
DESIGN

OF A

A RELATIVISTIC ROBOT NAVIGATION SYSTEM

AND ITS

IMPLEMENTATION

HASSAN A ÏT-KACI

School of Computing Science
Simon Fraser University

Burnaby, British Columbia
V5A 1S6, Canada

+1 (604) 291-5589
hak@cs.sfu.ca

http://www.isg.sfu.ca/˜hak

November 12, 2006

-1

Copyright c© Hassan ÄIT-KACI



Relativistic Robot Navigation 0

Contents

1 Purpose of this work 1

2 Anecdotal Background 1

3 Basic Setup 1

4 Basic Specification 1

5 Enhancements and Variations 3

6 Graphical User Interface 3

A Relativity principle as a metaphor for OO programming 3



Relativistic Robot Navigation 1

1 Purpose of this work

This work means to illustrate a methodology that I propose for de-
signing object-oriented software based on arelativistic paradigm
(see Section A) to obtain, with a minimal set-up, a large collec-
tion of algorithms which can all be obtained as derived classes and
instance objects of a single very abstract scheme. One then may
thus explain and exploit the convenience of object-orientation—as
supported by,e.g., C++ (viz., multiple inheritance, template classes
and functions, and operator overloading)—for obtaining aneasy
generic setup of classes implementing a robot navigation system.

This document is a partial specification of an Application Program
Interface (API) in the form of a few generic classes. This specifi-
cation is sketched below, along with all the explanations needed to
understand it.

If implemented correctly, thisAPI can be used to navigate robots in
a fixed area to avoid obstacles on their paths to a specified target.
The relativistic approach enables easy extensibility (newobstacles
are easy to introduce), and efficient (the “thinking” is distributed
and done by the obstacles1 each being aware of its own geometry
and orientation in the set of reference attached to the room they are
in).

2 Anecdotal Background

The best anecdote that I have read2 giving a convincing conception
of object-orientation is attributed (I think!) to Alan Kay,the in-
ventor in the 70’s of thedynabook, a precursor of the modern GUI
desktop model...

Alledgedly, in the 70’s when Alan (Kay, or whoever that real or
imaginary person may have been, if at all), then a graduate student
at the University of Utah’s Computer Science department—one of
the best in the world in Computer Graphics research—had the op-
portunity to spend a summer as a programmer at the Stanford Ar-
tificial Intelligence Lab (SAIL). His task was to program a robot
to navigate in a room cluttered with obstacles of various geomet-
ric shapes. The robot starting at some position was to move toa
specified target position, but avoid any obstacle on its way with
minimum deflection in its trajectory toward the target.

Supposed, Alan tried very hard to develop a large program forthe
robot to perceive, recognize, and avoid, obstacles of all shapes and
orientations... He failed miserably to do a good job as the task
was rendered even more complex when new kinds shapes of ob-
stacles were introduced. Indeed, the robot’s navigation program
(essentially a hugeswitch statement) had to be rewritten for new
obstacles. However, upon drawing the conclusion of his failed at-
tempt, Alan had the following epiphany...It was silly and ineffi-

1. . . Not the robot, who is in fact doingno thinking at all!
2. . . Or heard—I do not recall where or from whom

cient to program the robot! Programming the obstaclesto avoid
the robot was much easier, faster, and simpler to extend withnew
obstacles!. . .

In fact, this realization corresponds exactly to the object-oriented
conception of the navigation system. Clearly, distributing the pro-
cessing to the objects (the obstacles) rather than centralizing it in
the subject (the robot) isorienting the computation toward the ob-
jects, and away from the subject.

3 Basic Setup

We now proceed with describing a basic setup to specify such asys-
tem as above. In fact, Einstein’s GRT [1] is more than a metaphor.
In programming the obstacles to avoid the robot, the actual “mov-
ing” should of course not be done by the obstacles. The idea isthat
each obstacle is an object in the same context as the robot’s (i.e.,
the room) and is “aware” of its own geometry and orientation (e.g.,
a cube knows that it has a convex square base, and that it facesa
fixed direction in the set of reference attached to the room).

4 Basic Specification

The following is an algorithm that uses a simple deflection method
for computing the robot navigation around the obstacles. This al-
gorithm is guaranteed to enable the robot to reach its targetafter a
finite number of iterations of the main deflection method computed
by an obstacle on the way of the robot to the target, if the following
assumptions hold:

1. the shapes of obstacles areconvex;3

2. there is a minimumclearance widthbetween the obstacles,
and between them and the room’s walls, which must be greater
than the robot’s own “body” width onall possible paths be-
tween the robot and the target.4

Although the deflection method shown next treats the case of one
obstacle only, this is without loss of generality. Indeed, our as-
sumptions entail that there is at most one obstacleclosestto the
robot following the direction to the target.

1. Let〈xr, yr〉 denote the robot’s current location.

2. Let〈xt, yt〉 denote the target’s current location.

3But this is without loss of generality, since one can use theconvex hullof any
non-convex shape. However, it is computationally more expensive, and may yield
non-optimal paths.

4In other words, there must be sufficient room between obstacles (and the walls)
for the robot to move freely between. We must set, or relate, this clearance to theε
clearance constant used in the algorithm to follow.



Relativistic Robot Navigation 2

Description: Robot’s room

Snapshot Number: 0

x

y

〈0, 0〉

〈xt, yt〉

δr
=

p (xt
−

xr
)2

+
(yt

−
yr

)2

α = arctan dy

dx

dy

dx
= yt−yr

xt−xr

〈xi, yi〉

〈x1, y1〉

〈x2, y2〉

〈x′

1
, y′

1
〉

〈x′

2
, y′

2
〉

〈xd, yd〉

〈xr , yr〉



Relativistic Robot Navigation 3

3. δr =
√

(xt − xr)2 + (yt − yr)2 is the distance between the
robot and the target.

