
Solving Type Equations by Graph Rewriting

Hassan Ait-Kaci

Microelectronics and Computer Technology Corporation 1
9430 Research Boulevard
Austin, Texas 78759-6509

(512) 834-3354

1. Introduction
The first part of this paper focuses on syntactic properties of record-like type structures. A syntax of structured

types is introduced as labelled infinite trees, which may be seen as extrapolated from the syntax of first-order

terms as used in algebraic semantics [8, 14, 15]. However, since the terms defined here are not to be interpreted

as operations, the similarity is purely syntactic. A calculus of partially-ordered record structures is presented. It

is then extended to variant record structures through a powerlattice construction. The second part deals with

solving recursive type equations in a lattice of variant records. An operational semantics of type structure

rewriting is first informally described. Then, a fixed-point semantics is discussed. Finally, a discussion of the

correctness of the former with respect to the latter concludes the paper.

2. A Calculus of Type Subsumptlon
The notion of subtyping has recently been integrated as a feature in some programming languages, although in

a limited fashion. For example, in PASCAL it is provided only for so-called s imple types like enumeration or

range types. For more complex types, in general, subtyplng is not impl ic i t ly inferred. For example, in ADA, one

must declare explicit ly most subtyping relationships. This is true even in those formalisms like KL-ONE [5] or

OBJ [11] where subtyping is a central feature. The only formalism which may be used for implicit subtyping is

provided by first-order terms in PROLOG as first-order term instantiation. However, even this representation is

limited as a model for partially ordered type structures. Nevertheless, it is of great inspiration for what is

desired, which is a practical system of type structures which must have at least as much expressive power as

offered by, say, classical record structures, as well as the capability of efficiently automating subtyping

inference, and the construction of new structures from old ones.

A specific des ideratum can be informally sketched as follows, a structured data type must have:

• a head symbol which determines a class of objects being restricted;
a attributes (or f ields, or slots, ete.,) possessed by this type, which are typed by structured types

themselves;
• coreferenee cons train ts between attributes, and attributes of attributes, etc., denoting the fact that

the same substructure is to be shared by different compositions of attributes.

Then, a type structure t I is a subtype of a type structure t 2 if and only if:

• the class denoted by the head of t 1 is contained in the class denoted by the head of t2; and,
• all the attributes of t 2 are present in t 1 and have types which are subtypes of their counterparts in

t2; and,

1Research described in this paper was done while the author was at the University of Pennsylvania, Philadelphia.

159

• all the coreference constraints binding in t 2 are also binding in t 1.

For example, understanding the symbols s t u d e n t , p e r s o n , p h i l a d e l p h i a , c l tyname to denote sets of

objects, and if s t u d e n t ~ p e r s o n and p h i l a d e l p h i a < c l tyname denote set inclusion, then the type:

should be a subtype of:

student(id => name(last => X:strlng);
lives at => Y:address(elty => philadelphia);
father=> person(Id => name(last => X);

llves_at => Y));

person(ld => name;
lives at => address(city => cltTaame);
father => person) ;

The letters X, Y in this example denote coreference constraints as will be explained. Formalizing the above

informal wish is what this section attempts to achieve.

2.1. A Syn tax of S t r u c t u r e d Types

Let Z~ be a partially ordered signature of type symbols with a top element 7-, and a bottom element _J_. Let L

be a set of label symbols, and let T be a set of tag symbols, both non-empty and countably infinite. I shall

represent type symbols and labels by strings of characters starting with a lower-case letter, and tags by strings

of characters starting with an upper-case letter.

A simple "type-as-set" semantics for these objects is elaborated in [1]. It will suffice to mention that type

symbols in /~ denote sets of objects, and label symbols in L denote the intension of functions. This semantics

takes the partial ordering on type symbols into set inclusion, and label concatenation as function composition.

Thus, the syntax of terms introduced next can be interpreted as describing commutative composition diagrams

of attributes.

In a manner akin to tree addressing as defined in [8, 12, 13], I define a term domain on L to be the skeleton

built from label symbols of a such a commutative diagram. This is nothing but the graph of arrows that one

draws to picture functional maps. Formally,

Defini t ion 1: A term (or tree) domain /% on L is a set of finite strings of labels of L such that:

a/% is prefiz-closed; i.e., if u , v E L* and u . v E A then u E/%;
•/% is f ini tely branching; i.e., if u E/%, then the set {u. a 6 /% t a q L) is finite.

It follows from this definition that the empty string e must belong to all term domains. Elements of a term

domain are called (term) addresses. Addresses in a domain which are not the prefix of any other address in the

domain are called leaves. The empty string is called the root address. For example, if L = { i d , b o r n , day,

month, y e a r , f i r s t , l a s t , f a t h e r) , a term-domain on L may be A 1 = (e , b o r n , b o r n . d a y ,

b o r n . m o n t h , b o r n . y e a r , l d , l d . l a s t , f a t h e r , f a t h e r . i d , f a t h e r . i d . f i r s t) . A term domain

need not be finite; for instance, the regular expression /%2 = a (ba)*+(ab)* , where a , b q L, denotes a

regular set (on {a ,b} , say) which is closed under prefixes, and finitely branching; thus, it is a term domain and

it is infinite.

Given a term domain A an address w in A, we define the sub-domain of/% at address w to be the term domain

/%\w = {w ° I w.w ° E /%). In the last example, the sub-domain at address b o r n of/%1 is the set {e, day,

month, y e a r) , and the sub-domain of/%2 at address a . b is/%2 itself.

Defini t lon 2: A term domain/% is a regular term domain if the set of all sub-domains of A defined
as Subdom(/%) = {/%\w I w q A} is finite.

In the previous examples, the term domain /%1 is a finite (regular,) term domain, and /%2 is a regular infinite

term domain since Subdom(/% 2) = {/%2' b./%2), In what follows, I will consider only regular term-domains.

160

The "flesh" tha t goes on the skeleton defined by a term domain consists of signature symbols labelling the

nodes which are arrow extremities. Keeping the "arrow graph" picture in mind, this stands for information

about the origin and destination sets of the arrow representation of functions. As for notation, I proceed to

introduce a specific syntax of terms as record-like structures. Thus, a term has a head which is a type symbol,

and a body which is a (possibly empty) list of pairs associating labels with terms in a unique fashion -- an

association list. An example of such an object is shown in figure 2-1.

person(Id => name;
b o r n => d a t e (d a y => i n t e g e r ;

m o n t h => monthname;
y e a r => I n t e g e r) ;

f a t h e r => p e r s o n) ;

Figure 2-1: An example of a term structure

The domain of a term is the set of addresses which explicitly appear in the expression of the term. For example,

the domain of the above term is the set of addresses (e , l d , b o r n , b o r n . d a y , b o r n . m o n t h , b o r n . y e a r ,

f a t h e r) .

