
The Typed Polymorphic Label-Selective kCalculus

Jacques Garrigue Hassan Ait-Kaci
garrigue@is .s. u-tokyo. ac. jp hak@prl.dec .com

DepartmentofInformation Science Digital Equipment Corporation

TheUniversityofTokyo ParisResearchLaboratory

7-3-1 Hongo, Bunkyo-ku 85 Avenue Victor Hugo

Tokyo 113, Japan 92500 Rueil-Mahnaison, France

Abstract. Formal calculi of reeord structures have recently been a focus of active mearch. However, scamely anyone has
studied formally the dual notion-+. e., argument-passing to functions by keywords, and its harmonization with currying. We
have. Recently, we introduced the label-selective A-calculus, a conservative extension of A-calculus that uses a labeling of
abstractions and applications to perform unordered cttmying. In other words, it enables some form of commutation between
arguments, This improves program legibility, thanks to the presence of labels, and efficiency, thanks to argument commuting.
In this paper, we propose a simply typed version of the calculus, then extend it to one with ML-like polymo~hic types. For the
latter calculus, we establish the existence of principal types and we give an algorithm to compute them. Thanks to the fact that
label-selective A-calculus is a conservative extension of A-calculus by adding numeric labels to stand for argument positions,
its polymoqhic typing provides us with a keyword argument-passing extension of ML obviating the need of I-CCO*. In this
contex~ conventional ML syntax can be seenas a restriction of the mo~ geneml keyword-oriented syntax limited to using only
implicit positions instead of keywords.

1 Introduction

The use of symbolic labels in programming languages is

not new, This has been done in two ways. The first one,

common to nearly all languages, is as field designators in

record structures. Relatively recently, formalisms for records

have been proposed. This started with Cardelli [6], was later

extended to a second order calculus [7], and was followed

by a number of record-type inference systems compatible

with ML-style polymorphic type inference [22, 20, 13, 19].

Even more recently, a compilation method was proposed

by Ohori [18], for an extension of)-calculus containing

polymorphically typed records,

Another way to use labels in progr amming languages

has been as keywords for parameter-passing in procedure

or function calls. This is the case in Common LISP [21],

ADA [15], and LIFE [4], However, in Common LISP or

ADA, currying is not supported, which makes the situation

rather mild. Although currying is supported in LIFE, even

with keywords given in a different order, it is restricted

nonetheless and does not accommodate implicit positions as

it should. Indeed, fully flexible currying with the presence of

keywords as well as explicit and implicit positions was until

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. TO copy otherwise, or to republish, requires e fee
and/or specific permission.

POPL 94- 1/94, Portland Oragon,USA

@ 1994 ACM O-69791 -636-0B41001 ..$3.50

recently a still unexplored issue. Some proposals do offer

this convenience of parameter-passing withoutmodifying the

core calculus [14, 17]. However, these are based on using a

notion of storq that is, bindings from names to values. This

introduces another parameterizing system, independent from

J-calculus. Even so, to our knowledge, no typing system

has been proposed for them.

Our own proposal, as originally reported in [2], is to

support this new convenience of labeling argumenta directly

in A-calculus and accommodate selective unordered currying

through commutation of arguments. In our view, the role of

arguments is determined by their labels, which interact with

their order,

Selective A-calculus introduces two types of commuta-

tions. The first, and most immediate, is between sym-

bolic labels. By analogy with tuples, when currying an

expression f (p + a, q * b, ...) we obtain an expression

((f(p + a))(q * b))(.. .). But since there is no reason
to apply f in this specific order, using the freedom pro-

vided by labels allows to curry in a different ordeq e.g.,

(V(q + b))(p + a))(.. .). Suppressing superfluous paren-
theses, and limiting our consideration to two arguments, we

obtain that the following equahty must hold in our calculus:

f(p+a)(q+b) =f(q+b)(p+a).

However, this is true under a restriction: p and q must be

distinct labels. Successive applications on the same label

must not commute. Indeed, if the labels are equal, the order

of these applications must be obeyed to be unambiguous.

