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AN ALGORITHM FOR FINDING
A MINIMAL RECURSIVE

PATH ORDERING (*)

by Hassan AÏT-KACI (*)

Communicated by J. GALLIËR

Abstract. — This paper proposes an automatic inference method to compute a minimal partial
ordering on a set of function symbols, given a set of term-rewriting rules, which induces a recursive
path ordering such that each rule is a strict réduction. A Prolog program is described that
implements the method. A direct corollary is the complete automation of the Knuth-Bendix method
and a termination-proving program.

Résumé. — Ce papier propose une méthode automatique de calcul d^une relation d'ordre minimale
sur un ensemble de symbols de fonctions, dans le contexte d'un ensemble de règles de réécriture.
Cette relation d'ordre induit un « ordre de chemin recursif » sur les termes tel que toute règle soit
une réduction stricte. Un programme en Prolog implantant cette méthode y est décrit Vautomatisa-
tion de la méthode de Knuth-Bendix ainsi qu'un programme de preuve de terminaison de la
réécriture peuvent ainsi être obtenus en corollaire.

1.0 INTRODUCTION

A great number of formai Systems have made implicit or explicit use of
the notion of transformation rules. Computer science has thus systematically
given the concept a crucial place in its arsenal of analytic tools. Lately, a
soaring and exciting area in the theory of computation has emerged which
focuses on the study of a special type of transformational Systems; namely,
term-rewriting Systems. Abstract data type spécification [ADJ78], [GOT79],
[MUS79], programming language and equational computation theory
[ODN78], [HOD82], [HOP80], [PTS81], [ROS73], to name a few, have
centered on the concept of rewriting terms.

(*) Received and acceptée August 1984.
(l) Department of Computer and Information Science, The Moore School of Electrical
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360 H. AÏT-KACI

A particular method proposed by D. Knuth and P. Bendix in 1970
[KNB70], [HUE81], has been widely used by a majority of researchers in the
field. It consists of a "completion algórithm" designed to complete a set of
term-rewriting rules to have the most desired property of being "confluent".
Roughly, confluence amounts to the possibility of applying any applicable
rules in any order to a given term and, if this process terminâtes, obtaining
a unique irreducible term regardless of how and what rules are used. The
Knuth-Bendix completion is invaluable for many purposes such as equational
theorem-proving and program-synthesis. Unfortunately, the method may
never terminate if it is given a non-terminating set of rules. Even worse is its
requirement that a term ordering be known a priori to orient équations into
uni-directional rules.

The first ailment — non-termination — may be averted if a given set of rules
can be proven to always terminate. N. Dershowitz [DER 82. a] defines a
particular term ordering which can be used for proving termination of a
large class of rewriting Systems. He called it Recursive Path Ordering, af ter
D. Plaisted's [PLT78] original Path of Subterms Ordering on which he based
his définition. However, one must already know a well-founded ordering
on the set of function symbols in order to find a sufficient condition of
termination.

The second inconvenience that a term ordering be provided ahead of time
to make use of the Knuth-Bendix algórithm sterns from the fact that équations
are used implicitly as simplification rules. However, the "simpler" side of an
équation must be explicitly specified as right-hand side, rather than being
determined so from its structure.

This paper proposes a practical automatic inference method to compute a
minimal partial ordering on a set of function symbols, given a set of term-
rewriting rules, which induces a recursive path ordering such that each rule
be a strict réduction. A Prolog program is described that implements the
method. The direct corollary is the complete automation of the Knuth-Bendix
method and a termination-proving program.

The following sections 2 and 3 introducé the necessary background on
multiset ordering and term-rewriting Systems. Next, section 4 présents the
algórithm for finding a minimal recursive path ordering. Finally, section 5
describe the Prolog implementation. An appendix shows sample runs of the
program.

The author wishes to thank Jean Galliër, Jean-Pierre Jouannaud and the
référée for helpful comments.
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MINIMAL RECURSIVE PATH ORDERING 361

2.0 MULTISETS AND MULTISET ORDERING

This section introduces the necessary background on multisets and multiset
ordering. The latter notion proves itself invaluable as a tooi for showing
termination of term-rewriting Systems [DRM79], as will be seen in the section
following this one. A study of the multiset ordering can be found in [JOL82].

DÉFINITION 2.1: Let U be a non-empty universe of objects. A multiset M
of objects of U is a function from U to N, the set of non-negative integers.

If M is a multiset on U, and xeU, we write x e M if M (x) is positive, and
the object x is said to be an element of M. For any object x in U, M(x) is
called the number of occurrences or multiplicity of x in M.

We shall identify a multiset M with the subset of its graph containing all
and only those pairs (x, M(x)) such that xeM. To make notation as light
as possible, we will conventionally omit the multiplicity of an element when
it is equal to 1. For example, the multiset loosely written as {(a, 2), b, (c, 3),
d\ is in fact the multiset {(a, 2), (b, 1), (c, 3), (d, 1)}.

Opérations and relations on multisets can be defined and characterized in
terms of multiplicity of éléments as follows:

Union: (MX{JM2) (x) = max (M1 (x), M2 (x));
Intersection: (M1 O M2) (x) = min (Mx (x), M2 (x));
Sum: (M1 + M2) (x)^M1 (x) + M2 (x);
Différence: (M1-M2) (x) = max (0, M1 (x)-M 2 (x));
Inclusion: Mx g M2 iff VxeU, Mx (x)^M2 (x).
Multisets are also often referred to as "bags" in the literature.
A strict partial ordering on a set S is a transitive and irreflexive relation

on S. The following définition extends such a relation on objects to one on
multisets of objects.

DÉFINITION 2.2: Let U be a non-empty universe. Any strict partial ordering
> on the éléments of U can be extended to an ordering >̂ on the set
of multisets of U as follows: M1 > M2 iff (1) M^M2y and (2) VxeU,
Mi(x) < M2(x)=>3;;eU, [y > x and Mx (y) > M2(y)].