The example in figure 2-1 shows a possible description of what one may intend to use as a structure for a

person. The terms associated with the labels are to restrict the types of possible values that may be used under

each label. However, there is no explicit constraint, in this particular structure, among the sub-structures

appearing under distinct labels. For instance, a person bearing a last-name which is not the same as his father's

would be a legal instance of this structure. In order to capture this sort of constraints, one can tag the addresses

in a term structure, and enforce identically tagged addresses to be identically instantiated. For example, if in

the above example one is to express that a person's father's last-name must be the same as that person's last-

name, a better representation may be the term in figure 2-2.

persou(td => n a m e (l a s l ~ => X:strlng);
b o r n => d a t e C d a y => i n t e g e r ;

month => monthn~e;
y e a r => i n t e K e r) ;

father => persou(ld => name(last => X:strlng)));

Figure 2-2" An example of tagging in a term structure

Def in i t i on 3: A term is a triple (A , ¢ , T) where A is a term domain on L, ¢ is a symbol function

from L* to ~U such that ~b(L*-A) = (T}, and r is a tag function from A to T. A term is finite
(reap. regular) if its domain is finite (reap. regular).

Such a definition illustrated for the term in figure 2-2 is captured in the table in figure 2-3. Note the wsyntactlc
sugar ~ implicitly used in figure 2-2. Namely, I shall omit writing explicitly tags for addresses which are not

sharing theirs. In the sequel, by "term" it will be meant "regular term".

Given a term t = (A , ¢ , r) , an address w in z~, the subterm o f t at address w is the term t \ w =

(A\W,¢\W,T\W) where ¢\w: L* --* E a n d r\w: A\w -~ 7"are defined by:

• ¢\wCw') = ¢(w,w') Vw" ~ L*;
• r\w(w') = r(w.w') Vw" E ~\w.

From these definitions, i t is clear that t \ e is the same as t . In example of figure 2-2, the subterm at address

f a t h e r , l d is name (l a s t => X: s t r i n g) .

Given a term t = (~ ,~b , r) , a symbol f , (reap., a tag X, a term %,') is said to occur in t if there is an address w

161

e person X 0
ld name X 1
l d . l a s t s t r l n K X
born date X 2
born,day In teger X 3
born.month monthname X 4
born .year in teger X 5
fa ther person X s
f a t h e r . i d name X 7

f a t h e r , i d . l a s t s~r lng X

F i g u r e 2-3: (A , ¢ , r) - d e f i n i t i o n of the t e rm in figure 2-2

in z~ such t h a t ¢ (w) = f (reap., r (w) = X, t \ w = t ') . The following proposi t ion is immedia te and follows

by definition. 2 .

P r o p o s i t i o n 4: Given s te rm t = (A , ¢ , r) , the following s t a t emen t s are equivalent:

• t is a regular term;
• The number of subterms occurring in t is finite;
• The number of symbols occurring in t is finite;
• The number of tags occurring in t is finite.

I t follows tha t a eoreference re la t ion on a regular t e rm domain has finite index.

D e f i n i t i o n 5: In a term, any two addresses bear ing the same tag are said to corder . Thus, the
coreferenee re la t ion ~ of a t e rm t = (A , ¢ , r) is a re la t ion defined on A as the kernel of the tag
function r, i.e., ~ = K e r (r) = ~ r -1.

W e immedia te ly note t h a t ~ is an equivalence re la t ion since i t is the kernel of a function. A ~-elass is called a

coreferenee class. For example, in the t e rm in figure 2-2, the addresses f a t h e r . i d . l a s t and i d . l a s t

corder .

A te rm t is referentially consistent if the same sub te rm occurs a t al l addresses in a coreference class. T h a t is, if

C is a coreference class in Xi/~ then t \ w is identical for all addresses w in C. Thus, if a t e rm is referential ly

consistent, then by definit ion for any wl , w 2 in A, if r (w 1) = r (w 2) then for al l w such t h a t w l . w E A,

necessarily w 2 . w E ~ also, and r (w 1 . w) = r (w 2 . w). Therefore, if a t e rm is referent ial ly consistent, ~ is in fact

more than a s imple equivalence relation: i t is a right-lnvariant equivalence, or a right-congruence, on A T h a t

is, for any two addresses w 1, w 2, if wl~w 2 then w 1 .w~w2.w for any w such t h a t w 1 .w G A and w 2 .w E A.

D e f i n i t i o n 8: A well-formed term (wft) is a t e rm which is referent ial ly consistent.

I shall use th is proper ty to just i fy another syntact ic "sweetness": whenever a tag occurs in a t e rm wi thou t a

subterm, wha t is meant is t h a t the subterm elsewhere referred to in the t e rm by an address bear ing this tag is

impl ic i t ly present. If there is no such subterm, the impl ic i t sub te rm is T . For example, in the t e rm f o o (1 1 =>

X; 1 a => X : b a r ; 1 s => ¥ ; 14 => Y), the sub te rm a t address 11 is b a r , and the subterm a t address 14 is

T - In w h a t follows, 7- will never be wr i t t en explici t ly in a term.

Note t h a t i t is quite possible to consider in f in i te t e rms such as shown in figure 2-4. For example, a t the

addresses f a t h e r and f a t h e r , s o n . f a t h e r , is a phenomenon which I call cyclic tagging.

Syntact ical ly , cycles may also be present in more pathological ways such as p ic tured in figure 2-5, where one

mus t follow a p a t h of cross-references.

2Also estsblished in [8]

162

person(id => name(last => X:string);
born => date(day => integer;

month => monthname;
year => integer);

father => Y:person(Id => name(last => X:strlng);
son => person(father => Y)));

Figure 2-4- An example of simple cyclic tagging in a term structure

fO0(l I => Xl:fOO1(k I => X2);
12 => X2:foo2(k 2 => Xs);

11 :> Xi:fO%(k I => Xi.1);

i => X :foo (k => Xl));

Figure 2-5: An example of complex cyclic tagging in a term structure

A term is referentially acyclic if there is no cyclic tagging occurring in the term. A cyclic term is one which is

not referentially acyclic. Thus, the terms in figures 2-4 and 2-5 are not referentially acyclic. A wft is then best

pictured as a labelled directed graph as illustrated in figure 2-6 which is the graph representation of the wft

below. Thus, labels act as arcs between nodes bearing type symbols. Tags are physical pointers to nodes,

indicating which nodes ace shared.