Here is an example of the use of these symbolic labels for

the list constructor, in an ML-like language, together with

inferred types, 1

#let cons car=>a cdr=>b = a: :b; ;

cons : {car= >’a, cdr=>’a list} -> ‘a list

#cons cdr=>[ll; ;

it : {car=xint} -s int list

Thesecondcmmmtation equalitycomesfrom areversion

of the analogy with tuples That is, we can see atuple as

a record labeled with numbers: (a, b,...) = (l+a,2+

b,...), Ifweapplied theequality used forsymbolic labels,

wewould obtain~(l+a)(2 +-b) =~(2+b)(l+ a). But,

since it is better to see unary application as implicitly using

the label 1 and keep conventional currying, we would rather

Wrimf(l=a)(l+ b), orsimply, ~ u b as usual. To make

this possible, we must define commutation differently on

numbers: namely, ~(2+b)(l+a) =~(l+a)(l+b). This

can be generalized as:

f(m~a)(n+b)=f(n– l+a)(m+b) if m< n.

For instance we can use it as follows, (omitting explicitly
labeling with 1.>):

#let sub x y . x-y;;

sub : {I=>int, 2=>int} -z int

#let minus15 = sub 2=b15; ;

minus15 : {l=>int} -s int

This second commutation equality is in fact orthogonal

to the tirst one. Commutation on symbolic labels expresses

the intuitive possibility of taking input on multiple channels,

while the numeric form gives a control on the relative

precedence order of input on a given channel.

Selective A-calculus provides the above equalities for

symbolic and numerical labels for both application and

abstraction, As an untyped calculus, its confluence has

been established [3], along with fundamental properties of

A-calculus like Bohrn’s theorem [12].

Similarly, the introduction of label-selective types provid-

ing simple types for selective ~-terrns is done in the same

manner as that of simple types in classical A-calculus. The

essential difference is that, in order to emphasize the intrinsic
cmrnnutativity, we will put on the same level all argument

types to a function. For instance, the cons,., operator, namely

consi.t(car + h: in~ cdr + t: int list) = (h :: t) for integer

lists, should get type {car + int,cdr + int list} + int list,

Such a notation shows that it is possible to apply consi.t on

both car and cdr labels, and that the result is a list of integers.

Then we build a polymorphic typing system d la ML

for selective A-calculus, As for ML-style polymorphism,

Iwe ~W ~ ~o~m CIOW to CAML [10]. “1 et” denotes a definition,
“ ::” thelist constructor.Since “=>” is left unused (abstraction uses “->”),
we use it for labeling.

a type inference algorithm exists, which obviates the need

for explicit typing. In other words, this means that we can

integrate labeled parameters in any ML-like programming

language. Continuing with the previous example, for the

definition cons(car+ h, cdr+ t) = (h :: t), we can infer the

type VCY.({car+ CY,cdr+ a list} -+ CYlist).

Such a type system is particularly well-adapted to selective

~-calculus, thanks to the incrernentality of typing, which

goes together with application. On the other hand a second

order type system, separating type application, would limit

commutation possibilities by introducing new dependencies

between abstractions.

Section 2 gives a practical and theoretical motivation for

our type system. We then define symbolic and numerical

label-selective A-calculus in Section 3 and 4, combining them

in a product system in Section 5. Sections 6 and 7 present

respectively simple typing and polymorphic typing of the

sel=tive A-calculus. To avoid cluttering the casual reader’s

attention with unnecessary details, we have relegated all

proofs to the appendix.

2 Motivation

The calculus we present has practical and theoretical moti-

vations. In practice, the use of labels for argument selection

enhances clarity and and obviates the need of argument-

shuffling combinators. From a theoretical perspective, the

commutation laws of labeled arguments readily render natu-

ral type isomorphisms in ~-calculus.