In plain words, the above définition says that for any element which occurs
more in M2 than in Mu there is a greater element occurring more in Mx

than in M2.

The above mathematical définition is however impractical as an algorithmic
characterization of the multiset ordering. What is needed is an equivalent
définition which can readily be translated into an efficient checking procedure.
The following is yet another characterization that will be used as a construc-
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362 H. AÏT-KACI

tive method to establish whether or not a given multiset is greater than
another. In words, the following proposition means that the lesser multiset
M2 can be obtained from M± by replacing some occurrences of éléments of
M1 with arbitrarily many occurrences — possibly none —of lesser éléments.

PROPOSITION 2.1: Mx > M2 iff (\) Ml~M2^$; and (2) (M 2 -M 1 ) -{(x >

{M2 — Mx) (x))\3yeM1—M2, y>x}=ty (Le., the multiset obtained from
M2~M1 after deîetion of ail occurrences of éléments lesser than some element
of Mx—M2 is empty).

Proof: The following table sums up ail possible cases (0 stands for non-
empty):

Case

1
2
3
4
5
6
7 .

Mf

0
0
0

o
 o

 o
 ©

•<

M2

0
0
0

o
 o

 o
 

o

M,-M2

0
0
0
0
0
0

M2~M1

0
0
0
0
0
0
0

NO
YES
NO
NO
NO
YES

?

Let's refer to proposition 2.1 with the letter "P" and to définition 2.2
with the letter " / )" . Their respective clauses will then be referred to as P. 1
and P.2 (resp., D. 1 and D.2). Let's first prove the "iP9 direction; le., that
P implies D.

Cases 1, 3, 4, 5 are characterized by the fact that M1—M2 = ty. Therefore,
if Mt—M2^% only cases 2, 6, and 7 are to be considered. Cases 2 and 6
are readily concluded. The only case remaining is 7. Let then xeU such that
M2 (x) > Mj (x). By définition of the multiset différence opération, this is
equivalent to (M2 — Mx)(x) > 0. Hence, by P.2, 3yeMl—M2 such that
y > x. This immediately implies D. 2.

Conversely, let's assume D. Now> suppose that M1—M2 = fy. The only case
not contradicting D. 1 is case 3. However in that case, by D. 2, for any x in
Mt—M2, there exists some y such that y>x and (M1~M2)(y) > 0; and this
is a contradiction. Therefore, Mx—M2^ty. Next, suppose that P.2 does not
hold; namely, let xeM2~M1 and V^eM 1 -M 2 , y > x. But, by D.2, there
is a yeM1—M2 such that j > x; a contradiction.

Q.E.D.

Proposition 2.1 is thus proven to be an equivalent définition of the multiset
extension of an ordering on a set.

COROLLARY: The algorithm in figure 2.1 returns the value true iff its two
multiset arguments M1 and M2 are such that M1 > M2.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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Function MultisetGreater(Ml,M2: multiset of item): boolean;
var M12,M21: multiset of item;
X,Y: item;
begin
M\2:=Ml-M2; M21:=M2-M1;
if M12 = 0 then return(false)
else

begin
white (Ml2*% and (M21 #0) do

begin
let X in 12;

}{ ( , ( 0 ) } ;
M21:=M21-{(y,M21(y))fGreater(A,Y)}
end;

return(M21=0)
end

end MultisetGreater;

Figure 2.1

3.0 TERM REWRITING SYSTEMS AND TERM ORDERING

In this section, sorae background and results on term-rewriting Systems
and term orderings are presented. The scope is strictly limited to the material
relevant to the compréhension of the algorithm described in the following
section. For a thorough introduction to the subject of term-rewriting Systems,
the reader is referred to [HOP80],

DÉFINITION 3.1: Given a set F of function symbols and a set V of variable
symbols, we define T(F, V), the set of (first-order) terms on F as follows:

(1) a variable is a term;

(2) any symbol in F is a term;

(3) if / e F and tu . . ., tn are terms, then so is ƒ (tx, . . ., tn).

If t= f(tx, . . ., tn), ƒ is called the root symbol of t, and ti9 i = l , . . ., n
are called the arguments of ƒ in t. Note that the symbols in F have variable
arity; that is, any function symbol may have 0 or any finite number of
arguments. One writes ƒ instead of ƒ() when/has no arguments.

In the sequel, the concept of multiterm rather than that of a term will be
used. This is defined in the following inductive définition.

DÉFINITION 3.2: Given sets of function and variable symbols F and V as
above, the set of (first-order) multiterms MT(F, V) on F is the smallest set
containing V and verifying the following property: if ƒ G F, and M is a multiset
of éléments in MT(F, V), then ( ƒ M) eMT(F, V).

To simplify the notation, we shall conventionally write ƒ instead of ( ƒ, 0).
An example of a multiterm is M = ( ƒ {((g, {a,b}), 2), (a, 3)} ). The multiterm
concept will be useful in expressing the notion of equality of terms up to a
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364 H. AÏT-KACI

permutation of their subterms. Indeed, a multiterm can be seen as representing
a class of terms sharing the same root symbol and the same multiset of
subterms. For example, the terms ƒ (g (a, b), a, a, g(b, a), a) and f(g(b, a\
a, g (b, a), a, à) both belong to the same class represented by the multiterm
M. Thus, any multiterm represents many possible terms. The following
formally defines this idea. The mapping defined in définition 3.4 yields the
multiterm représentative (or image) of a given term.

DÉFINITION 3.4: We define a mapping M from T(F,V) to MT(F,V)
associating a multiterm on F to a term on F as follows:

M(t) = tifteF\JV;
M(f(tu . . ., *„)) = (ƒ, {(sl5 fej, . . ., (sm, km)}) where: fcx+. . . + /em = n

and Vï'e'{ 1, . . ., m}, si = M(fJ) for kt indices JG{ 1, . . ., n}.

