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Abstract We present an extended version of the CEDAR taxonomic reasoner for large
ontologies. This new version provides fuller support for TBox reasoning, checking consis-
tency, and retrieving instances. The CEDAR system is based upon the OSF formalism.
It is implemented on an entirely new architecture which includes several optimization tech-
niques. We define a bidirectional mapping between OSF graph structures and the Resource
Description Framework (RDF) allowing a translation from OSF queries into SPARQL
for retrieving instances from an RDF triplestore. We carried out comparative performance
evaluation experiments using CEDAR as well as well-known Semantic Web reasoners
(such as FaCT++, Pellet, HermiT, TrOWL, and RacerPro) on very large public ontolo-
gies. For the same queries on the same ontologies, the results achieved by CEDAR were
compared to those obtained by all the other reasoners. The results of experiments show
that CEDAR consistently performs on a par with the fastest systems for concept classi-
fication, and several orders of magnitude more efficiently in terms of response time for
Boolean query-answering over attributed concepts, as well as for ABox triplestore querying.
The latter result is irrespective of the triplestore management used because the CEDAR
reasoner uses its knowledge to optimize SPARQL queries before submitting them to the
triplestore.
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1 Introduction

For a computing device, reasoning from knowledge consists in deriving information implicit
in a knowledge base. Using Semantic Web terms, this knowledge is made up of a “Ter-
minological Box” (TBox), which contains intensional information (schema) in the form
of terminological axioms describing properties of concepts, and an “Assertional Box”
(ABox) which contains extensional information (data) describing specific individuals that
are instances of concepts described as TBox.

There are several software systems that support some form of formal reasoning
for Semantic Web (SW) applications FaCT++,1 HermiT,2 Pellet,3 TrOWL,4 RacerPro,5

SnoRocket,6 to name a few). Most of these reasoners are based on Description Logic (DL)
(Baader et al. 2003). These reasoners use rules or a variations of the Analytic Tableaux
method as their reasoning algorithms.7 However, as has been documented in the literature,
these logics have shown their limitations in terms of their ease of use and, more importantly,
as the adequacy of their inference methods for reasoning over large ontologies (Goodwin
2005; Srinivas 2009; Dentler et al. 2011).

Robustness regarding scalability of reasoning is one of the issues being addressed as
part of the CEDAR project.8 Our approach proposes a different knowledge representation
formalism from DL, and its reasoning method that is not based on Analytic Tableaux. It
is based upon the Ordered-Sorted Feature (OSF ) constraint logic formalism using con-
strained labelled graph unification (Aı̈t-Kaci 2007a). Its implementation relies on an entirely
new architecture which incorporates several optimization techniques exploiting the speci-
ficity of concept taxonomies (Aı̈t-Kaci and Amir 2013). In particular, it exploits the fact
that partially ordered concept taxonomies are central to all ontologies. In its initial ver-
sion, the capability of the CEDAR reasoner was limited to pure taxonomic reasoning over
unattributed concepts. Benchmarks showed that it outperformed all forecited OWL reason-
ers by several orders of magnitude in term of Boolean query answering on large ontologies,
while its classification performance was on a par with the best among those of the tested
DL-based reasoners.

This paper describes a new version of the CEDAR reasoner containing non trivial
extensions over its previous capabilities as reported in Aı̈t-Kaci and Amir (2015) and
demonstrated in Amir and Aı̈t-Kaci (2013). More specifically, while the previous version
of CEDAR could deal only with bare taxonomies bearing no attributes and answer queries
consisting of Boolean sort expressions, this new version of CEDAR supports the following
extensions:

– reasoning over OSF structures not only with bare sorts, but also with order-sorted
set-values functional features to represent DL roles (which are binary relations);

1owl.cs.manchester.ac.uk/fact++/.
2www.hermit-reasoner.com/.
3clarkparsia.com/pellet/.
4trowl.eu/.
5www.racer-systems.com/products/racerpro/.
6research.ict.csiro.au/software/snorocket.
7en.wikipedia.org/wiki/Method of analytic tableaux.
8cedar.liris.cnrs.fr/.
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Fig. 1 Example of a ψ-term pattern in OSF Logic syntax

– using OSF constraint normalization for reasoning to enable static optimization of so-
represented OSF queries;

– defining an RDF format for OSF structures and a two-way mapping between the two
representations;

– compiling normalized OSF queries into to SPARQL code for RDF triple instance
retrieval;

– using semantic OSF sort and attribute information for RDF type indexing for efficient
triplestore retrieval;

– confirming experimentally the efficient performance of CEDAR’s full OSF reason-
ing (TBox and ABox) when compared with state-of-the-art tableau DL provers.

