
Theoretical Computer Science 45 (1986) 293-351
North-HoUand

293

AN ALGEBRAIC SEMANTICS APPROACH TO THE
EFFECTIVE RESOLUTION OF TYPE EQUATIONS

Hassan AIT-KACI*
Microelectronies and Computer Technology Corporation, Austin, TX 78759, U.S.A.

Communicated by M. Nivat
Received October 1985
Revised April 1986

Abstract. This article presents a syntactic calculus of partially-ordered data type structures and
its application to computation. A syntax of record-like terms and a type subsumption ordering
are defined and shown to form a lattice structure. A simple 'type-as-set ' interpretation of these
term structures extends this lattice to a distributive one, and in the case of finitary terms, to a
complete Brouwerian lattice. As a result, a method for solving systems of type equations by
iterated rewriting of type symbols is proposed which defines an operational semantics for K B L - - a
Knowledge Base Language. It is shown that a KBL program can be seen as a system of equations.
Thanks to the lattice properties of finite structures, systems of simultaneous type equations are
shown to admit least fixed-point solutions. An operational semantics for KBL is described as
term rewriting. Fan-out rewriting, a particular rewriting computation order related to the conven-
tional outermost term rewriting which rewrites symbols closer to the root first, is defined and
shown to be maximal. Correctness with respect to least fixed-point semantics of KBL's operational
semantics, as defined by fan-ont rewriting, is discussed. Finally, extensions and further research
directions are sketched.

Key Words: Partially-ordered types, type inheritance, type equations, algebraic semantics, graph-
rewriting systems.

Contents

1. Introduction . 294
1.1. Disclaimer . 294
1.2. Organization of contents . 295

2. Motivation and background . 296
2.1. Semantic networks . 296
2.2. The first-order logic approach . 297
2.3. The initial algebra approach . 299
2.4. The denotational approach 299

3. Concrete data type structures . 302
3.1. Desideratum . 302
3.2. A dialectic approach . 303

3.2.1. Thesis . 303

* Most o f the research reported in this article was done while the author was at the University of
Pennsylvania, and it completes results previously published in [1].

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

294 H. AFt-Kaci

3.2.2. Anti thesis . 303

3.2.3. Synthesis . 304
4. A calculus o f type subsumpt ion . 305

4.1. A syntax o f s t ructured types . 306
4.2. The subsumpt ion o rde r ing . 311

4.3. A dis t r ibut ive latt ice o f types . 316
5. Solving equa t iona l type specif icat ions . 319

5.1. A KBL in terpre ter . 321

5.2. G r a p h rewri t ing . 324
5.2.1. Wft subs t i tu t ion . 324

5.2.2. Symbol- rewr i t ing systems . 330

5.2.3. Correc tness . 334
6. Extension o f research . 336

6.1. Negat ive in format ion . 336
6.1.1. Cap tu r ing inequal i t ies . 336

6.1.2. C o m p l e m e n t e d types . 337

6.2. Po lymorph ic types . 337
6.3. Fur ther research . 338

6.3.1. Ps i -expans ion cons ide red u n n e c e s s a r y 338
6.3.2. Eps i lon- types as a type system for a p rog ramming language 339
6.3.3. Higher -o rder types . 339
6.3.4. In tegra t ing logic . 340

7. Conclus ion . 340
Append ix A. Lat t ice ideals . 341
Append ix B. Brouwer ian la t t ices . 342
Append ix C. Powerlat t ice cons t ruc t ions . 342

C.1. A semi-lat t ice cons t ruc t ion . 343
C.2. A dis t r ibut ive lat t ice const ruct ion . 344

Append ix D. A semant ics o f t ype inher i tance . 346
Acknowledgment . 349
References . 349

Ce tours qu ' I r~ne Guessa r i an professe depuis quelques ann~es
it rUnivers i t~ Paris VII va beaucoup plus lo in qu 'e l le ne le di t
elle-m~me: il int6resse cer ta inement toute r i n f o r m a t i q u e don t les
progr~s passeront n6cessai rement pa r une ~tude a p p r o f o n d i e des

structures math~mat iques qui la sous- tendent , il do i t int~resser le

math~maticien et le logic ien sensible it la r~alit~ et l ' ex is tence qu 'on
peut presque dire phys ique des objets manipul~s.

Maurice Nivat , Preface to Irene Gessarian's lecture notes on
algebraic semantics [30].

1. Introduction

1.1. Disclaimer

It has yet again become clear to the author that ideas from virtually mutually
exclusive branches of computer science may contribute constructively to one another.
On one hand, universal algebra has been rather successful at formalizing, explicating,
and thus predicting the behavior of computational concepts. On the other hand,
artificial intelligence (AI) has made undeniably intriguing contributions towards
comprehending rather esoteric--and thus inherently very hard and very controver-
s ia l -phenomena related to human intelligence seen as a computational process.

Effective resolution of type equations 295

Thus, we feel compelled to begin this article with a disclaimer pertaining to a certain
scientific attitude.

Amongst the varied fauna and flora thriving in the circles of research in computer
science, there is a particular breed whose members, self-proclaimed or not, are
commonly known as 'AI researchers'. Whatever life-forms that breed really encom-
passes, where they live, what criterion they indeed fill to adhere to the species, is
the subject of a rather uninteresting and fruitless on-going debate. An interesting
observation, however, is the fact that a large number of them practice their trade
favoring rather empirical, as opposed to formal, methods. A potential explanation
for this, in our opinion, is that their quest has an almost alchemical nature. By that
token, much of their contribution suffers from a certain despite by the formalists,
especially of the 'pure type'. Among many possible reasons, a likely one is their
choice of words which are perhaps a bit too pretentious for the sterner classicists
of theoretical computer science (e.g., artificial intelligence, epistemological engineer-
ing, knowledge representation, knowledge base, expert systems, etc.). Be that as it
may, the result of this state of affairs is mutual exclusion of ideas.

Now, being not so clever (brave?) as to be in either camp, this author wishes to
voice the clear and loud disclaimer that it is clearly a loss of scientific opportunity
to isolate such disciplines---especially for so trivial and vain reasons. Research is
mining a gold field, and a formal scientific method leading to replication of empirical
results through a systematic and minute study of even the wildest idea makes as
obvious sense as an ore refinement process.

The nature and direction of this reported research is precisely such an effort of
cross-fertilization of ideas: on the one hand, the ideas and insights evolved out of
'knowledge representation' in AI; and on the other hand, the rigor and formal tools
crafted in the study of algebraic semantics of recursive program schemes. The
outcome of the exercise is a better understanding (at least in the author's mind) of
great intuitions put forth by some members of the AI community, as well as an
impressive show of power of thd abstract tools developed mostly by the French
school of algebra for a clear formal explanation of new challenges in computer
science. Further, the exercise has even led to new practical enhancements (read,
'running software') of some computation processes and architectures [2].

1.2. Organization of contents

Following a survey of related approaches to set this work's motivation, the first
part of this article focuses on syntactic properties of record-like data type structures.
A syntax of structured types is introduced as labelled infinite trees, which may be
seen as extrapolated from the syntax of first-order terms as used in algebraic
semantics [14, 30, 31]. However, since the terms defined here are not to be interpreted
as operations, the similarity is purely syntactic. A calculus of partially ordered record
structures is presented. It is then extended to variant record structures through a
powerlattice construction. The second part deals with solving recursive type

296 H. Ai't-Kaci

equations in a lattice of variant records. An operational semantics of type structure
rewriting is first informally described. Then, a fixed-point semantics is discussed.
Finally, a discussion of the correctness of the former with respect to the latter
concludes the main point. Extensions and further research are ultimately sketched
as a conclusion.

2. Motivation and background

The area of semantics of data types has experienced growing interest in the last
decade. A recent, albeit already dating, compendium of technical approaches cover-
ing the latest research in this topic can be found in [34]. The notion of partially
ordered data types has just begun being the focus of intense research. Although it
would be quite presumptuous here to attempt a complete survey of what has been
and is being done, this section gives a rapid overview of a few major approaches.

2.1. Semantic networks

It has often been the case in artificial intelligence (AI) research that naive
experimentation with intuitive ideas has led to some interesting concepts. Such
experimentations dealing with ways of representing commonsense knowledge in a
computer brought about the notion of semantic network In 1968, Quillian [54]
proposed a computer representation of associative memory. What he was suggesting
was a graph-theoretic denotation of'concepts' as vertices and ' conceptual associations'
as edges. Soon after, Minsky [46] introduced a theory of frames, essentially record-
like data structures, related together by a so-called 'Is-A" link meant to import or
'inherit' information from one frame to another. A set of so-related frames was
called a conceptual taxonomy or knowledge base. In the years that followed, many
AI and database researchers proposed a flurry of semantic network models and
languages along the lines of these early ideas [21].

Figure 1 shows an example of a piece of 'knowledge base', expressed using
KL-ONE [8], one among the most popular semantic network formalisms. The ellipses
are called concept nodes, and denote generic entities. The squares are called role
nodes, and denote attributes of the concept to which they are attached. The diamonds
are called role/value maps and capture equality constraints among roles. The double
arrows are called inheritance links and denote the 'Is-A' relation among concepts
and roles. The single arrows are value restriction links pointing to the concept
restricting a role instance. The dashed arrows are called focus/subfocus chains and
denote sequences of attributes linked by the English "of" connective, and constituting
two arms of a role/value map. Among other things, the network in Fig. 1 expresses
that an employee is a person, that a self-employed person is an employee who is
her own boss, and that a locally-employed person works in the city where she lives.

Although formally naive, the notion of semantic network has had great practical
appeal as it is intended to capture some sort of "static inference', using frames as

Effective resolution of type equations 297

located-within

town

working

place

city

J

i I

I I

I

/
I

town

residence
home

occupation

location

person

boss

. ":::'" " ' J J S / //~,,sub-ordlnate

', / - ~ / ~ f ' Y " "~ (~manager ~ ",,

", / ",,',

Fig. 1. Example of a KL-ONE semantic network.

generic types specifying templates or patterns whose instances inherit properties by
'pointer chasing', as opposed to "dynamic inference', carried out by a theorem prover
or a database query language. Unfortunately, as can easily be understood by looking
at Fig. 1, semantics of semantic networks is at best approximate, and it becomes
quickly intractable to maintain, let alone debug, even relatively small databases of
this nature. For this reason, the notion of semantic network has been subject to a
controversy, even among AI researchers, where logic programming proponents have
decried the very concept as being an unnecessary and semantically unclean notational
variant of the first-order predicate calculus. ~ We next briefly examine some of these
proposals.

2.2. The first-order logic approach

The glaring lack of formal semantics for semantic networks has induced certain
AI and database researchers [5, 16, 36] to use the well-established first-order
predicate calculus to formalize conceptual taxonomies.

There are essentially two ideas. One [5] proposes to use first-order logic as a
metalanguage to describe a semantic network. The subsumption relation is denoted
by a SUBTYPE binary precficate. Of course, to reflect the fact that this is an ordering,
axioms for transitivity must be added. Another predicate ROLE, is a ternary one:
ROLE(t1, r, h) asserts that a h has a role r which is a t2. Ground objects are declared
to be of some type of a TYPE predicate, as in TYPE(o, t), denoting that the object

But see [32] for a vehement, as well as entertaining, counterpoinL

298 H. A~t-Kaci

o is of type t. Thus, the authors of [5] make their case by showing that a semantic
network can be expressed as first-order sentences involving these predicates.

The other proposal [16, 36] may roughly be summed up as follows. Since links
in a network can be viewed as binary relations, and since a predicate denotes a
relation, then a semantic network is nothing but a set of logical formulae involving
only binary predicates, constants, and logical variables. A binary predicate ISA is
used to assert that an object is of a certain type, as in ISA(socrates, human). The
subsumption relation is defined as logical implications, as in

ISA(x, human) ~ ISA(x, animal).

Attributes are expressed by assertions of the form A(t~, t2) meaning that tl has
an attribute A of type t2, as in FRIEND(socrates, plato).

In addition, to achieve a better abstraction power (in particular incomplete
information, and limited temporal reasoning), a first-order event calculus is necessary.
Thus, all predicative actions (verbs) and assertions are made in relation to some
existential event. That is, rather than GIVES(john, mary, book) they propose to write

EVENT(el,giving) & AGENT(el , john) & RECIPIENT(el ,mary) &
OBJECT(el, book).

In both of the foregoing proposals, it is argued that first-order logic theorem
provers are thus sufficient to implement sophisticated knowledge bases in a semanti-
cally pure fashion. The idea is indeed difficult to challenge.

Nevertheless, the 'static' inference motivation is definitely lost. Further, doing
everything in first-order logic may even introduce inefficiency of computation. This
is made clear by taking an example. Let us suppose that PROLOG is given a type
system along the above lines, and consider the typed tplus operation defining addition
on integers:

tplus(X: integer, Y: integer, Z : integer)

becomes

tplus(X, Y, Z) :- isa(X, integer), isa(Y, integer), plus(X, Y, Z),
isa(Z, integer).

Obviously, nesting this operation many times over in a sequence of calls to 'tplus'
so that, for instance, the result of one becomes argument of the next, leads to grossly
redundant (run-time) type checking. It is however semantically immaculate.

A work strongly related to ours is one that this author has just recently learned
about [58]. Rounds and Kasper present a Kripke-style semantics for a logic of
record structures for linguistic information. Their syntactic calculus is a strict
subcalculus of ours, and theirs is a model-theoretic semantics. Their contribution
is a completeness theorem for their calculus. However, the same comment that we
made earlier on the use of logic for type structure semantics applies in this case as

Effective resolution of type equations 299

well. Namely, the motivation for such work and concepts as inheritance among type
structures and logical deduction is precisely one which aims at taking some computa-
tional burden off the back of a logic by using a semantically equivalent, albeit
pragmatically more practical, order-sorted logic. In addition, it encourages such
subtle misconceptions as the belief that any logic is semantically equivalent to its
unsorted version. A blatant counterexample is shown in [2] where an order-sorted
PROLO~ is shown to be of a strictly larger semantic model variety since sorts may
accommodate limited forms of disjunctions and negations---which are disallowed
in Horn logic.

2.3. The initial algebra approach

An abstract data type is defined to represent the essential properties of a data
type in complete abstraction of how the data type may be implemented. For example,
whether a set is implemented as a linear list, as an array, or as a tree, is not relevant
for the abstract meaning of the set data type. Hence, universal algebra provides
sufficient tools for a mathematically elegant and powerful Characterization of types.
Indeed, initial algebra semantics [24, 25, 44] provides precisely this kind of charac-
terization by defining a data type as the initial algebra in the variety induced by a
set of equations. The approach actually uses the concept of multi-sorted algebra
which is a straightforward generalization of a Z-algebra endowed with a set of sorts,
and whose operation symbols are indexed by strings of such sons. Thus, a function
symbol f of arity n has a sort s l . . . s,, sn+l where si, i = 1 , . . . , n is the sort of the
ith argument of the operation corresponding to f, and s,+~ is the sort of the value
returned by this operation.

Many programming languages have been implemented which are based on this
idea: the better known are OBJ [26], AFFIRM [47], and CLu [38]. Among these,
only OBJ has also integrated the notion of partially ordered types based on the
lattice-theoretic properties of algebras and extension of sorts to be partially ordered
[22]. Figures 2 and 3 suggest the way subtyping is achieved in OBJ. Figure 2 defines
an abstract data type specification 2 of a ring, and Fig. 3 defines a distributive ring
(i.e., a ring whose additive law is distributive on the multiplicative law) as subtype
of a ring. The uses primitive imports the definition of the previously defined type.

The initial algebra approach is surely one of the most mathematically solid theories
of data types proposed today. It however addresses issues which are concerned with
abstract notions of types, and neglects to consider implementation issues.