This apparently complicated définition means that for any term
t= f(tl9 . . ., tn), M(0 = ( ƒ, M), where M is the multiset of the multiterm
images of the subterms tl9 . . ., tn. For example, if t = f (g (a, b), f (a, c, a),
g (b, a)), then using our notational conventions, the above définition yields
M(t) = (f9 {((g, {a, b}\ 2), ( ƒ {(a, 2), c})}).

It cornes as an immédiate observation that the mapping M is surjective;
and hence, the following identity holds: M(T(F, V)) = MT(F, V). This allows
us now to define the following relation ^ on the terms, which can
straightforwardly be checked to be an équivalence relation.

DÉFINITION 3.5: tx=t2 iff M(t1) = M(t2), for any terms tx and t2 in
T(F,V).

As a conséquence, we obtain that the quotient set T(F, V)/^ is in bijection
with the set MT(F,V) of ail multiterms on F. This formalism enables us to
deal only with multiterms as canonical représentatives of terms in what
follows.

A term-rewriting System is a finite set of pairs of terms. Such pairs are
called rulesy each rule (L, R) being such that ail variables which occur in R
also occur in L. Figure 3.1 exhibits a term-rewriting system whose rules
rewrite (cf. définition 3.8) a quantifier-free logical formula int o disjunctive
normal form.

not(not(«)) -»• M
not(or(tt,t?)) -> and(not(u),not(u))

not(and(u,t>)) -»• or(not(w),not(u))
and(u,or(i7,w)) -> or(and(u,t;),and(u,w))
and(or(u,u),w) -• or(and(M,w),and(u,w))

Figure 3.1

R.A.I.R.O. Informatique théorique/Theoretical Informaties



MINIMAL RECURSIVE PATH ORDERING 365

The rules of a first-order term-rewriting system are représentative schemata
of infinitely many rules by virtue of their variables. The concept of substitu-
tion of variables is thus necessary to express instantiation.

DÉFINITION 3.6: A substitution s is an application from V to T(F, V) which
is the identity on V almost everywhere except for a finite set of variables
{xu . . ., xn}.

A substitution s is easily extended to an application s from T(F, V) to
T(F,V) asfollows:

8(0 = s(t) if teV;
8(0= tiî te¥;
H f (tu • • -, *•))= f (Ht il • • -, S('J) otherwise.

DÉFINITION 3.7: A rule (L, R) is said to be a réduction if there is a strict
partial ordering > on T(F, V) such that s(L) > s(JR), for ail substitutions s.

As shall be seen later, the rules of the rewriting system in figure 3.1 are
réductions with respect to a recursive path ordering (cf. définition 3.11).

The structure of a term is partially altered by rule application. Hence, it is
of great convenience to have a précise scheme for specifying how and what
particular part of it is to change. For this, we use a simple formalism due to
S. Gorn [GOR65]. Given a term t, we define a term address in t denoting a
spécifie place in t as a finite word of positive integers such that (1) the empty
word e is a term address of t; and (2) if t= f(tl9 . . ., tn), iu is a term address
of t, where u is a term address of ti9 for i= l , . . ., n. The subterm of t at
address u (noted tu) is t if w = e, or is (t^ if u = iv and t= ƒ( . . ., ti5 . . .).
The term denoted by t[u <- t'] is the term obtained from t by replacing tu with
t'. A term t is said to oeewr in another term £' at address u, if M is a term
address of f and t'u = t.

For any set of rules, one can define a binary relation -• on terms expressing
rule application.

DÉFINITION 3.8: Given A term-rewriting system {(Lh Ri)}n
i = i o n

a term tx rewrites to a term t2 (noted as tY -> t2) if there is an index
ie{ 1, . . ., n} and a substitution s such that s(Lt) occurs in t± at address u,
and t2 = s(ti[u+

The transitive closure of -• is written -X. This allows us to define the
concept of a terminating set of rewriting rules.

DÉFINITION 3.9: A well-founded partial ordering > on a set S is one such
that there is no infinitely descending chain sx > s2 > . . . > sn > . . . in S.
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366 H. AÏT-KACI

DÉFINITION 3.10: A term-rewriting system is finite terminating (or noethe-

rian) iff the relation —> is well-founded.

In effect, this means that there may not exist an infinité rewriting séquence
tx -¥ t2 -> . . . -> tn -> . . . of terms.

DÉFINITION 3.11 [DER82. a]: A partial ordering > on T(F, V) is a simplifi-
cation ordering if it has the following properties for any terms and function

symbols:

(1) If tt > t 2 then ƒ ( . . . , tl9 . . . ) > ƒ ( . . . , t29 . . . ) ;

(2) ƒ ( . . . , u . . . ) > £ ;

(3) ƒ ( . . ., £,_!, t,, t,+ 1, . . . ) > ƒ ( . . . , tt_u ti+l9 . . . ) .

These three properties are respectively called the (1) monotonicity, (2)

subterm, and (3) deletion property.

THEOREM 3.1 (Dershowitz' First Termination Theorem [DER82.a]): A
term-rewriting System {(Li9 i^)}?=i on T(F, V) is finite terminating if there
exists a simplification ordering > on T(F, V) such that s(L() > s(Rt),
V i e {1, . . ., n }, for ail substitutions s.

We have finally arrived at the point where we can define the concept of
recursive path ordering on the set of multiterms MT(F, V).

DÉFINITION 3.12: Given a strict partial ordering > on the set of function

symbols F, the recursive path ordering (RPO) > induced by > on the set of

multiterms MT(F, V) is defined recursively as: ( ƒ S) > (g, T) iff one of the
following holds:

**
(1) f=g and S >T;

(2)f>gand{(f,S)}pT;

(3) / > g a n d S ^ { ( g , T)}.