This last point, in particular, was surprising to us since we expected the support of
role-based concepts to impede somehow CEDAR’s performance when limited to bare
taxonomic reasoning. Although we were hoping that CEDAR remains comparatively com-
petitive, we did not expect that it could keep the same efficiency margin over the other
provers that we observed for bare taxonomic reasoning. Indeed, our experimental evalu-
ation with the same large ontologies has confirmed that the new version of CEDAR is
still among the best of all existing reasoners in term of classification and is several orders
of magnitude more efficient in terms of response time for Boolean TBox reasoning on
attributed concepts, and can use semantic information for efficient RDF triple indexing.
CEDAR’s reasoning method and the obtained results will be discussed in detail in this
paper.

The remainder of this paper is organized as follows. In Section 2, we start with pre-
liminaries giving an overview of relevant notions of the OSF formalism, especially its
data structure called ψ-term, used to represent (semi-structured) concepts and objects. In
Section 3, we describe the general architecture of the CEDAR reasoner for TBox reasoning
and query compilation into SPARQL. In Section 4, we present and discuss the experimental
results. Finally, we recapitulate our contribution and conclude in Section 5.

2 Preliminaries

2.1 Order-sorted feature constraints

In this section, we recall briefly ψ-terms that represent the basis of a logic of record struc-
tures called OSF Logic. The syntax of ψ-terms were proposed in Aı̈t-Kaci and Nasr (1986)
as flexible record structures generalizing Prolog terms and how they are used in Logic Pro-
gramming, while enabling both more expressive and efficient queries using order-sorted
graph unification. Indeed, ψ-terms can be seen as a generalization of first-order terms. The
easiest way to describe a ψ-term is with an example, as shown in Fig. 1.

This is a ψ-term that could be used to depict a structure pattern for a “professor” object.
Namely, it specifies a object pattern with an of value , with a

Author's personal copy
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of sort , and a of sort .9 This object
pattern specifies two parts: a , of sort , and with
value . This expression looks like a record structure. Like a typical record, it has
field names; viz., the symbols on the left of ⇒ . We call these feature symbols. In con-
trast with conventional records, however, ψ-terms can carry more information. Namely,
they can be nested, and the fields are attached to sort symbols (e.g., , ,

, , etc.).10 These sorts may indifferently denote individual values (e.g., )
or types—i.e., sets of values (e.g., , ). In fact, values are assimi-
lated to singleton-denoting types. Sorts are partially ordered so as to reflect set inclusion;
“ ” means that all instances of the sort are
also instances of the sort . Node reference tags (i.e., variables) such as and

are used in a ψ-term to indicate structure sharing or to indicate the desired bindings in
queries as in Logic Programming (Aı̈t-Kaci et al. 1994). These variables are capitalized as
in Prolog. More details about OSF algebra and constraint-solving can be found in Aı̈t-Kaci
(2007a), Aı̈t-Kaci and Podelski (1991), and Aı̈t-Kaci and Podelski (1992).

2.2 OSF Logic for the semantic web

The Resource Description Framework (RDF) is a standard notation proposed by the World
Wide Web Consortium (W3C) to represent semi-structured schemas and data on the Web.
An RDF structure essentially represents (sets of) labelled graphs as collections of the
individual directed edges comprising them. These edges are called RDF “triples” since
such an edge is a triplet 〈subject,predicate,object〉. The subject and object
are nodes labelled by URIs, or literals also for objects; both can also be unlabelled
blank nodes. The predicate is a URI labelling the link from a subject node to an object
object. These triples are stored in repositories, possibly distributed over the Internet, called
“triplestores.” Therefore, an RDF dataset forms a directed, possibly distributed, labelled
graph, where subjects and objects are vertices and predicates are labels on the directed
edges.

As Fig. 1 in the previous section depicts, the OSF formalism’s ψ-term syntax describes
data that takes the form of rooted labelled graphs. Since a ψ-term is a notation for a
labelled graph, an RDF notation for it can be readily derived. Such a representation must
account for differences between conventions of both notations. The essential difference is
that, whereas in a ψ-term all nodes are labelled uniformly with sort symbols or values,
RDF makes a difference between nodes that are labelled with URIs, blank nodes, and value
nodes, and arcs are labelled with URIs. Also, rather than labelling typed nodes with their
types, it uses an arc labelled with the specific URI rdf:type pointing to such a node
(which is then a unique representation for a type, and thus shared by all so-typed nodes).
Hence, an RDF representation for a ψ-term is obtained as a straightforward adaptation
accounting for these differences. This is done using a set of transformation rules given

9We shall use “sort” and “type” interchangeably for such a symbol denoting a set of values.
10We use “sort” as a synonym of atomic “class” or “concept.” In particular, sorts are partially ordered sort
symbols, where the ordering (“is-a”) denotes set inclusion.
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explicitly in Aı̈t-Kaci (2014a). Figure 2 shows the RDF graph corresponding to the ψ-term
of Fig. 1.

