
Entailment and Disentailment of Order-Sorted Feature Constraints

(SummaryY

Hassan AYt-Kaci Andreas Podelski
Digital Equipment Corporation

Paris Research Laboratory
85, avenue Victor Hugo

92500 Rueii-Malmaison, France
{hak, podelski}@prl .dec. com

Abstract

LIFE uses matching on order-sorted feature structures for passing arguments to functions. As opposed to
unification which amounts to normalizing a conjunction of constraints, solving a matching problem consists of
deciding whether a constraint (guard) or its negation are entailed by the context. We give a complete and consistent
set of rules for entailment and disentailment of order-sorted feature constrCnrts. These rules are directly usable for
relative simplification, a general proof-theoretic method for proving guards in concurrent constraint logic languages
using guarded rules.

I Introduction

LIFE [5,4] extends the computational paradigm of Logic Programming in two essential ways:

"* using a data structure richer than that provided by first-order constructor terms; and,

"* allowing interpretable functional expressions as bonafide terms.

The first extension is based on 0-terms which are attributed partially-ordered sorts denoting sets of objects [1, 2]. In
particular, ,-tenns generalize first-order constructor terms in their rOle as data structures in that they are endowed with
a unification operation denoting type intersection.

The second extension deals with building into the unification operation a means to reduce functional expressions
using definitions of interpretable symbols over data patterns. The basic insight is that unification is no longer seen
as an atomic operation by the resolution rule. Indeed, since unification amounts to normalizing a conjunction of
equations, and since this normalization process commutes with resolution, these equations may be left in a normal
form that is not a fully solved form. In particular, if an equation involves a functional expression whose arguments are
not sufficiently instantiated to match a definiens of the function in question, it is simply left untouched. Resolution
may proceed until the arguments are proven to match a definition from the accumulated constraints in the context [31.
This simple idea turns out invaluable in practice.

This technique-delaying reduction and enforcing determinism by allowing only equivalence reductions-is
called residuation [3]. It does not have to be limited to functions. Therefore, we explain it for the general case of
relations. Intuitively, the arguments of a relation which are constrained by the guard are its input parameters and
correspond to the arguments of a function. This has been used as an implicit control mechanism in general concurrent
constraint logic programming schemes; e.g., the logic of guarded Horn-clauses studied by Maher [9], Concurrent
Constraint Programming (CCP) [101. and Kernel Andorra Prolog (KAP) 18]. These schemes are parameterized with
respect to an abstract class of constraint systems. An incremental test for entailment and disentailment between
constraints is needed for advanced control mechanisms such as delaying, coroutining, synchronization, committed
choice, and deep constraint propagation. LIFE is formally an instance of this scheme, namely a CLP language

* Full version to appear in 161.

1

using a constraint system based on order-sorted feature (OSFM structures [51. It employs a related, but limited,
suspension strategy to enforce deterministic functional application. Roughly, these systems are concurrent thanks to
the new effective discipline for procedure parameter-passing that can be described as "call-by-constraint-entailment"
(as opposed to Prolog's call-by-unification).

The most direct way to explain the issue is with an example. In LIFE, one can define functions as usual; say:

fact(O) -.. 1.
fact(N : int) -. N *fact(N - I).

More interesting is the possibility to compute with partial information. For example:

minus(negint) . posint.
minus(posint) -. negint.
minus(zero) - zero.

Let us assume that the symbols int, posint, negina, and zero have been defined as sorts with the approximation ordering
such that posint, zero, negint are pairwise incompatible subsoils of the sort int (i.e., posint A zero = -I, negintA zero =
.L,posint A negint = 1). This is declared in LIFE as int := {posint; zero; negint}. Furthennore, we assume the sort
definition posint := {posodd; poseven}; i.e., posodd and poseven are subsorts of posin and mutually incompatible.

The LIFE query Y = minus(X : poseven)? will return Y = negint. The sort poseven of the actual parameter is
incompatible with the sort negint of the formal parameter of the first rule defining the function minus. Therefore, that
rule is skipped. The sort poseven is more specific than the sort posint of the formal parameter of the second rule.
Hence, that rule is applicable and yields the result Y = negint.

