two lemmas, let us define some useful functions. 

For any T in ~ we define 

o o  

@(T) = TII  ,~(T) and ca*(T) = 1__1 cak(T). 
k=O 

Then, for any 7"1, T2, and T3 in ~ ,  we have the following two lemmas. 

5.19. Lemma. I f  Tl ~ * T2, then T2[ T31s]=-- T,[ T3)I s]. 

5.20. Lemma. I f  T2G T t [ X ( s ) / s ] ,  then T1 ~*  7"2. 

With these two lemmas we then necessarily have the following theorem. 

5.21. Theorem. The least foced-point solution to an SRS S is identical to the S-normal 

form of  the signature symbols; that is, 

Proof. We first establish .h"(s)_m_Y~:. Let T in ~ ) [N]  such that s -->* T. Using Lemma 
5.19 with 7"1 =s, T2 = T, and T3 = .I. we have 

T[a./s]=__ s[ (21) 

But, since T is in ~ [ N ] ,  it has no expandable symbols. Hence, T[.I./s] = T. Now, 
by monotonicity of ~ we know that ~k(.I.) _ ~k+t(j.). This readily entails (g*(J.) = 
aJ~*(.I.). With these remarks, together with the fact that s [ V / s ]  = V for any V, (21) 
becomes 

T _  ~* (.!.) = Y~. 

Therefore, Jt"(s) ~ Y~. 
To prove the inverse inequality, it suffices to show that .h"(s) is a fixed point of 

~. To that end, we first show that ~:(.#'(s))___ Jl/'(s). Taking T2 = ~(Jf'(s)) in Lemma 
5.20, it comes that E ~* ~:(X(s)) and hence, that s ->* ~:(.,f'(s)). Hence, ~(.#'(s))__m 
X(s). 

ts See [30, pages 28-29, Lemmas 2.38 and 2.39]. At the time of this writing, Irene Guessarian has 
communicated us outlines of  proofs for them that we cannot fully appreciate at this point for lack of  
details---and time [29]. 
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For the other direction, we use Lemma 5.19 with 7"1 = E, and T2 = T3 = X(s). It 
thus comes 

X(s)[X(s)/s]=_E[ 

that is, since by definition a normal form does not have expandable symbols, 

.h~(s)_m E[ f~*(X(s))/s]. (22) 

Now, since we first established that ~:(.~(s)) E.h"(s), it is clear that (g(.h"(s)) E.,Ir(s). 
And therefore, that rg*(.h"(s))E.h"(s). Combined with (22), this implies that X(s)___ 

[] 

6. Extension of research 

6.1. Negative information 

There are two possible ways of integrating negative information in wft's. The first 
one captures exclusion rather than equality among subterms of a wft. The second 
considers relative complementation among wft's. 

6.1.1. Capturing inequalities 
The tags in a wit essentially define a set of  equalities among subterms of the wft. 

Thus, computing the meet of two wft's computes a right-congruence closure to 
propagate these equalities by merging coreference classes. Instead of tags, we could 
(less concisely) express coreferences in a tag-less wft by a finite set (conjunction) 
of equations of the form ul = vl, i = 1 , . . . ,  n, where the u~'s and the v~'s are addresses 
in the wft. One could then ask whether it is possible to add inequations in such a 
conjunction of address equations, in order, for example, to capture mutual exclusion 
constraints among subterms of a wft. 

Clearly, the answer is 'yes'. Two very interesting articles by Oppen [50], and 
Nelson and Oppen [48] discuss fast decision procedures based on congruence 
closure on graphs to prove the unsatisfiability of a finite quantifier-free conjunction 
of equations and inequations among first-order terms. The method first computes 
the congruence classes corresponding to the equations only. Then, it simply checks 
whether any pair of terms supposed not to be equal as specified by the inequations 
are not put in the same congruence class. If at least one such pair is found, then 
the given conjunction is unsatisfiable. The method is inspired by another paper by 
Downey, Sethi and Tarjan [19] which applies the UNION/FIND technique to prob- 
lems involving congruence closure. 