3 The CEDAR reasoner

The CEDAR reasoner is an implementation of a limited form OSF Logic (Aı̈t-Kaci
2007a). In its previous version, CEDAR was demonstrated to be among the fastest rea-
soners in term of classification (Amir and Aı̈t-Kaci 2013). Moreover, for Boolean query
answering, CEDAR outperformed all OWL reasoners by several orders of magnitude
(Aı̈t-Kaci and Amir 2013). Such efficiency can be explained essentially by order-sorted
reasoning using binary encoding of taxonomies (Aı̈t-Kaci et al. 1989).

In the new version presented in this paper, the CEDAR reasoner has been extended by
adding features, domain/range specifications for such features, and aggregate sorts denoting
collections of instances of specific sorts. The specification of each constructs is discussed in
Section 3.1 where a comparison with DL-based constructs is provided. CEDAR’s archi-
tecture is shown in Fig. 3. Therefore, this version is a much more complete reasoner that can
process both TBox and ABox information. It starts with a classification phase performed
on the TBox which includes cycle detection, transitive closure of the “is-a” taxonomic
ordering, and feature domain/range constraint propagation down the taxonomy, and nor-
malization of all such information (Aı̈t-Kaci 2014a). Then, the encoded TBox is saved on
secondary storage independently of any ABox. It is then used for query normalization and
consistency checking. Finally, for retrieving instances, normalized queries are translated

Fig. 2 RDF representation for ψ-term of Fig. 1

Author's personal copy
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Fig. 3 The CEDAR reasoner’s general architecture

into SPARQL form that can be optimized using TBox knowledge. In Section 3.2, we dis-
cuss the classification and the query normalization steps and give an example of SPARQL
query generation process from ψ-term query forms.

3.1 Expressing DL constructs in OSF logic

3.1.1 Roles as features

The OSF formalism uses functional features while DL uses relational roles. A role is a
binary relation. As such, it can be equivalently defined as a set-valued function. In other
words, the multi values spanned by a role may be aggregated into sets. For instance, given
a concept professor denoting a set of professors, and a concept “course” denoting a set of
courses. Using DL semantics, we can define the role “teaches” with domain “professor”
and range “course” to denote the set of all the pairs of professors and the courses they teach;
ie, �teaches� ⊆ �prof essor� × �course�).11

In OSF Logic, the fact that a feature symbol denotes a function is crucial because OSF
inference rules, based on graph unification, rely on it in order to be correct (Aı̈t-Kaci and
Podelski 1992). It is for this reason that we propose to represent a relational role as a set-
valued function. Indeed, for any sets S and S′, a binary relation r ⊆ S × S′ can as well be

11The notation �. . .� denotes the formal meaning of whatever “. . .” is.

Author's personal copy
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seen as a set-valued function fr : S → P(S′), where P(S′) is the powerset of S′, i.e., the
set of all subsets of S′. Formally,

∀x ∈ S, fr(x)
def= { y ∈ S′|〈x, y〉 ∈ r}.

In order to accommodate set-valued features, basic OSF Logic is extended with a new
syntactic construct denoting the powerset of a concept. Given a concept c, we write a
set-of(c) the concept denoting the sets of subsets of �c�; i.e,

�set-of(c)� def= P(�c�).

Considering the role “teaches” with domain “professor” and range “course,” for exam-
ple, it can also be expressed as the functional feature:

fteaches : professor → set-of(course)

to denote the function:

�fteaches� : �professor� → P(�course�)

that associates to a professor the set of course s/he teaches. More details on the semantics
of set-valued features and can be found in Aı̈t-Kaci (2014b).

3.1.2 Role-based concepts

In Description Logic, in addition to concept names comprising a taxonomy, one can also
express two kinds of nameless concepts involving roles: (1) universal role concepts; and,
(2) existential role concepts. Formally, given a role R and a concept C, this semantics of
universal and existential roles is expressed in DL as, respectively:

�∀R.C�
def= { x ∈ D | {y ∈ D | 〈x, y〉 ∈ �R�} ⊆ �C� }

�∃R.C�
def= { x ∈ D | {y ∈ D | 〈x, y〉 ∈ �R�} ∩ �C� �= ∅ }

where D is the domain of interpretation of all concept instances (i.e., the universe of dis-
course). For example, the universal-role concept ∀teaches.cs-course will denote the set of
professors that teach only computer-science courses. Similarly, the existential-role concept
∃teaches.cs-course will denote the set of professors that teach at least one computer-science
course.