2.4. The denotational approach

The denotational semantics of programming languages is essentially based on the
work of Scott [59, 62]. Programs are interpreted as continuous functions between

2 Actually, of a family of such ADTs: a variety of finitely-presented equational algebras.

300 H. Ai't-Kaci

theory RING
sorts ring
fns

+: ring, ring-~ ring (asso¢ eomm id: 1)
*: ring, ring-~, ring (assoe eomm id: 0)
-: ring -~ ring

X, Y, Z : ring
axioms

X + (- X) = 0 .
X * (Y + Z) = (X * Y) + (X * Z) .

endth

Fig. 2. An OBJ sL~cification of a ring structure.

theory DRING uses RING
sorts dring
subsorts dring < ring
Y a i ~

X, Y, Z : dring
axioms

x+(Y,Z)--(x+ Y).(x+z).
endth

Fig. 3. An OBJ specification of a distributive ring structure.

complete lattices, also called domains [60]. 3 Thus, the meaning of a program is
defined as the least fixed point of the continuous function denoted by the program. 4
Defining the interpretation domains as complete lattices offers the possibility to
define so-called reflexive domains which are domains isomorphic to lattice constructs
of themselves and other domains (generally involving product, sum, and continuous
function operations). Recursive domain equations are thus guaranteed to have
well-defined solutions.

Followers of Scott have essentially adopted two ways of defining the meaning of
data types. The first is the original definition proposed by Scott himself in [59] and
identifies a data type to a retract, which is an involutive continuous function. Scott
proposes to model everything in a universal domain Po~, defined as the powerset of
the natural numbers ordered by inclusion. Thus, a function on Po, is represented
by its graph; that is, the set of pairs of antecedents and images, which may hence
be recursively enumerated as sets of integers. By a bijective number coding of sets
(G6del numbering), Scott thus shows that P¢o is isomorphic to the lattice of con-
tinuous functions on PoJ, and by this token explains why such apparent paradoxes

3 Complete partial orders (cpo's) are often more appropriate than lattices to model fixed-point
computation as explained in [53, 66].

4 "Fixed-point semantics" is the other name for this approach to programming language semantics.

Effective resolution of type equations 301

as applicat ion of a function to itself are not at all paradoxical and can be very well
interpreted in PoJ. Furthermore, any domain can be obtained as the image of P~o
by a suitable retract, thus justifying the definition of a data type as a retract. Since,

by definition, a retract is a fixed point of the evidently continuous function which
maps a funct ion f on PoJ to the function for , it follows that the retracts of PoJ
ordered by set inclusion form a complete sublattice. However, this ordering clearly
does not correspond to containment of image-domains by retracts. A more appropri-
ate ordering on retracts of P¢o denoting subtyping is defined as:

r ~ r' iff r = r o r ' = r ' o r ,

that is, r is a subtype of r' if and only if r is a retract of r'(Pto). Unfortunately, the

set of retracts of Pro does not have a lattice structure for this ordering. At best, if

two retracts commute, their glb is given by their composition. Application of the
semantics of data types as retracts can be found in [17, 41].

Another denotat ional approach to the formal semantics o f data types is one which
defines them as ideals of a semantic domain and is due to MacQueen and Sethi
[39, 40]. For example, let us suppose that Bool is a (flat) domain of truth values, i.e.,

Bool = {_L, true, false , T}

and that Int is a (flat) domain of integers. Then, we can define a domain of values

Val as the reflexive domain solution of the following domain equation:

Val = Bool + Int + Val x Va l + [Val --> Val] + {wrong},

where wrong is the value of inconsistent objects. Hence, a type in this domain is

formally defined as an ideal of Val which does not contain the wrong value.
This is, in our opinion, one of the most adequate approaches to partially ordered

types since it defines in a clear way a complete lattice of types ordered by inclusion.
It is however essentially aimed at expressing the meaning of higher-order functional

types. Nevertheless, as shown by Cardelli [12], it offers a powerful and elegant
model to define a semantics of partially ordered record-like type structures with

inheritance of attributes. In the context of the MacQueen-Sethi type model, Cardelli

defines what he calls flexible record types. Essentially, a flexible record is an finite
indexing of types, that is something which may be represented as an association list
of label indices and types. One can inductively define Cardelli 's flexible record types

as follows. Given a countably infinite set of label symbols and atomic types like
integer, string, boolean, etc., as primitive types, then a construct of the form

(11" t l , . . . , ln:tn), n>~O, is a flexible record if the li's are indexing labels and the
t~'s are atomic or flexible record types, for n t> 0. The type () is the top element,
and is the least informative type. Such indexings may be viewed as functions from
labels to types which map all labels to T except for a finite set of labels (finite
partial functions). Thus, flexible records are partially ordered using the function
ordering. As a result, a complete lattice of record types is obtained, with easy and

~m~,um voor Wi,~r~. ~- en InformerS<

302 H. Ai't-Kaci

practical rules to compute meets and joins. As will be seen, Cardelli's model of
partially ordered record structures is close to the one we shall introduce. However,
it fails to offer equality among parts of a record, and is given a different semantics
than ours.

3. Concrete data type structures

Sections 2.1 and 2.3 presented two extreme approaches to the problem of object
representation. On the one hand, the semantic network approach is the intuitive,
perhaps naive, attempt to provide physical data structures for a programmer to
capture one's concepts into concrete records. On the other hand, the algebraic
approach is concerned with abstract foundations and properties of the meaning of
data types, regardless of how they may be physically implemented. Thus, it favors
a systematic study, perhaps to the detriment of presenting a simple and straightfor-
ward motivation to the layperson.

Section 2.2 described some attempts to fill the gap between intuitive representations
and clear semantics through the use of first-order logic. Granting that logic both
shares semantic clarity with the algebraic approach, and possesses simple expressive
elegance to please intuition, my main criticism of this trend of research is that it
goes against the primary motivation for the use of data type in programming. As
illustrated then, we argued that if information about domains of objects is handled
by the same logic formalism used for computation, the very notion of data type as
static information to be factored out of dynamic computation is lost.

In yet another attempt to fill the same gap, we propose in this section that naive
data structures like records can be of great power if formalized in a way to have
clear meaning and to make them amenable to manipulations which are congruent
with that meaning. Thus, a calculus of concrete data types can be developed which
offers the simple representational capability inherent to record-like structures and
semantic networks, and which bears a clear denotation of data types as domains
of elements. In this section, an approach is motivated by means of a close look at
the practical use of first-order terms as a potential data model.

3.1. Desideratum

Almost all programming languages provide for some notion of structured data
type, even if only as an after-thought. Examples are record types in ADA [37],
PASCAL [33], ALGOL-W [61], structures in C [35], flavors in ZETALISP [65] and
INTERLISP [64], first:order terms in PROLOO [13], frames in FPa. [56], concepts in
K~-ONE [8], etc. These are meant as a facility to encapsulate attributive information,
and their syntactic appearance is characterized as variations on sets of attribute/value
pairs.

Effective resolution of type equations 303

3.2. A dialectic approach

3.2.1. Thesis
Subtyping is concerned with capturing the notion of subsumption 5 among concrete

objects. Thus, we would like to define a notational system for representing approxima-
tions of objects of which one conceives in one's mind. Moreover, we want this

system to contain some mechanism which could automatically classify thus
represented objects in a fashion which is congruent with their interpretation as
approximations.

An example of such a system is provided by first-order terms or trees in universal

algebra and logic. In PROLOG [13], the underlying logic model means first-order
terms as functions. However, operationally, term structures are uninterpreted con-
structors. Hence, one finds it very practical to use them as record structures, com-

pletely forgetting their functional semantics. For example, we would like to express

the fact that a person has a name, a birth date, and a sex. Representing a thus

specified generic person as a term could be person(x, y, z). Then, by a convention
remembered at interpretation, the symbol person at the root of a term denotes a

person object, and the variables x, y, z as place markers for a person's name, date
of birth, and sex, respectively. The classification mechanism in this model is term
instantiation. The meaning of variables is that they stand for incomplete information

and may be substituted for by terms. Thus, person('Hassan', y, z) denotes any person
named 'Hassan', and person('Hassan', date(14,june, y), z) designates any person

named 'Hassan' and born the 14th of June. The term appearing as the date of birth
in the latter 'person' illustrates the substitution process. If we choose to define a

type to be a first-order term as shown, and the type classification ordering to be
term instantiation, then we have at hand a type system as wished. Indeed, the types

thus defined form a lattice whose meet operation (i.e., greatest lower bound) is
first-order unification [57], and whose join operation (i.e., least upper bound) is

first-order anti-unification, or generalization [55]. PROLOG programmers are well
familiar with this model which is unlike any other available in conventional program-
ming languages and turns out to be very handy in practice.

32.2. Antithesis
There is however a certain amount of inflexibility inherent to the definition of

types as terms. Firstly, a term is a finitely branching tree. In particular, it has a fixed
number of arguments. If we want to extend the definition of a person to have also
a marital status, we must entirely redefine the type 'person' to take one more
argument, and hence revise all previously used instances of a person. Secondly, a

term has a fixed order of arguments. This is very convenient to interpret consistently
position within a term as having a fixed meaning. For example, in a 'person'-term,
the first argument is once and for all meant to denote the person's name. Indeed,

5 We are borrowing this term from Plotkin [52]. Although his definition is different from what will
be presented here, it inspired its approach.

304 H. A[t-Kaci

this is also taken advantage of by the unification process; i.e., in order to match,
two terms are expected to have their corresponding subterms in the same order.
This is the same principle used in most programming languages to pass procedure
parameters. As a result, one must constantly keep in mind the original intended
interpretation of the order of arguments. Thirdly, type subsumption as one-way
pattern-matching is forcing a common syntactical pattern for all terms in a chain in
the lattice. For example, if we define a type student(x, y, z), then we cannot express
that we also intend a student to be a person since a type is identified by its constant
root symbol and 'student' is distinct from 'person'. Finally, there is no provision in
the definition of a term for specifying any restriction on the pattern of subterms. For
example, restricting the name of a person to terms whose root symbols belong to,
or better yet do not belong to a given set, is not syntactically possible.

The foregoing shortcomings of the first-order term model of types make it look
rather limited. However, it has appeal because of its solid formal grounds and its
simplicity. It would be of great advantage if this model of types could be enhaneed
so that it may keep its elegance and sound formal basis, lend itself to a powerful
interpretation scheme, and yet overcome the limitations explicated above.

3.2.3. Synthesis
We propose to modify the notion of a type by extrapolating on the classical

definition of a term. Let us first relax the fixed-arity constraint, i.e., a term may have
an unbounded number of arguments. Next, let us relax the fixed-position constraint
by explicitly indexing or labelling the arguments. The reader familiar with ADA
[37] will note that this language allows a procedure call's actual parameters to be
specified either by position, or possibly out of order by explicit labelling. However,
in ADA all actual parameters must be present at run-time, possibly by default. In
our case, since a type can now have a potentially infinite number of attributes, all
that is ever needed is to specify only those which are relevant at any given time.
For example, person(name ~ ' H a s s a n ') denotes the type of persons named 'Hassan',
and pe r son (sex ,ma le) stands for the type of male persons. Furthermore, let us
assume some partial ordering on the root symbols. This can easily be extended to
an ordering on terms in a way very similar to a homomorphic extension. For example,
if the symbols 'person' and 'student' are such that student < person, then we can
consistently say that s tudent (name~ 'Hassan ' , s e x , m a l e) is a subtype of per-
son(name~ 'Hassan ' , s e x , m a l e) .

The idea behind this kind of extension of a term is based on the concept of
multi-sorted terms with the very peculiar difference that the sorts are implicitly
denoted by terms themselves. This is quite a new formal window through which to
look at data and program structures that makes them syntactically undistinguishable,
and it forces rethinking of many related familiar notions. The concepts of variable
and symbol which are central in programming as well as formal languages are to
be construed in a completely different yet more general way. A variable in a first-order
term term has two distinct purposes: it is a wild card and a tag. As a wild card, it

Effective resolution of type equations 305

specifies that any term may be substituted for it; and as a tag, it constrains all
positions in the term where it appears to be substituted for by the same term. We
contend that these two roles ought to be explicitly separated. In fact, we shall try
to explain that if symbols are partially ordered, the familiar notion of variable has
but the restrictive designation of a term which is a maximal element. Symbols, and
extended terms for that matter, may be specified as upper bound constraints within
other terms. We shall try and show how a natural extension of a partial ordering
on the symbols may be consistently defined on extended terms. Such classical
operations as variable substitution, term unification, etc. also take on a radically new
interpretation, of which the familiar well-known notions are but special cases.

4. A calculus of type subsumption

The notion of subtyping has recently been integrated as a feature in some
programming languages, although in a limited fashion. For example, in PASCAL it
is provided only for so-called simple types like enumeration or range types. For
more complex types, in general, subtyping is not implicitly inferred. For example,
in ADA, one must declare explicitly most subtyping relationships. This is true even
in those formalisms like KL-ONE [8] or OBJ [26] where subtyping is a central
feature. The only formalism which may be used for implicit subtyping is provided
by first-order terms in PROLOG as first-order term instantiation. However, even this
representation is limited as a model for partially ordered type structures. Neverthe-
less, it is of great inspiration for what is desired, which is a practical system of type
structures which must have at least as much expressive power as offered by, say,
classical record structures, as well as the capability of efficiently automating subtyp-
ing inference, and the construction of new structures from old ones.

A specific desideratum can be informally sketched as follows. A structured data
type must have:
• a head symbol which denotes a class of objects being restricted;
• attributes (or fields, or slots, etc.) possessed by this type, which are typed by

structured types themselves;
• coreference constraints between attributes, and compositions thereof, denoting the

fact that the same substructure is to be shared by different compositions of
attributes.

Then, a type structure tl is a subtype of a type structure t2 if and only if:
• the class denoted by the head of t~ is contained in the class denoted by the head

of re; and,
• all the attributes of t2 are present in t~ and have types which are subtypes of their

counterparts in t2; and,
• all the coreference constraints binding in t2 are also binding in tl.

For example, if the symbols 'student', 'person', 'austin', 'cityname' denote sets of
objects, and if student < person and austin < cityname denote set inclusion, then

306 H. A[t-Kaci

the type

s tuden t (id~ name(last ~ X : string);
domicile===> Y: address(c i ty~ austin);
f a t h e r ~ person(id ~ name(last ~ X) ;

domic i le~ Y))

should be a subtype of

pe rson(id~name;
domic i l e~ address(c i ty~ cityname);
f a t he r , pe r son) .

The letters X and Y in this example denote coreference constraints as will be
explained. Formalizing the above informal wish is what this section attempts to
achieve.

4.1. A syntax of structured types

Let Z be a partially ordered signature of type symbols with a top element T, and
a bottom element _L. Let ~ be a set of label symbols, and let 3" be a set of tag
symbols, both nonempty and countably infinite. We shall represent type symbols
and labels by strings of characters starting with a lower-case letter, and tags by
strings of characters starting with an upper-case letter.

A simple 'type-as-set' semantics for these objects is elaborated in [4] and summar-
ized in Appendix D. It will suffice to mention that type symbols in ,S denote sets
of objects, and label symbols in ~ denote the intension of functions. This semantics
takes the partial ordering on type symbols into set inclusion, and label concatenation
into function composition. Thus, the syntax of terms introduced next can be inter-
preted as describing commutative composition diagrams of attributes.

In a manner akin to tree-addressing as defined in [14, 27, 28], we define a term
domain on .~ to be the skeleton built from label symbols of such a commutative
diagram. This is nothing other than the graph of arrows that one draws to picture
functional maps. Formally, we have the following definition.

4.1. Definition. A term (or tree) domain A on ~ is a set of finite strings of labels
of LP such that (1) A is prefix-closed:

Vu E ~* , Vv ~ ~ * , if ttv E A, then u E A;

and (2) A is finitely branching:

if u E A, then {u.a E A l a E Le} is finite.

It follows from this definition that the empty string ~ must belong to all term
domains. Elements of a term domain are called (term) addresses. Addresses in a
domain which are not the prefix of any other address in the domain are called

Effective resolution of type equations 307

leaves. The empty string is called the root address. For example, if ~ =
{a, b, c, d, e,f,, g, h}, a term-domain on ~ may be

Aa = {e, b, b.c, b.d, b.e, a, a.g, h, h.a, h.a.f}.

A term domain need not be finite; for instance, the regular expression A2 =
a(ba)*+ (ab)*, where a, b s L¢, denotes a regular set which is closed under prefixes
and finitely branching; thus, it is a term domain and it is infinite.

Given a term domain d and an address w in A, we define the subdomain o f A at
address w to be the term domain A \ w = {w'[w.w'~ A}. In the last example, the
subdomain at address b of A1 is the set {e, c, d, e} and the subdomain of A2 at
address a.b is A2 itself.