The same procedure can be adapted in the case of wft's. Hence, mutual exclusion 
among subterms of a wft can be accommodated. In fact, the only tricky part would 
be to think up a syntax to capture mutual exclusion among addresses in a nice and 
compact way as do tags for equality among addresses. 
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6.1.2. Complemented types 

The second possibility that  we outline deals with capturing some negative informa- 
tion. It turns out that (relative) type complementation is feasible. More precisely, 
we can allow both positive and negative types to appear under labels of  e-terms in 
the form of  pairs tlkt2. Intuitively, this specifies anything which is subsumed by tl 
but not by t2. For example, a relation specifying that John owns a p e t  which is not 
a cat might be 

owns = ( o w n e r ~ j o h n ;  p e t ~ a n i m a l \ c a t ) .  

A type interpretation ~ is readily extended as follows: 

~[[ t, \ t21] = ~ till - ~[[ tz~. 

Considering the set ~ x ~, what we need to express is that h\t2 has no meaning 
if tl---h. Thus, we may define a smash function $ from ~ x ~ to itself: 

2. i f  tl----- t2, 
~(tlkt2)= t lk(tl[7 t2) otherwise. 

That is ~ is a retract of  ~ x ~. 
Next, we can define the following binary operation ^ on ~(~ x ~): 

t l \  t2 ^ t3\ t4 = ~,((h[-1 t2)k(tEll t4)). (23) 

It is straightforward to check that the following proposition holds. 

6.1. Proposition. The operation defined in (23) is associative, commutative, and idem- 
potent. 

Hence, we find the following proposition. 

6.2. Proposition. The operation ^ defined in (23) defines a lower semi-lattice structure 
on ~ x ~ for the ordering defined by 

t, \ t2 < . t3 \ t4 iff (t , \ t2) ^ ( t3 \ t4) = t~ k t2 . 

We can then proceed to the construction of Theorem C.4, and then justify the 
definition of  the [-] and L_J operations on the set of  sets of  pairs of a-terms in exactly 
the same fashion. The lattice thus constructed is then distributive, and complete 
and Brouwerian if limited to finite wft's on a Noetherian signature. 

The point made here is that  one can use the exact semantic scheme detailed in 
Section 5.1 to interpret the language of  complemented types outlined above. 

6.2. Polymorphic types 

We can show that KBL could easily be extended to provide for the possibility of 
defining parameterized or polymorphic types [45]. 



338 H. Ai't.Kaci 

Let us give an example. If  we want to specify a type representing a list of integers, 
the following will work: 

integer-list = {nil, cons(head , in teger ;  tail~integer-list)}. 

However, if the intent is to define, in a generic way, a homogeneous list type for 
any base type and not only for integer, KBL---as defined--cannot express this. 

Again, looking at what is needed provides a straightforward solution. Indeed, the 
original terms in °W~;~- are built on a signature which is a poset of symbols. This 
is all which has been needed to construct the lattice of e-types. Therefore any poset 
shall do as well. A poset which does better is the set of first-order algebraic terms 
on a given partially ordered signature of symbols ? and a set of type variables °F 
(pre-)ordered by first-order instantiation as usual. With this poset rather than .,?, 
KBL gains universal type polymorphism. 

If type variables are denoted by small Greek letters, the definition of a (universal) 
polymorphic homogeneous list type may thus be: 

list[a] = {nil, c o n s ( h e a d , a ,  ta i l~l is t [a])} .  

Other potential such extensions may be to second-order (respectively to-order) 
terms [14] (respectively [31]) ordered by second-order (respectively to-order) term 
instantiation. 

It is not difficult to extend the syntax to accommodate these features. 

6.3. Further research 

In addition to presenting some definite results, the work described in this article 
opens a fecund vein for further research. One could think of many ideas to explore 
along the lines of the approach started here, ranging from the very theoretical to 
the very practical. We propose some specific questions that could lead to potential 
improvements on what has been discussed here. 

6.3.1. Psi-expansion considered unnecessary 
Although the lattice construction of e-types from O-types leads to a semantically 

satisfactory type system, it makes an implementation of a type system rather 
inefficient because of the cost of  O-expansion. 