Using set-valued functional features instead of roles, these are expressed in OSF Logic
as, respectively:

�∀R.C�
def= { x ∈ D | fR(x) ⊆ �C� }

�∃R.C�
def= { x ∈ D | fR(x) ∩ �C� �= ∅ }.

The interested reader will find a more detailed discussion of how the DL and OSF
formalisms are related in Aı̈t-Kaci (2007a), and a concise summary of the essential points
in Aı̈t-Kaci (2007b).12

3.2 TBox consistency check and query normalization

In previous work, we showed how bit-vector encoding of partially ordered sorts boosts
the performance of taxonomic reasoning (Aı̈t-Kaci and Amir 2013). This was done

12See https://www.youtube.com/watch?v=8uOgG6CJ8iY for a short slide presentation on this
very question.
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using an efficient classification algorithm calculating the transitive closure of the par-
tial order on sorts (Aı̈t-Kaci et al. 1989). As demonstrated in Amir and Aı̈t-Kaci (2013),
these codes yield extremely fast evaluation of Boolean concept expressions finding the
Maximal Lower Bounds (MLBs) of all concepts subsumed by such expressions. In
this paper, we illustrate how they can also be used for efficient ψ-term normaliza-
tion since the features refer to the binary codes corresponding to their domains and
ranges.

3.2.1 Taxonomy consistency normalization

The idea is simple: given a taxonomy defining a partial order on sorts that have been
encoded as bit-vectors, a feature’s f domain/range declaration of the form f : d → r is
propagated to a subsort s of d as follows:

– if there is no declaration for f for the sort s, then we simply install the declaration
f : s → r for the sort s, and iterate the process for subsorts of s;

– if there is already a declaration for f : s → r ′ for the sort s, then we normalize it to
be f : s → r ∧ r ′, where r ∧ r ′ is the (binary code of) the conjunction of (the binary
codes of) the sorts r and r ′. If this code is all 0’s, this means that the feature declaration
is inconsistent, and so is the taxonomy.

Clearly, this process always terminates: it is in fact linear in the number of declared features
and the number of subsorts of their domains. If no inconsistency is found, the resulting
taxonomy is then normalized into a consistent set of feature declarations.

For example, assume that the sort ordering on sorts is such that:

and that we have the feature declarations:

Feature propagation brings these declarations for feature from the
sorts and down to the sort , for
which they are normalized into the single declaration:

This normalization results in a consistent taxonomy by coercing the range sort of the
feature declaration on the domain sort to the
most general sort that is compatible with the declarations of this feature inherited from
its supersorts. If there had been no compatible range sorts for this feature, this normaliza-
tion would have reported an inconsistent feature declaration. The normalization rules for
taxonomy consistency check are described more formally in Aı̈t-Kaci (2014a), along with
pseudo-code.

Author's personal copy
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3.2.2 Query normalization for efficient ABox instance retrieval

Checking the consistency of a taxonomy and normalization of queries are two primor-
dial steps that must be performed prior to submitting queries for execution—i.e., before
actual ABox instance retrieval. Ensuring taxonomy consistency is a process called classi-
fication. It computes all implicit subsumptions relationships and properties. An efficient
classification algorithm was proposed in our previous work (Aı̈t-Kaci and Amir 2013). As
explained above, the current version extends the classification algorithm to check also fea-
ture domain/range consistent by propagating feature declarations down the taxonomy and
normalizing these declarations to be consistent, or reporting inconsistencies. A consistent
normalized taxonomy (or TBox) can then be used to optimize ABox instance retrieval by
normalizing queries. Here is how this is done.

Once classification is performed, the encoded ontology is saved on disk once and for all.
There are three important advantages for proceeding so:

1. a saved classified ontology can be reused without the need to be reclassified for every
new query sessions;

2. checking a query’s consistency with respect to a classified ontology before execut-
ing it prevents useless scanning of the ABox for instance retrieval if the query is not
consistent; and,

3. normalizing a query with respect to a classified ontology drastically reduces the ABox
retrieval search space focusing only on relevant instances.