4.2. Definition. A term domain A is a regular term domain if the set of all sub-
domains of A defined as Subdom(A)= { A \ w I w ~ A} is finite.

In the previous examples, the term domain A~ is a finite (regular) term domain,
and A2 is a regular infinite term domain since Sul~lom(A2)= {A2, b.A2}. In this
article, we shall consider only regular term domains.

The 'flesh' that goes on the skeleton defined by a term domain consists of signature
symbols labelling the nodes which are arrow extremities. Keeping the 'arrow graph"
picture in mind, this stands for information about the origin and destination sets
of the arrow representation of functions. As for notation, we proceed to introduce
a specific syntax of terms as record-like structures. Thus, a term has a head which
is a type symbol, and a body which is a (possibly empty) list of pairs associating
labels with terms in a unique fash ion- -a (partial) function. An example of such an
object is shown in Fig. 4.

person(id=Oname;
born ~ date(day :=~integer;

month~monthname;
year. integer);

fa ther .person)

Fig. 4. An example of a term structure.

The domain of a term is the set of addresses which explicitly appear in the
expression of the term. For example, the domain of the term in Fig. 4 is the set of
addresses

{e, id, born, born.day, born.month, born.year, father}.

The example in Fig. 4 shows an expression which one may intend to use as a
data structure for a person. The terms associated with the labels are to restrict the
types of possible values that may be used under each label. However, there is no
explicit constraint, in this particular structure, among the substructures appearing

308 H. Ai't-Kaci

person(id~name(last~X : string);
born =>date(day=Ointeger;

month~monthname;
y e a r , integer);

father=:~person(id ~ name(last ~ X :string)))

Fig. 5. An example of tagging in a term structure.

under distinct labels. For instance, a pe rson bear ing a last n a m e which is not the

same as his father 's would be a legal ins tance o f this structure. In order to capture

this sort of constraints, one can tag the addresses in a term structure, and enforce

identically tagged addresses to be ident ical ly instantiated. For example, if, in the

above example , one is to express that a person ' s father 's last name must be the

same as that person ' s last name, a bet ter representa t ion may be the term in Fig. 5.

4.3. Definition. A term is a tr iple (A, t#, ~-) where a is a term doma in on Le, ~ is a

symbol funct ion from ~ * to Z such that ~ (~ * - A) = {Y}, and ~" is a tag funct ion

from A to 3-. A term is finite (respectively regular) if its domain is finite (respectively

regular).

Such a defini t ion il lustrated for the term in Fig. 5 is captured in Table 1. N o t e

the syntactic sugar implicit ly used in Fig. 5. Namely , we shall omit writing explicit ly

tags for addresses which are not shar ing theirs. In the sequel, by ' term' will be m e a n t

' regular term' .

4.4. Definition. Given a t e rm t = (A, ~/,, ~') and an address w in A, the subterm o f t

at address w is the term t \ w = (A \w , ~b\w, ¢ \w) where 0 \ w : .Y* -> ,Y and ~-\w : A \ w -->

3" are def ined by

Vw' s w(w') =

vw' a \ w , =

Table 1
(a, ~, ¢)-Definition of the term in Fig. 5.

Addresses Symbols Tags
(A) (¢,) (~)

person Xo
id name X1
id.last string X
born date X2
born.day integer X 3
born.month monthname X4
born.year integer X 5
father person X6
father.id name X7
father.id.last string X

Effective resolution of type equations 309

From these definitions, it is clear that t \e is the same as t. In the example of Fig.

5, the subterm at address father.id is n a m e (l a s t e X : s t r i n g) .

Given a term t = (A, ~, ~-), a symbol f, (respectively, a tag X, a term t') is said to

occur in t if there is an address w in A such that ~ , (w) = f (respectively, ~-(w)= X,
t \ w = t'). The following proposition is immediate and follows by definition. 6

4.5. Proposition. Given a term t = (A, d/, ~-), the following statements are equivalent:
(1) t is a regular term;
(2) the number of subterms occurring in t is finite;
(3) the number of symbols occurring in t is finite;
(4) the number of tags occurring in t is finite.

4.6. Definition. In a term, any two addresses bearing the same tag are said to corefer.
Thus, the coreference relation r of a term t = (A, ~,, ~-) is a relation defined on A as
the kernel of the tag function ~'; i.e., K = Ker(~')= ~'o~'-1.

We immediately note that r is an equivalence relation since it is the kernel of a
function. A r-class is called a coreference class. For example, in the term in Fig. 5,

the addresses father.id.last and id.last corefer. It follows from Proposition 4.5 that
a coreference relation on a regular term domain has finite index.

A term t is referentially consistent if the same subterm occurs at all addresses in
a coreference class. That is, if c~ is a coreference class in A/K, then t \w is identical
at all addresses w in c¢. Thus, if a term is referentially consistent, then by definition,

for any wl, w2~ A, if ~-(w~) = 7"(w2) then, for all w such that Wl.We A, we must have
necessarily w2.w ~ A also, and ~'(wl .w) = ~'(w2.w). Therefore, i f a term is referentially
consistent, K is in fact more than a simple equivalence relation: it is a right-invariant
equivalence--a right-congruencemon A. That is, for any two addresses w~ and 14,2,

if w~rw2, then w~.wKw2.w for any w such that w l . w e A and w2.weA.

4.7. DefinRion. A well-formed term (henceforth, wft) is a term which is referentially

consistent.

We can use this property to justify another syntactic convention. Namely,

whenever a tag occurs without a subterm, what is meant is that the subterm elsewhere
referred to in the term by this tag is implicitly present. If there is ne such subterm,
the implicit subterm is understood to be T. For example, in the term

f o o (l l ~ X ; 1 2 ~ X :bar; I 3 0 Y; 14~ Y)

the subterm at address l~ is 'bar', and the subterm at address /4 is T. In fact, we
shall never write explicitly the symbol T in a term.

This syntactic convention makes it also possible to consider infinite terms such
as the one shown in Fig. 6, where a cyclic tagging occurs at addresses father and

6 Also established in [14] for regular first-order terms.

310 H. Ai't-Kaci

person(id~name(last ~ X: string);
born~date(day~integer;

month~monthname;
year . integer) ;

f a ther~ Y: person(id~ name(last~ X);
son~person(fa ther~ Y)))

Fig. 6. An example of cyclic tagging in a term structure.

father.son.father. Syntactically, cycles may also be present in more pathological
ways such as illustrated in Fig. 7, where one must follow a complex path of
cross-references.

A term is referentially acyclic if there is no cyclic tagging occurring in it. A cyclic
term is one which is not referentially acyclic. Thus, the terms in Figs. 6 and 7 are
not referentially acyclic.

A wit is then best pictured as a labelled directed graph as illustrated in Fig. 8
which is the graph representation of the wft

Xo: Xl :A(12 x2;
13 ~ f 3) ;

14 x2;
15::~ f4(16::# X~;

: A;
Is =~ X3 ;
g Xo)).

As will be seen later, the similarity of the graph in Fig. 8 with a finite-state diagram
is not coincidental.

The set of well-formed terms will be denoted by °ff'3~3", and the subset of °/f3:3"
of acyclic wft's by °W3~3.

We shall not give any semantic value to the tags aside from the coreference classes
they define. The following relation a on °ff'3~3" is to handle tag renaming. This
means that a is relating wft 's which are identical up to a renaming of the tags that
preserves coreference classes.

4.8. Definition. Two terms tl = (AI, 0~, ~'1) and t2 = (A2, 02, ~'2) are alphabetical
variants of one another (noted h a h) i fand only if (1) A~ = A2; (2) Ker(~'l) = Ker(¢2);

and (3) 01 = 02.

foe(l, ~x~: foo~(k~X2);
l:~ X2 : foo2(k2~X3);

I~X~: foe, (~ ~ X~+,);

k ~ X . :foo.(k.~X~))

Fig. 7. An example of complex cyclic tagging in a term structure.

Effective resolution of type equations 311

@
Fig. 8. Graph representation of a wft.

Interpreting these structures as commutative diagrams between sets, it follows
that the symbols T and ± denote, respectively, the whole universemthe least informa-
tive type--and the empty set-- the overdefined, or inconsistent, type. 7 Hence, a term

in which the symbol _k occurs is to be interpreted as inconsistent. To this end, we
can define a relation 0 on 3V3~3, called bottom smashing, where q 0 t2 if and only
if _k occurs in both q and t2, to be such that all equivalence classes except [±] are
singletons. Clearly, if _k occurs in a term, it also occurs in all terms in its a-class.
Hence, by the way they have been defined, the relations a and ~ are such that their
union -~ = a w ~ is an equivalence relation. Thus, we have the following definition.

4.9. Definition. A O-type is an element of the quotient set g' = °l¢'3~3-/~-. An acyclic
0-type is an element of the quotient set q% = ~tr3~t3/---.

4.2. The subsumption ordering

The partial ordering on symbols can be extended to terms in a fashion which is
reminiscent of the algebraic notion of homomorphic extension. We define the subsump-
tion relation on the set g' as follows.

4.10. Definition. Let tl

t2 subsumes tl, and we write t~ ~< t2, if and only if either, tl ~ ± or

A2 ~ A1,

Ker(~2) _~ Ker(~),

Vw 01(w) 02(w).

= (A~, 01, ~'x) and h = (A2, 02, ~'2) be two wft's. We say that

(1)

(2)

(3)

It is easy to verify that a subsumption relation on ~ is defined by [tl]~<[t2] if
and only i f q ~< t2 is well-defined (i.e., it does not depend on particular class

See Appendix D.

312 H. Ai't-Kaci

representatives) and it is an ordering relation, s The reader is invited to verify the
claim made in the example at the beginning of Section 4.

This notion of subsumption is related to the (in)famous IS-A ordering in semantic
networks [8, 9]. It expresses the fact that, given a e-type t, any ~-type t' defined
on at least the same domain, with at least the same coreference classes, and with
symbols at each address which are less than the symbols in t at the corresponding
addresses, is a subtype of t. Indeed, such a t' is more specified than t.

The 'homomorphic' extension of the ordering on ~ to the subsumption ordering
on gt can be exploited further. Indeed, if least upper bounds (lub) and greatest lower

bounds (glb) are defined for finite nonempty subsets of ,Y, then this property carries
over to gt.

4.11. Theorem. I f the signature ,~ is a lattice, then so is ~.

Proof. We must define lubs and glbs of ~O-types. The easier of these is the join and
is defined as q U 6 = (A, t#, z) such that

A = A1 n A2,

~" : A --> :3" is such that K e r (,) = K1 n K2,

Vw a, ¢,(w) = O,(w) v ,#2(w).

(4)

(5)

(6)

It is clear that the intersection of A1 and A2 is itself a term domain, and the largest
such that is contained in both. Now, recall that the intersection of the coreference
relations K1 and K2 is also the greatest equivalence relation which is contained in
both. That it is also right-invariant is obvious since, for all wl and WE in .~*,

W~(K~ C~ K2)W2 iff WIK~W2 and WIK2W2

which implies, for all w in ~ * ,

W 1.wK lw2.w and Wl.WK2W2.W,

which is equivalent to

w,.w(,q n K)w2.w.

Now, by (6), to all addresses in the symmetric difference of the two term domains
is assigned the symbol T; thus, the condition in Definition 4.3 requiring that
~b(-~*-A) = T is met.

As for ¢ at an address w in A, (6) guarantees that the symbol ¢(w) be the least
in ,~ which is greater than both symbols at this address in both terms. By Proposition
4.5, there are only finitely many such symbols, and since ,~ is a lattice, they admit
a lub.

Finally, (6) preserves referential consistency since each (K~ c~ K2)-class is assigned
a consistent symbol, provided that is the case for each K~-class and K2-class.
Therefore, conditions (4)-(6) do define a lub for two e-terms.

s This justifies that, in the sequel, we shall conventionally denote a ~-type by one of its class
representatives, understanding that what is meant is modulo tag renaming and bottom smashing.

Effective resolution o f type equations 313

Defining the meet operation needs a little more work. The union of two term

domains being a term domain, it is safe to say that the term domain of the greatest

lower bound of tl and t2 must at least contain the union A = A~ u A2. Also, by a

similar argument, the coreference relation must contain at least the smallest

equivalence relation on A containing both K1 and K2; namely, the relation

U (K o " - = K 2) ,
n ~ O

where K~ is the reflexive extension of K~ from Ai to A, for i = 1, 2.
Recall again that taking the transitive closure of the composition of the extended

relations is indeed the least equivalence on the union domain A whose restrictions

to A~ and A2 contain K~ and r2. Yet, this is not quite sufficient since it is not

guaranteed that this relation be right-invariant, as shown in the examples in Figs.

9 and 10.

Therefore, it is necessary to close X SO that it be a right-congruence. That is, A

and r must be completed by incrementally adding, to any r-class C in the part i t ion

of A, any string w~.w such that there exists some w2 in A such that w~ r w2 and

A~ = {~, a, b, c, d}
x2 = {{e}, {a, b}, {c, d}}

'~2 = {~, a, b, c, b.e, ~e}

r2 = {{e}, {a}, {b, c}, {b.e, c.e}}

A = A1 u A2 = {e, a, b, c, d~ b.e, c.e}

K1 ~ = {{e}, {a, b}, {c, d}, {b.e}, {c.e}}

K2 ~ = {{e}, {a}, {b, c}, {b.e, c.e}, {d}}

K = (K~OK~)* = {{e}, {a, b, c, d}, {b.e, c.e}}

~t,J = {{~}, {a, b, c, d}, {a.e, b.e, ~e, ~e}}
A [*] = {e, a, b, c, d, a.e, b.e, ~e, d.e}

Fig. 9. An example of acyclic right-invariant closure construction.

A 1 = a (b a) * + (a b) *

r l = {a(ba)*, (ab)*}

A2 = {e, a, c}
r2-- {{~}, {a, c}}
A = A ! u A 2 = a(ba)* + (ab)* + c

K~ = {a(ba)*, (ab)*, {c}}

~ = {{~}, {4 c}} u U {u}
u~(ab)++(ba) ÷

K = (K~OK2~) * ---- {a(ba)* + c, (ab)*}

K [*] = {(a + c)(ba)*, ((a + c)b)*}

a [*J = (a + c)(ba)* + ((a + c)b)*

Fig. 10. An example of cyclic right-invariant closure construction.

314 H. A[t-Kaci

W2.W E C. Formally, this is achieved by constructing the following sequence of
relations on ~ * : K t°]= K, and for n > 0,

,~ . l = ~ t . - , l L) {<u.w, v.w> ~ (.~*)21 u~ t ' - ~ v}.

It is immediate to verify that by its very construction, the limit
o o

K[*] = U K[n]
n=0

of this sequence is right-invariant, and the least such that contains g. Now, taking

At,J= L/(-~*/K c-J)

we obtain the right term domain.
Finally, the symbols for each class of this closure are computed as the meets in

~; of the sets of symbols associated to all the addresses in the class by each term's
0-functions. Again by Proposition 4.5, and because 2 is assumed to be a lattice,
this is well-defined. This clearly preserves referential consistency, and guarantees
the maximal consistent symbol for each class.

In summary, t~ I] t2 = (A, ~, ~') such that

A = (A l L) - 4 2) [*] , (7)
e

I-: A --~ 9- is such that Ker(1") = K [*], (8)

V[w]~ ~/~t , l , ¢,([w])= A {¢,,(u)I u E[w], i= 1,2}. (9)
It is thus established that conditions (7)-(9) define a glb, modulo smashing the term
to J_ anytime condition (9) would produce the symbol _L. Therefore, U is a jo in

operation and n is a meet operation with respect to the subsumption ordering defined
in Definition 4.10. []

Let us illustrate these lattice operations U and r] with an example. Figure 11
shows a signature which is a finite (non-modular) lattice. Given this signature, the
two types in Fig. 12 admit as meet and join the types in Fig. 13, respectively.

I- pers~~~~~monarch
.JJ 1

[

Fig. 11. A signature which is a lattice.