In this définition, variables are treated as incomparable constant symbols.
Recall from section 2 that given an ordering symbol >, >̂ is its multiset
ordering extension symbol. Also, ^ is its reflexive closure symbol.

The rules in figure 3.1 form a set of RPO-reductions given that
not > and > or, The rules in figure 3.2 are also RPO-reductions if reverse
> append > cons > false and reverse > nil > true.

R.A.I.R.O. Informatique théorique/Theoretical Informaties
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head(cons(w,u)) -» u
tail(cons(u,u)) -• v

empty -> true
empty(cons(«,u)) -> false

append(nil,u) -> u
append(cons(u,i;),w) -• cons(u,append(u,w))

reverse(nil) -• nil
reverse{cons(u,t>)) -> append(reverse(u),cons(u,nil))

Figure 3 . 2

The next and last two theorems of this section explain why a RPO is at
all interesting in proving termination of a term-rewriting system.

THEOREM 3.2 ([DER82. a\): The ordering M"1 ( >) on T (F, V) is a simplifi-
cation ordering.

THEOREM 3.3 ([DER82.a]): The ordering M~ 1(>) on T(F,V) is well-
founded iff the underlying ordering > on F is well-founded.

Hence, finding a well-founded partial ordering > on the function symbols
which induces a RPO with respect to which all rules (L, JR) in a set are such

*
that M(s(L)) > M($(R)) for all substitutions s, is a sufficient way of proving
that the set of rules is noetherian. This is the problem that the algorithm
presented in the next section solves.

4.0 ALGORITHM FOR FÏNDING A MINIMAL RPO

In the previous section, the définition of the recursive path ordering is
based on the a priori knowledge of a partial ordering on the function symbols.
Hence, a sufficient condition for termination of a term-rewriting system
would be at hand if such a well-founded ordering on the function symbols
could somehow be obtained. It would even be of greater convenience if a
method for obtaining it could be fully automated. Thence, given a set of
rules, one could simply run a program which would make that sufficient
condition hold if one can be made to hold at all.

A similar method, unknown to the author when this work was done, is
proposed in [LES83.a] and has been integrated in the REVE system
[LES83. b], based on an extension of the recursive path ordering: the recursive
décomposition ordering [LES82, JLR83], Although it is argued that the
recursive décomposition ordering is more gênerai (but see the appendix), it is
more "tricky" to define. However, no formai comparison has been made
between that method and the method presented in this paper.
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In what follows, an algorithm is described which finds a minimal strict
partial ordering on the function symbols of a set of rules for which all the
rules are RPO-reductions. The method simply vérifies définition 3.12 with
no prior knowledge of any ordering on the function symbols, making the
minimal necessary assumptions as it follows the induction in order to make
the définition hold for ail possible substitutions of the variables. Figures 4.1-
4.4 are a pseudo-Pascal sketch of the method. In the following section, a
complete and detailed Prolog implementation is shown.

The function Find_RPO (cf fig. 4.1) takes three arguments: a set of
rewrite rules, a partially ordered set (poset) of function symbols, and an
output parameter which is also a poset of function symbols. The input poset
is a background poset of what is already known to be ordered. The output
poset is thus a consistent augmentation of the former poset. The function
returns the value true if such a consistent poset is found.

The body of Find_RPO is essentially a loop of recursive calls to itself
based on the following intuitive argument. It computes a minimal poset
consistent with the given background poset such that the first rule in the set
has its left-hand side strictly greater than its right-hand side. Then, with this
poset as background, it will try to find a minimal poset for the rest of the
rules. In case no poset can be found consistent with this background, it is
rejected and remembered as such in Deja_Vu, a set of posets.

The function RPO.Greater (cf. fig. 4.2) compares two multiterms given
a background poset, a set of previously rejected posets, by a "lazy" cons-
truction of an output poset following the minimal requirements that the
définition of the Recursive Path Ordering hold. It works as follows.

If the two root symbols are the same, then there is no alternative but to
check whether the left multiset of submultiterms is greater than the right one
according to the multiset extension of an RPO consistent with the context.
This also clearly covers the case dealing with two identical variables since
both occurrences are always replaced with the same terms in any rewriting.

If the context shows that the left root symbol ƒ is prevented from being
greater than the right root symbol g — Le.9 that Frozen ( ƒ, g, Past) holds,
where Past is the background poset — or if one of them is a variable, then all
there is to do is verify whether the case "f>g" of the RPO définition yields
a consistent poset. The case where one of the symbols is a variable is handled
here by always following the "ƒ > g" clause of the définition. This is because
we want the définition to hold for all substitutions of the variables. It is clear
that making any presumption on the order of two different variables, or a
variable and a symbol would not be consistent for all substitutions.
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MINIMAL RECURSIVE PATH ORDERING 369

If the context shows that f > g, then the "ƒ > g" case of the définition is
similarly checked.

Only if none of the above applies is it made any assumption about whether
the root symbols are related or not. The first alternative tried is to assume
that ƒ is not greater than g. The function Freeze does that. It takes as
arguments f g, and a poset, and returns the poset augmented with the
constraint that ƒ > g not be allowed to hold later on down the search. In
the case where this assumption leads nowhere, the opposite (Le., f > g) is
attempted, provided it is consistent. The function Consistent ( f g, Past) will
return the value false iff there exist some x9 y in the poset Past such that
x ^ ƒ and g ^ y and Frozen (x, y9 Past).