4. α = arctan yt−yr

xt−xr

is the angle from thex-axis to the straight
line from the robot to the target.

5. The parametersxr, yr, andα are used by the robot to compute
its move towards the target disregarding the obstacle; namely,
the robot moves to position〈xr + δr cosα, yr + δr sin α〉.
Therefore, the robotalwaysmoves using the method (in C++
syntax):

Robot::move()
{

xR += deltaR * cos(alpha);
yR += deltaR * sin(alpha);

}

6. If no obstacle is intersected by the straight line betweenthe
robot and the target,

(a) then the robot moves straight to the target unhindered,
and the algorithm terminates;

(b) else, the obstacle (assumed convex) is intersected by the
straight line between the robot and the target,

i. then the obstacle’s methodintersect returns
true and computes the two points on its border
called thecrossing points〈x1, y1〉 and〈x2, y2〉.

ii. Let 〈xi, yi〉 = 〈x1+x2

2
, y1+y2

2
〉 be the midpoint be-

tween the crossing points; and let the line through
〈xi, yi〉, perpendicular to the robot-target line, cross
the obstacle’s border at〈x′

1, y
′

1〉 and〈x′

2, y
′

2〉.

iii. Choose one of these two points; say,〈x′

1, y
′

1〉.
5 Let

〈xd, yd〉 = 〈x′

1 − ε sin α, y′

1 + ε cosα〉

be the newdeflection point, whereε > 0 is a small
parametricclearanceconstant.

iv. Set〈xt, yt〉 = 〈xd, yd〉, and go to Step 2.

5 Enhancements and Variations

6 Graphical User Interface

5This is a non-deterministic choice; it can be either points.However, not all
strategiesof choice will guarantee convergence. The simple strategy of always
choosing the point closer “as the crow flies” to the target works.

Appendix

A Relativity principle as a metaphor for
OO programming

The essence of object-orientation coincides with that of Einstein’s
Special and General Relativity theories [1].

Einstein’s Special Relativity Theory (SRT) is all based on the ob-
servation that there is a mathematical duality between being at rest
on one hand, and being in motion on the other hand: all motion is
relative to a set of reference. Hence, it is mathematically irrelevant
whether I sit in a train moving along with it at some speed with
respect to the scenery, or whether I sit in a motionless trainwhile
the scenery moves by in the opposite direction at the same speed.

Similarly, Einstein’s General Relativity Theory (GRT) is all based
on the observation that there is a mathematical duality between
free-falling frictionless in a straight line on one hand, and the tex-
ture of space being warped by massive bodies on the other hand:
the curvature of all trajectory of motion is relative to space’s own
curvature. Hence, it is mathematically irrelevant whetherthe Earth
is orbiting the Sun elliptically in a closed curve, or whether it free-
falls frictionless indefinitely in a straight line, while space in which
it moves is itself curved by the same opposite factor into the(hy-
per) elliptical (hyper) “eddy” created by the Sun’s gravity.6 Thus is
GRT the key to explaining the mystery of “action at a distance” of
gravity.

Similarly as well, object-orientation (OO) is based on the observa-
tion that there is a mathematical duality between an object being
acted upon by a function on one hand, and a function being acted
upon by an object on the other hand: theorientationof f(x) is rel-
ative to the structure of interpretation of the object or thefunction.
Hence, it is mathematically irrelevant whether the function f is ap-
plied to the objectx, or whether the objectx is sentthemessagef .
In the first case (the conventional view), the functionf knowswhat
to do with an object of the type ofx and performs it onx; in the
second case (theobject-oriented view), the objectx knowswhat to
do when it is asked to respond to the message sent to it asf , and
performs it. Thus is OO the key to a newdecentralizingview of
computation which allowsdistributedcomputation and code mod-
ularity: whereas the conventional view’scentralizingcomputation
in functions made them huge, inefficient, and quickly impractical to
maintain, the (mathematically equivalent) OO view now delegates
computation to objects by making them react to messages sentto
them by using methods specified for them by their class definitions.

Thus, object-orientation may simply be construed as exploiting a
mathematical relativity principle. This relativistic view can be used
as a systematic object-oriented software design methodology.

6“Hyper” because space is at least 3-dimensional. . .



Relativistic Robot Navigation 4

To be precise, the change of perspective, when orienting computa-
tion with referenceto an object rather than a function, is expressed
mathematically by the set isomorphism:

A → (B → C) ≃ B → (A → C). (1)

This equation essentially captures the dualrelativity of computa-
tion alluded to above.

This article is an example of the general case, which can be ex-
pressed as follows:

method: Context→ (Object→ Object)

≃

method: Object→ (Context→ Object).

(2)

Therefore, we can define two class structures,Object and
Context , which always respectively declare a method (here
called method ) as shown in Figures 1 and 2.7 Some examples
are given in Figure 3.

References

[1] Albert Einstein.Relativity—The Special and the General The-
ory. Crown Publishers, Inc., New York, NY, 1961.

7Using C++ syntaẋ..



Relativistic Robot Navigation 5

class Object
{

virtual Object * method (Context * context);
}

Figure 1: Object class skeleton

class Context
{

Object * method (Object * object) { return object.method(this); }
}

Figure 2: Context class skeleton

Context Object method

NameValue Environment Expression evaluate
NameType Environment Expression typecheck
Run Time Environment Instruction execute
Algebraic Structure Equation solve
Logical Theory Theorem prove
Constraint Structure Constraint resolve
Windows95 Windows Application WinMain() /window function

Figure 3: Some instances using the context/object relativity principle