Effective resolution of type equations 315

child(knows~ X: person(knows ~queen;
hates ~ Y: monarch);

hates~child(knows~ Y;
likes~ wickedqueen);

l ikes~X)

adult(knows=:=~ adult(knows=~witch);
hates ~ person(knows~ X : monarch;

likes~X))

Fig. 12. Two wit's.

person(knows~person;
hates ~ person(knows ~ monarch;

likes~monarch))

teenager(knows ~ X: adult(knows~wickedqueen;
hates ~ Y: wickedqueen);

hates~child(knows~ Y;
likes~ Y);

l ikes~X)

Fig. 13. Lub and glb of the two types in Fig. 12.

The meet and join operation on . ~ are essentially extensions of the unification
[31, 57] and generalization [55] operations on regular first-order terms. Indeed,
these operations are special cases of our definitions when (i) Z is a fiat lattice, (ii)
a coreference class may contain more than one element iff all of its elements are
leaves and (iii) the symbols occurring at these leaves are restricted to be Y. An
efficient S-term unification algorithm is detailed in [2, 3].

An important remark is that the set Wo of acyclic ~,-types also has a lattice structure.

4.12. Theorem. I f 2 is a lattice, then so is go. However, qt o is not a sublattice of qt.

Proof. The proof is immediate and only sketched. The join operation qt0 is the
same as in qt, but the meet operation is modified so that if the glb in qt of two
acyclic terms contains a cycle, then their glb in qto is _L.

It is thus clear that qto is not a sublattice of qt since the meet in qt of two acyclic
wft's is not necessarily acyclic. This is similar to the so-called 'occur-check" in
unification of first-order terms. Consider, for example,

h=f(l X:f;

and so

hHt2=f (l~X: f (13~X) ; 12~X). []

316 14. Ai't-Kaci

4.3. A distributive lattice of types

Keeping in mind a ' type-as-set ' interpretation of the calculus of ~-types, 9 we must
yet wonder whether lattice-theoretic properties of meet and join reflect those of
intersection and union. Unfortunately, this is not the case with ~. Indeed, the lattice
of ~b-types is not so convenient as to be distributive, even if the signature ,~ is itself
distributive.

For example, consider the flat (distributive) lattice .~ = {T, a,f , &}. Clearly,

but

f H (f (l ~ a) U a) = f

(f[qf (l~a))U(f lqa) = f (l ~ a) .

This shows that ~/¢'~- is not distributive. 1°
This is not the only ailment of ~//-~rj- as a type system. Recall that in order to

obtain the benefit of a lattice structure as stated in Theorem 4.11, there is a rather
strong demand that the type signature Z be itself a lattice. For a signature that
would be any poset, this nice result is unfortunately lost. Although in practice
programs deal with finite sets of atomic types, it is quite unreasonable to require
that all meets and joins of those atomic types be explicitly defined. What should
be typically specified in a program is the minimal amount of type information which
is to be relevant to the program. Clearly, such a signature of type symbols should
be not necessarily more than a finite, incompletely specified poset of symbols.

It is hence necessary to go further than the construction of ~¢'~:~r in order to
obtain a satisfactory type system which would not make unreasonable demand for
atomic type information. Fortunately, it is possible not to impose so drastic demands
on ~, and yet construct a more powerful lattice than ~//'~:~-; i.e., a distributive lattice.

The idea is very simple, and is based on observing that the join operation in g'
is too 'greedy'. Indeed, if one wants to specify that an object is of type ' foo' or 'bar '
when no explicit type symbol in ~ is known as their lub, then this object is induced
to be of type T. Clearly, there is a loss of information in this process since it is not
correct to infer that the given object is of the least informative type,--'anything'--just
because ,~ does not happen to contain explicitly a symbol for the lub of ' foo' and
'bar'. All that can be correctly said is that the given object is of disjunctive type
fooUbar.

We next define such a more adequate type lattice. It m a y b e construed as a very
simplistic powerdomain construction to handle indeterminacy [51]; in our case,
variant records. All the formal details can be found in Appendix C.

Given a poser $, the set 2 ~s) of finite nonempty subsets of maximal elements of
S is called the restricted power of S. If S is a Noetherian poset, the set 2 ts] of all
such subsets of maximal elements is called the complete restricted power of S. Given

9 See Appendix D.
10 A similar result pertaining to subsumption o f first-order clauses was pointed out by Plotkin in [52].

Effective resolution of type equations 317

a Noetherian poset S, and some subset S' of S, the set [S'] is the set of maximal
elements of S'.

We shall call ~ the set 2 t~q, and Eo the set 2 t~'ol. Clearly, ~0 is a subset of E. We
shall write a singleton {t} in ~ simply as t.

As explained in Appendix C, subsumption among elements of E is defined as
T~ ~ T2 if and only if every ~-type in T1 is subsumed by some if-type in T2.

Let us define a notational variant of elements of £ which has the convenience of
being more compact syntactically. Consider the object shown in Fig. 14. The syntax
used is similar to the one which has expressed ~-types. However, sets of terms
rather than terms may occur at some addresses.

person(sex~{male, female};
f a the r~ Y: person(sex ~ male);
mother ~ Z: person(sex~ female);
pa ren t~ { Y, Z})

Fig. 14. Example of an e-term.

This notation may be viewed as a compact way of representing sets of ~b-types.
For example, the object in Fig. 14 represents a set of four ~b-types which can be
obtained by expansion, keeping one element at each address. Such terms are called
6-terms.

An e-term can be transformed into a set of t/,-types--its t~-expansion. The ~b-

expansion of an 6-term is the set of all possible ~-types which can be inductively
obtained by keeping only one ~b-type at each address. The reader familiar with
first-order logic could construe this process as being similar to transforming a logical
formula into its disjunctive normal form. A detailed 6-expansion algorithm is
described in [4].

We are now ready to construct a distributive lattice of 6-types. First, we relax the
demand that the signature ~S be a lattice. Assuming it is a Noetherian poset we can
embed it into a lower semi-lattice 2 t:~l preserving existing glb's. Then, we can define
the meet operation on ~ so that whenever the meet of two symbols in not a singleton,
the result is expanded using ~-expansion.

4.13. Theorem. I f the signature ,Y is a Noetherian poser, then so is the lattice ~o; but

the lattice ~ is not Noetherian.

Proof. We must show that there is no infinitely ascending chain in qSo. By definition
of the subsumption ordering, this means that there must not be infinitely descending
chains of @-term domains and coreference relations, as well as no infinitely ascending
chains of symbols in Z. The latter is assumed by hypothesis. As for the former two
conditions, it is clear that they are true since term domains for wft's in qt o are finite
sets of addresses.

318 14. Ai't-Kaci

However, this is no longer true if we consider the infinite regular domains of
wft's in 1/,. The following counterexample exhibits an infinitely ascending chain of
wft's in ~ .n

For any a in -Y and any f # _L in ~Y, define the sequence t, = {A,, 0,, 7-,) (n > 0)
as follows:

A.=a*, 0.(A.) = f

A./K. = a . /Ker(~ ' .)= {{~}, {a} , . . . , {a"-l}, a".a*}.

This clearly defines an infinite strictly ascending sequence of regular wft's since, for
all n > 0,

An+ leT.an" On(A)~n+l(An+l), Kn+l= Kn"

In our syntax, this corresponds to the infinite sequence:

t o = X : f (a ~ X) ,

tl = f (a ~ X : f (a ~ X)) ,

t2 = f (a ~ f (a ~ X : f (a ~ X))) ,

t , = f (a : O f (a = = > . . . f (a = ~ X : f (a ~ X)) . . .)) (n + 1 a's),

[]

We define two binary operations Fq and U on the set ~o. For any two sets 7"1 and
T2 elements of ~o:

T r-] T== [{t, ^ t=lt, T=}], (lo)

where ^ is the meet operation defined on q'0.
The following pair of theorems are corollaries to Theorem C.4 of Appendix C.

Indeed, for any poset 2~ containing T and J_, we have the following theorem.

4.14. Theorem. The poset ~o of finitary O-types is a distributive lattice with meet [7,
with join U, and admits {T} as greatest element and {_L} as least element.

It is not possible to define lattice operations (10) for ~ because qt is not Noetherian.
Indeed, the set of maximal elements of arbitrary poset elements in 2 cannot be
defined. However, if only finite sets of regular wft's are considered, then we have
our next theorem.

ax This counterexample is due to Dowling (private communication).

Effective resolution of type equations 319

4.15. Theorem. The poset 2 (~') of finite sets of incomparable regular wfi' s is a distribu-
tive lattice.

However, 2 (~') is not complete. It is also true that the subset 2 (%) of 2 (~') is a
distributive lattice, but it is not a sublattice of ~. In general, the glb of elements of
2 (%) is a lower bound of the glb of these elements taken in 2 (~').

The last result of this section is a corollary to Theorem C.7, and is important for
the next section.

4.16. Theorem. I f the signature ,Y is a Noetherian poser, then the lattice 9~o of all sets
of finitary wfl' s is a complete Brouwerian lattice.

Let us answer a question that might be hovering in the reader's mind. ~2 The fact
that the lattice Eo is a complete Brouwerian lattice will be needed for showing the
existence of solutions of systems of simuRaneous equations. Unfortunately, Theorem
4.16 does not hold for E, the lattice of all regular terms, since the lattice ~ is not
complete. Hence, the results described in the rest of this article are stated only for
finitary wft's.

5. Solving equational type specifications

Consider the equations in Fig. 15. Each equation is a pair made of a symbol and
an ~-term, and may for now intuitively be understood as a definition. We shall call
a set of such definitions a knowledge base. ~3

5.1. Definition. A knowledge base is a function from ? to ~o which is the identity
everywhere except for a finite subset of ,Y -{_l_, T}.

For reasons made practical later, we shall further define a particular form of
knowledge base which we shall call canonical. Namely, we are interested in those
knowledge bases which take symbols of ,Y either into a non-atomic O-term (i.e., an
element of g'o--Y), or into a non-singleton set of symbols of ,Y. More formally, we
have the following definition.

5.2. Definition. A knowledge base ~ is canonical or in standard form if

Vsl e ~, Vs2 ~ ~, ~ (s l) c ~(s2) ~ s~ = s2

and, for all s in .Y, either ~ (s) e q%-.Y, or ~ (s) e 2 [~-~s~].

~2 Namely, 'So wha t? . . . ' .
~3 Or type spedfication, or type schema Nevertheless, 'knowledge base' is a defiberate choice since

what is defined is in essence an abstract semantic network.

320 H. Ai't-Kaci

list = {nil, cons};
append = {(front~nil ;

b a c k ~ X : list;
w h o l e . X) ,

(front ~ cons(head ~ X;
t a i l ~ Y);

b a c k ~ Z : list;
w h o l e . c o n s (h e a d . X ;

t a i l ~ U);
p a t e h ~ a p p e n d (f r o n t ~ Y;

b a c k ~ Z ;
w h o l e ~ U))}

Fig. 15. A specification for appending two lists.

In words, in a canonical knowledge base no two distinct right-hand sides may
contain one another; and a right-hand side of an equation can either be a single
¢,-term or a set of signature symbols.

The knowledge base in Fig. 15 is not canonical. Indeed, neither X~(append) s gto
nor ~ (a p p e n d) ~ 2 t~l.

However, the reader will verify that the knowledge base shown as in Fig. 16 is
in standard form. Indeed, any knowledge base ~ can be put in standard form as
follows. For all f ~ ,~,

(1) if ~ r~(f) is not a singleton, then replace any ~b-type element t of ~ (f)
which is not a symbol in ~ by a new symbol s not already in ~ and augment the
knowledge base with ~ (s) = t;

(2) if X ~ (f) ~ .~, replace all occurrences of g in X ~ by f, and delete g from .,~;
(3) if ~ (f) ___ X~(g) , for some g s Z, remove X ~ (f) from ~ (g) , replace it

with a new symbol s not already in Z and augment the knowledge base with
X (s) =

list = {nil, cons};

append = {append0, append 1 };

append0 = {front~nil ;
b a c k ~ X : list;
w h o l e . X) ;

appendl = (f r o n t ~ c o n s (h e a d ~ X ;
t a i l s Y);

b a c k ~ Z : list;
whole=~eons(head ~ X;

t a i l ~ U);
p a t c h ~ a p p e n d (f r o n t ~ Y;

b a c k ~ Z ;
w h o l e ~ U))

Fig. 16. A canonical specification for appending two lists.

Effective resolution of type equations 321

Hence, without loss of generality, we shall only consider knowledge bases in
standard form. We shall now justify the need for restricting our attention only to
canonical knowledge bases.

So far, the partial ordering on Z has been assumed predefined. However, given
a knowledge base such as the one in Fig. 16, it is quite easy to quickly infer a
minimal consistent such ordering. For example, examining the knowledge base in
Fig. 16, it is evident that this example's signature must be a superset of the set

{list, cons, nil, append, append0, appendl}

and that the partial ordering on Z must be such that

nil < list, cons < list,

append0 < append, appendl < append.

We shall call such a minimal consistent strict ordering an implicit symbol ordering.
Now, the reason for introducing a standard form is that this ordering can be,
automatically extracted from the specification of a canonical knowledge base as
explained in the following definition.

5.3. Definition. Given a canonical knowledge base ~ its implicit symbol ordering
is the least strict ordering relation < on 2~, if one exists, such that

(1) if ~ (f) = g (l ~ h ; . . . ; ln~t~), t h e n f < g ;
(2) if ~r~(f) = {f~, . . . ,f,,), then f~ < f for all i = 1 , . . . , n.

Naturally, that such an ordering exists is subject to circularity checks. Thus, we
use the following definition.

5.4. Definition. A (canonical) knowledge base is well-defined if and only if it admits
an implicit symbol ordering.

The knowledge base in Fig. 16 is well-defined. It specifies four types. The next
section describes how to use this type information computationaUy. Intuitively, an
interpretation of an E-type in the context of this knowledge base is obtained by
'rewriting' defined symbols in the given type according to the specifications.

5.1. A KBL interpreter

Given a well-defined knowledge base ~/'~, we define an interpreter for KBL by
three rules of'computation' of a functional ~ ~ which maps ~o into ~0. Interpreting
E-types is done by

n

[[{ t l , . . . , t n } ~ = [_] [[t i ~ (11)

and for ~-types by

If(ll t,; . , . ; . . . ;

(12)

322 H. Aft-Kaci

In other words, Rules (11) and (12) 'evaluate' e-types as follows:
(1) a set of 0-types is evaluated by evaluating all its elements and keeping only

maximal elements;
(2) a ~b-type is evaluated by first evaluating its subterms, then by expanding its

root symbol; i.e., substituting the root symbol by its knowledge base value by taking
the meet of this value .and the 0-type whose root symbol has been erased (replaced
by T).

They define an operational semantics which reflects the 'type-as-set' semantics of
e-types and 0-types described in Appendix D, in the sense that they compute unions
and intersections of sets. The symbol substitution process is to be informally
interpreted as importing the information encapsulated in the symbol into the context
of another type.

Let us trace what this interpreter does, one step at a time, on an example. Consider
the knowledge base in Fig. 16, and the following 'input':

append(front ~ cons(head ~ 1;
tail =~ cons (head ~ 2;

tai l~nil)) ;
back~cons(head~3;

tail~nil)).

This is a 0-term with a root symbol defined by X~. Hence, applying Rule (12),
the interpreter expands 'append' into the set {append0, appendl}, to yield

{appendO(front ~ cons (head ~ 1;
tail~cons(head ~ 2;

tail==>nil));
back~cons(head~3;

tail==~nil)),
appendl (front==),cons(head~ 1;

tail~cons(head=~2;
tai l~nil)) ;

back=:> cons(head~ 3;
tail==~nil))}.

Using Rule (11), each of these two e-terms is further expanded according to the
definitions of their root symbols. Thus, the first one (append0) yields ± since the
glb of the subterms at address 'front' is ±. Hence, by the maximal restriction
operation, we are left with only

(front ~ cons(head~ 1;
t a i l~cons(head~2;

tail~nil));
back~cons(head~3;

tai l~nil) ;

Effective resolution of type equations 323

whole ~ cons (head ~ 1;
t a i l ~ U);

patch ~ append (front ~ cons (he ad ~ 2;
tai l~nil) ;

back ~ cons (head ~ 3;
tai l~nil) ;

who le~ U)).