The LIFE query Y = minus(X : string) will fail. Indeed, the sort string is incompatible with the sort of the formal
parameter of every rule defining minus.

Thus, in order to determine which of the rules, if any, defining the function in a given functional expression will
be applied, two tests are necessary:

"* verify whether the actual parameter is more specific than or equal to the formal parameter;

"* verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? For example, consider the query consisting of the conjunction:

Y = minus(X : int), X = minus(zero)?

Like Prolog, LIFE follows a left-to-right resolution strategy and examines the equation Y = minus(X : int) first.
However, both foregoing tests fail and deciding which rule to use among those defining minus is inconclusive. Indeed,
the sort int of the actual parameter in that call is neither more specific than, nor incompatible with, the sort negint
of the first rule's formal parameter. Therefore, the function call will residuate on the variable X. This means that
the functional evaluation is suspended pending more information on X. The second goal in the query is treated next.
There, it is found that the actual parameter is incompatible with the first two rules and is the same as the last rule's.
This allows reduction and binds X to zero. At this point, X has been instantiated and therefore the residual equation
pending on X can be reexamined. Again, as before, a redex is found for the last rule and yields Y = zero.

The two tests above can in fact be worded in a more general setting. Viewing data structures as constraints,
"more specific" is simply a particular case of constraint entailment. We will say that a constraint disensails another
whenever their conjunction is unsatisfiable; or, equivalently, whenever it entails its negation. In particular, first-order
matching is deciding entailment between constraints consisting of equations over first-order terms. Similarly, deciding
unifiability of first-order terms amounts to deciding "compatibility" in the sense used informally above.

The suspension/resumption mechanism illustrated in our example is repeated each time a residuated actual
parameter becomes more instantiated from the context; i.e., through solving other parts of the query. Therefore, it is
most beneficial fora practical algorithm testing entailment and disentailment to be incremental. This means that, upon
resumption, the test for the instantiated actual parameter builds upon partial results obtained by the previous test. One
outcome of the results presented in this paper is that it is possible to build such a test; namely, an algorithm deciding
simultaneously two problems in an incremental manner-entailment and disentailment. The technique that we have
devised to do that is called relative simplijicaiion of constraints [4, 71.

2

Besides incrementalily. the relative-simplification technique has the advantage of yielding, in case of entailment.
the instantiation of the fonnal paramneter by the actual parameter, as we will explain next.

Every guarded language produces a new environment, namely the conjunction of the old environment, which is
the constraint part of the resolvent (the context), and the guard. This conjunction affects the variables in the body
(viz., in LIFE, the right-hand side expression of a function definition) after successfully executing the corresponding
guard: i.e., it "constrains" them in a semantical sense.

For example, if (in the Herbrand constraint system) Y = f(a) is the context and Y =.f(X) is the guard and Z = X
is the body, then X is constrained to be equal to a. Practically, the matching proof is done by unification which yields
the instantiation of the body variable X, X = a. In order to compute the new environment, this unification is, of
course, not repeated.

The example above can be extended to ()SF constraint systems. Thanks to our method, the proof of entailment
has as a consequence (somewhat like a side-effect) that the conjunction of the context and the guard is in solved form,
as if normalized by the ()SF constraint solver. Now, in this solved form, the formal variables are bound to the global
ones. This is what we mean by the instantiation of the formal parmneter by the actual parameter.

2 OSF Formalism

The syntax and semantics of the formulas that we use as constraints is fixed by an order-sorted feature signature (or
simply OSF signature) which is: (I) a set of sorts S, equipped with partial order < and meet operation A, and (2) a set
of features F. A logical structure fitting such a signature (i.e., interpreting sorts as sets, < as C, A as n, and features
as unary functions) is called an OSF algebra.

An OSF constraint 0 is a conjunction of formuls of one of the forms: (1) X : s, (2) X -- X', or (3) X.1 - X',
where X and X1 are variables from a given set of variables V• s is a sort in S, and I is a feature in '. The interpretation
of $ in an ()SF algebra A under a valuation a : V ý_4 DA, written A, a • 0. is as usual.