If in the end the assumptions f ail, R PO .Greater also f ails.
The function Multi_R PO .Greater (cf. fig. 4. 3) checks whether a multiset

of multiterms is greater than another in a given context, using a multiset
extension of R PO _ Greater. The algorithm used is a slight fix of the Multi-
set _ Greater function in section 2. Indeed, the différence is in the f act that
RPO_Greater is conceived to possibly have side-effects. Namely, it may
augment the background poset to accommodate for success. Hence, the need
for the Prune function (cf. fig. 4.4) which simply computes the result of
pruning a multiset of its éléments which are less than a given multiterm, and
propagates any background expansion along the way.

Function Find^RPO

RuIe.Set: set of rules;
Background: poset;
var Order: poset
): boolean;
var Deja_ Vu: set of poset;

So_Far: poset;
Done: boolean;

begin
if Ruie_Set = 0 then return(Background)
else

begin
let L->R in Rules;

Done: = false;
Deja_Vu:=0;
while (not Done) and RPO^Greate^L^Backgroun^Deja.V^So-Far) do

begin
Deja_Vu:=Deja_Vu U {So_Far};
Done: = Find_RPO(Rule_Set,So_Far, Order)
end;

return(Done)
end

end Find.RPO;

Figure 4 .1

vol. 19, n° 4, 1985



370 H. AÏT-KACI

Function RPO_Greater
(
L,R: multiterm;
Past: poset;
Deja_Vu: set of posets;
var Order: poset
): boolean;
begin
\

fg
then return(Multi_RPO_Greater(S,T,Past,Deja_ Vu, Order))

else
if Greater( /,g,Past)

then return(Multi_RPO_Greater({L},T,Past,Deja_Vu,Order))
else
if Variable( ƒ ) or Variable(g) or Frozen( /,g,Past)

then return(Multi_RPO_Greater„or_Equal(S,{R},Past,Deja_ Vu, Order))
else
if Multi.RPO.Greater^or.EqualCS^RXFreezcC/^PasO^Deja.Vu^Order)

then return(true)
else
if Consistent /g,Past)

then return(Multi_RPO_Greater({L},T,Freeze(g/,Past U {ƒ>#}), Deja_Vu,Order))
else return(false)
end RPO.Greater;

Figure 4.2

Function Multi_RPO_Greater
(
M1,M2: multiset of multiterm;
Past: poset;
Deja_Vu: set of poset;
var Order: poset
): boolean;
var M12,M21: multiset of multiterm;

X: multiterm;
begin
M12. -M1-M2; M21;=M2-M1;
if Ml2 = 9 then return(false)
else

begin
while (M12#Ç>) and (M21 *ty) do

begin
letXinM12;

{ }
1: = Prune(M21,Ar,Past,Deja_Vu5Order);

Past: — Order
end;

return((M21=0) and not(Order in Deja„Vu))
end

end Multi_RPO_Greater;

Figure 4.3
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Function Prune
(
M: multiset of multiterm;
X: multiterm;
Past: poset;
Deja^Vu: set of poset;
var Order: poset
): multiset of multiterm;
var Y: multiterm;

N: multiset of multiterm;
begin

begin
let Y in N;

if RPO_Greater(X,7,Past,Deja_Vu,Order) then
begin
M:=M{
Past: = Order
end

end;
return(M)
end Prune;

Figure 4 .4

Claim: The algorithm described in the foregoing figures 4. 1-4.4 is correct.
Thai is, Find_RPO always terminâtes, and it returns the value true if and
only if the poset Order induces a minimal Recursive Path Ordering such that
each rule in the given set is a strict réduction.

Informai Justification: The justification is better présentée! in four parts:
(1) termination; (2) in case of success, the ordering defined by Order induces
a RPO, and (3) Order is minimal; finally, (4) if the value false is returned,
no RPO exists which makes the rules be strict réductions.

Termination of Find_RPO follows from the f act that there are finitely
many posets on a fini te set, together with the observation that RPO_Greater
calls Multi_RPO_Greater each time with multisets of strictly shallower
multiterms. Indeed, in each call to Multi_RPO_Greater, at least one of the
two multiterm argument's depth is strictly decreasing.

If the value returned by Find.RPO is true, as the poset Order is construc-
ted in RPO_Greater conformingly to définition 3.12, it clearly defines an
ordering on the function symbols inducing a RPO which vérifies the réduction
contraints.

It is also a built-in feature that the poset returned as Order defines a
minimal ordering; minimal in the sensé that taking any pair out of it would
make it be not consistent with the set of given rules. This is a resuit of
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making a least assumption at any point about whether two function symbols
are related. The algorithm RPO_Greater assumes that two symbols are
related only if everything else has failed.

An interesting observation is that if the two last "if' statements were
swapped, minimality would not be guaranteed; however, for most applica-
tions, the time taken by the algorithm to succeed would be quite reduced
since it would first try and make the assumption that two function symbols
are related. There seems to be a trade-off between minimately and time-
efficiency. One could argue for the latter, since minimately is nothing of great
interest as far as proving termination is concerned.

I have not as yet been able to find a convincing argument to défend the
fourth point. It is made more difficult than the others by what is really
happening in the function Prune. Indeed, this function removes from a
multiset ail multiterms RPO-inferior to a given multiterm. However it does
this sequentially, and any décisions made on the way are definite and irretracta-
ble. Hence, in order to prove that this procedure does not miss on any
potential solution, one is required to show some kind of a sufficient condition
lemma arguing that one need never backtrack at that point. I suspect that to
be correct and must be elucidated if the full correctness proof is to be given.
This will done eventually in a forthcoming paper.

However, for ail purposes hère concerned, the Prolog implementation in
the next section does not make the assumption implicit in Prune. Namely, it
allows for alternative pruning. Incidentally, actual backtracking at that point
after initial failure has never been observed to succeed in all the examples
tried. That tends to give empirical credit to my suspicion above.