This expansion process continues, again using Rule (12) to expand the subterm at
address 'patch '14

(front ~ cons(head ~ 1;
t a i l ~ cons(head~2,

tai l~nil)) ;
back~cons (head~3 ;

tai l~nil) ;
w h o l e ~ cons(head~ 1;

tail ~ cons (head ~ 2;
t a i l ~ U));

p a t c h ~ (front ~ cons(head ~ 2;
ta i l~ni l) ;

back~cons (head~3;
ta i l~ni l) ;

patch ~ append(front ~ nil;
b a c k ~ cons (head ~ 3;

ta i l~ni l) ;
who le~ U);

whole ~ cons (head ~ 2,
t a i l ~ U))).

Finally, the following term is obtained which cannot be further expanded. As
one could intuitively expect, the interpretation of 'append' for the given input has
thus produced a type whose 'whole' attribute is the result of a list concatenation of
its 'front' to its 'back' list attributes. The attribute 'patch' represents the history of
the computation.

(front ~ cons(head~ 1;
t a i l ~ cons(head~2;

ta i l~ni l)) ;
back~cons (head~3 ;

tai l~nil) ;
who le~cons (head~ 1;

t a i l~cons (head~2;

14 We shall omit mentioning the details of cleaning-up .L by maximal restriction.

324 H. A~t-Kaci

t a i l ~ cons(head ~ 3;
ta i l~ni l))) ;

p a t c h ~ (front ~ cons(head~2;
ta i l~ni l) ;

b a c k ~ c o n s (h e a d ~ 3 ;
ta i l~n i l) ;

p a t c h ~ (f ront~ni l ;
back:=> cons (h e a d ~ 3;

ta i l~ni l) ;
w h o l e ~ c o n s (h e a d ~ 3 ;

ta i l~ni l)) ;
whole ~ cons(head ~ 2;

tail :=> cons (head ~ 3;
ta i l~ni l)))) .

At this stage, it is beneficial to put things into perspective. Following is a discussion
on the nature of the model of computation of KBL and how it relates to term
rewriting and nondeterministic recursive program schemes.

5.2. Graph rewriting

Computation in KBL amounts essentially to some sort of directed acyclic graph
(DAG) rewriting. In fact, it bears much resemblance with computation with non-
deterministic program schemes [15, 49], and macro-languages and tree grammars
[30]. This section presents a formal characterization of computation in KBL along
the lines of the algebraic semantics of tree grammars [6, 30]. Symbol rewriting
presented in this section is very close to the notion of second-order substitution
defined in [14] and macro-expansion defined in [30].

We show that a KBL program can be seen as a system of equations. Thanks to
the lattice properties of finite wft's, we establish that such systems of equations
admit a least fixed-point solution. The particular order of computation of KBL
informally presented in the previous section is formally defined. We call it fan-out
computation order, which rewrites symbols closer to the root first. This order of
computation is also shown to be maximal, in the sense that it yields 'greater' ~-types
than any other order of computation. The complete correctness of fan-out rewriting
of KBL with respect to its least fixed-point semantics is also established. That is,
we show that the fan-out normal form of a term is equal to the least fixed-point
solution.

5.2.1. Wft substitution
We introduce and give some properties of the concept ofwft substitution. Roughly,

given a wft t such that a symbol sf occurs at address u in t, one can substitute some
other wft t' for f at address u in t by 'pasting-in' t' in t at that address.

Given a wft t = (A, ~,, ~r) and some string u in ~* , we define the wft u.t to be the
least wft which contains t at address u. This can be better visualized as the wft

Effective resolution of type equations 325

obtained by attaching the wft t at the end of the string u. That is, u.t = (u.A, u.¢, u.7),
where
• u.a = { w ~ * [w = ~ v , v~a};

U . $ (w) = ~ O (V) if W=U.V,
[T otherwise;

• u . , : u.A -> J is such that u.~(v) = u . , (w) iff v = u.v', w = u.w' and ~'(v') = r(w').
Let ui (i = 1 , . . . , n) be. mutually non-coreferring addresses in A and let f~ (i =

1 , . . . , n) be symbols in ,~. Then, the wft t[ul : f ~ , . . . , u~ :f~] is the wft (A, ~b, ,),
where ~b coincides with ~b everywhere except for the coreference classes of the ui's,
where ~b([ul])=f~ for i = 1 , . . . , n. It is clear that the term thus obtained is still
well-formed.

5.5. Definition. Let t = (A, ¢, ~') be a wft and u some address in A, and let t' be
some other wft. The term t [t ' /u] is defined as

t[t ' / u] = t[u : T]f lu. t ' .

This operation must not be confused with the classical tree grafting operation
which replaces a subtree with another tree. The operation defined above super-imposes
a term on a subterm with the exception of the root symbol of that subtree which
becomes equal to the root of the replacing tree. In particular, note that _1_ may result
out of such a substitution.

As an example of wft substitution, if t is the wft

(f r o n t ~ c o n s (h e a d ~ X 1 : 1;
t a i l ~ X 2 : cons(head~2;

tail:=~nil));

b a c k ~ X 3 : cons(head~3;
t a i l~n i l) ;

whole =:~ cons(head ~ X 1;
t a i l ~ X 4) ;

patch =:~ append(f ron t~ X2;
b a c k ~ X 3 ;
whole=~X4))

and t' is the wft

(front ~ cons (head ~ X;
t a i l ~ Y);

back=~Z;
w h o l e . c o n s (h e a d . X ;

t a i l ~ U);
p a t c h ~ a p p e n d (f r o n t ~ Y;

b a c k ~ Z ;
w h o l e ~ U)),

326 H. Aft-Kaci

then tit '~patch] is the wft

(f ron t~cons (head~X1 : 1;
t a i l ~ X 2 : c o n s (h e a d . X 5 : 2;

tail==>X6: nil));
b a c k ~ X 3 : cons(head~3;

ta i l~ni l) ;
whole=Ocons(head~X1;

t a i l ~ X 7 : cons (head .X5 ;
t a i l~X4)) ;

pa t ch~ (f ron t~X2 ;
b a c k ~ X 3 ;
patch ~ append(front ~ X6;

b a c k ~ X 3 ;
w h o l e . X 4) ;

w h o l e . X 7)) .

Next, we give a series of'surgical' lemmas about this substitution operation which
will be needed in proving key properties of KBL's computation rule. In all the
proofs of these lemmas, we shall omit considering the trivial cases where ± may
result from substitutions since none of the stated lemmas will be affected by these
situations.

The first lemma states the intuitively clear fact that which address is picked out
of a coreference class in a substitution does not affect the result. This situation is
made clearer when depicted as in Fig. 17.

%%

Fig. 17. Substitution at coreferring addresses.

5.6. Lemma. Let t = (A, ~,, ~') and t' be wft's, and let ul and u2 be two coreferring

addresses in A. Then,

(t[t~'/Ul])[it/U2] = t[it/Ul] = t[t'/ U2] = (t[at/U2])[t;'/Ul].

Effective resolution of type equations 327

ProoL Since u~ and us corefer in t, we can write

t[u~ :T] = t[u2: T] (13)

and thus, clearly,

t[u~ :T] n ul.t'= t[u2: T] ~ us.t'.

That is, t[t'/u~] = tit'~u2]. Since ul and us still corder in this wft, the same steps

as above yield

(t[t ' l u,])[t 'l u d = (t[t ' l ud)[t ' / u,].

Now, by (13),

(t[t ' /u ,])[us: T] = (t[t ' /u ,]) [u , : T]

and therefore, by coreference of u~ and u2,

(t[t'/ ud)[us : y]N us.t' = (t[t'/ ud) [ul : T]• Ul.t';

that is,

(t[t ' / ud)[t'/ u d = (t[t ' / ud)[t'/ ud = t[t ' / u,]. []

5.7. Definition. An address u covers an address v in a wft if there exists an address

u' in [u] such that v = u ' .w for some w # e in ~* . That is, in other words, u covers

v in t if u ~ Iv] and v occurs in t \u .

Next, it is important to analyse the extent to which a sequence of substitution
operations is affected by the particular order in which they are performed.

Specifically, order of two substitutions will not matter if the addresses do not cover
each other; however, order of substitutions will matter if one of the two addresses

covers the other. We first need a small technical lemma.

5.8. I.emma. If u and v are addresses in a wft t which do not cover each other, then,

for any wft t',

(t[u :T][I u.t')[v :T] : t[u :T, v : T]fl tit'.

Proof. Since the term t is acyclic and addresses u and v do not cover each other,

they do not corefer in t. Moreover, it is clear that v ~ u.A',. Hence, in the least
coreference merging, K,, and K, 2 addresses u and v still do not corefer (or a cycle

would occur and the meet would be _l_). Therefore, changing the symbol at address
v in t to T before or after taking the meet of t[u: T] and u. t' yields the same result. []

The next lemma gives a sufficient condition for commutativity of wft substitution.

5.9. Lemma. Let t = (A, ~, I'), t l , and ts be wft's, and let u l , us be two addresses in
A which do not cover each other. Then,

(t [t , / u,])[t d ud = (t[t J ud)[t , / u d .

328 H. Ait-Kaci

Proof. By definition,

(t[t~/y~])[t2/u2] = (t[u~ :T] n ul .t~)[u2 :T] fl u2.t2

which, by Lemma 5.8, is equal to

(t[ul :T, u2 : T] I1 ul .tl) [1 u2.t2.

But clearly,

t [u l : T , u2:T]= t[u2:T, ul:T].

Hence, by associativity and commutativity of n, and using Lemma 5.8 again in the
reverse direction, this must be equal to (t [t2 /u2])[h /u l] . []

The second lemma complements the previous one and shows that the order of
substitution matters for covering addresses. However, the wft resulting from perform-
ing first the 'outermost' substitution subsumes the wft resulting from performing
the 'innermost' substitution first.

5.10. Lemma. I f two addresses u~ and u2 in a wft t are such that u 1 covers u2, then

(t[tel u2])[t,I u,] <<. (t[t,I ud)[t2l u2]

f o r any wft t~ and t 2 .

Proof. Because of associativity and commutativity of term domain union and
coreference closure, it is clear that the order of performing the substitutions will
not affect the resulting domains and coreferences. Therefore, the only things that
may differ in the results are the symbols at addresses ul and u2. The picture in Fig.
18 may help illustrate the argument.

For address u~, performing the substitution at u~ first leaves there the symbol
0,1(e). Therefore, performing next the substitution at u2 will not affect this symbol
since u~ covers u2 and the acyclic condition prevents the address u~ in t from being
affected by some lower coreference. Following the Same argument, the reverse order
of substitutions yields first ~,,(ul) at address u~, then 0z,(e). Hence, the eventual
symbol at ul is unaffected by the order of performing the substitutions.

However, this is not the case for u2. Indeed, substituting at u~ first, then at u2
eventually yields the symbol Ot~(e) at u2. On the other hand, if substituting at u2
first yields a symbol f, this symbol may be further coerced down when substituting
at u~. []

The objective of these lemmas is to help show that the particular order of
performing substitution performed by the KBL interpreter yields an e-type that
subsumes all C-types obtained by any other order of computation. Next, the f an -ou t

computation Theorem 5.13 will be proved to that effect, using the above technical
lemmas.

Effective resolution of type equations 329

t.

Fig. 18. Substitutions at covering addresses.

The following not ion will be useful in expressing an ordering on the addresses
of a wft. The radius of an address is a measure of how 'close to the root ' an address
is; that is, the shortest (in length) in its coreference class. Given a string u in ~Y*,

lu[denotes its length; i.e., the number of labels which constitute u.

5.11. Definition. Let t = (A, ~b, ~-) be a wft; then, the radius of an address u in A is

defined as p(u)= min~t.~l([vl). That such a minimum number exists for all classes

is obvious.

Recall that Lemma 5.6 states that a substitution can be performed at any address
in a coreference class with the same result. For this reason, it will be implicit in all
substitutions henceforth considered that the address at which the substitution is

performed is of minimal length in its class.

5.12. Definition. A sequence of addresses ui, i = 1 , . . . , n of a wft t is in fan-out
order if and only if i < j implies p(ui) <~ p(uj).

For example, in the wft

17 x :A;

(14)

the sequence e, 15.16, 14, 15.17, i1.13 is in fan-out order. However, the sequence ~,

15./6,/4, 11 33, 15 is not.

330 H. A~t-Kaci

We shall lighten our notation by writing t[h / u,][t2/ u2] rather than (t [h /u~])

[t /ud.

5.13. Theorem. Let t be a wft, and U = {u~, . . . , un} a set o f mutually non-coreferring

addresses o f t such that the sequence {u~}['=~ is in fan -ou t order. Let ~r be a permutation

o f the set { 1 , . . . , n} such that {u,,(0}~'__ 1 is also in fan-ou t order. Then, f o r any set o f

wft ' s { tl , . . . , t~},

t[t,/ u,] . . . [t . / u .] = t[t~(1)/ u~.o)] . . . [t~(,)/ U~r(,,)]. (15)

Moreover, i f the permutat ion 7r destroys fan-ou t order, then

t [t l / Ul] . . . [t n / Un] ~ t[t ,r(1)/ U,ro)] . . . [t~(n) / U,~(~)]. (16)

Proof. To prove (15), we observe that since the sequences {ui} and {u,~(o} are both
fan-out permutations of U, each must be partitioned into a sequence of m subsequen-
ces Uj and U~(i), respectively, where 1 <~ m ~< n and j = 1 , . . . , m, where ~ is a
permutation of tile set { 1 , . . . , m}, such that
• all addresses in each subsequence have equal radius; and,
• for every j = 1 , . . . , m, subsequences Uj and U,(j) have same size.

Now, by the acyclicity condition and the fact that the u~'s are mutually non-
coreferring, all addresses in a subsequence must be mutually non-covering. By
Lemma 5.9, this means that the difference of order of substitutions between a pair
of subsequences Uj and U~(j), for any fixed j, does not affect the result. Whence
(15) follows.

Now, if ~r perturbs the fan-out order, pairs of addresses u,~(o and u,~(j) (1 ~< i < j
n) in the sequence may be such that u,~(o covers u,,(i). By Lemma 5.10, each of
these pairs will contribute to 'decrease' the ultimate wft. Hence, fan-out order of
substitution is one which yields the maximal wft. And this entails (16). []

Symbol substitution is extended to e-types as follows: for any t in ~o, any T in
~o, and any u in At,

t [T/u]= [_J t i t ' / u] .
t '~ T

5.2.2. Symbol-rewriting systems

5.14. Definition. A symbol rewriting system (SRS) on ,~ is a system S of n equations
S:{si = Ei}i~=l, where s i e ~ and E~e~o, for i = 1 , . . . , n.

Given such a system S, the subset E = { s ~ , . . . , sn} of ,~ is called the set of
S-expandable symbols. Its complement N = ,~ - E is called the set of non-S-expand-

able symbols. The same notion of canonical SRS is obviously definable as that of
a knowledge base.

An example of an SRS is given in Fig. 16. In there, we have

E = {list, append, append0, appendl}, N = {nil, cons}.

Effective resolution of type equations 331

Let S:{s~ = E~}7=~ be an SRS. It defines a one-step rewriting relation --> on ~0 as
follows.

5 .15 . D e f i n R i o n . 7"1--> T2 if and only if there exist a wft t e T~, some address u in
At, and some index i e { 1 , . . . , n} for which ~,(u) = s~, such that

T2=(T~-{ t }) l l t[Ei/u].

In words, this expresses the fact that the e-type T2 is obtained from the e-type
T~ by picking out some element of 7"1, substituting for one of its occurrences of
some expandable symbol the right-hand side of this symbol in S, and adjoin the
result to the set, keeping only maximal elements. This process is illustrated by the
first step of the trace of KBL shown in Section 5.1.

We shall denote by ~k (k~>0) the relation --> composed with itself k times, and
by ->* the reflexive and transitive closure of ->; that is, the relation Uk°°__0 _>k.

The notation for the sets 1/, of ~b-types and ~ of E-types has hitherto been implicitly
understood to depend on the signature of symbols Z. Since it will now become
necessary to make this dependency more explicit, we shall use the notation gt[,y]
and ~[,Y].

5.16. Definition. Let S be an SRS, and T be an e-type. The S-normal form of T is
defined as

./¢(T) = L..] { T' e ~o[N] [T -~ T'}.

That is, the lub of all terms containing no more expandable symbols which can
be rewritten from T. Since ~o is a complete lattice, this is well-defined.