Xo:f,(l ~ => x~:f~(l 2 => X2;

1 s => fs);
14 => X2;
1 s => fs(le => XI;

17 => Xs:fs;
i s => xs) ,
zg :> x o))

I I s g
1

Figure 2-8: Graph representation of a wft

In figure 2-6, the similarity with finite states diagrams is not coincidental. And thus, it follows that a term is

referentially acyclic if and only if its term domain is finite. Also, any term (cyclic or not) expressed in the

above syntax is a regular term.

t63

The set of well-formed terms is denoted ~Y-5. The set of well-formed acyclic terms is denoted)g~r/~ 7" and is a

subset of ~T~.

I shall not give any semantic value to the tags aside from the coreference classes they define. The following

relation a on ~TT is to handle tag renaming. This means that a is relating wft's which are identical up to a

renaming of the tags which preserves the coreference classes.

Defini t ion 7: Two terms t, 1 = (A 1 '¢1 ' r l) and 1;2 = (A2'~b2'r2) are alphabetical variants of one

another (noted 1;1 a 1;2) if and only if:

1. A 1 = z52;
2. K e r (r 1) = Ker (r2) ;
3. ¢ 1 = % ,

Interpreting these structures as commutative diagrams betweens sets, it comes thut the symbols ~ and 1

denote, respectively, the whole universe -- nanything ~ -- and the empty set -- nineonsistent #. Hence, a term in

which the symbol _]_ occurs is to be interpreted as being inconsistent. To this end, we can define a relation ~ on

~) T T - smashing - , where 1;1~1; 2 if and only if .J_ occurs in both t t and 1;2' to be such that all equivalence

classes except [.J_] are singletons. Clearly, if _l_ occurs in a term, it also occurs in all terms in its a-class. In

the way they have been defined, the relations a and 1[are such that their union ~ = a t.J ~ is an equivalence

relation. Thus,

Defini t ion 8: A e-type is an element of the quotient set ~ = ~YT/~. An acyclle C-type is an
element of the quotient set ~0 = ~jr~ T /~ .

2.2. T h e S u b s u m p t l o n Ordering
The partial ordering on symbols can be extended to terms in a fashion which is reminiscent of the algebraic

notion of homomorphie extension. I define the subsumption relation on the set • as follows.

Definit ion 9: A t e r m ~1 ~ (A l ' ~ l ' r l) 18 subsumed by a term "6 2 = (A 2 , ¢ 2 , r 2) (noted
t l ~ t 2) , if and only if either, tl~_l_; or,

I. A 2 _C ~1;
2. K e r (r 2) C K e r (r l) ;

3, ¢1(w) < ¢2(w), Vw E L*.

It is easy to verify that a subsumption relation on ~ defined by [1;1] ~ [1;2] if and only if 1;1-----1;2 is well-defined

(i.e., it does not depend on particular class representatives) and it is an ordering relation, s

This notion of subsumption is related to the (in)famous IS -A ordering in semantic networks [5, 6], and the tuple

ordering in the so-called semantic relation data model [4]. It expresses the fact that, given a C-type 1;, any

C-type 1:," defined on at least the same domain, with at least the same coreference classes, and with symbols at

each address which are less than the symbols in 1; at the corresponding addresses, is a subtype of 1;. Indeed, such

a t " is more specified than 1;.

The =homomorphie" extension of the ordering on E to the subsumption ordering on • can be exploited further.

Indeed, if least upper bounds (LUB) and greatest lower bounds (GLB) are defined for any subsets of ,U, then this

property carries over to fit

T h e o r e m 10: If the signature ,U is a lattice, then so is ~.

Rather than giving formal definitions for the meet and join operations on if', let us illustrate the extended lattice

31a the sequel, I shall use the (abusive) convention of denoting a ~type by one of it8 class representatives, understandi.g that what is
meant is modulo tag rs.aminy and ~masMng.

164

T

person witch monarch

adul t ch i ld en

t e e ~ _ q u e e n

/

F i g u r e 2-7: A s ignature which is a la t t ice

operat ions wi th an example. Figure 2-7 shows a s ignature which is a f inite (non-modular) latt ice. Given this

s ignature , the two types in figure 2-8 a d m i t as meet and join the types in figure 2-9.

child(knows => X:person(knows => queen;
hates => Y:monarch);

hates => child(knows => Y;
likes => wlcked_queen);

l i k e s => X);

adult(knows => adult(knows => witch);
hates => person(knows => X:monarch;

likes => X));

F i g u r e 2-8." Two wft ' s

person(knows => person;
hates => person(k~ows =>monarch;

l i k e s => monarch));

teenager(knows => X:adult(knows => wlckedqueen;
hates => Y:wickedqueen);

hates => child(knows => Y;
l i k e s => Y);

likes => X);

F i g u r e 2-9: LUB and GLB of the two types in figure 2-8

The reader is referred to [1] for the detai led definit ions of the meet and join operat ion on ~. I t suffices here to

say t h a t they are essential ly extensions of the unif icat ion [15, 20] and generalization [19] operat ions on regular

f irst-order terms. Indeed, these operat ions are special cases of my definit ions when (i) ~ is a flat latt ice, (il} a
coreferenee class may conta in more than one element i f f al l of i t s elements are leaves and the symbols occurring

a t these leaves are res t r ic ted to be 7-.

An i m p o r t a n t r emark is t h a t the set ~P0 of acyclic C-types also has a la t t ice s t ructure .

T h e o r e m 11: If • is a lat t ice, then so is ~0" However ~0 is not a subla t t ice of kk

The join operat ion is the same, bu t the meet operat ion is modified so t h a t if the GLB in ~ of two acyclic terms

contains a cycle, then their GLB in ~P0 is _l_. However, ~0 is not a sublat t ice of ~, since the meet in ~P of two

165

acyclic wft 's is not necessarily acyclic. Consider, for example 4

t t = f(l I => X : f; 12 => f(l~ => X))

%~ = f(iz => X : f; 12 => X)

t I A t. 2 = f(l I => X : f(l 3 => X) ; 12 => X)

2.3, A D i s t r i b u t i v e L a t t i c e o f Types
Accepting the =type-as-set" interpretation of the calculus of ~b-types, it is yet necessary to wonder whether

lattice-theoretic properties of meet and join reflect those of intersection and union. Unfortunately, this is not

the case wi th ~. The lattice of ~/~types is not so convenient as to be distributive, even if the signature E is itself

distributive. As a counter-example, consider the flat (distributive) lattice E = {7- , a , f • J_}. Indeed,

! A Cf(1 => a) V a) = f

(t A f(l => a)) V (f A a) = f(l => a)

and this proves that Y/YFis not distributive, s

This is not the only ailment of ~YT as a type system. Recall that in order to obtain the benefit of a lattice

structure as stated in theorem 10, there is a rather strong demand that the type signature S be itself a lattice.