5.0 THE PROLOG IMPLEMENTATION

This section is the detailed description of the Prolog program implementa-
tion of the aigorithm sketched in the previous section. It is interesting in
many respects, not the least of which being the implicit mathematical induc-
tion proof of correctness that is "built-in". Indeed, a Prolog program can be
loosely construed, by its very syntactic form, as "self-proving" its own
correctness. One may read it so the inductive définition of each predicate
constitutes a proof by case induction. Each définition is typically a base case
followed by ail possible structural induction cases. Of course, this does not
claim to be a formai argument for the correctness of the algorithm. However
a correctness proof would bear very close appearence to the following Prolog
program.

R.A.LR.O. Informatique théorique/Theoretical Informaties



MINIMAL RECURSIVE PATH ORDERING 373

setOfReductions (Rules) succeeds if there can be found a recursive path
ordering on the terms for which all pairs (left, right) in a set of rewrite rules
are strict réductions — i. e., left >right:

setOfReductions([|).
setOfReductions([[Left,Right]|Rules]):-

convertRule(Left,Right,Mleft,Mright),
rpoGreater(Mleft,Mright),
setOfReductions(Rules).

convertRule (Left, Right, Mleft,Mright) converts each side of a rule to their
respective multiterm images:

convertRuie(Left,Right,Mleft,Mright):-
convert(Left,L),
multiTerm(L,Mleft),
convert(Right,R),
multiTerm(R, Mright).

convert(Term, List) converts a term in prefix parenthesized form into its
equivalent list form. e.g:.

T e r m = ƒ (g (o, b)9 f(a, c, a)9 g (b, d)\

List = [ ƒ, \g9 [al [b]], [ ƒ [al [cl [a]]9 [g, [b], [a]]],
convert(Term,[F|SubLists]): —

Term= . . [F|SubTerms],
map2(convert,SubTerms,SubLists).

multiTerm(T, MT) succeeds if the term T is of the form [ f,
fi> • • • > t j —constants and variables are represented as one element lists: [a]~
and MT is the multiterm [ ƒ | M], where M is the multiset of multiterms of
the form [[Ml9 iVJ, . . ., [Mm, JVJ], m^n, where Mt is a multiterm and N^l
is the multiplicity of Mt in M. Recall that two terms are considered equal if
they are the same up to a permutation of their subterms. For example:

T=[f, [g, [al [b]], [g9 [bl [a]], [ƒ, [cl [al [cffl,
MT=[ƒ [[g, [[al 1], [[bl 1]], 2], [[f, [[cl 2], [[a], 1]], 1]],

multiTerm([F|T];[F|M]):-multiSctOfMultiTerms(T,M).

multiSetOfMulriTernis(Past,TermSet,MtermMset) means that MtermMset
is the multiset of multiterm images corresponding to the set of terms TermSet.
Past is a book-keeping multiset of multiterms of already seen éléments, and
updated on the way. This is what MtermMset eventually becomes:

multiSetOfMultiTerms(D,Q): -! .
multiSetOfMultiTerms(Tset,MtMset):-

multiSetOfMultiTerms([],Tset,MtMset).
multiSetQfMultiTerms(Past,[|,Past).
multiSetOfMultiTerms(Past,[Term|Tset],MtMset): -

multiTerm(Term,Mterm),
deja_vu(Mterm,Past,[[Mterm,Nl]|OtherPast]),
N i s N l + 1,
multiSetOfMultiTerms([[Mterm,N]|OtherPast],Tset,MtMset)J.
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deja.vuCMteraijPas^Carry^MtMset) succeeds if the multiterm Mterm bas
already been seen in Past and MtMset is the multiset of multiterms
[[Mterm,JV]|M] where M is (Past-[Mterm,N]) UCarry. This predicate has
nothing to do with the set Déjà_ Vu in the pseudo-Pascal description of the
previous section:

Oi-deja
deja_vu(Mterm,Q,Carry,[[Mterm,O]]Carry]):-!.
deja_vu(Mterml,[[Mterm2,N]|Past]îCarry,[[Mterml,N]|Rest]):-

sameMultiTerm(Mterml,Mterm2),append(Past)Carry,Rest),!.
deja_vu(Mterm,[Msingle|Past],Carry,MtMset): —

deja_vu(Mterm,Past,[Msingle|Carry],MtMset).

sameMukiTerm(MTl5MT2) is true if MT\ and MT2 are the same multi-
terms. For example:

MTl=[f, [\g, [[a], 1], [[b], 1]], 2], [[ƒ, [[c], 2], [[a], 1]], 1]]

MT2 = [ ƒ [[ƒ, [[a], 1], [[c], 2]], 1], [\g, [[b], 1], [[a], 1]], 2]]

sameMultiTerm(D,n).
sameMultiTerm([F]Tl],[F|T2]):-sameMultiSetOfMuItiTerms(TlsT2).
sameMultiSetOfMultiTerms(MTl,MT2):-sameSetOfMultiTerms(MTl,MT2îQ).
sameSetOfMultiTerms(Q,Q,D).
sameSetOfMultiTerms([Hl,N]|Tl],[[H2,N]|T2]>Carry):-

sameMultiTerm(Hl,H2),
append( Carry,T2,T3),
sameMultiSetOfMultiTerms(Tl,T3),!.

sameSetOfMultiTerms(Tl,[H2|2],Carry):-
sameSetOfMultiTerms(Tl,T2,[H2|Carry]).

rpoGreater(Ml, M2) succeeds if the multiterms Ml and Ml are such that
Ml is greater than M2 according to a *iazy" recursive path ordering that is
consistent with the Rules left yet to be verified as réductions. The RPO is
incrementally checked on the way. What is really built on the way is the
underlying strict partial ordering on the function symbols ' V \ That is, o(x, y)
is true iff x is greater than y:

rpoGreater([F|Ml],[F[M2]): -
!,multi_rpoGreater(Ml,M2).

rpoGreater([F|Ml],[G|M2]): -

multi_rpoGreater([[[F|Ml],l]],M2).
rpoGreater([F|Ml],[G|M2]): -

explore(F,G,Ml,M2).