Notice that a normal form is defined as a join of all possible rewritings of an
e-type. Thus, by Theorem 5.13, we can and will, without loss, restrict this definition
to sequences of rewritings in fan-out order only.

To lighten notation, we shall use vector notation to denote elements of ~ the
set of n-tuples of e-types; e.g., T = (T 1 , . . . , Tn), where T~ e ~o (i = 1 , . . . , n). Hence,
a symbol rewriting system S of n equations is denoted by a single vector equation
s = E. Given such an SRS, we shall use either indices in {1 , . . . , n} or the symbols
si to index the components of a vector T in ~ ; i.e., T~, = T~. There should be no
confusion since the si's will be assumed distinct. Vector rewriting is the appropriate
obvious extension to vectors of e-types of the -* relation, and so is the definition
of vector normal form .~'(T).

Given an SRS S : s = E and a wft t, X(t, s) denotes the set of (minimum radius)
addresses in t whose symbols are S-expandable. That is,

X(t, s) = {u ~ At [d/t(u) = si, for some i = 1,. . .- , n}. (17)

All indexing of X(t , s) = { u l , . . . , us} will henceforth be implicitly assumed to be

332 H. Ai't-Kaci

fan-out indexings; that is, such that the sequence { u l , . . . , Urn} is in fan-out order.
For example, taking the wit t of (14) and s = (f2, f4, fs) we have X(t, s) = { ll, 15,/5./7}.

Our objective here is to define the operation of applying a fan-out sequence of
substitutions of e-types to a wft t at all expandable addresses of t. This operation
is denoted t[T/s] and defined as:

t[T / s] = t[T~,g,,,)/ Ul] . . . [T,g. ,s)/ u=], (18)

where {ul, • . . , Us} = X(t, s). By Theorem 5.13, it is evident that this is a well-defined
operation. It will be important to keep in mind that (18) is essentially a finite meet
of wit's. We shall condense notation of (18) to

t[T / s] = t[T, ,o,) / u]. ,~xo.,) .

Let us illustrate this operation on a small example. We are interested in the
expression of tiT/s], taking s = (s~, s2) and T = (/'1, T2) with

t = sl(ll~s2; 13~Sl),

T l = { f (l l ~ X ; 12~X) ,g} , T2=sl(12~X; 13~X).

The set of expandable addresses for s in t thus is X(t, s) = {e, 11, 13} corresponding
to the sequence of symbols (in fan-out order) Sl, s2, s~. Hence, the sequence of
substitutions starts with s~ at e:

{f(l~==>X:s2; 12~X; 13~s,),

g(l,==>s2; /3~Sl)},

then continues with s2 at It:

{f(ll=~ X : s~(12=~ Y; /3=> Y); 12==> X; 13~ s1),

g(I t~s~(12~X; 13~X); /3==>s0},

and finally ends with sl at /3:

{f(ll:::> X : sl(12=:> Y; 13=~ Y);

12~X;

la==>f(ll=~ Y:IG 12==~ Y)),

g(I t ~ st(12~ X; 13:=~X);

13~s,(12~ Y; 13~ Y)),

f (ll=~ X : s,(12=*, Y; 13=:~ Y);

12~X;

Effective resolution o f type equations 3 3 3

g(I ,~s , (12~X; 13~X);

13 g)}

which is the value of t[T/s].
This operation is extended to £~, i.e., to vectors of e-types, as follows: T[T'/s]

is the vector of £~ whose ith component is defined as

(TIT'/s]),= [.] t[T'/s]. (19)
te T i

5.17. Definition. An element T of £~ is a solution of the equation s = E if and only
if E[T/s]= T.

We now proceed to show that an SRS viewed as a system of equations in E~
always has a solution which corresponds to the least fixed-point of a vector function
from £~ to itself. Such a function ~ is defined for an SRS s = E as

~(T) = E[T~ s]. (20)

5.18. Proposition. The function ~: from £~ to itself defined by (20) is continuous.

Proof. From (19) and the definition of wft substitution, it is evident that any
component of 3~(T) is a join of finite meets. By isotonicity of lattice operations, it
is thus clear that 3~ is monotone.

To prove that it is also continuous, we must show that 3~ preserves lub's of infinite
chains. Although notation makes it cumbersome to express, the argument is straight-
forward and follows by recalling the property of complete Brouwerian lattices stated
as Theorem B.2 in Appendix B. Indeed, by definition,

,

eeEi ~e(u) ueX(e,s)

where ~i is the ith component function of ~. Thus, by definition of the product
lattice operations in terms of the operations on component lattices,

°

Now, by Theorem B.2 we know that in £o joins are completely distributive on
meets. Hence,

Therefore,

k = O i

t oO :r,, = U
k=O

[]

334 H. Ai't-Kaci

As a result, Tarski's Least Fixed-Point Theorem [63] guarantees that ~: has a
least fixed point given by

of)

Y~:= ~*(.I.)= [_] ~=k(.I.);
k = 0

that is, since E[Y~:/s] = Y~:, we showed that Y~: is the least solution of the equation
s = E .

Let us take again a small example to illustrate. Consider the single (non-canonical)
equation:

tree = {leaf, node(lef t . t ree; r ight . t ree)},

where leaf<tree and node<tree. We thus have, ~=tre~(1)={leaf}, then ~ c (±) is
given by

{leaf, node(lef t . leaf ; right==~leaf)}

and so ~t3rc~(1) is

{leaf,
node(lef t . leaf ; r igh t . l ea f) ,
node(lef t . leaf ;

right ~ node(left ~ 1 ear;
r igh t . leaf)) ,

node (left ~ node (left ~ leaf;
r igh t . l ea f) ;

right=>leaf),
node (left ~ node (left ~ leaf;

r igh t . l ea f) ;
f i gh t~ node(left ==~leaf;

r ight . leaf))}

and so on.
The reader can now see that the successive powers of the 'tree' component function

~= generate all possible binary trees. Indeed, the meaning of the type 'tree' is precisely
~tr~(1), the infinite set (E-type) of all such terms. Hence, effectively solving type
equations gives a constructive meaning to reeursively defined types.

The reader may wonder at this point how the example given in Section 5.1
(appending two lists) is related to computing a vector fixed point. Naturally, the
explanation is that, given a knowledge base Yf~ and an c-type input E, we can add
a new equation of the form ?= E, where ? is a special query symbol not already in
Z. Then, the answer to the query is the component (Y~:)? of the solution of the
augmented system.

5.2.3. Correctness

In order to establish that the fixed-point solution of an SRS does correspond to
the value computed by KBL, it is necessary to establish the correctness of the KBL

Effective resolution of type equations 335

interpreter. Namely, one must show that the normal form obtained by infinite
rewritings is equal to the least solution of the system of equations.

We first need two technical lemmas; namely, Lemmas 5.19 and 5.20. These lemmas
make intuitive sense and are extrapolations of similar facts for tree-grammars.
Although we have developed proof sketches which reduce these lemmas further to
be consequences of more elementary ones, we have not yet satisfied ourselves with
the correctness of these proofs--which are rather complicated, and ought to be
simplerJ 5 Before stating these two lemmas, let us define some useful functions.

For any T in ~ we define

o o

@(T) = TII ,~(T) and ca*(T) = 1__1 cak(T).
k=O

Then, for any 7"1, T2, and T3 in ~ , we have the following two lemmas.

5.19. Lemma. I f Tl ~ * T2, then T2[T31s]=-- T,[T3)I s].

5.20. Lemma. I f T2G T t [X (s) / s] , then T1 ~* 7"2.

With these two lemmas we then necessarily have the following theorem.

5.21. Theorem. The least foced-point solution to an SRS S is identical to the S-normal

form of the signature symbols; that is,

Proof. We first establish .h"(s)_m_Y~:. Let T in ~) [N] such that s -->* T. Using Lemma
5.19 with 7"1 =s, T2 = T, and T3 = .I. we have

T[a./s]=__ s[(21)

But, since T is in ~ [N] , it has no expandable symbols. Hence, T[.I./s] = T. Now,
by monotonicity of ~ we know that ~k(.I.) _ ~k+t(j.). This readily entails (g*(J.) =
aJ~*(.I.). With these remarks, together with the fact that s [V / s] = V for any V, (21)
becomes

T _ ~* (.!.) = Y~.

Therefore, Jt"(s) ~ Y~.
To prove the inverse inequality, it suffices to show that .h"(s) is a fixed point of

~. To that end, we first show that ~:(.#'(s))___ Jl/'(s). Taking T2 = ~(Jf'(s)) in Lemma
5.20, it comes that E ~* ~:(X(s)) and hence, that s ->* ~:(.,f'(s)). Hence, ~(.#'(s))__m
X(s).

ts See [30, pages 28-29, Lemmas 2.38 and 2.39]. At the time of this writing, Irene Guessarian has
communicated us outlines of proofs for them that we cannot fully appreciate at this point for lack of
details---and time [29].

336 H. Ai't-Kaci

For the other direction, we use Lemma 5.19 with 7"1 = E, and T2 = T3 = X(s). It
thus comes

X(s)[X(s)/s]=_E[

that is, since by definition a normal form does not have expandable symbols,

.h~(s)_m E[f~*(X(s))/s]. (22)

Now, since we first established that ~:(.~(s)) E.h"(s), it is clear that (g(.h"(s)) E.,Ir(s).
And therefore, that rg*(.h"(s))E.h"(s). Combined with (22), this implies that X(s)___

[]

6. Extension of research

6.1. Negative information

There are two possible ways of integrating negative information in wft's. The first
one captures exclusion rather than equality among subterms of a wft. The second
considers relative complementation among wft's.

6.1.1. Capturing inequalities
The tags in a wit essentially define a set of equalities among subterms of the wft.

Thus, computing the meet of two wft's computes a right-congruence closure to
propagate these equalities by merging coreference classes. Instead of tags, we could
(less concisely) express coreferences in a tag-less wft by a finite set (conjunction)
of equations of the form ul = vl, i = 1 , . . . , n, where the u~'s and the v~'s are addresses
in the wft. One could then ask whether it is possible to add inequations in such a
conjunction of address equations, in order, for example, to capture mutual exclusion
constraints among subterms of a wft.

Clearly, the answer is 'yes'. Two very interesting articles by Oppen [50], and
Nelson and Oppen [48] discuss fast decision procedures based on congruence
closure on graphs to prove the unsatisfiability of a finite quantifier-free conjunction
of equations and inequations among first-order terms. The method first computes
the congruence classes corresponding to the equations only. Then, it simply checks
whether any pair of terms supposed not to be equal as specified by the inequations
are not put in the same congruence class. If at least one such pair is found, then
the given conjunction is unsatisfiable. The method is inspired by another paper by
Downey, Sethi and Tarjan [19] which applies the UNION/FIND technique to prob-
lems involving congruence closure.

The same procedure can be adapted in the case of wft's. Hence, mutual exclusion
among subterms of a wft can be accommodated. In fact, the only tricky part would
be to think up a syntax to capture mutual exclusion among addresses in a nice and
compact way as do tags for equality among addresses.

Effective resolution of type equations 337

6.1.2. Complemented types

The second possibility that we outline deals with capturing some negative informa-
tion. It turns out that (relative) type complementation is feasible. More precisely,
we can allow both positive and negative types to appear under labels of e-terms in
the form of pairs tlkt2. Intuitively, this specifies anything which is subsumed by tl
but not by t2. For example, a relation specifying that John owns a p e t which is not
a cat might be

owns = (o w n e r ~ j o h n ; p e t ~ a n i m a l \ c a t) .

A type interpretation ~ is readily extended as follows:

~[[t, \ t21] = ~ till - ~[[tz~.

Considering the set ~ x ~, what we need to express is that h\t2 has no meaning
if tl---h. Thus, we may define a smash function $ from ~ x ~ to itself:

2. i f tl----- t2,
~(tlkt2)= t lk(tl[7 t2) otherwise.

That is ~ is a retract of ~ x ~.
Next, we can define the following binary operation ^ on ~(~ x ~):

t l \ t2 ^ t3\ t4 = ~,((h[-1 t2)k(tEll t4)). (23)

It is straightforward to check that the following proposition holds.

6.1. Proposition. The operation defined in (23) is associative, commutative, and idem-
potent.

Hence, we find the following proposition.

6.2. Proposition. The operation ^ defined in (23) defines a lower semi-lattice structure
on ~ x ~ for the ordering defined by

t, \ t2 < . t3 \ t4 iff (t , \ t2) ^ (t3 \ t4) = t~ k t2 .

We can then proceed to the construction of Theorem C.4, and then justify the
definition of the [-] and L_J operations on the set of sets of pairs of a-terms in exactly
the same fashion. The lattice thus constructed is then distributive, and complete
and Brouwerian if limited to finite wft's on a Noetherian signature.

The point made here is that one can use the exact semantic scheme detailed in
Section 5.1 to interpret the language of complemented types outlined above.

6.2. Polymorphic types

We can show that KBL could easily be extended to provide for the possibility of
defining parameterized or polymorphic types [45].

338 H. Ai't.Kaci

Let us give an example. If we want to specify a type representing a list of integers,
the following will work:

integer-list = {nil, cons(head , in teger ; tail~integer-list)}.

However, if the intent is to define, in a generic way, a homogeneous list type for
any base type and not only for integer, KBL---as defined--cannot express this.

Again, looking at what is needed provides a straightforward solution. Indeed, the
original terms in °W~;~- are built on a signature which is a poset of symbols. This
is all which has been needed to construct the lattice of e-types. Therefore any poset
shall do as well. A poset which does better is the set of first-order algebraic terms
on a given partially ordered signature of symbols ? and a set of type variables °F
(pre-)ordered by first-order instantiation as usual. With this poset rather than .,?,
KBL gains universal type polymorphism.

If type variables are denoted by small Greek letters, the definition of a (universal)
polymorphic homogeneous list type may thus be:

list[a] = {nil, c o n s (h e a d , a , ta i l~l is t [a])} .

Other potential such extensions may be to second-order (respectively to-order)
terms [14] (respectively [31]) ordered by second-order (respectively to-order) term
instantiation.

It is not difficult to extend the syntax to accommodate these features.

6.3. Further research

In addition to presenting some definite results, the work described in this article
opens a fecund vein for further research. One could think of many ideas to explore
along the lines of the approach started here, ranging from the very theoretical to
the very practical. We propose some specific questions that could lead to potential
improvements on what has been discussed here.

6.3.1. Psi-expansion considered unnecessary
Although the lattice construction of e-types from O-types leads to a semantically

satisfactory type system, it makes an implementation of a type system rather
inefficient because of the cost of O-expansion.

While playing with a KBL prototype implementation, we have found that many
programs are unnecessarily plagued by combinatorial explosion. Indeed, systemati-
cally expanding all e-types leads obviously to exponential growth of computation.
We think that, most often, not expanding subterrns which are sets would give the
interpreter much efficiency. The idea is simply that since the interpreter works by
pruning out non-maximal elements of a set of types, most types could be eliminated
in block in one step of computation before being expanded, rather than individually
after being expanded.

Of course, the catch is that one must then deal with computing meets on graph
structures which look more like nondeterministic automata than deterministic ones;
that is, on hypergraphs rather than graphs. The idea is, if nontrivial, not impossible.

Effective resolution of type. equations 339

However, the use of the UNION/FIND method must be altered since in a hypergraph,
a node has a set of nodes as successor. Hence, since a coreference class becomes
a set of sets, the FIND of a class representative can no longer be as efficient, because
equality of sets is up to a permutation. Nevertheless, the problem is a challenging
one, and must be thoroughly explored.

6.3.2. Epsilon-types as a type system for a programming language
The example of KBL as a programming language where types are 'first-ciass

citizens' is perhaps an interesting theoretical exercise, but an extreme one! Indeed,
the calculus of types presented in Section 4 is independent of the particular use
made of it for solving type equations. In fact, it could complement advantageously
any programming language as a typing facility. However, one must be warned that
this may not be done carelessly. One must make sure that, in providing a program-
ming language like l~OLOO (say) with a type system like the one described here,
the distribution of information between types and procedures (predicates, in the
case of PROLOC), does not lead to redundancy, or worse, inconsistency. That is to
say, One must be thoroughly aware of legal ways of combining the two systems of
information. In fact, Scott's semantic theory of information systems [60] provides
excellent tools to construct new information systems from old ones. A formalization
of the types presented here as an information system will give the key to investigate
their potential as a practical type system. Such works as [11], in the context of
relational database theory, and [2, 3], in logic programming, are interesting upshots
of this approach. In the latter, a small restriction is imposed on the nature of the
type calculus which makes it an intermediary calculus between ~ and ~. Recursive
type equations are partially solved at compile-time by fan-out rewriting limited to
the maximal length of recursive cycles, and completely for finite branches.