Let us illustrate this on an example. Figure 4 shows an ontology describing academic
workers and institutions. Besides the concept taxonomy, it shows two set-valued feature
declarations:

and:

The binary codes corresponding to the taxonomy of Fig. 4 are shown in Table 1.
In order to understand the process, let us consider the query Q1 corresponding to the ψ-

term:

This query aims to retrieve all instances of persons teaching at a university, and working
at a research center as well. Rather than submitting this query as is for retrieving instances
from the ABox that verify it, we first proceed to normalize it to be consistent with the
knowledge in the TBox. Doing so, we identify the sort as being the most
specific one. In fact, the sort corresponding to is the MLB of the root sort
( ) and the sorts which are the domains of the two features presents in Q1; namely,

and . The MLB is the intersection (conjunction) of the binary
code corresponding to , and which are represented by
00001111111, 00000010111, and 00000100111. The result of that intersection is

Author's personal copy
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Fig. 4 Example of a taxonomy with attribute features

00000000111, which corresponds to the sort . Thus, the normalized query
is:

Table 1 Binary codes for the poset shown in Fig. 4

Author's personal copy
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Following the same reasoning, normalizing the query Q2 expressed as the ψ-term:

yields the inconsistent (i.e., empty) sort represented by the code 00000000000. In this
case, the query is considered inconsistent with the TBox because the sort has no
subsort that is compatible with a known domain for the feature . Thus, there is
no need to search the ABox for any instance of this query.

3.3 SPARQL query generation

Once a query expressed as a ψ-term is normalized with respect to a TBox and found consis-
tent, it is compiled into SPARQL for efficient instance retrieval. To appreciate the advantage
of normalizing a query with respect to a TBox before submitting it for evaluation explained
in Section 3.2, it is informative to to see an example.

Figure 5 shows the SPARQL query corresponding to the query Q1 without prior
normalization, and Fig. 6 shows the SPARQL query for the same query after normalization.

One can clearly see that the SPARQL query in the normalized format has many less
constraints than the first one. Not only could the rdf:type of query variable be nar-
rowed to the more specific sort , but also the domain/range feature constraints
could be eliminated altogether! This is because they were already verified to be consistent
by normalization, and since all instances in the ABox are necessarily consistent with the
knowledge of the TBox (in the same manner as data in a database obey its schema), it can be
safely assumed that all relevant instances of sort in the ABox already abide
by those feature constraints! This not only reduces the search space in the ABox, but also
greatly improves query evaluation by removing useless costly joins. In addition, evaluating
this query can be made even more efficient if a datatype indexing is already performed by
the triplestore.

Note that it is not always possible to eliminate feature constraints from a generated
SPARQL query. This is the case in particular when a feature constraint in a query specifies
a value as opposed to a sort as the range of a feature. In that case, these features must be
included in the generated SPARQL query. Consider for example the query Q3 expressed as:

(assuming feature declaration ). Then, the generated
SPARQL query shown in Fig. 7 does normalize the sort to , but it must
keep the feature with specific value .

Fig. 5 Generated SPARQL from
Q1 without normalization
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Fig. 6 Generated SPARQL from
Q1 with normalization

Finally, it is important to mention that for each sort occurring in the query, sending
its binary code along with the query to the triplestore allows efficient filtering of eligible
answer instances. For example, for the sort , the binary code 00000000111
allows to filter instances of the sorts and
as eligible answers since their sorts are subsorts of .

4 Experimental evaluation

A comparative evaluation was conducted to assess the performance of CEDAR over rea-
soners based on the OWL API.13 We evaluated our classification and query normalization
algorithms comparing their performance with those of these reasoners, under the exact same
conditions, over medium-size to very large ontologies. The characteristics in term of num-
ber of sorts and properties of the ontologies used in our experiments are shown in Table 2.
We removed all axioms besides the taxonomy itself and properties attached to its concepts.
Since Amphibian and NCBI are bare taxonomies, the properties for these two ontologies
were generated.

The ontologies described in Table 2 can only be used for TBox reasoning (classifica-
tion and query normalization) because they do not contain instances. Therefore, in order
to evaluate our instance-retrieval approach (explained in Section 4.3), we used the Lehigh
University Benchmark suite (LUBM) (Guo et al. 2005). The LUBM benchmark’s triple gen-
erator uses a predefined ontology as a set of constraints (containing around 43 classes and
31 properties). In order to perform an evaluation using universal and existential roles, we
created a new version of LUBM ontology by replacing some existential roles with universal
roles.

4.1 Classification

Figure 8 shows the comparative classification time performances for each reasoner on each
of the ontologies described above. Note that the SnoRocket reasoner was excluded from this
comparison because it does not support the owl:allValuesFrom constraint (Lawley
and Bousquet 2010).