2.1 Keywords: an enhancement for clarity

We start here by giving some examples of how the use

of keywords, and their appearance in types, may help the

programmer, Our view is already partially proven by the

ubiquitous use of records as data structures. While theoret-

ically everything could be done with tuples, one will often

prefer using a resord, gaining abstraction over a representa-

tion using explicitly ordered formats.

Here are some examples of functions written in an ML-like

syntax, with their inferred types.

#let rec map function=>f = fun

[1 -> [1

I [h It] -> (f h) : :map function=~f t;;

map : {1=>’a list,

function= >{l=>’a} -> lb} -> lb list

#map function=> (add 1) ; ;

it : {l=>int list} -s int list

#ITBP [1;2;3]; ;

{function= >{l=jint} -> ‘a} -> ‘a list

The advantage of this labeling system is twofold: it is more

expressive and it allows doing partial application selectively

on any label.

36

One could argue that in the functions above, order is clear
enough so that, even without labels, there is no possibility for
error. However this becomes less systematic for functions
of three arguments or more, Moreover, it is not so natural in
some two-argument functions. This is the case, for instance,
of mem (membership in a list) or as soc (retrieval from an
association list), whose respective types are:

mem : ‘a -> ‘a list -> bool

assoc : ‘a -> (’a * ‘b) list -> ‘b

There is no special reason for them to respect this particular
order. In fact, the opposite order of arguments would
appear more natural, since currying with a given list is more
likely. Here, a quick glance at the type eliminates any
ambiguity. However, this is not always sufficient. Even if
such was the case, the following types would certainly be
more perspicuous:

mem : {l=> ’a, in=>’a list} -> bool

assoc : {l=> ’a, in=> (’a * ‘b) list} -> ‘b

With this, one can define such a function as:

#let digit = mem in=>[O; l;2;3;4; 5;6;7;8; 91;;

digit : {I=>lnt} -> bool

This clearly improves legibility.

Still, one may shrug this argument off since with two

arguments, there are only two possibilities of order. Wkh

more arguments, however, this quickly becomes irksome.

Clearly, remembering arguments order for functions of more

than three arguments-and those are not so uncommon-is

out of the question.
Let us give some more examples. Consider, for instance,

it-list and list-it (fold left and right), with types:

it_list : (Ja -> lb -> la) -> ‘a

-> ‘b list -> ‘a

list_it : (’a -> ‘b -> ‘b) -> ‘a list

-> ‘b -> ‘b

An explicit labeling such as:

it_list : {1=>’a list,

function= s{l=>’b, 2=z’a} -> ‘b,

zero=s’b} -> ‘b

list_it : {l=z’a list,

function= >{l=>’a,2=~’b} -> ‘b,

zero=> ’b} -> ‘b

would be more expressive, making the types easier to under-

stand.

We have deliberately restricted our examples to generic

functions, for which currying is useful. If we consider

functions interfacing a window manager, for example, the

number of arguments per function is such that the use of

labels is a necessity. In that case, however, one could do with

r-rds, since currying iri pot so important. Nevertheless,

the trend in functional languages is towards a systematic use

of currying. Standard ML is a notable exception, preferring

uncurried functions, but CAML is an example of an ML

dialect preferring currying,

2.2 Relative positions versus combinators

If the main benefit from using symbolic labels is expres-

siveness, that of relative positions is in conciseness-and

efficiency.

Consider, for example

#let cons a b = a: :b; ;

cons : {1=> ’a,2=>’a list} -> ‘a list

#maP function=> (cons 2=> [1;21) ;;

it : {l=>int list} -z int list list

#maP function= >(sub 2=>10) [11; 12;131 ;;

it = [1;2;3] : int list

Of course, the same effect can be obtained using the C

wmbinator defined as:

#let Cfxy=fy x;;

c: (la -> ~b -> ‘c) -> lb -> ‘a -> ‘C

#lllap (C sub 10) [11;12;131; ;

it = [1:2;3] : int list

But, besides legibility, the hidden loss is efficiency: a

mmbinator is an explicit closure to build and reduce, whereas

label commutation enables direct access into the argument

stack with offsets. Moreover, for more than two arguments,

currying on the kth argument would necessitate k – 1 such

swaps, or use a special combinator for each position-just as

expensive.