For a signature that would be any poset, this nice result is unfortunately lost. In practice, programs deal with

finite sets of primitive types. Even then, it would be quite unreasonable to require that all meets and joins of

those primitive types be explicitly defined. What should be typically specified in a program is the minimal

amount of type information which is to be relevant to the program. Clearly, such a signature of type symbols

should be not necessarily more than a finite incompletely specified poser of symbols.

It is hence necessary to go further than the construction of P#TT in order to obtain a satisfactory type system

which would not make unreasonable demand for primitive type information. Fortunately, it is possible not to

impose so drastic demands on L? and yet construct a more powerful lattice than ~Y-~ i.e., a distributive lattice.

The idea is very simple, and is based on observing that the join operation in • is too ~greedy = . Indeed, if one

wants to specify that an object is of type foo or bar when no explicit type symbol in L~ is known as their GLB,

then T is returned. Clearly, it is not correct to infer that the given object is of type WanythingS just because E

does not happen to contain explicitly a symbol for the GLB foo and bar. All that can be correctly said is that

the given object is of disjunctive type fooVbar.

I next give a brief summary of a construction of such a more adequate type lattice. It may be construed as a

powerdomain construction to handle indeterminacy [17]; in our case, variant records. It is not possible to detail

this construction here. The interested reader is referred to [1].

A poset is Noetherian if it does not contain infinitely ascending chains. Given a set S, the set ~(S) of finite

non-empty subsets of maximal elements of S is called the restricted power of S. If S is a Noetherian poser, the

set ~[S] of all such subsets of maximal elements is called the complete restricted power of S. Given a

Noetherian poser S, and S'__S, ~(S') is the set of maximal elements of S'.

I shall call £ the set £[~], and £0 the set P[t~o]. Clearly, £0 is a subset of £. I shall denote a singleton {t} in £

simply by ~.

4A similar phenomenon happens in unification of first-order terms where it is reason for the so-called "occur-cAex.k # testing whether a
variable occurs in a term when trying to unify that variable with the term.

5A similar result was pointed out by G.PIotkin in [18].

166

D e f i n i t i o n 12: Subsumpt ion in £ is defined by, T 1 __. T 2 if and only if every C-type in T 1 is

subsumed by some C-type in T 2.

Let ' s define a nota t iona l va r i an t of elements of £ which will have the advan tage of being more compact

syntact ica l ly . Consider the object shown in figure 2-10. The syn tax used is s imi la r to the one which has

expressed C-types up to now. However, sets of te rms ra ther t h a t te rms may occur a t some addresses.

person(sex => <ma le , female);
fa ther => Y:person(sex => male);
mother => Z:persos (sex => female);
parent => ~Y, Z));

F i g u r e 2-10: Example of a e- term

This notation may be viewed as a compact way of representing a sets of e-types. For example, the object in

figure 2-10 represents a set of four e-types which can be obtained by expansion, keeping one element at each

address. Such terms are called e-terms. An e-term can be transformed into a set of ~-types - its ¢-¢xpanslon;

i.e., the e-expansion of an e-term is the set of all possible e-types which can he inductively obtained by keeping

only one e-type at each address. The reader familiar with first-order logic could construe this process as being

similar to transforming a logical formula into its disjunctive normal form.

We are now ready to construct a distributive lattice of e-types. First, we relax the demand that the signature E

be lattice. Assuming it is a Noetherian poset we can embed it in a meet-semilattice P[~ preserving existing

GLB's. Then, we can define the meet operation on • so that whenever the meet of two symbols in not a

singleton, the result is expanded using ~b-expansion.

Theorem 13: If the signature E is a Noetherian poset then so is the lattice ~0; but the lattice ~ is

not Noetherian.

The following counter-example exhibi ts an infini tely ascending chain of wfts in k~. For any a in L and any f in

~U, define the sequence t a = (A n. ~b n , rn) , n ~_ 1 as follows:

A a : a*;

AJ~; = AJKer(~) = <<e), <a> <a'-i), a'.a*).

This clearly defines an infinite strictly ascending sequence of regular wft's since, for all n_~0:

A. I C An;

In our syntax, this corresponds to the sequence:

t o = x : f(a => x),

t I = f(a => x : f(a => x)).

t s = f(a => f(a => x : !(a => x)))

t n = f(a => f(a => ... f(a => x : f(a => x))...))
< rL+ l a ' s •

We define two binary operations Vl and Li on the set £0" For any two sets T i and T 2 in £0:

167

T t 17 T 2 = ~ ((t I t = t, lA t 2, t, 1 E T1, t 2 E T2});

T 1 II T 2 = ~ (T 1 U T2).

where A is the meet operation defined on ~0' Then, for any poset E containing -r- and _J_,

T h e o r e m 14. The poset £0 is a distributive lattice whose meet is Iq, whose join is II, and whose top

and bottom are { T } and {_1_}.

It is not possible to define lattice operations for £ because ~/is not Noetherian. Hence, the set of maximal

elements of a set cannot be defined for all sets. However, if only finite sets of regular wft's are considered, then:

T h e o r e m 15= The poser ~(~) of f ini te sets of incomparable regular wft 's is a distributive lattice.

However, it is not complete. It is also true that ~(~0) C £(~) and ~(~0) is a distributive lattice, but it is not a

sublattice of £. In general, the GLB of elements of ~(~0) is a lower bound of the GLB of these elements taken in
£c~).

A Brouwerian lattice L is a lattice such that for any given elements a and b, the set (x E L I a A x _< b}

contains a greatest element, written as a--~b. An interesting point is that (i) any Brouwerian lattice is

distributive but, not conversely; and (ii} any Boolean lattice is Brouwerian, but not eonveraely [3}. Thus, the

class of Brouwerian lattices lies strictly between the class of distributive lattices and the class of Boolean lattices.

T h e o r e m 10: If the signature L" is a Noetherian poset then the lattice £0 of all sets of finite wfts is

a complete Brouwerian lattice.

To answer the question that might be hovering in the reader's mind, 6 the fact that the lattice £0 is a complete

Brouwerian lattice reveals itself invaluable for showing the existence of solutions to systems of equations. Apart

from its lattice theoretic properties, a Brouwerian lattice is interesting as it forms the basis of an intnitionistic

propositional logic, due to L.E.J.Brouwer [7, 10].

Unfortunately, theorem 16 does not hold for £ the lattice of all regular terms since the lattice £ is not complete.

On the other hand, I do not know whether £ is Brouwerian.