From Fig. 8, it can be seen that for classification CEDAR does not always achieve the
best performance, although in five cases out six, it consistently ranks among the three rea-
soners that do. This can be observed particularly on the largest tested ontologies where it
is roughly ten time faster than TrOWL. This latter reasoner’s classification performance
is incidentally always the worst of the tested systems. We suppose that this must be due
to the fact that TrOWL preprocesses ontologies by first compiling them from OWL2 to

13http://owlapi.sourceforge.net.
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Fig. 7 Generated SPARQL
query Q3 with normalization and
valued feature

OWL-QL (Pan et al. 2013). As for FaCT++, it systematically outperforms HermiT on all
our tested ontologies, contrary to what is claimed in Shearer et al. (2008). This is per-
haps due to the relatively limited number of role axioms available in these ontologies.
Finally, RacerPro and Pellet consistently rank as average performers compared to the rest of
reasoners.

4.2 TBox reasoning

In order to perform the evaluation of the TBox reasoning step which is necessary for query
normalization, we have randomly generated a set of queries, of the form:

Figure 9 shows query-response time performance using logarithmic scale. One can see
clearly that the CEDAR reasoner is systematically orders-of-magnitude faster than all
the other reasoners. It can be seen also that TrOWL has a much better performance com-
pared to those of the other Description Logic reasoners. According to our understanding,
this could be explained by the fact that its preprocessing from OWL2 to OWL-QL men-
tioned before is not guaranteed to be faithful in that it applies some syntactic and semantic
approximations (Pan et al. 2013). Hermit, FaCT++, RacerPro and Pellet show very similar
performances on medium-size ontologies. However, FaCT++ could not provide an answer
before 30 minutes for large ontologies (FMA, CPO, MESH and NCBI). For NCBI, which
is the largest ontology, all reasoners except CEDAR, Pellet, and TrOWL, exceeded 30
minutes.

Although the graphs in Fig. 9 speak for themselves, it is informative to get an appreci-
ation of the relative performances for query answering of all the reasoners we have tested.
Table 3 sums up the facts displayed in the graphs of Fig. 9 by taking the average time over
all query sizes (viz., from 10 to 100 concepts), giving the maximum of these averages for
all reasoners the value 100 %, and showing all the other averages as percent values. Empty
cells mean that the reasoner was never able to provide an answer within our time-out limit

Table 2 Ontologies used as benchmarks in our experiments

Ontology Reference # of Sorts # of Properties

Amphibian (Maglia et al. 2007) 6,135 30

MoleculeRole (Yamamoto et al. 2004) 9,127 7

FMA (Cornelius and Mejino 2003) 83,283 77

CPO (Hoehndorf et al. 2012) 136,006 55

MeSH (U.S. National Library of Medicine 2014) 286,380 32

NCBI (Federhen 2012) 903,617 30
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Fig. 8 Classification time for all reasoners per ontology

(which, again, was set to 30 minutes). Note that, as shown in the (log-scaled) graphs, the
larger the size of the ontology, the more notable the difference of performances.

4.3 ABox query answering

Query answering requires both TBox reasoning and ABox instance retrieval. We selected
a set of available tools for the evaluation of this step. We compared CEDAR with all
OWL-API reasoners, as well as with other reasoners such as SPARQL-DL (Sirin and
Parsia 2007),14 and Jena.15 We conducted our test of ABox querying on the following four
queries we defined according to the LUBM ontology:

14http://www.derivo.de/en/resources/sparql-dl-api.html.
15http://jena.apache.org/.
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Fig. 9 TBox query response time for all reasoners per ontology

Figures 10, 11, 12 and 13 show query-answering times per query and reasoner. Each figure
shows the performance of the reasoners for ABox querying on a medium-size dataset up
to 100 thousand triples (the graphs on the left), and on a large dataset up to 5 million
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Table 3 Relative normalized average percentiles of performance times for TBox queries

triples (the graphs on the right). Due to the significant difference in response time between
HermiT and the rest of the SW reasoners, the graphs corresponding to the medium-size
dataset (on the left-hand side) use a logarithmic scale. For the large-size dataset, none of
the OWL-API reasoners could handle more that 1 million triples. Only three could hold
the load up to 5 million triples: (1) Jena with its own reasoner; (2) Jena with the CEDAR
reasoner; and (3) CEDAR with its own instance retrieval method using a type-indexed
triplestore, as explained in Section 4.4.