While playing with a KBL prototype implementation, we have found that many 
programs are unnecessarily plagued by combinatorial explosion. Indeed, systemati- 
cally expanding all e-types leads obviously to exponential growth of computation. 
We think that, most often, not expanding subterrns which are sets would give the 
interpreter much efficiency. The idea is simply that since the interpreter works by 
pruning out non-maximal elements of a set of types, most types could be eliminated 
in block in one step of computation before being expanded, rather than individually 
after being expanded. 

Of course, the catch is that one must then deal with computing meets on graph 
structures which look more like nondeterministic automata than deterministic ones; 
that is, on hypergraphs rather than graphs. The idea is, if  nontrivial, not impossible. 
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However, the use of the UNION/FIND method must be altered since in a hypergraph, 
a node has a set of nodes as successor. Hence, since a coreference class becomes 
a set of sets, the FIND of a class representative can no longer be as efficient, because 
equality of sets is up to a permutation. Nevertheless, the problem is a challenging 
one, and must be thoroughly explored. 

6.3.2. Epsilon-types as a type system for a programming language 
The example of KBL as a programming language where types are 'first-ciass 

citizens' is perhaps an interesting theoretical exercise, but an extreme one! Indeed, 
the calculus of types presented in Section 4 is independent of the particular use 
made of it for solving type equations. In fact, it could complement advantageously 
any programming language as a typing facility. However, one must be warned that 
this may not be done carelessly. One must make sure that, in providing a program- 
ming language like l~OLOO (say) with a type system like the one described here, 
the distribution of information between types and procedures (predicates, in the 
case of PROLOC), does not lead to redundancy, or worse, inconsistency. That is to 
say, One must be thoroughly aware of legal ways of combining the two systems of 
information. In fact, Scott's semantic theory of information systems [60] provides 
excellent tools to construct new information systems from old ones. A formalization 
of the types presented here as an information system will give the key to investigate 
their potential as a practical type system. Such works as [11], in the context of 
relational database theory, and [2, 3], in logic programming, are interesting upshots 
of this approach. In the latter, a small restriction is imposed on the nature of the 
type calculus which makes it an intermediary calculus between ~ and ~. Recursive 
type equations are partially solved at compile-time by fan-out rewriting limited to 
the maximal length of recursive cycles, and completely for finite branches. 

6.3.3. Higher-order types 
The types considered here have been strictly of first-order kind. That is, function 

types have not been considered. It is however interesting to wonder what could be 
obtained from lifting this restriction. There are really two ways of introducing 
higher-order beings in the @type calculus. 

Functional types--The first way is the more natural. It consists of allowing 
functional types---i.e., denoting sets of functions, since we are following a type-as-set 
semantics. That is, a function type tl -> t2 denotes the set of all (computable) functions 
from type tl to type t2. 

However, a strangely non-intuitive quirk in the partial ordering of types happens 
for these types which was discovered by MacQueen, Sethi, and Plotkin [39]. Namely, 
if T is the type lattice, the ordering on [T--> T] is not the product ordering, but the 
ordering of the product of the dual lattice of T with T. The ordering is so-called 
anti-monotonic or contravariant--in the first component. Hence, if higher-order 
functional types are considered, an odd 'flip-flop' of orderings must be taken ifito 
account. MacQueen, Sethi, and Plotkin have shown that recursive type equations 
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have solutions for these types. But the technique they propose to prove this uses 
an involved argument about a contracting mapping in an appropriately defined 
metric space. The reason is that one may no longer count on a least fixed-point 
argument since the solution functional for the type equation is not monotone ! Again, 
this is a challenge to take in the context of our type system, perhaps at the expense 
of forbidding such problematic recursion in type equations as s = s ~ t; that is, in 
effect, stratifying type orders. 

Attribute variables--The other way to introduce higher-order information is a 
more operational one. Namely, since attributes are interpreted as functions, one 
may wonder what happens if variable attributes are allowed in the syntax of 0-types. 
That is to say that a variable label would match any address in a meet computation. 
The idea is reminiscent of higher-order unification in the lambda-calculus [31]. We 
suspect that this may lead to undecidable problems; but again it is worth exploring 

its possibilities. 