3 . P r o g r a m s a s R e c u r s i v e T y p e E q u a t i o n s

Consider the equations in figure 3-1. Each equation is a pair made of a symbol and an e-term, and may

intuitively be understood as a definition. I shall call a set of such definitions a knowledge base. 7

Defini t ion 17" A knowledge base is a function from •-{.1_} to £0 which is the identity almost

everywhere except for a finite number of symbols.

So far, the partial order on ~ has been assumed predefined. However, given a knowledge base, it is quite easy to

quickly infer what I shall call its implicit symbol ordering. For example, examining the knowledge base in figure

3-1, it is evident that the signature E must contain the set of symbols { l i s t , cons , n ± l , append,

a p p e n d 0 , append_l}, and that the partial ordering on E is such that n l l < 11s1~, cons < 1 1 s t ,

append_0 < append, append_l < append. In general, this ordering can always be extracted from the

specification of a knowledge base.

Defini t ion 18: A knowledge base is well-deflned if and only if it admits an implicit symbol
ordering.

6Namely, uSo what,'... ~

7Or program, or type environment... Nevertheless, knowledge base is a deliberate choice since what is defined is in essence an abstract
semantic network.

168

l l s t = {all, cons};

append = {append_O, append_l};

append_O =
(front => nil;
back => X:list;
whole => X);

append_l =
(f r o s t => cons(head => X; t a l l => Y) ;
back => Z:llst ;
whole => cons(head => X; t a l l => U);
pa tch => a p p e n d (f r o n t => Y; back => Z; whole => U)) ;

Figure 3-1" A specification for appending two lists

I want to describe an interpretation of any given type in the context of this knowledge base so that expanding
the input aeeording to the specifications wilt produce a consistently typed object. A ~-type is evaluated by

"expanding ~ its root symbol if its knowledge base value is not itself; i.e., substituting the root symbol by its

knowledge base value by taking the meet of this value and the ~-type whose root symbol has been erased

(replseed by T) . If the root symbol is mapped to itself by the knowledge base, the process is applied recursively

to the subterms. Recalling the "type-as-set" semantics of ~-types and t-types, this process essentially computes

unions and intersections of sets. The symbol substitution process is to be interpreted as importing the

information encapsulated in the symbol into the context of another type.

Let's trace what the interpreter does, one step at a time, on an example. Let's suppose that the knowledge base

in figure 3-1 is defined. Consider the following input:

append(front => cons(head => 1;
tai l => cons(head => 2;

tail => nil));

back => cons(head => 3,
tail => nil));

Next, the interpreter expands append into {append 0, append_l}:

{appeud_O(frost => cons(bead => 1;
ta l l => cons(head => 2;

tail => nil));

back => cons(head => 3;

tall => nil)),

append_l(front => cons(head => 1;

tall => cons(he~d => 2;

tail => nil));

back => cons(head => 3;

tail => nil))>;

Each of these two basic e-terms is further expanded according to the definitions of their heads. However, the

first one (append_O) yields / since the meet of the subterms at f r o n t i s / . Hence, by ~-reduction, we are

left with only:

169

(front => cons(head => i;
tall => cons(head => 2;

tall => all));

back => cons(head => 3;
tall => nil);

whole => cons(head => I:

tall => U):
patch => append(front => cons(head => 2;

tail => nll);

hack => cons(head => 3:
tall => nil):

whole => U));

The process eon~nues, expanding the subterms: 8

(front => cons(head => 1;
t a i l => cons(head => 2 ;

t a l l => nil));
back => c o n s (h e a d => 3;

t a i l => n i l) ;
w h o l e => c o n s (h e a d => 1 ;

t a l l => c o n s (h e a d => 2 ;
tall => U));

patch => (front => cons(head => 2;
tall => nil):

hack => cons(head => 8;
tail => nil);

patch => append(front => nil;
back => cons(head => 3;

t a l l = > n i l) ;
whOle => U);

whole => cons(head => 2;
tail => U)));

Finally, the following term is obtained which cannot be further expanded. The interpretation of append has

thus correctly produced a type whose whole is the concatenation of its f r o n t to its end. The result could be

isolated by projection on the field whole if desired. The attr ibute p a t c h is the history of the computation.

(front => cons(head => 1 :
tail => cons(head => 2;

tall => nll));

back => cons(head => 3;
tall => nil);

whole => cons(head => I;
t a i l => cons(head => 2 ;

t a i l => cons(head => 3 ;
tall => nil)));

patch => (front => cons(head => 2;
tall => nil);

b a c k => c o n s (h e a d => 3 ;
tall => nil);

patch => (front => nil;
back => cons(head => 3;

tall => nil);
whole => cons(head => 3;

%all => nil));

WhOle => coss(head => 2;
tall => cons(head => 3;

tall => all))));

Computation in KBL amounts essentially to term rewriting. In fact, i t hears much resemblance with

computation with non-deterministic program schemes [9, 16], and macro-languages and tree grammars [14]. This

section at tempts a formal characterization of computation in KBL along the lines of the algebraic semantics of

8For what remains, I shall leave out the details of cleaning-up .L by R-reduction.

170

tree grammars [2, 14]. Symbol rewriting presented in this section is very close to the notion of second-order

substitution defined in [8] and macro-expansion defined in [14].

It is next shown that a KBL program can be seen as a system of equations. Thanks to the lattice properties of

finite wft's, such a system of equations admits a least f'L~ed-point solution. The particular order of computation

of KBL, the #fan-out computation order", which rewrites symbols closer to the root first is formally defined

and shown to be maximal; i.e., it yields "greater" e-types than any other order of computation. Unfortunately,

the complete "correctness u of KBL is not established. That is, it is not known (yet) whether the normal form of

a term is equal to the IrLxed-point solution. However, as steps in this direction, two technical lemmas are

conjectured to which a proof of the correctness is corollary.

All wft 's considered hereafter are f inite. Hence, I shall not bother mentioning the adjective "finite" when

dealing with wft's for the rest of this paper.

3.1. W i t s u b s t i t u t i o n
I next introduce and give some properties of the concept of wft substitution. Roughly, given a wft t such that a

symbol f occurs at address u in t , one can substitute some other wft t ' for f at address u in t by "pasting-in"

t ' in t a t that address.

Given a wft t ~ (A , ¢ , r) and some string u in L*, I define the wft u , t to be the smallest wft containing t at

address u; tha t is, u. t = (u . A u . ¢ , u, ~) where

• u . A = {w E / - *] w = u . v . v E A) ;
• u . ¢ (w) = i f w = u . v then ¢ (v) else T ;
• u . r : u . A --, T such that u . r (v) = u . r (w) i f f v = u . v ' , w = u.w" and

r C v ') = T (w ') .