The ordering o must be transitive:

o(X,Y): = var(Y),!,fail.
o(X,Y):-o(X,Z),o(Z,Y).

explore(F,G,MlîM2) attempts to make rpoGreater succeed by constraining
F and G to be either unrelated or o (G, F). frozen(/,g) means that o( ƒ, g)
cannot hold:
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explore(F,G,Ml,M2):-
(variable(F);variable(G);frozen(F,G)),
!,multi„rpoGreaterOrEqual(Ml,[[[G|M2],l]]).

explore(F,G,Ml,M2):-
freeze(F,G),
multi_rpoGreaterOrEqual(Ml,[[G|M2],l]]).

explore(F,G,Ml,M2):-
unfreeze(F,G),
attempt(F,G),
multi_rpoGreater([[[F|Ml],l]],M2).

explore(F,GJ_5„):-reject(F,G),!,fail.
variable(X):-nonvar(X),declaredVariable(X).

freeze(F,G) forbids that o (F, G) be asserted further down in the search.
That is, success of all further subgoals is conditioned by the constraint that
not(o(F, G)):

freeze(F,G):-
asserta(f rozen(F, G)),
tr(forbidding,(G<F)).

unfreeze(F,G) relaxes the above constraint:

unfreeze(F)G):-retract(frozen(FïG)),tr(allowing,(G<F))'

attempt(F,G) hypothesizes that F>G;

attempt(F,G):-
not(inconsistent(F,G)),
asserta( o(F,G)),
tr(attempting,(F>G)),
freeze(G,f)-

inconsistent(F,G) succeeds if there is some X greater or equal to F, and
some Y smaller or equal to G, such that X and Y are frozen. That is, if F
cannot be made greater than G. o_eq is the reflexive closure of o:

inconsistent(F)G):-o_eq(X,F),o_eq(GîY),frozen(X,Y)î!.
o_eq(X,X).
o_eq(X,Y):-o(X,Y).

reject(F,G) establishes o(F,G) to be no longer a hypothesis that holds:

reject(F,G):-
retract(o(F,G)),
tr(rejecting,(F>G)),
retract(frozen(G,F)),
tr(allowing,(F<G)).

multi_rpoGreaterOrEqual(Ml,M2) is the reflexive closure of the following
predicate:

muIti_rpoGreater(>Equal(MlîM2):-sameMultiSetOfMultiTerms(Ml,M2)î!.
multi _ rpoGreaterOEqual(M 1, M2) : — multi _ rpoGreater( M1, M2).
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multi_rpoGreater(M71,MT2) succeeds if the multisets of multiterms MT1

and MT2 are such that MT\>MT2 according to the multiset extension of
the rpoGreater ordering:

multi_rpoGreater([],M2): - !,fail.
multi_rpoGreater(Ml,Q):-!.
multi_rpoGreater(Ml,M2): —

split(Ml,M2,Ml_M2,M2_Ml),
weigh(Ml_M2,M2_Ml).

split(Ml,M2,Ml-M2,M2-Ml) succeeds by simultaneously building the sym-
metrical différence multisets:

split(Q,M,Q,M).
li(p ( , D , , D )

split([[X)N)|Ml],M2,JDl,Z)2):-
ïn{X,M2,[[X,K\\M21])X
D is JV-K,
deaI(X,D,Ml,M21,Dl,D2).

split(E[X,N]|Ml],M2,Dl,Z)2):-deal(X,iV,Ml,M2)Z)l,D2).

in(X,Ml,M2) succeeds if a multiterm equal to X is in Ml—in which case
M2 is [[X,N]\M2-{[X9N]}]:

in(Elt,Ml,M2): -in(Q,Elt,Ml,M2).
i ( n ) f i l

| | ] [ [ , G j
sameMultiTerm(Elt,X),!,
append(Carry,Ml,M2).

in(Carry;Elt,[[X,7V]|Ml])M2):-in([[^7V]|Carry],Elt,Ml,M2).

deal(X,AT)Ml,M25Dl,D2) distributes Xin D\ if JV<0, or in D2 if JV>0, or
in neither if JV = O. Dl and D2 are then further "split" from Ml and M2:

deal(_,0,MlîM23Dl,D2):-split(Ml,M2,Dl,JD2)J.
deal(X,D,Ml,M2,[[Ar,i>3|l>l],D2):-Z)>0,!,split(Ml,M2,JDl,JD2).
d l ( | M D is -JD,!,split(Ml,M2,Z>lîJD2).

weigh(Ml,M2) tries to find a consistent RPO to make Ml and M2 such
that M2 is a partition of subsets, each of which is majored by an element
of Ml:

weigh(Q,Af):-!,fail.
weigh(M3Q):-!.
weigh(Ml,M2):-major(Ml,M2).

major(Ml,M2,Rem) will succeed if a RrPO can be found consistent such
that Rem = M2-{y|rpoGreater(X,Y)} and major (Ml-{X},Rem) succeeds,
for each element X of Ml:

j ( [
major(0,_):-!,fail.
major([[X,_]|Ml],M2):-

minor(X,M2,Rem),
major(Ml,Rem).
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Minor(X,M,Rem) iff Rem = M-{Y|rpoGreater(X,Y)}:

minor(_,[],[Dr
minor(X,[[y,_]|M],Rem):-

rpoGreater(X,Y),
minor(X,M,Rem).

minor(X,[y|M],[YJRem]):-minor(X,M,Rem).

tr(Trace,Info) is a tracing convenience...