6.3.4. Integrating logic 
As stated earlier, the kind of information to which this work has been restricted, 

is essentially a logic of equality. It is interesting to ask whether other relations than 
equality could be dealt with in a similar way. Indeed, it seems possible to augment 
the expressive power of 0-types by allowing logical formulae to be attached to a 
0-type specifying constraints in a richer logic than one limited to (in)equality. It 
would be a propositional logic whose sentential variables would ]~e term addresses. 
By the principle of coreference, all predicates would then have the peculiar property 
to be 'right-invariant' in all their arguments. The kind of efficient decision procedure 
devised by Dowling and Gallier [18] would then be a great candidate to extend the 
lattice operations. 

7. Conclusion 

In this article, we have proposed a novel approach to an old problem. Namely, 
we have developed a formal calculus of record-like type structures, analysed the 
order- and lattice-theoretic consequences of  interpreting these type structures as sets 
of objects, and offered a mathematical construction which allows this interpretation 
to be operationally meaningful. A particular language of types has been described 
which interprets programs in the form of a system of simultaneous equations. A 
fixed-point semantics has been studied and used to justify the existence of least 
solutions to these equations. Correctness of the operational semantics of the inter- 
preter with respect to the fixed-point semantics has been discussed. Finally, 
extensions of the type calculus have been proposed. 

Our work is by no means complete. It is intended as an illustration of a certain 
basis on which to expect variations. It is hoped that this research be just a 
beginning. . .  
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Appendix A. Lattice ideals 

First, we recall the concept of lattice ideal 

A.1. Definition. An ideal of an upper semi-lattice L, <~, v is a nonempty subset 

of  L such that 

(1) V a e S ,  V x ~ L ,  ifx<~a, then x e S ;  
(2) Va~,~,  Vb~,~,  a v b ~ .  

Informally, one may say that a nonempty subset of an upper semi-lattice is an 

ideal if it is "downward-closed" and 'join-closed'. 
Given an element a of  an upper semi-lattice L the set _a = {x s L] x ~< a} is clearly 

an ideal of L. It is called the principal ideal generated by a. The next theorem states 

an important standard result. 

A.2. Theorem. The set ~(L) of all ideals of any lattice L, ordered by set inclusion, is 
a complete lattice. Furthermore, the set of all principal ideals of L is a sublattice of 
~(L) which is isomorphic with L. 

Theorem A.2 justifies the embedding of any lattice into the complete lattice of 

all its ideals. This construction is commonly known as completion by ideals. Thus, 

we ha~,e the following corollary. 

A.3. Corollary. Any lattice can be embedded as a sublattice into a complete lattice. 

This construction preserves glb's but it does not preserve lub's (it is not self-dual). 
However, it preserves modulari ty and distributivity. 16 

The next easy result will be useful in later proofs. 

A.4. Proposition. Every ideal of a Noetherian lattice is principal. 

Proof. The proof  is inductive in nature. Given an ideal 5 of a Noetherian lattice 

L, we construct a sequence of elements of .~ as follows. We start with some arbitrary 

element ao in 5. If  ao is the greatest element of  5, then 5 = ao is principal. Otherwise, 

there must be a bo in 5 such that ao and bo are not comparable. We define al = ao v bo. 
Necessarily, ao < a l .  We repeat the same construction that we did for ao on a~, and 

so on. Clearly, this sequence cannot continue for ever since there are no infinitely 

ascending chains in L. Therefore, there must be an element a,  (n I> 0) in the sequence 

such that 5 = a , .  []  

t6 The completion by ideals is not the only possible compietion. Another well-known construction, 
the completion by cuts, is self-dual: any poset can be plunged into a complete lattice such that both 
existing glb's and existing lub's are preserved. However, modularity (and hence distributivity) is not 
kept. We shall not detail this latter construction, and we refer the reader to [7]. 
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Therefore, we have the following corollary. 

A.5. Corollary. Any Noetherian lattice is complete. 

Next, we recall a not so well-known kind of  lattice. 

Appendix B. Brouwerian lattices 

B.1. Definition. A Brouwerian lattice L is a lattice such that, for any given elements 
a and b, the set {x EL] a A X ~< b} contains a greatest element. 