This can be better visualized as the wft obtained by attaching the wft t at the end of the string u.

Let u l , 1=1 n be mutually non-eoreferring addresses in A and let f l ' 1=1,n be symbols in E.

Then, the wft t [u l : f 1, . . . , u n : f n] is the wit (A,g~,r) , where ~b coincides with ¢ everywhere except for the

eoreference classes of the u i ' s where ~b([u i]) = f l for 1=1 n. It is clear that the term obtained is still

well-formed.

D e f i n i t i o n 19: Let t = (A , ¢ 0 r) b e a wft and u some address in A and let t ' be a wft. The term

t i t ' / u] is defined as t i t ' / u] = t [u : T] A u . t ' .

This operation must not be confused with the classical tree grafting operation which replaces a subtree with

another tree. The operation defined above super-imposes a term on a subterm with the exception of the root

symbol of that subtree which becomes equal to the root of the replacing tree. Note that _j_ may result out of

such a substitution. To illustrate this operation, if t is the wft

(front => cons(head => X 1 : I;
tall => X~ : cons(head => 2;

tail => nil));
hack => X s : cons(head => 3; tall => nil);
whole => cons(bead => Xi; tail =>](4);
patch => append(front => X2; back => Xs; whole => X4));

and t " is the wft

(front :> cons(head :> X; tall :> Y);
back => Z;
whole => cons(head => X; tall => U);
patch => append(front => Y: back => Z; whole => U));

then t [t'/patch] is

171

(f r o n t => c o n s (h e a d => X 1 : i ;

tail => X~ : cons(head => X s : 2;

t~ll = > X s : nil))~

b~ck => X s : cons(he~d => 3;

t~ll => nil):

whol~ :> cons(head => XI:

tall => X 7 : cons(head => XS;

ta i l => x~)):
patch => (f r o n t => X~;

back => XS:

p a t c h => a p p e n d (f r o n t => Xs;

back => Xs;
whole => X 4) ;

whole :> X?)).

Next, I give a series of "surgical m lemmas about this substitution operation which will be needed in proving key

properties of KBL's computation rule. The first lemma states the intuitively clear fact that which address is

picked out of a coreference class in a substitution does not affect the result. This is made apparent as depicted

in figure 3-2.

F igure 3-2: Substitution at coreferring addresses

L e m m a 20: Let t = (A , ¢ , r) and t " be wft's, and let ul, u 2 be two coreferring addresses in z~.

Then, (t [t ' / u l]) [t ' / u 2] = t [t ' / u 1] = t [t * / u 2] = (t [t ' / u 2]) [t ' / u l]

An address u c o v e r s an address v in a wft if there exists an address u ° in [u] such that v = u" . w for some w

in L*. That is, u covers v in t if v occurs in t \ u .

Next, it is important to analyze the extent to which a sequence of substitutions is affected by the particular

order in which they are performed. Specifically, order of two substitutions will not matter if the addresses do

not cover each other; however, order of substitutions will matter if one of the two addresses covers the other.

We first need a small technical lemma.

Lemma 21." If u and v are addresses in a wft t which do not cover each other, then for any wft t',

(t[u:T] ^ u.t')[v:T] = t[u:T,v:T] ^ u.t"

The next lemma gives a sufficient condition for commutativity.

Lemma 22: Let t = (z~,¢,r), tl, t 2 be wft's, and let ul, u 2 he two addresses in A which do not

cover each other. Then,

(t [t l / u 1]) [t~ /u 2] = (t [t 2 /u 2]) [t / u ~]

The second lemma complements the previous one and shows that the order of substitution matters for covering

addresses. However, the wft resulting from performing the "outermost" substitution first subsumes the wft

172

resulting from performing the "innermost = substitution first. The picture in figure 3-3 may help illustrate the

argument.

Figure 3-3: Substitutions at covering addresses

Lemma 23: If two addresses u i and u 2 in a wft t are such that u i covers u2, then

(t [t2/u 2]) [t i /u 1] -< (~ [t t /u 1]) [t2/u 2]
for any wft's t l and t 2.

The objective of these lemmas is to help show that the particular order of performing substitution performed by

the KBL interpreter yields an e-type that subsumes all e-types obtained by any other order of computation.

Next, the Jan-out computa t ion theorem 2{} is proposed to that effect, using the above technical lemmas.

The following notion will be useful in expressing an ordering on the addresses of a wft. The notion of radius of

an address is a measure how "close to the root = an address is; that is, the shortest (in length) in the coreference

its class. Given a string u in L*, [ul denotes its length; i.e., the number of labels which constitute u.

Defini t ion 24: Let t = (A , ¢ , r) be a wft; then, the radius of an address u in A is defined as p(u)
= Min({ lv l I v e [u]}) .

That such a minimum number exists for all classes is clear. Recall that lemma 20 states that a substitution can

be performed at any address in a eoreference class with the same result. For this reason, it will be implicit in all

substitutions considered hereafter that the address at which the substitution is performed is a minimal length in

its class.

Defini t ion 25: A sequence of addresses ul, 1=1 n of a wft 1~ is in nfan-out ~ order if and only

if l < J implies p (u l) < p (u j) .

For example, in the wft:

t = f,(1, => xi:f2(t = => x2;
1 s => fs) ;

14 => x2;
16 => f4(16 => xl;

17 => Xs;fs;
:8 => xs))

the sequence e, 15.18, 14, 18.17, 11.1 s is in fan-out order. However, the sequence c, l s . 1 e, 14, 11.13,

1 s is not. In the sequel, I shall lighten the notation (t [t i / u 1]) [t2 /u 2] to t [t l / u l] [t2/U2].

The following theorem is a consequence of the temmas just presented.

T h e o r e m 26: Let t be a wft, and U = {u 1 u n} a set of mutually non-core]erring addresses of

t, such that the sequence ul, 1=1 n is in fan-out order. Let ~r be a permutation of the set

173

{1 n} such that lr(ut) , l = l n is also in fan-out order. Then, for any set of wft's

{ t 1 in) ,

t [t l / u 1] . . . [~ ,n /un] = t [t (1)/U (1)] . . . [t (n)/Un(n)].

Moreover, if the permutation ~ destroys fan-out order, then

t [t t / U l] - - . [tn/u n] -~ t [t (I)/U~.(I)].., [t~(n)/U~(n)]"

Substitution is extended to e-types as follows: for any t in k~0, T in £0' and any u in A ,

t i T / u] = {_{t.eTt[t ' /U].