6.0 CONCLUSION

This paper has présente*! an automatic procedure which infers a Recursive
Path Ordering making a set of rewrite rules be a set of strict réductions, if
one exists. By Dershowitz's results, this provides an automatic termination
proof procedure. Indeed, these results stipulate that a well-founded RPO for
which each rule is a réduction guarantees termination of a set of rules;
moreover, a RPO is well-founded if and only if the underlying strict partial
ordering on the function symbols is too. If the set of function symbols in a
first-order term-rewriting system is finite, it is sufficient to find the underlying
ordering to prove termination.

Using this algorithm, the Knuth-Bendix completion method can be run
without imposing that a term ordering be a priori provided. The construction
exposed in this paper gives the possibility to automate rule orientation. This
is a further research step that I intend to take.

APPENDIX

This appendix contains sample runs of the Prolog program.
The set of rules dnfl is the same as the one in figure 3.1. This run was

done with a trace enable visualization of the search path:
?-printRules(dnfl).

not(not(w))
not(or(u,u))
not(and(w,i)))
and(u,or(i?,w))
and(or( u,i>),w)
yes
?-try(dnfl).

forbidding:
forbidding:
allowing:
attempting:
forbidding:
forbidding:
allowing:
attempting:
forbidding:
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—>u
-*-and(not(u),not(u))
-•or(not(w),not(t>))
-» or( and( u,i>), and( M, w) )
-• or( and( w, w), and( v, w))

and < not
and < or
and<or
or > and
or < and
not<or
not<or
or > not
or < not
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rejecting:
allowing:
forbidding:
allowing:
attempting:
forbidding:
rejecting:
allowing:
rejecting:
allowing:
allowing:
attempting:
forbidding:
forbidding:
forbidding:
allowing:
allowing:
attempting:
forbidding:
forbidding:
allowing:
attempting:
forbidding:
and > or
not > and

H. AÏT-KACI

or > not
or < not
not < or
not < or
or > not
or < not
or > not
or < not
or > and
or < and
and < not
not > and
not < and
or < not
or < and
or < and
or < not
not > or
not < or
or < and
or < and
and > or
and < or

+and(and(not(u),not(i>)),and(not(M),not(i>)))
-•or(or(not(«),not(tj)),or(not(w),not(î;)))

yes

The following runs are done with disabled tracing. The rules dnf2 also
compute a disjunctive normal form as dnfl. However, the partial ordering
found by the algorithm is different:
?-printRules(dnf2).

not(not(w))
not(or(u,u))
not(and(u,u))
and(u,w)
or(u,w) ->M
yes

?-try(dnf2).
not>or
not > and
yes

The rewriting system dnD also computes disjunctive normal forms; howe-
ver, it is not finite terminating (see [DER82.a]). Note that the algorithm
terminâtes with a failure:

-printRules(dnf3).

not(not(u))
not(or(u,t>))
not(and(w,t>))
and(«,or(u,w))

yes

?-try(dnf3).
no

+and(not(not(not(u))),not(not(not(t?))))
-•or(not(not(not(u)))>not(not(not(t>))))
-•or(and(u,u,and(M,w))
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Assoc is an example of a terminating system which does not admit any
recursive path ordering (see [DER82. a]):

? - printRules(assoc).

and(and( u, v), w) -»• and( u, and( v, w))

yes

? — try( assoc).

no

The following two examples are taken from [LES83. a] where they are used
to show that the recursive décomposition ordering is stronger that the
recursive path ordering. The author believes that this is not a real point since
what Pierre Lescanne shows is that for a given fixed precedence ordering on
the function symbols, a RPO exists whenever a RDO exists, but not
conversely. He uses the two following examples to illustrate this. However, it
is clear, as shown here, that in each case, one can find a RPO to prove
termination. Considering the comparatively simpler définition of RPO, the
point is moot:

? — printRules(lescannel).
or(not(w),not(i;)) -niot(and(u,t?))

yes

?-try(lescannel).

or > and
or>not

yes

? — printRules(lescanne2).

yes

? —try(lescanne2).

h > star

yes

The following example bool is a The following example bool is a set of
canonical axioms for a boolean ring (see [DER82.2?]). It is interesting to
point out that the algorithm finds an ordering strictly contained in the one
given by Dershowitz to prove termination (see [DER82. fe], p. 11):

?-printRules(bool).

no t( ü) —*• xor( w, true)
or(w,t;) ->xor(and(u,t?),xor(M,ü))
implies( w, v) -»> xor( and( u, v) ,xor( utrue))
and(u,true) -*u
and(u,false) ->false
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and(u,w) —•«
xor(w,false) - • «
xor(w,w) -»false
and(xor(w,u),w) -*-xor(and(w,w),and(u,w))

yes

?-try(bool).

and > xor
xor > f alse
implies > and
implies > true
or > and
not>true
not>xor

yes

The next set of rules diff does symbolic differentiation (see [DER82.6]).
Note that the ordering inferred is different than the one given by Dershowitz
in [DER82.Z>] (p. 8); however, both orderings are minimal:
?-printRules(diff).

d{X) - 1
d(a) ^ 0
d(p\us(u,v))

d(minus(u))
» minus ( d(u), d(v))

d(\og(u))
d(exp{u,v))

yes

?-try(diff).

d>\og
d>QXp
d > over
d > times
d > minus
d > plus

minus(over(é/(«),i;),times(w,over(^(ti),times(i; )î;))))

d>l

yes

The last exarnple list is the one also shown in figure 3.2 bef ore. It defines
basic axioms for list manipulations.

?-printRules(list).

head(cons(w,u)) -»u
tail(cons(w,i;)) -+v
empty(nil) ->true
empty(cons(w5ï;)) -»false
append(«,nil) ->w
append(cons( u, v,w) ->-cons( w,append( v, w))
reverse(nil) ^ n i l
reverse(cons(u,t>)) -»append(reverse(t;),cons(«,nil))
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yes

? —try(list).
reverse > append
reverse > nil
append >cons
cons > false
nil > true
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