These figures show that HermiT has the poorest performance for ABox query answering,
even among OWL-API reasoners. It took more than 60 seconds for a dataset whose size is
10 thousand of triples and could not provide an answer before a time-out period that we set
to 30 minutes. TrOWL is the best among OWL-API reasoners in term of performance on
the medium-size dataset. However, it failed at the classification step for the large ontologies
where the cost in term of memory was around 15Gb for only 0.5 million of triples. For the
same ontologies, other OWL-API reasoners (FaCT++ and Pellet) failed to give an answer.
SPARQL-DL also showed its limits for the large dataset. Such a result was not surprising
since that SPARQL-DL engine also uses the OWL-API; hence its behavior similar to the
other OWL-API reasoners.

Pellet coupled with Jena, on the other hand, showed relatively good performance, Jena
for the large dataset, its performances are close to those of Jena internal reasoner. This may
be due to the fact that Pellet is implemented differently when used with Jena. Jena with its
own reasoner is the best among all tested, but never outperforms the CEDAR reasoner.

Finally, as clearly illustrated in Figs. 10–13, the CEDAR reasoner and SPARQL query
generator, using Jena as SPARQL query evaluator, systematically achieves the best perfor-
mances of all the systems tested in term of query answering time. This is true even without
indexing the set of triples (i.e., by fully relying on Jena’s triplestore manager). However,
just to have an idea, we implemented our own method taking advantage of encoded sorts

Fig. 10 Response time for the first ABox query
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Fig. 11 Response time for the second ABox query

to preprocess the set of triples to be queried into a type-indexed partitioned set. As shown
in the figures, the results were simply staggeringly better. The comparative normalized rel-
ative percentiles for the right-hand side graphs are shown in Table 4. We did not report
the OWL-API’s performance in these percentiles since the difference would simply be too
great.

4.4 Discussion

The results reported in this document show that CEDAR performs well for classification,
and very well for TBox reasoning and query answering. In its first version, the CEDAR
taxonomic reasoner already showed very good performance in terms of classification. In
the current version extending taxonomic reasoning to include functional and relational
attributes, classification also propagates feature domain/range declarations down the taxon-
omy and normalizes them to be consistent. As demonstrated, this new capability turns out
to be not so expensive in terms of time since it takes advantage of the fact that this is per-
formed on the taxonomy that has already been encoded. For each feature, its domain sorts
are identified by the binary codes of the original sort for which this feature was declared as
well as its subsorts. Static propagation and normalization is performed once an for all and
no lookup is ever needed thereafter for a feature’s domain and range.

The good performances we observed for the TBox reasoning step (Section 4.2) is also
related to the binary encoding technique whereby CEDAR was orders-of-magnitude faster
than the other reasoners we tested. In the current version, we have added features and
aggregates for the CEDAR reasoner. In addition to its name, a feature is identified by its
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Fig. 13 Response time for the fourth ABox query

domain and range. By this token, the TBox reasoning phase uses the binary code for query
normalization and consistency verification process. In fact, query normalization is simply
feature type inference consisting in a Boolean operation (conjunction) of the binary codes
corresponding to features’ domain/range sorts.

The results reported in Section 4.3 show that all reasoners based on the OWL-API fail
on the large dataset we used in our tests. This was not surprising to us because this con-
firmed similar evaluations done by others (e.g., (Srinivas 2009)). We are convinced that
TBox-based query normalization enabled by our attributed-taxonomy classification tech-
nique is the key boosting the efficiency of our reasoner. The generated SPARQL queries
are thus optimized using reasoning based on the knowledge represented in the TBox, itself
made efficient by feature propagation and normalization. This reasoning enables generating
queries so that a SPARQL engine executing them can sidestep generic constraint-checking
which is done statically once and for all, narrowing the search to relevant triples only. This is
in contrast with the fact that other reasoners, even when coupled with an efficient SPARQL
engine like Jena, actually use their deductive power to generate more facts from already
existing triples, thereby increasing the number of facts to retrieve from the triplestore before
filtering the relevant ones. Finally, CEDAR performs its TBox normalization statically and
saves it on disk once and for all. This is an ideal solution for its use in a dynamic environment
where the ABox changes regularly while the TBox does not.

While there are many triplestores available in the world, we restricted our study to those
using the OWL API, SPARQL-DL, and Jena. This is because our goal was not to evaluate
triplestores, but how existing Semantic Web reasoners perform with triplestores. In fact,
these triplestores do not vary much in the TBox reasoners they rely on, but they do when it
comes to optimizing queries by applying several techniques such as indexing, hashing, etc,
. . ., irrespectively of the reasoners using them. For our instance retrieval tests, we used Jena
as the SPARQL engine to use with the CEDAR reasoner since it is widely used by many
other Semantic Web reasoners.