(i)

(2)

3.2. Symbol Rewr i t ing Sys t ems

Defini t ion 27: A Symbol Rewriting System (SRS) on ~ is a system S of n equations S : s I = El,

wheres I E ~ a n d E t E £ 0 , f o r l = 1 n.

Given such a system S, I shall denote by E the subset {s 1 s n} of E of S-expandable symbols, and N the

set ,U-E of non-S-expandable symbols of E. An example of a SRS is given by figure 3-1. There, we have E =

{ l l s t , append, append_O, append_l} and N = { a l l , cons) .

Definit ion 28: Let S: s 1 = T 1 be a SRS. It defines a one-step rewriting relation ~-~ on £0 as

follows: T 1 ~-+ T 2 if and only if there is a wft 5 E T 1, some address u in A t and some index

iE (1 n} for which C t (u)=s t , such that T 2 = (T l - { t }) U t [E J u] .

In words, this expresses the fact that the e-type T 2 is obtained from the e-type T 1 by picking out some element

of T1, substituting for one of its occurrences of some expandable symbol the right-hand side of this symbol in S,

and adjoin the result to the set keeping only maximal elements. This process is illustrated by the first step of

the trace of KBL shown on page 11.

I shall denote by ~* for k_>O the relation ~, composed with itself k times, and by g* the reflexive and
oo k transitive closure of ~" ; that is, the relation Uk= 0 ~-~.

In the foregoing, the notation for the sets ~' of C-types and £ of c-types was implicitly understood to depend on

the signature of symbols /~. Whenever it will be necessary to make this more explicit I shall use the notation

~'[L'] and £ [L-~].

D e f i n i t i o n 29: Let S be a SRS, and t be a wft. The S-normal form of an e-type T is defined as

~(T) = U{T" e £o[N] I r ~ T'}

That is the LOB of all terms containing no more expandable symbols that can be rewritten from T. Since £0 is a

complete lattice, this is well-defined. Notice that a normal form is defined as a join of all possible rewriting of

an e-type. Thus, by theorem 26, we can restrict this definition only to sequences of rewritings in fan-out order

without losing anything in the definition of a normal form.

To lighten notation, I shall make use of vector notation to denote elements of £3 the set of n-tuples of e-typss ;

e.g, T = <T 1 T > , T i E £0' 1=1 n. Hence, a symbol rewriting system S of n equations, is denoted

by a single vector equation ~+ = E . Given such a SRS, I shall use either indices in {1 n} or the symbols

s I to index the components of a vector T+ m" £0'~" t'.e., Tsl = T~. There should be no confusion since the s i ' s will

be assumed distinct. Vector rewriting is the appropriate obvious extension to vectors of e-types of the ~+

relation, and so is the definition of vector normal form ~(T+).

174

Given a SRS S: ~' = E* and a wft t , X (t , ~) denotes the set of (minimum radius) addresses in t whose symbols

are S-expandable. That is,

X (t , ~) = {u 6 A t I C t (u) = s t , f o r s o m e i=1 n}.

Any indexing of X (t , W) = {u 1 u m} will be assumed to be a / a n - o u t index ing . That is, one such that the

sequence (u 1 u m) is in fan-0ut order. For example, taking the wft t on page 15 and ~ = <f2" f4" f s > we

h a v e X (t , ~ ') = {11, 1 s , l s . l r } .

The objective here is to define the operation of applying a fan-out sequence of substi tut ions of e-types to a wft t

at M1 expandable addresses of t . This operation is denoted t [T ' /~ '] and defined as:

t [TI~] = t [T%%)/u~] ... [T%%)lu,] (3)

where {u t u s} = X(t,~'). By theorem 26, it is evident that this is a well-defined operation. I shall

condense notation in 3 to:

t IT'll'] = t [T~t(u) lu] uex(~,~)

Let's illustrate this operation on a small example. Let's take ~' = <s i , s2> and T = <T I ,T2> with

T t = { f (1 1 => X; 12 => X) , g}

T 2 = h (l 2 => X; i 3 => X)

and the term

t = s i (l I => s2; 13 => s l) .

The set of expandable addre~es for ~ in t thus i s :

X(t,~) = {c, 11 , 12 }

corresponding to the symbols (in fan-out order) s I , s2. ' s I .

s I at c:

Hence, the sequence of substitutions starts with

{ f(l i => X : s2;
12 => X,

1 s => S I) •

g(l I => s2;

i s => s I) }

then continues with s 2 at 11:

{ f(l I => X : h(l 2 => Y; i s => Y);

12 => X;

1 S => s I) *

g(l i => h(l 2 => X; I s => X);

I s => s,) }

and finally ends with s I at 12:

175

{ f(l I => X : h(l 2 => Y; I e => Y);

12 => X;

I s => f(l I => Y : II; 12 => Y),

g(l I => h(l 2 => X; i e => X);

I s => hCl 2 => Y; I s => Y)),

f(l I => X : h(l 2 => Y; I s => Y);

12 => X;

i s => g) ,
g(l t => h(l 2 => X; I s => X);

i s => g) >

which is the value of t IT ' /V]

n ~ ~ n whose 1 th This operat ion is extended to £0 to vectors of c-types as follows: T IT ' / V] is the vector of £0

component is defined as

(T IT " IV]) 1 = LItETI t [~ " IV]. (4)

D e f i n i t i o n 30: An element T of £~ is a solution of the equation V = E if and only if

n We now proceed to show t h a t a SRS viewed as a sys tem of equations in £0 always has a solution which
n corresponds to the least f ixed-point of a vector function from £0 to itself. Such a function ~r is defined for a SRS

V = E as follows:

~(~') = ~ E~/v]. (5)

P r o p o s i t i o n 31: The function f f r o m £0 to i tself defined by 5 is continuous. 9

As a result, F h a s a least f ixed-point given by

co t k -~ Y F = Y * (~ _) = LJk= 0 (_J_).

Now, since

[Y t / V] = Y F

Y F i s the solut ion of the equation V = E .

Let ' s take again a small example to i l lustrate. Consider the single equation:

t r ee = { leaf , node(le f t => t r ee ; r i g h t => t ree)>

wi th l e a f < t r e e , node < t r e e . Hence, / tree(-~_) = { l e a f) ; then, t t r 2 e e (i) is given by:

{leaf, nods(left => leaf; right => leaf>

s (1) is: and so t t r e e

9This is where the fact that L 0 is a complete Brouwerian lattice is important. Indeed, the proof of this proposition uses a characteristic

property of these structures.