An interesting property of  Brouwerian lattices is that (i) any Brouwerian lattice 
is distributive but, not conversely; and (ii) any Boolean lattice is Brouwerian, but 
not conversely. Thus, the class of Brouwerian lattices lies strictly between the class 
of  distributive lattices and the class of Boolean lattices. Apart from its lattice-theoretic 
properties, a Brouwerian lattice is interesting as it forms the basis of  an intuitionistic 
propositional logic, due to Brouwer [10, 20]. ~7 

We finally state a theorem which is a key property of  Brouwerian lattices. 

B.2. Theorem. A complete lattice is Brouwerian if and only if the join operation is 
completely distributive on the meets; that is, for all x e L and all y c_ L, 

x ^ V Y  = V (xAy).  
y e Y  

The following theorem is due to Stone. 

B:3. Theorem. The ideals of a distributive lattice form a complete Brouwerian lattice. 

Appendix C. Powerlattice constructions 

In this section, we describe two constructions which are extensions of  posets 
preserving the ordering and existing glb's. In fact, they are 'hidden'  constructions 
by ideals for Noetherian posers. These constructions are universal; i.e., they are 
independent of the particular instances of  sets on which one may eventually use 

17 The connection between intuitionistic logic and lattice theory is due to Birkhoff [7]. 
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them. Although quite simple, these constructions are not so common, and this is 
why we chose to give them in detail. 

C.1. A semi-lattice construction 

A poset is Noetherian if  it does not contain infinitely ascending chains. 
The restricted power of a poset P, noted 2 t~'), is the set of  nonempty finite subsets 

of  pairwise incomparable elements of  P. 
The complete restricted power 2 tP~ of P is the set of  all nonempty subsets of 

incomparable elements of  P. It is clear that 2 (e) ~ 2 t~'l. 

Such subsets are also called cochains, or crowns, and are partially ordered by the 
relation E defined as follows: 

X E  Y iff V x ~ X ,  3 y ~  Y, x<~y. 

We must verify that the following proposit ion holds. 

C.1. Proposition. The relation E defines a partial ordering on 2 [P]. 

Proof. Reflexivity and transitivity are straightforward. 
As for antisymmetry, let X and Y in 2 tPl be such that X_.r- Y, and Y E X .  By 

definition of  X E Y, for any x in X, there is an element y of Y such that x ~< y. But 

since Y E  X, for that element y, there is a z in X such that y <~ z. Hence, by transitivity 
of ~<, x ~ z in X. However, X is a cochain. Thus, all elements of X are incomparable. 
Therefore, we must have x = z, and so the intermediate element y is such that x = y. 

As a result, x is an element of  Y. 
We have proved that  X ~ Y; a symmetric argument entails y c_ X. Therefore, 

X = Y. [] 

Let P, <~ be a poset. The canonical injection of P into 2 ~P) is the function which 
takes any element x of  P into the singleton {x}. It is clear that this is an injection. 
Moreover, it is an order homomorphism since 

Vx ~ P, Vy e P, {x}_ {y} iff x <~ y. (24) 

Let P be a Noetherian poset. Given any subset X of P, we define its maximal 
restriction [X ] as the set of  maximal elements of  X. Since P has no infinitely 
ascending chains, this is well defined, even for infinite subsets. 

The following construction shows how one can embed any Noetherian poset P 
into its complete restricted power 2 [el and obtain a lower semi-lattice. The construc- 
tion is quite simple and is based on defining the right meet operation on 2 tP~ which 
will preserve existing glb's in P. 

Given some element x of  P, we note _x the subset of P of  all lower bounds of x. 

That is, _x = {y ~ S[y ~< x}. Then, for any two elements a, b in P, _a c~ _b is the set of 
common lower bounds of  a and b in P. 
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The following [7 operation can be defined for any pair  of subsets X, Y in 2tel: 

X [ 7  Y = [ bOY -a ~-b ] ~ x  (25) 

Informally, we may describe what is performed by the operation of  (25) as 
'skimming the cream off the crown' of  the set of  all common lower bounds of  all 
pairs of elements. 

C.2. Theorem. Let P, ~ be a poser. Then, 2 [e], _,  I-7, as defined above, is a lower 
semi-lattice. 