6.3.3. Higher-order types
The types considered here have been strictly of first-order kind. That is, function

types have not been considered. It is however interesting to wonder what could be
obtained from lifting this restriction. There are really two ways of introducing
higher-order beings in the @type calculus.

Functional types--The first way is the more natural. It consists of allowing
functional types---i.e., denoting sets of functions, since we are following a type-as-set
semantics. That is, a function type tl -> t2 denotes the set of all (computable) functions
from type tl to type t2.

However, a strangely non-intuitive quirk in the partial ordering of types happens
for these types which was discovered by MacQueen, Sethi, and Plotkin [39]. Namely,
if T is the type lattice, the ordering on [T--> T] is not the product ordering, but the
ordering of the product of the dual lattice of T with T. The ordering is so-called
anti-monotonic or contravariant--in the first component. Hence, if higher-order
functional types are considered, an odd 'flip-flop' of orderings must be taken ifito
account. MacQueen, Sethi, and Plotkin have shown that recursive type equations

340 1-1. Ai ' t -Kaci

have solutions for these types. But the technique they propose to prove this uses
an involved argument about a contracting mapping in an appropriately defined
metric space. The reason is that one may no longer count on a least fixed-point
argument since the solution functional for the type equation is not monotone ! Again,
this is a challenge to take in the context of our type system, perhaps at the expense
of forbidding such problematic recursion in type equations as s = s ~ t; that is, in
effect, stratifying type orders.

Attribute variables--The other way to introduce higher-order information is a
more operational one. Namely, since attributes are interpreted as functions, one
may wonder what happens if variable attributes are allowed in the syntax of 0-types.
That is to say that a variable label would match any address in a meet computation.
The idea is reminiscent of higher-order unification in the lambda-calculus [31]. We
suspect that this may lead to undecidable problems; but again it is worth exploring

its possibilities.

6.3.4. Integrating logic
As stated earlier, the kind of information to which this work has been restricted,

is essentially a logic of equality. It is interesting to ask whether other relations than
equality could be dealt with in a similar way. Indeed, it seems possible to augment
the expressive power of 0-types by allowing logical formulae to be attached to a
0-type specifying constraints in a richer logic than one limited to (in)equality. It
would be a propositional logic whose sentential variables would]~e term addresses.
By the principle of coreference, all predicates would then have the peculiar property
to be 'right-invariant' in all their arguments. The kind of efficient decision procedure
devised by Dowling and Gallier [18] would then be a great candidate to extend the
lattice operations.

7. Conclusion

In this article, we have proposed a novel approach to an old problem. Namely,
we have developed a formal calculus of record-like type structures, analysed the
order- and lattice-theoretic consequences of interpreting these type structures as sets
of objects, and offered a mathematical construction which allows this interpretation
to be operationally meaningful. A particular language of types has been described
which interprets programs in the form of a system of simultaneous equations. A
fixed-point semantics has been studied and used to justify the existence of least
solutions to these equations. Correctness of the operational semantics of the inter-
preter with respect to the fixed-point semantics has been discussed. Finally,
extensions of the type calculus have been proposed.

Our work is by no means complete. It is intended as an illustration of a certain
basis on which to expect variations. It is hoped that this research be just a
beginning. . .

Effective resolution of type equations 341

Appendix A. Lattice ideals

First, we recall the concept of lattice ideal

A.1. Definition. An ideal of an upper semi-lattice L, <~, v is a nonempty subset

of L such that

(1) V a e S , V x ~ L , ifx<~a, then x e S ;
(2) Va~,~, Vb~,~, a v b ~ .

Informally, one may say that a nonempty subset of an upper semi-lattice is an

ideal if it is "downward-closed" and 'join-closed'.
Given an element a of an upper semi-lattice L the set _a = {x s L] x ~< a} is clearly

an ideal of L. It is called the principal ideal generated by a. The next theorem states

an important standard result.

A.2. Theorem. The set ~(L) of all ideals of any lattice L, ordered by set inclusion, is
a complete lattice. Furthermore, the set of all principal ideals of L is a sublattice of
~(L) which is isomorphic with L.

Theorem A.2 justifies the embedding of any lattice into the complete lattice of

all its ideals. This construction is commonly known as completion by ideals. Thus,

we ha~,e the following corollary.

A.3. Corollary. Any lattice can be embedded as a sublattice into a complete lattice.

This construction preserves glb's but it does not preserve lub's (it is not self-dual).
However, it preserves modulari ty and distributivity. 16

The next easy result will be useful in later proofs.

A.4. Proposition. Every ideal of a Noetherian lattice is principal.

Proof. The proof is inductive in nature. Given an ideal 5 of a Noetherian lattice

L, we construct a sequence of elements of .~ as follows. We start with some arbitrary

element ao in 5. If ao is the greatest element of 5, then 5 = ao is principal. Otherwise,

there must be a bo in 5 such that ao and bo are not comparable. We define al = ao v bo.
Necessarily, ao < a l . We repeat the same construction that we did for ao on a~, and

so on. Clearly, this sequence cannot continue for ever since there are no infinitely

ascending chains in L. Therefore, there must be an element a, (n I> 0) in the sequence

such that 5 = a , . []

t6 The completion by ideals is not the only possible compietion. Another well-known construction,
the completion by cuts, is self-dual: any poset can be plunged into a complete lattice such that both
existing glb's and existing lub's are preserved. However, modularity (and hence distributivity) is not
kept. We shall not detail this latter construction, and we refer the reader to [7].

342 H. A[t.Kaci

Therefore, we have the following corollary.

A.5. Corollary. Any Noetherian lattice is complete.

Next, we recall a not so well-known kind of lattice.

Appendix B. Brouwerian lattices

B.1. Definition. A Brouwerian lattice L is a lattice such that, for any given elements
a and b, the set {x EL] a A X ~< b} contains a greatest element.

An interesting property of Brouwerian lattices is that (i) any Brouwerian lattice
is distributive but, not conversely; and (ii) any Boolean lattice is Brouwerian, but
not conversely. Thus, the class of Brouwerian lattices lies strictly between the class
of distributive lattices and the class of Boolean lattices. Apart from its lattice-theoretic
properties, a Brouwerian lattice is interesting as it forms the basis of an intuitionistic
propositional logic, due to Brouwer [10, 20]. ~7

We finally state a theorem which is a key property of Brouwerian lattices.

B.2. Theorem. A complete lattice is Brouwerian if and only if the join operation is
completely distributive on the meets; that is, for all x e L and all y c_ L,

x ^ V Y = V (xAy).
y e Y

The following theorem is due to Stone.

B:3. Theorem. The ideals of a distributive lattice form a complete Brouwerian lattice.

Appendix C. Powerlattice constructions

In this section, we describe two constructions which are extensions of posets
preserving the ordering and existing glb's. In fact, they are 'hidden' constructions
by ideals for Noetherian posers. These constructions are universal; i.e., they are
independent of the particular instances of sets on which one may eventually use

17 The connection between intuitionistic logic and lattice theory is due to Birkhoff [7].

Effective resolution of type equations 343

them. Although quite simple, these constructions are not so common, and this is
why we chose to give them in detail.

C.1. A semi-lattice construction

A poset is Noetherian if it does not contain infinitely ascending chains.
The restricted power of a poset P, noted 2 t~'), is the set of nonempty finite subsets

of pairwise incomparable elements of P.
The complete restricted power 2 tP~ of P is the set of all nonempty subsets of

incomparable elements of P. It is clear that 2 (e) ~ 2 t~'l.

Such subsets are also called cochains, or crowns, and are partially ordered by the
relation E defined as follows:

X E Y iff V x ~ X , 3 y ~ Y, x<~y.

We must verify that the following proposit ion holds.

C.1. Proposition. The relation E defines a partial ordering on 2 [P].

Proof. Reflexivity and transitivity are straightforward.
As for antisymmetry, let X and Y in 2 tPl be such that X_.r- Y, and Y E X . By

definition of X E Y, for any x in X, there is an element y of Y such that x ~< y. But

since Y E X, for that element y, there is a z in X such that y <~ z. Hence, by transitivity
of ~<, x ~ z in X. However, X is a cochain. Thus, all elements of X are incomparable.
Therefore, we must have x = z, and so the intermediate element y is such that x = y.

As a result, x is an element of Y.
We have proved that X ~ Y; a symmetric argument entails y c_ X. Therefore,

X = Y. []

Let P, <~ be a poset. The canonical injection of P into 2 ~P) is the function which
takes any element x of P into the singleton {x}. It is clear that this is an injection.
Moreover, it is an order homomorphism since

Vx ~ P, Vy e P, {x}_ {y} iff x <~ y. (24)

Let P be a Noetherian poset. Given any subset X of P, we define its maximal
restriction [X] as the set of maximal elements of X. Since P has no infinitely
ascending chains, this is well defined, even for infinite subsets.

The following construction shows how one can embed any Noetherian poset P
into its complete restricted power 2 [el and obtain a lower semi-lattice. The construc-
tion is quite simple and is based on defining the right meet operation on 2 tP~ which
will preserve existing glb's in P.

Given some element x of P, we note _x the subset of P of all lower bounds of x.

That is, _x = {y ~ S[y ~< x}. Then, for any two elements a, b in P, _a c~ _b is the set of
common lower bounds of a and b in P.

344 H. Ai't-Kaci

The following [7 operation can be defined for any pair of subsets X, Y in 2tel:

X [7 Y = [bOY -a ~-b] ~ x (25)

Informally, we may describe what is performed by the operation of (25) as
'skimming the cream off the crown' of the set of all common lower bounds of all
pairs of elements.

C.2. Theorem. Let P, ~ be a poser. Then, 2 [e], _, I-7, as defined above, is a lower
semi-lattice.

Proof. Let z be in x r] Y as defined by (25), for some X and Y in 2 tel. By definition,

z is a common lower bound of a pair of elements Xo in X, and Yo in Y. Therefore,
x r 7 Y~_X and X m Y _ Y. Now, consider some Z in 2 tPl such that Z ~ X and

Z ~ Y. Then, for any z in Z, there must be some xo e X and some Yo e Y such that

z ~ Xo and z <~ Yo- Hence, z is a common lower bound for this pair <Xo, Yo), and
must be either in XI7 Y, or less than or equal to some element of X r-1 Y which is

I [b e Y maximal in ~.~a~x _a c~ _b. In any case, Z m _ X ~ Y. []

Note that if two elements x and y in P already have a unique glb z in P, it follows

that {x}R{y}={z} . Hence, this construction is a structure embedding, since it
preserves the ordering and the glbs when they exist in P.

Now, we are justified to take the freedom of writing simply x rather than {x} for
any single element of a poset P, and extend P to 2 Eel, the glb-preserving lower

semi-lattice extension of P. And this is the 'least' such possible structure, because

if P is already a lower semi-lattice, then it is isomorphic to its canonical injection
into 2 tel. Therefore, we have the following corollary.

C.3. Corollary. Any Noetherian poset can be embedded into a lower semi-lattice such
that existing glb's are preserved.

C.2. A distributive lattice construction

The second construction that we describe shows how to take a Noetherian lower
semi-lattice into a distributive lattice.

Let M, <~, ^ be a lower semi-lattice. We define two binary operations r] and II
on 2 tM] as follows:

X R Y = [{ x A y l x e X , y e Y }], X L J Y = [X u Y] . (26)

Let M, <~, ^ be an arbitrary Noetherian lower semi-lattice. Then, we have the
following theorem.

C.4. Theorem. The structure 2 tM], _ , n , II as defined above forms a distributive lattice.

Proof. We first verify that X 17 Y is indeed a lower bound of X and Y. This is clear
by definition since any element of X R Y is a lower bound of some element of X

Effective resolution of type equations 345

and of some element of Y. It is also clear by definition that X II Y is an upper

bound of X and Y since any element of X (respectively Y) is either in X II Y, or
less than or equal to some element of X I I Y.

To show that X rq Y is the greatest lower bound of X and Y, let us assume that

there exists a Z ~ 2 [~] such that Z _ X and Z _ Y. Then, for any z e Z, there exist

some x ~ X and some y ~ Y such that z ~< x and z ~< y. Thus, z <~ x ^ y. But, x ^ y is

either in X [-] Y, or less than or equal to some element of X IN Y. Therefore, Z ~_ X r-I Y.

To show that X I I Y is the least upper bound of X and Y, let us assume that

there is a Z ~ 2 [M] such that X _ Z and Y=_Z. But, any element of X II Y is an

element of either X or Y. Consequently, any such element is less than or equal to

some element of Z. Therefore, X I I Y=_Z.
It is thus established that 2 tM] is a lattice. The last thing to prove is that this

lattice is distributive. To this end, it suffices to show that, for any X, Y, Z in 2 t~],

(XI I Y) ~ Z E_ (X I - I Z) U Y. (27)

Let t be an arbitrary element of (X II Y) IN Z. By definition of C], there must exist

some u in X I I Y and some v in Z such that t = u ^ v. Now, by definition of join

(26), u must be in X or in Y. If u ~ X, then u ^ v must be less than or equal to

some element ul of X [-7 Z. If ul e (X [-q Z) II Y, our point is made. So, let us assume

that u~ is not an element of (X R Z) I I Y. By definition of II, and the fact that

ul ~ (X f - q Z) u Y, the only consistent way that this may be possible is if there is

some uz in (XFqZ) I I Y which is maximal in (X F q Z) u Y and such that u ~ u2.

Therefore, for the case where u ~ X, we have shown that

(Xk_J Y)I- IZ E (XIqZ)LJ Y.

Now, for the case where u e Y, since t = u ^ v we have t ~< u. Again, let us assume

that u ~ (X C1 Z) LI Y. As before, the only way this could be possible is if there exists

some ul in (X ~ Z) U Y which is maximal in (X ~ Z) u Y and u~< ul. Hence, for

the case where u e Y also,

(x u Y) z =_ (x m z) u Y. []

Again, we can readily observe that the construction of Theorem C.4 preserves

the ordering relation and meet operation of M in the sense that, Vx e M, Vy e M,

{x}___{y} iff x<~y; {x}F]{y}={x^y} (28,29)

and hence, we have the following corollary.

C.5. Corollary. Any Noetherian lower semi-lattice can be embedded into a distributive
lattice such that glb's are preserved.

It is important to remark that the construction taking a Noetherian lower semi-

lattice into a distributive lattice is an extension of the one taking a Noetherian poset

346 H. A[t-Kaci

into a lower semi-lattice in the sense that when the poset happens to be a lower
semi-lattice, the two constructions are identical. Indeed, in that case, (26) and (25)
are equivalent.

There is a close connection between the ordering on the complete restricted power
of a poset and inclusion of ideals, as the following proposition indicates.

C.6. Proposition. Let L be a lattice, and `9 and ~ two Meals o f L Then,

`9 c_ ~ iff V x ~ `9, 3y ~ ~ such that x ~ y.

Proof'. Trivially, if 5 ~ ~, then any x in 5 is also in ~, and hence x itself is such a
y. Conversely, if x ~ `9 and y ~ ,,~ are such that x ~< y, then since ~ is an ideal, we

must have x ~ ~. []

This suggests that this last construction is actually much stronger than it looks,

as expressed in the next theorem.

C.7. Theorem. For any Noetherian lower semi-lattice M, the lattice 2 [M1 is a complete

Brouwerian lattice.

Proof. If we show that the lattice 2 t~'J is isomorphic with the complete distributive

lattice of all its ideals, it will follow from Theorem B.3 that it is a complete Brouwerian
lattice. A way to do this is to establish that every ideal of 2 tM] is principal, and by

Theorem A.2 the theorem will follow.
Let # be some arbitrary ideal of 2 tMl. Since there are no infinitely ascending

chains in M, the subset of M defined as

X~,9 X e , 9

is well-defined. This set is the set of maximal elements of the union of all subsets
of incomparable elements of M which are in 5. Since # is an ideal, it is join-closed.
And hence, `9 is the principal ideal generated by .9*. []

C.8. Corollary. Any Noetherian lower semi-lattice can be embedded into a complete
Brouwerian lattice so that existing glb's are preserver

Appendix D. A semantics of type inheritance

We give here a 'type-as-set" denotational semantics of the ~-term calculus of
partially-ordered type structures.