176

(leaf, node(left => leaf; right => leaf),

node(left => leaf;
right => node(left => leaf;

right => leaf)),
node(left => node(left => leaf;

right => leaf));

right => leaf),
node(left => node(left => leaf;

rlght => leaf));
right => node (left => leaf;

right => leaf))}

and so on... The reader should see now that the successive powers of the t r e e component function t generate

all possible binary trees. Indeed, the meaning of the type t r e e is precisely 3rtree (/) the infinite set (e-type) of

all such terms. Hence, solving type equation does give the meaning of recursively defined types.

The reader may wonder at this point how the example given in the beginning of this section on appending two

lists is related to computing a vector fixed-point. To see this, given a knowledge base KB, we can add a new

equation called query of the form ? = E, where ? is a special symbol not already in ,U. Then, the anewer to the

query is the component (Y f) ? of the solution of the augmented system.

3.3. C o r r e c t n e s s
In order to establish that the fixed-point solution of a SRS does correspond to the value computed by KBL, it is

necessary to establish the correctness of the KBL interpreter. Namely, one must show that the normal form

obtained by infinite rewritings is equal to the least solution of the system of equations.

Unfortunately, I have not (yet) worked out a complete proof for the correctness theorem. A "conditional ~ proof

is obtained if two technical lemmas can be proved. These lemmas make intuitive sense and are extrapolations of

similar facts for tree-grammars. 10 I conjecture them for now.

For any T in £0 define

~(~') : ~ u 5(;)

and

• (~') = Uk~o ~ k(~*)

~ ~ n
Then, provided that, for any T t' T2' T3' in £o'

Lemm~ s2.- ~I ~ ~'~ impties ~E~3/~] E ~'IE~ *E ? /~] :
and,

then,

L e m m a 3 3 : T 2 C T l [~ / (~) / ~ '] implies Ti ~ T2;

T h e o r e m 34: y~r : ~ (F) .

10See {14], pages 28-29, lemmas 2.38 and 2.39.

177

4. Conclusion
I have described a syntactic calculus of partially ordered structures and its application to computation. A syntax

of record-like terms and a *type subsumption" ordering were defined and shown to form a lattice structure. A

simple "type-as-setU interpretation of these term structures extends this lattice to a distributive one, and in the

case of finitary terms, to a complete Brouwerian lattice. As a result, a method for solving systems of type

equations by iterated rewriting of type symbols was proposed which defines an operational semantics for KBL -

a Knowledge Base Language. It was shown tha t a KBL program can be seen as a system of equations. Thanks

to the lattice properties of finite structures, a system of equations admits a least fixed-point solution. The

particular order of computation of KBL, the n fan-out computat ion order ~, which rewrites symbols closer to the

root first was formally defined and shown to be maximal. Unfortunately, the complete "correctness w of KBL is

not yet established. That is, it is not known at this point whether the normal form of a term is equal to the

fixed-point solution. However, as steps in this direction, two technical lemmas were conjectured to which a proof

of the correctness is corollary.

178

R e f e r e n c e s

[1] Ait-Kaei, H.
A Lattice Theoretic Approach to Computation Based on a Calculus o f Partially Ordered Type

Structures.
PhD thesis, Computer and Information Science, University of Pennsylvania, 1984.

[2] Berry, G., and Levy, J.J.
Minimal and Optimal Computations of Recursive Programs.
Journal of the A C M 26:148-75, 1979.

[3] Birkhoff, G.
Colloquium Publications. Volume 25: Lattice Theory.
American Mathematical Society, Providence, RI, 1940.
Third (revised) edition, 1979.

[4] Borkin, S.A.
Series in Computer Science. Volume 4: Data Models: A Semantic Approach for Database Systems.
The M.I.T. Press, Cambridge, MA, 1980.

[5] Brachman, R.J.
A New Paradigm for Representing Knowledge.
BBN Report 3605, Bolt Beranek and Newman, Cambridge, MA, 1978.

[6] Brachman, R.J.
What IS-A Is and Isn't: An Analysis of Taxonomic Links in Semantic Networks.
Computer 16(10):30-35, October 1983.

[7] Brouwer, L.E.J.
On Order in the Continuum, and the Relation of Truth to Non-Contradictority.
In Proceedings of the Section of Sciences 54, pages 357-358. Koninklijke Nederlandse Akademie Van

Wetenschappen, 1951.
Series A, Mathematical Sciences.

[8] Coureelle, B.
Fundamental Properties of Infinite Trees.
Theoretical Computer Science 25:95-169, 1983.

[9] Courcelte, B., and Nivat, M.
The Algebraic Semantics of Recursive Program Schemes.
In J.Winkowski (editor), Mathematical Foundations o f Computer Science Proceedings, pages 16-30.

Springer-Verlag, Berlin, W.Germany, 1978.
Lecture Notes in Computer Science 64.

[I0] Dummett, M.
Elements of Intuitioniem.
Oxford University Press, Oxford, UK, 1977.

[11] Goguen, J.A., and Tardo, J.J.
An Introduction to OBJ: a Language for Writing and Testing Formal Algebraic Program Specifications.
In Proceedings of the IEEE Conference on Specifications of Reliable Software, pages 170-189.

Cambridge, MA, 1979.

[12] Gorn, S.
Explicit Definitions and Linguistic Dominoes.
In J.F. Hart and S. Tak~u (editors), Systems and Computer Science, pages 77-105. University of

Toronto Press, Toronto, Ontario, 1965.

179

[13] Gorn, S.
Data Representation and Lexical Calculi.
Information Processing ~ Management 20(1-2):151-174, 1984.
Also available as technical report MS-CIS-82-39, Department of Computer and Information Science,

University of Pennsylvania, Philadelphia, PA.

[14] Guessarian, I.
Lecture Notes in Computer Science. Volume 99: Algebraic Semantics.
Springer-Verlag, Berlin, W.Germany, 1981.

[15] Huet, G.
Resolution d'Equation8 dans des Langages d ~rdre 1, 2, . . , w.
Phi) thesis, Universite de Paris VII, France, September, 1976.

[16] Nivat, M.
On the Interpretation of Recursive Polyadic Program Schemes.
In Symposia Mathematica, pages 225-81. Istituto Nasionale di Alta Mathematica, Rome, Italy, 1975.

[17] Plotkin, G.D.
A Powerdomain Construction.
SIAM Journal on Computing 5, 1976.

[18] Plotkin, G.D.
Lattice Theoretic Properties of Subsumption.
Memorandum MIP-R-77, Department of Machine Intelligence and Perception, University of Edinburgh,

June, 1977.

[19] Reynolds, J.C.
Transformational Systems and the Algebraic Structure of Atomic Formulas.
In D. Michie (editor), Machine Intelligence 5, chapter 7. Edinburgh University Press, 1970.

[20] Robinson, J.A.
A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM 12(1):23-41, 1965.