Proof. Let z be in x r ]  Y as defined by (25), for some X and Y in 2 tel. By definition, 

z is a common lower bound of a pair of  elements Xo in X, and Yo in Y. Therefore, 
x r 7  Y~_X and X m  Y _  Y. Now, consider some Z in 2 tPl such that Z ~ X  and 

Z ~ Y. Then, for any z in Z, there must be some xo e X and some Yo e Y such that 

z ~ Xo and z <~ Yo- Hence, z is a common lower bound for this pair <Xo, Yo), and 
must be either in XI7  Y, or less than or equal to some element of X r-1 Y which is 

I [ b e Y  maximal in ~.~a~x _a c~ _b. In any case, Z m _ X ~  Y. [] 

Note that if  two elements x and y in P already have a unique glb z in P, it follows 

that {x}R{y}={z} .  Hence, this construction is a structure embedding, since it 
preserves the ordering and the glbs when they exist in P. 

Now, we are justified to take the freedom of writing simply x rather than {x} for 
any single element of a poset P, and extend P to 2 Eel, the glb-preserving lower 

semi-lattice extension of  P. And this is the 'least' such possible structure, because 

if P is already a lower semi-lattice, then it is isomorphic to its canonical injection 
into 2 tel. Therefore, we have the following corollary. 

C.3. Corollary. Any Noetherian poset can be embedded into a lower semi-lattice such 
that existing glb's are preserved. 

C.2. A distributive lattice construction 

The second construction that we describe shows how to take a Noetherian lower 
semi-lattice into a distributive lattice. 

Let M, <~, ^ be a lower semi-lattice. We define two binary operations r] and II 
on 2 tM] as follows: 

X R Y = [ { x A y l x e X ,  y e Y }  ], X L J Y = [ X u Y ] .  (26) 

Let M, <~, ^ be an arbitrary Noetherian lower semi-lattice. Then, we have the 
following theorem. 

C.4. Theorem. The structure 2 tM], _ ,  n ,  II as defined above forms a distributive lattice. 

Proof. We first verify that X 17 Y is indeed a lower bound of  X and Y. This is clear 
by definition since any element of  X R Y is a lower bound of some element of  X 
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and of some element of  Y. It is also clear by definition that X II Y is an upper 

bound of X and Y since any element of  X (respectively Y) is either in X II Y, or 
less than or equal to some element of  X I I  Y. 

To show that X rq Y is the greatest lower bound of X and Y, let us assume that 

there exists a Z ~ 2 [~] such that Z _  X and Z _  Y. Then, for any z e Z, there exist 

some x ~ X and some y ~ Y such that z ~< x and z ~< y. Thus, z <~ x ^ y. But, x ^ y is 

either in X [-] Y, or less than or equal to some element of X IN Y. Therefore, Z ~_ X r-I Y. 

To show that X I I  Y is the least upper  bound of X and Y, let us assume that 

there is a Z ~ 2 [M] such that X _ Z  and Y=_Z. But, any element of X II Y is an 

element of  either X or Y. Consequently, any such element is less than or equal to 

some element of Z. Therefore, X I I  Y=_Z. 
It is thus established that 2 tM] is a lattice. The last thing to prove is that this 

lattice is distributive. To this end, it suffices to show that, for any X, Y, Z in 2 t~], 

(XI I Y ) ~ Z  E_ ( X I - I Z ) U  Y. (27) 

Let t be an arbitrary element of  (X  II Y) IN Z. By definition of C], there must exist 

some u in X I I  Y and some v in Z such that t = u ^ v. Now, by definition of join 

(26), u must be in X or in Y. If  u ~ X, then u ^ v must be less than or equal to 

some element ul of  X [-7 Z. If ul e (X [-q Z)  II Y, our point is made. So, let us assume 

that u~ is not an element of  ( X R Z ) I I  Y. By definition of II, and the fact that 

ul ~ ( X f - q Z ) u  Y, the only consistent way that this may be possible is if there is 

some uz in (XFqZ) I I  Y which is maximal in ( X F q Z ) u  Y and such that u ~  u2. 

Therefore, for the case where u ~ X, we have shown that 

(Xk_J Y)I- IZ E (XIqZ)LJ  Y. 