We assume the existence of an abstract interpretation universe ¢/ of objects,
where our types take meaning. A type is an intensional denotat ion of a set of
elements in this universe. For example, the type 'person' denotes the class of all

Effective resolution of type equations 347

objects in q/which are categorized as persons. Some consensual agent is postulated--
e.g., a programmer or an interpreter--for which such a categorization is meaningful.
For example, it is reasonable to suppose that the reader's understanding of the
English word "person" concurs with ours as far as our common sense interpretation;
namely, a particular subclass of the class 07/of all objects. Hence, in particular, the
least informative type (T) denotes the whole universe q/; and the overdefined type
(.1_) is the inconsistent type, and denotes the empty set--the type of no object.

The subtype relation is interpreted as set inclusion in the semantic universe q/.
For example, if the set of students is contained in the set of persons, then the type
'student' is a subtype of the type 'person'.

Let T be such a set of types, endowed with a subtype ordering relation ~<. A type
semantics is an order homomorphism:

r:(T, ~<)--> (2 ~, ~),

where 2 ~ is the set of all subsets of ~. Namely,

~[[T l l = ~, r[[_l_] =0 (30)

and, for all s, t in T,

s<~t ~ ~[[s~_~t~. (31)

Furthermore, if glb's exist, it is desired that

r [s^ t] = r~s]n r~t~. (32)

In addition to signature type denotation, the information content of attributes
and inheritance of attributes must be given a denotation which is congruent with
the constructor types. For example, given that the type 'person' is interpreted as a
set of objects of q/, specifying the types of certain attributes of 'person' is a means
to denote a further restriction of the type 'person', e.g., talking about the class of
persons whose last name is a character string, rather than anything (T). Thus, an
attribute denotes the intension of a function between subsets of the universe ~/.
Attribute concatenation denotes function composition, and attribute coreference
denotes the fact that certain functional diagrams commute.

More precisely, let Z, ~< be a partially-ordered type signature, and let r be a type
semantics for it. Now, we need to indicate how to extend consistently this type
interpretation to one for 0-terms. Let us define a monoid homomorphism 7/from
Le* with string concatenation, to the set ~/~ of functions from q/ to ~/, with function
composition. That is,
• for each label l in L:, ~ / n is a function in ~ ;
• 7/[[e] is the identity on 0//;
• Vu, v~..~'*, ~u.vl = ~[v~o~[ul.

The type semantics ~ is extended to 0-terms by the denotational semantic equations
(33)-(36). These equations can be construed as 'evaluation' rules for all possible
syntactic cases. That is, the set which is the meaning of a given 0-term is obtained

348 H. Ai't-Kaci

by repeatedly applying equations (33)-(36). These rules are clearly well-founded
(i.e., there cannot be an infinite interpretation sequence using them) because of the
finiteness of a 0-term's domain and coreference relation index. Also, the order in
which these equations are applied does not matter because of commutativity of set
intersection.

Equation (33) treats the simple attribute case:

r [f (l ~ t)]]= { x e ~ f ~ l = l y e r[[t] , r l ~ l] (x) = y }. (33)

It is now clear that the identification with _t_ of all O-terms where _t_ occurs is
justified by this semantics. Indeed, by (33), it comes immediately that

r[[f(l ~ - k)] = r[[J-] = O.

Equation (33) is generalized to many attributes as follows:

n

~ f (l ~ t l ; . . . ; / , ~ t ,)] = 0 r [f (l ~ = > t i)] . (34)
i = l

Attribute coreference means that compositions of attribute functions commute,
as expressed by (35):

6I[O1] = {XE I ~ 0 2 ~ l n ~ l 0 I,,B(x) = rt[[ko k,,](x)}, (35)

where

and

01 = f (l o ~ g , (l l ~ ' ' " g.(l. ~ X " t) - . -) ;

k o ~ h , (k , ~ . . . hm(km ~ X) . . .))

0 2 = f (l o ~ g , (1 , ~ . . . g, ,(l . ~ t) . . .);

k o ~ h , (k , ~ " " h m (k m ~ t) " " ")).

Finally, cyclic coreference corresponds to fixed-points of attribute functions, as
expressed in (36):

d[01] = {x ~ ~[02~] r/~ 1o l . ~ (x) = x}, (36)

where

and

O,= x : A (I , ~ . . . f . (t . # x))

02 = f , (t l ~ -. . f . (l . ~ A)) .

As for e-types, they are constructed from O-types to be interpreted as disjunctive
types through a powedattice embedding. That such an embedding is semantically
sound becomes clear when one understands the semantics of a type such as
{ f i , . . . , t,}. In a 'type-as-set' semantics, the lub of the types ti (i = 1 , . . . , n) should

Effective resolution of type equations 349

also be the lub of everything that is subsumed by every ti. Hence, it comes naturally
that

n

d{t,,.. . , tn} = t._J
i = 1

It is not diflicult to verify that axioms (30)-(32) hold for this type semantics.

Acknowledgment

The author is indebted to Bob Boyer and Roger Nasr for their careful proof-reading
and friendly support. Many thanks to Irene Guessarian for teaching me about
algebraic semantics, and for her very keen insight for proofs. The contents and form
Of this article are strongly influenced by her work. The author is also grateful to
Maurice Nivat for encouraging him to write it. Finally, much gratitude is expressed
to the MCC-AI program for tolerating a benevolent use of their facilities for the
redaction of this manuscript.

References

[1] H. Ait-Kaci, Solving type equations by graph rewriting, Proc. Ist Internat. Conf. on Rewriting
Techniques and Applications, Dijon, France, 1985, Lecture Notes in Computer Science 202 (Springer,
Berlin, 1986) 158-179.

[2] H. Ait-Kaci and R. Nasr, LOGIN: A logic programming language with built-in inheritance, J. Logic
Programming 3 (3) (1986) 185-215.

[3] H. Ait-Kaci and R. Nasr, Logic and inheritance, Proc. 13th ACMSymp. on Principles of Programming
Languages, St-Petersburg, FL (1986) 219-228.

[4] H. Ait-Kaci, A lattice-theoretic approach to computation based on a calculus of partially-ordered
type structures, Ph.D. Thesis, Dept. Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, 1984.

[5] J.F. Allen and A.M. Frisch, What's in a semantic network, Proc. 20th Ann. Meeting of the Association
for Computational Linguistics, 1982.

[6] G. Berry and Jd. Levy, Minimal and optimal computations of recursive programs, J. ACM 26
(1979) 148-175.

[7] G. Birkhott, Lattice Theory (American Mathematical Society, Providence, RI, 1940; third revised
edition 1979).

[8] R.J. Brachman, A new paradigm for representing knowledge, BBN Rept. 3605, Bolt, Beranek, and
Newman, Inc., Cambridge, MA, 1978.

[9] R.J. Brachman, What IS-A is and isn't: An analysis of taxonomic links in semantic networks,
Computer 16 (10) (1983) 30-35.

[10] LEd. Brouwer, On order in the continuum, and the relation of truth to non-contradictority, Proc.
Section of Sciences 54 (Koninldijke Nederlandse Akademie van Wetenschappen, Amsterdam, 1951)
357-358.

[11] O.P. Buneman, Datatypes for database programming, in: M. Atkinson, O.P. Buneman and R.
Morrison, eds., Proc. lnternat. Workshop on Persistence and Data Types in Programming Languages
and Databases (Universities of Glasgow and Saint-Andrews, 1985) 295-308.

350 H. Aft-Kaci

[12] L. CardeUi, A semantics of multiple inheritance, in: G. Kahn, D. MacQueen and G. Plotkin, eds.,
Proc. Internat. Symp. on the Semantics of Data Types, Sophia-Antipolis, France, 1984, Lecture Notes
in Computer Science 173 (Springer, Berlin, 1984) 51-68.

[13] C.F. Clocksin and W.M. MeIlish, Programming in PROLOG (Springer, Berlin, 1980).
[14] B. Courcelle, Fundamental properties of infinite trees, Theoret. Comput. ScL 25 (1983) 95-169.
[15] B. Courcelle and M. Nivat, The algebraic semantics of recursive program schemes, in: J. Winkowski,

ed., Proc. Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 64
(Springer, Berlin, 1978) 16-30.

[16] A. Deliyanni and R.A. Kowalski, Logic and semantic networks, Comm. ACM 22 (3) (1979) 184-192.
[17] J. Donahue, On the semantics of data types, SIAM J. Comput. 8 (4) (1979) 546-560.
[18] W.F. Dowling and J.H. Gallier, A fast algorithra for testing the satisfiability of propositional Horn

formulae, Tech. Rept. MS-CIS-83-26, Dept. Computer and Information Science, University of
Pennsylvania, Philadelphia, PA, 1983.

[19] PJ. Downey, R. Sethi and R.E. Tarjan, Variations on the common subexpression problem, J. A C M
27 (4) (1980) 758-771.

[20] M. Dummett, Elements oflntuitionism (Oxford University Press, Oxford, U.K., 1977).
[21] N.V. Findler, ed., Associative Networks: Representation and Use of Knowledge by Computers

(Academic Press, New York, 1979).
[22] J.A. Goguen, Order sorted algebras: Exceptions and error sorts coercions and overloaded operators,

Semantics and Theory of Computation Report 14, Computer Science Dept., UCLA, 1978.
[23] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright, Initial algebra semantics and continuous

algebras, J. ACM 24 (1) (1977) 68-95.
[24] J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specification

correctness and implementation of abstract data types, in: ILT. Yeh, ed., Current Trends in Program-
ming Methodology IV (prentice-Hall, Englewood Cliffs, N J, 1978) 80-149.

[25] J.A. Goguen and J. Meseguer, An initiality primer, SRI International Computer Science Laboratory,
Draft, 1983.

[26] J.A. Goguen and J.J. Tardo, An introduction to OBJ: A language for writing and testing formal
algebraic program specifications, Proc~ IEEE Conf. on Specifications of Reliable Software, Cambridge,
MA (1979) 170-189.

[27] S. Gorn, Data representation and lexical calculi, Inform. Process. &Manag. 20 (1, 2) (1984) 151-174.
[28] S. Gorn, Explicit definitions and linguistic dominoes, in: J.F. Hart and S. Takasu, eds., Systems

and Computer Science (University of Toronto Press, Toronto, Ontario, 1965) 77-105.
[29] I. Guessarian, Personal communication, February, 1986.
[30] I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science 99 (Springer, Berlin, 1981).
[31] G. Huet, R6solution d'6quations dans des langages d'ordre 1, 2 oJ, Th6se de Doctorat d'Etat,

Universit6 de Paris VII, France, 1976.
[32] DJ. Israel, On interpreting semantic network formalisms, BBN Rept. 5117, Bolt, Beranek and

Newman, Inc., Cambridge, MA, 1982.
[33] K. Jensen and N. Wirth, Pascal User Manual and Report (Springer, Berlin, 1974).
[34] G. Kahn, D.B. MacQueen and G.D. Plotkin, eds., Proc. Internal Symp. on the Semantics of Data

Types, Sophia-Antipolis, France, Lecture Notes in Computer Science 173 (Springer, Berlin, 1984).
[35] B.W. Kernighan and D.M. Ritehie, The C Programming Language (Prentice-Hall, Englewood Cliffs,

NJ, 1978).
[36] R.A. Kowalski, Logic for data description, in: H. Gallaire and J. Minker, eds., Logic and Data

Bases (Plenum Press, New York, 1978) 77-103.
[37] H. Ledgard, ADA: An Introduction; ADA Reference Manual (Springer, Berlin, 1980).
[38] B.H. Liskov, E. Moss, C. Schaffert, B. Scheifler and A. Snyder, CLU Reference Manual (MIT

Laboratory for Computer Science, Cambridge, MA, 1979).
[39] D.B. MacQueen, G.D. Plotkin and R. Sethi, An ideal model for recursive polymorphic types, Proc.

11th ACM Symp. on Principles of Programming Languages, Salt-Lake City, UT (1984) 165-175.
[40] D.B. MacQueen and R. Sethi, A higher order polymorphic type system for applicative languages,

Proc. Syrup. on Lisp and Functional Programming, Pittsburgh, PA (1982) 243-252.
[41] N. McCracken, An investigation of a programming language with a polymorphic type structure,

Ph.D. Thesis, Dept. Computer Science, Syracuse University, New York, 1979.
[42] A.D. McGettrick, ALGOL 68: A First and Second Course (Cambridge University Press, Cambridge,

U.K., 1978).

Effective resolution of type equations 351

[43] J.IL McSkimin and J. Minker, A predicate calculus based semantic network for question-answering
systems, in: N. Findler, ed., Associative Networks--The Representation and Use of Knowledge by
Computers (Academic Press, New York, 1979).

[44] J. Meseguer and J.A. Goguen, Initiality induction and computability, in: M. Nivat and J. Reynolds,
eds., Application of Algebra to Language Definition and Compilation (Cambridge University Press,
Cambridge, U.K., 1984).

U45] R. Milner, A theory of type polymorphism in programming, X. Comput. System Sci. 17 (3) (1978)
348-375.

[46] M. Minsky, A framework for representing knowledge, in: P.H. Winston, ed., The Psychology of
Computer V~sion (McGraw-Hill, New York, 1975) 211-277.

[47] D.R. Musser, Abstract data type specification in the AFFIRM system, IEEE Proc. Conf. on
Specifications of Reliable Software, Cambridge, MA (1979) 45-57.

[48] G. Nelson and D.C. Oppen, Fast decision procedures based on congruence closure, J. ACM 27
(2) (1980) 356-364.

[49] M. Nivat, On the interpretation of recursive polyadic program schemes, Symposia Mathematica
XV (Istituto Nazionale di AIta Mathematica, Rome, 1975) 225-281.

[50] D.C. Oppen, Reasoning about recursively defined data structures, J. A C M 27 (3) (1980) 403-411.
[51] G.D. Plotkin, A powerdomain construction, SIAMJ. Comput. 5 (1976) 452-487.
[52] G.D. Plotkin, Lattice theoretic properties of subsumption, Memorandum MIP-R-77, Dept. Machine

Intelligence and Perception, University of Edinburgh, U.K., 1977.
[53] G.D. Plotldn, Lecture Notes on Domain Theory, Draft, 1983.
[54] M.R. Quillian, Semantic memory, in: M. Minsky, ed., Semantic Information Processing (MIT Press,

Cambridge, MA, 1968) 216-270.
[55] J.C. Reynolds, Transformational systems and the algebraic structure of atomic formulas, in: D.

Michie, ed., Machine Intelligence 5 (Edinburgh University Press, 1970) 135-151.
[56] R.B. Roberts and I.P. Goldstein, The FRL primer, Memorandum 408, AI Laboratory, MIT,

Cambridge, MA, 1977.
[57] J.A. Robinson, A machine-oriented logic based on the resolution principle, Z A C M 12 (1) (1965)

23-41.
[58] W.C. Rounds and R. Kasper, A complete logical calculus for record structures representing linguistic

information, Proc. lst Ann. Syrup. on Logic in Computer Science, IEEE Computer Society, Cambridge,
MA (1986) 38-43.

[59] D. Scott, Data types as lattices, SIAM J. Comput. 5 (3) (1976) 522-587.
[60] D. Scott, Domains for denotational semantics, 9th Internat. Conf. on Automata Languages and

Programming, Lecture Notes in Computer Science 140, Berlin (1982) 577-613.
[61] R.L. Sites, Algol W reference manual, Tech. Rept. CS-230, Computer Science Department, Stanford

University, Stanford, CA, 1972.
[62] J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,

Series in Computer Science 1 (MIT Press, Cambridge, MA, 1977).
[63] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Z Mathematics 5 (1955)

285-309.
[64] W. Teitelman, INTERLISP Reference Manual (Xerox PARC, Palo Alto, CA, 1978).
[65] D. Weinreb and D. Moon, Lisp Machine Manual (MIT, Cambridge, MA, 1981).
[66] C. Wadsworth, Lecture Notes on Denotational Semantics, Hand-written draft, 1979.