The set of OSF terms is generated with the following context-free rules:

I ::= X : s(1, =: 1, ... ,t, 1" t:)

where X is a variable from a set V. s is a sort in S, and 1i E 7, n > 0. The variable X is called the term's root variable,
the sort s its root sort.

Any ()SF term t is equivalently expressible as an OSF clause, denoted 0S(t). called its dissolved form. That is, its
meaning ItiA in the ()SF algebra A can be described as the set of all values a(X) for the root X of t such that 0(t) is
satisfied in A under some valuation a: i.e..

11 = 1(oX) I a : V ý DA, A,

We will often deliberately confuse a O-term 0 with its dissolved form 0(10) and refer to 4(O) simply as 4'.
Syntactically consistent OSF term are said to be in non"al form, and called 4,-terms. They comprise a set called

1. By extension. < and A are extended from the sort signature to the set 91, realizing matching and unification,
respectively.

Unification of OSF terms is done thanks to a normalization procedure. Namely, -01 and 02 are dissolved, and then
the OSF constraint 01 & #2 & Root(0m) - Root(0 2) is normalized (into 1 if and only if 41 and 4'2 are non-unifiable).
The rules to normalize OSF terms are not given here.

We obtain one important example of an OSF algebra directly from the syntactic expressions of 0-terms: the OSF
algebra V of 4'-terms. The domain of V is the set of all 4,-terns, up to graph representation. That is, we identify O-terns
as values of W if they are represented by the same graph. For example, the two ,-terms Y : s(z *:. X : s, 12 --* X)
and Y : s(11 *:ý X, 12 =:, X : s') correspond to the same object.

A sort s C ,S is interpreted as the set of all ,-terms whose root sort is a subsort of s. A feature I E T is interpreted
as a function Ie : DI " D* which, roughly, maps a O-term on its sub-4'-term accessable by the feature 1. For
example. taking 4 = X : T(I(=>. Y : s, 12 * X), we have T (b) = Y :s•. If (4') = b, and e3 (4) = Zl,,, : T.

According to the triple existence of 0-terms being set-denoting types, OSF constraints and, as elements of an
OSF algebra, concrete data structures, we define three orderings on ,-tenns.

A 4'-tenn 4' is subsumed by a 10-tenn 0' if and only if the denotation of 0 is contained in that of 0' in all
interpretations. Fonnally,

3

for all OSF algebras A.
An approximation preorder 1 on 0-terms is defined such that, 4p approximates 02 if and only if 02 is

an endomorphic image of 01. Formally, 1 CA 02 iff -(01) = 102 for some homomorphism - : A '-4 A. (A
homomorphism between OSF algebras is a mapping between their domains which is compatible with the ordering on
sorts and feature application.)

We note that, if we represent 4-terms as graphs, endomorphisms on IF' are graph homomorphisms with the
additional sort-compatibility property. A node labeled with son s is always mapped into a node labeled with s or a
subsoin of s. An edge labeled with a feature is mapped into an edge labeled with the same feature.

Thus, endomorphic approximation captures exactly object-oriented class inheritance. Indeed, if an attribute is
present in a class, then it is also present in a subclass with a sort that is the same or refined. Since features are total
functions, this also takes care of introducing a new attribute in a subclass: it refines T. Note also, that the restriction
of y to the set of nodes defines a variable binding; it corresponds to the notion of a matching substitution for first-order
terms.

A 1b-tenn 0b entails a 0-term 0' if and only if, as constraints, 0 implies the conjunction of 0' and X - X'; more
precisely,

4>-4' iff k -. 3U(X X'& ')

where X, X' are the roots of io and 0' and U = Var(O').
The following proposition states what we call the semantic transparency of orderings.

Proposition I The following are equivalent:

* 090' 0 approximates 0';

* 'P' < !0 j' is a subtype of 0;

0 0' -_ 4 0 entails 0'.