Now, for the case where u e Y, since t = u ^ v we have t ~< u. Again, let us assume 

that u ~ (X C1 Z)  LI Y. As before, the only way this could be possible is if there exists 

some ul in ( X ~ Z ) U  Y which is maximal in ( X ~ Z ) u  Y and u~< ul. Hence, for 

the case where u e Y also, 

( x u  Y) z =_ ( x m z ) u  Y. [] 

Again, we can readily observe that the construction of Theorem C.4 preserves 

the ordering relation and meet operation of M in the sense that, Vx e M, Vy e M, 

{x}___{y} iff x<~y; {x}F]{y}={x^y}  (28,29) 

and hence, we have the following corollary. 

C.5. Corollary. Any Noetherian lower semi-lattice can be embedded into a distributive 
lattice such that glb's are preserved. 

It is important  to remark that the construction taking a Noetherian lower semi- 

lattice into a distributive lattice is an extension of the one taking a Noetherian poset 
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into a lower semi-lattice in the sense that when the poset happens to be a lower 
semi-lattice, the two constructions are identical. Indeed, in that case, (26) and (25) 
are equivalent. 

There is a close connection between the ordering on the complete restricted power 
of  a poset and inclusion of  ideals, as the following proposition indicates. 

C.6. Proposition. Let  L be a lattice, and `9 and ~ two Meals o f  L Then, 

`9 c_ ~ iff  V x  ~ `9, 3y  ~ ~ such that x ~ y. 

Proof'. Trivially, if  5 ~ ~, then any x in 5 is also in ~, and hence x itself is such a 
y. Conversely, if x ~ `9 and y ~ ,,~ are such that x ~< y, then since ~ is an ideal, we 

must have x ~ ~. [] 

This suggests that this last construction is actually much stronger than it looks, 

as expressed in the next theorem. 

C.7. Theorem. For any Noetherian lower semi-lattice M, the lattice 2 [M1 is a complete 

Brouwerian lattice. 

Proof. If  we show that the lattice 2 t~'J is isomorphic with the complete distributive 

lattice of all its ideals, it will follow from Theorem B.3 that it is a complete Brouwerian 
lattice. A way to do this is to establish that every ideal of 2 tM] is principal, and by 

Theorem A.2 the theorem will follow. 
Let # be some arbitrary ideal of 2 tMl. Since there are no infinitely ascending 

chains in M, the subset of  M defined as 

X~,9  X e , 9  

is well-defined. This set is the set of maximal elements of the union  of all subsets 
of incomparable elements of M which are in 5. Since # is an ideal, it is join-closed. 
And hence, `9 is the principal ideal generated by .9*. [] 

C.8. Corollary. Any  Noetherian lower semi-lattice can be embedded into a complete 
Brouwerian lattice so that existing glb's are preserver 

Appendix D. A semantics of type inheritance 

We give here a 'type-as-set" denotational semantics of the ~-term calculus of 
partially-ordered type structures. 

We assume the existence of  an abstract interpretation universe ¢/ of objects, 
where our types take meaning. A type is an intensional denotat ion of a set of  
elements in this universe. For example, the type 'person' denotes the class of  all 
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objects in q/which are categorized as persons. Some consensual agent is postulated-- 
e.g., a programmer or an interpreter--for which such a categorization is meaningful. 
For example, it is reasonable to suppose that the reader's understanding of the 
English word "person" concurs with ours as far as our common sense interpretation; 
namely, a particular subclass of the class 07/of all objects. Hence, in particular, the 
least informative type (T) denotes the whole universe q/; and the overdefined type 
(.1_) is the inconsistent type, and denotes the empty set--the type of no object. 

The subtype relation is interpreted as set inclusion in the semantic universe q/. 
For example, if the set of students is contained in the set of persons, then the type 
'student' is a subtype of the type 'person'. 