Table 4 Relative normalized average percentiles of performance times for ABox queries

ABox Query Jena Reasoner CEDAR Reasoner CEDAR Reasoner with type indexing

Query 1 100 % 78.8 % 0.042 %

Query 2 100 % 93.1 % 0.019 %

Query 3 100 % 88.4 % 0.022 %

Query 4 100 % 90.5 % 0.035 %
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Fig. 14 ABox indexing scheme using sort encoding

In order to explore the magnitude of improvement yet possible if the underlying triple-
store had the means to index its sets of triples taking advantage of the taxonomic knowledge
available at query-generation time, we experimented with our own method for indexing a set
of triples to be queried using sort encoding. Thus, we implemented a simple type-indexing
scheme taking advantage of the bit-vector encoding. We organized the ABox in memory so
that triples of a given sort (“root” triples of this sort) are all stored contiguously. Then, in
the taxonomy array containing each sort and its properties (such as name, binary code, etc.),
we added two integer fields: one indicating the ABox index of the first triple of this sort,
and the other indicating the last such index. In this way, it is possible to iterate only over
those triples in the ABox sorted with subsorts of a given query simply by using the binary
code of the query’s root sort. This is possible since its “1” bits’ positions correspond to the
indices of its subsorts in the taxonomy array (Aı̈t-Kaci and Amir 2013). Thus, the relevant
ranges of triples stored at these indices in this array are readily accessible. Such an indexing
scheme is illustrated in Fig. 14.

Of course, when used, indexing is performed once and for all as an offline step, to be
reused on the same ABox as often as needed. By using such a scheme, the results we
obtained in this experiment for the same queries on the same (indexed) set of triples showed
that performance of query processing could be further divided by a factor in the order of
thousands. This indicates that building type-indexing using encoded sorts in an actual triple-
store management is likely to provide similar results—even if lessened to a factor of tens
for complex queries.

As a last note, and to address potential questions that could have come to the reader with a
background in database management, the results reported here are fully congruent with what
has been demonstrated by DB researchers in the early 1990’s using sorted relational logic for
improved data management (e.g., Telos (Jarke et al. 1994), ConceptBase (Mylopoulos et al.
1990), the Software Information Base (Constantopoulos et al. 1995), or LIFE (Holsheimer
et al. 1994)). Our work, however, deals with Semantic Web knowledge management, not just
(even semi-structured) data. As pointed out in Aı̈t-Kaci (2013),16 some even made use of
the same ideas of bitmap encoding techniques developed earlier (i.e., (Aı̈t-Kaci et al. 1989;

16Op. cit., Section 6: Discussion, p. 7.
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Agrawal et al. 1989)). In fact, it is all the more surprising that sorted information technology
has been so disregarded for Semantic Web processing by DL reasoners. We thus hope that
our contribution will entice the Semantic Web community to pay heed to sorted constraint
logic as an effective means of optimization for knowledge-base processing.

5 Conclusion

In this document, we have presented an implementation of a new version of the CEDAR
Semantic Web reasoner supporting reasoning with taxonomies with simple and set-valued
functional features, the latter expressing relational roles as used in Description Logic. A
comparative evaluation of CEDAR was carried out along with several of the most reputed
Semantic Web reasoners. Experiments showed that CEDAR’s performance is consistently
among the best SW reasoners in terms of classification, and several orders-of-magnitude
better in terms of TBox reasoning. CEDAR exploits the fact that its underlying logic,
Order-Sorted Feature Logic (Aı̈t-Kaci and Podelski 1992), is based on labelled graph
structures—called ψ-terms—that can be straightforwardly mapped into RDF format. We
illustrated how to transform ψ-term queries that are normalized using a TBox knowledge,
itself normalized, into optimized SPARQL queries. This TBox normalization ensures con-
sistency of the TBox knowledge, which in turn can be used to normalize the generated
SPARQL queries to reduce the search space of the SPARQL engine.

As for the future, we are extending this work to enable CEDAR to support more com-
plex ontologies and queries such as disjunction or filtering. Since full OSF Logic is a
powerful knowledge description and reasoning formalism that goes beyond simple conjunc-
tive queries, the main part of the work to be done is to adapt its operational semantics to the
context of Semantic Web. We are also working on developing our own distributed triple-
store management system for efficient instance retrieval and advanced indexing methods
from secondary-storage or networked data (Chen et al. 2014).
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