3 Proving OSF Guards

In the following, we use 0 as the context formula. It is assumed to be satisfiable.
The variables in 0 are global. We shall use X to designate the set of global variables Var(O) and the letters X, Y,

Z, ... ,for variables in X. We use 0, a dissolved o-term, as the guard formula. The variables in 0 are local to -0; i.e.,
Var(4) n Var(4') = 0. We shall use U to designate the set of local variables Var(iJ) and the letters U, V, W, ... , for
variables in U. The letter U will always designate the root variable of 0. We also refer to 4) as the actual parameter,
and to 0 as the formal parameter.

We investigate a proof system which decides two problems simultaneously:

"* the validity ofYX (4- 3U. (40 & U -' X));

"* the unsatisfiability of 4 & 0 & U - X.

The fiat test is called a test for entailment of the guard by the context, and the second, a test for disentailment. This
second test is equivalent to testing the validity of the implication VX (0 --. -'U. (,A & U - X)).

Since both tests amount to deciding whether the context implies the guard or its negation, all local variables are
existentially quantified and all global variables are universally quantified.

The relative-simplification system for OSF constraints is presented in (4, 61 in form of II constraint normalization
rules (not given here in this summary).

A set of bindings U, X*, i = I, ... n is afunctional binding if all the variables Ui are mutually distinct.
The effectuality of the relative-simplification system is summed up in the following statement:

Effectuality of Relative-Simplification The solved OSF constraint 4 entails (resp., disentails) the OSF
constraint 3U. (U -- X & 4) if and only if the normal form 0' of 4 & U - X relatively to 4) is a
conjunction of equations making up a finctional binding (resp., is the false constraint V' = 1).

4

4 Conclusion

We have overviewed a complete and correct system for deciding entailment and disentailment of constraints over
order-sorted feature strcutures. One motivation for this system is parameter-passing for functions in LIFE. but it is
general and relevant to all concurrent constraint languages. We used a technique of relative simplification [4. 7] which
amounts to normalizing a constraint In the context of another. This yields an incremental system. Let us mention here
that we can also prove the independence property of negative constraints.

Further work extending this should be to generalize our scheme to so-called deep guards over OSF structures
whereby guards are not limited to plain OSF constraints but may also contain relational atoms defined by clauses.
Ttis Is particularly relevant to LIFE in order to explain matching over objects with attached relational constraints.
TMts study in currently under way and will be reported soon.

References

(1] Hassan Ait-Kaci. An algebraic semantics approach to the effective resolution of type equations. Theoretical
Computer Science, 45:293-351 (1986).

12] Hassan Aft-Kaci and Roger Nasr. LOGIN: A logic programnming language with built-in inheritance. Journal of
Logic Programming. 3:185-215 (1986).

[3] H~assn Ait-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp and Symbolic Computation,
2:51-89 (1989).

[4] Hasan Ait-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL Research Report 13.
Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malnaison, France (June 1991). (Revised.
November 1992).

151 H.ssan AAt-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research Report 11, Digital
Equipment Corporation. Paris Research Laboratory, Rueil-Malmaison, France (1991). (Revised, October 1992;
to appear in the Journal of Logic Programming).

[6) Hassan AI-Kaci and Andrews Podelski. Entailment and disentailment of order-sorted feature constraints. In
Andrei Voronkov. editor. Proceedings of the Fourth International Conference on Logic Programming and
Automated Reasoning. Springer-Verlag (1993, to appear).

(7] Hassan Ait-Kaci. Andreas Podelski, and Gert Smolka A fea-ture-based constraint system for logic programming
with entailment. In Proceedings of the 5th International Conference on Fifth Generation Computer Systems,
pages 1012-1022, Tokyo, Japan (Jtune 1992). ICOT. (Full paper to appear In Theoretical Computer Science).

[8] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In David H. D. Warren
and Peter Szeredi, editors. Logic Programming, Proceedings of the 7th International Conference, pages 31-46,
Cambridge, MA (1990). MIT Press.

[9] Michael Maher. Logic semantics for a class of committed-choice programs. In Jean-Louis Lassez, editor, Logic
Programming, Proceedings of the Fourth International Conference, pages 858-876, Cambridge, MA (1987).
MIT Press.

(10] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. In Proceedings of the 7th Annual ACM
Symposium on Principles of Programming Languages, pages 232-245. ACM (January 1990).