Let T be such a set of types, endowed with a subtype ordering relation ~<. A type 
semantics is an order homomorphism: 

r:(T, ~<)--> (2 ~, ~), 

where 2 ~ is the set of all subsets of ~. Namely, 

~[ [T l l  = ~, r[[_l_] =0 (30) 

and, for all s, t in T, 

s<~t ~ ~[[s~_~t~. (31) 

Furthermore, if glb's exist, it is desired that 

r [s^  t] = r~s]n  r~t~. (32) 

In addition to signature type denotation, the information content of attributes 
and inheritance of attributes must be given a denotation which is congruent with 
the constructor types. For example, given that the type 'person' is interpreted as a 
set of objects of q/, specifying the types of certain attributes of 'person' is a means 
to denote a further restriction of the type 'person', e.g., talking about the class of 
persons whose last name is a character string, rather than anything (T). Thus, an 
attribute denotes the intension of a function between subsets of the universe ~/. 
Attribute concatenation denotes function composition, and attribute coreference 
denotes the fact that certain functional diagrams commute. 

More precisely, let Z, ~< be a partially-ordered type signature, and let r be a type 
semantics for it. Now, we need to indicate how to extend consistently this type 
interpretation to one for 0-terms. Let us define a monoid homomorphism 7/from 
Le* with string concatenation, to the set ~/~ of functions from q/ to ~/, with function 
composition. That is, 
• for each label l in L:, ~ / n  is a function in ~ ;  
• 7/[[e] is the identity on 0//; 
• Vu,  v~..~'*, ~u.vl = ~[v~o~[ul. 

The type semantics ~ is extended to 0-terms by the denotational semantic equations 
(33)-(36). These equations can be construed as 'evaluation' rules for all possible 
syntactic cases. That is, the set which is the meaning of  a given 0-term is obtained 
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by repeatedly applying equations (33)-(36). These rules are clearly well-founded 
(i.e., there cannot be an infinite interpretation sequence using them) because of the 
finiteness of a 0-term's domain  and coreference relation index. Also, the order in 
which these equations are applied does not matter because of commutativity of set 
intersection. 

Equation (33) treats the simple attribute case: 

r [ f (  l ~  t)]]= { x  e ~ f ~ l = l y  e r[[ t] ,  r l ~ l ] ( x )  = y }. (33) 

It is now clear that the identification with _t_ of all O-terms where _t_ occurs is 
justified by this semantics. Indeed, by (33), it comes immediately that 

r[[f(  l ~ - k  )] = r[[ J-] = O. 

Equation (33) is generalized to many attributes as follows: 

n 

~ f ( l ~ t l ;  . . .  ; / , ~ t , ) ]  = 0 r [ f ( l ~ = > t i ) ] .  (34) 
i = l  

Attribute coreference means that compositions of attribute functions commute, 
as expressed by (35): 

6I[O1] = {XE I ~ 0 2 ~ l n ~ l  0 . . . . .  I,,B(x) = rt[[ko . . . . .  k,,](x)}, (35) 

where 

and 

01 = f ( l o ~ g , ( l l ~ ' ' "  g.(l. ~ X "  t ) - . - ) ;  

k o ~ h , (  k , ~  . . . hm(km ~ X )  . . .) ) 

0 2 =  f (  l o ~ g , ( 1 , ~  . . . g, ,(  l .  ~ t )  . . . ); 

k o ~ h , ( k , ~ "  " h m ( k m ~ t )  " " ")). 

Finally, cyclic coreference corresponds to fixed-points of attribute functions, as 
expressed in (36): 

d[ 01] = {x ~ ~[ 02~ ] r/~ 1o . . . . .  l . ~ ( x )  = x}, (36) 

where 

and 

O,= x : A ( I , ~ .  . . f . ( t .  # x ) )  

02 = f , ( t l ~  -. . f . ( l .  ~ A ) ) .  

As for e-types, they are constructed from O-types to be interpreted as disjunctive 
types through a powedattice embedding. That such an embedding is semantically 
sound becomes clear when one understands the semantics of  a type such as 
{ f i , . . . ,  t,}. In a 'type-as-set' semantics, the lub of the types ti (i = 1 , . . . ,  n) should 
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also be the lub of everything that is subsumed by every ti. Hence, it comes naturally 
that 

n 

d{t,,.. . ,  tn} = t._J 
i = 1  

It is not diflicult to verify that axioms (30)-(32) hold for this type semantics. 
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