Jn addition to this obviously practical benefit, relative

position labels provide a coherent bridge connecting classical

currying and record currying.

2.3 A generic commutation capability

With respect to types, we can see these extensions as the

integration into J-calculus of the natural isomorphisrn

Ax BzBx A,

which, combined with currying,

Ax B-+ CNA+(B+C),

gives:

A-+(B+C)HB+(A-+C).

This isomorphism becomes clearer when using indexed

products, as in category theory, with explicit projections T1

and Ir2:

(T1+A) X (T2+B) = (w+B) X (TI+A),

and thUS:

(ml+-A) --+ ((m2+B) + C) H (TZ+B) + ((m+A) --+ C)

37

Therefore, we obtain a type system in which these isomor-

phisms, which are part of those described in [5], are directly

included.

If we want to keep a confluent calculus, however, it is nec-

ewiry to sacrifice either generality (two identical keywords

may not commute) or referential stability of positions (new

projections after commutation). For this reason positions

are necessary to allow commuting in arty case. They ensure

that association between an abstraction and an application is

inwiriant even if their respective positions change,. This is

important operationally as they allow direct access to distant

arguments (i.e., deep in the stack). While symbolic labels

are a useful extension of currying, numerical ones are similar

to de Bruijn indices [9].

3 A-Calculus with multiple channels

To meet the behavior that we illustrated with keywords, we

define an extension of the J-calculus, the symbolic selective

~-calculus, with symbolic labels.

Selective ~-terms consist of variables, taken from a set V,

and two labeled constructions: abstraction and application.

We shall assume a non-empty, totally ordered, set of symbols

S, to use as labels. We will denote variables by x, y, labels

by p, q, and ~-expressions by capital letters. The syntax of

selective A-terms is then given as:

M .._..— x (variables)

I ~#.M (abstractions)

I M;Mf (applications).

We will say “to abstract x on p in M“, “to apply M to M’

through p“. These terms will always be considered modulo

a -wnversion.

To make this compatible with the classical ~-calculus,

we shal~ distinguish a special label, written L, to use as

default.q That is, arty unlabeled abstraction or application is

interpreted as being lalxkl by L. In other words, classical

~-calculus is the special case when $ = {~}.

The reduction rules for this calculus are given in Figure 1.

~-Reduction only happens on abstraction-application pairs

with the same label.3 Otherwise they commute by rule (3),

Rules (1) and (2) simply normalize the order of abstractions

and applications.

For convenience, we will sometimes use a variant syntm’

using record notation. A record is m, expression of the form

(P1 +Ml, . . . ,P. + M.) the pis are labels and the MJS are
terms. We shall use these expressions with the following

syntactic equivalence

A(pl%’xl,... ,pn*xn).M G AP, XI.APnXn.M

M(PI=MI, ,.., pn+Mn) E (... (Mfi MI)... &MJ.

21twill beConvenimt,though not necessiuy, to aSSUmethat ~ is the l-t

element of S.
3~e ~ohtion [N/X]M deno~s the term obtained from M @er substi~t-

ing all the free occurrences of variable x with the term N.

Reduction:

(P) (&xM;~ + [~/xlM

Reordering:

(1) Apx.&y.M + ~qy.&x.M p > q

(2) M;N;P + M;P;N p>q

(3) (~pxJf);N + @@f;W P #q, x f? WN)

Fig ure 1. Reduction rules for symbolic selective ~-calculus

Example: We suppose thatp < q < r < s:

+3 (ApX.((Aqy.ArY.M) -W));~;Q

-+z (APX.((A,Y.A,Y.M) W));Q;P

-+6 (Aqy.Lz. [Q/x]M);NTP

-+3 (Jqy.((Jrz.[Q/x]M) ;N));P

+p (~qy.([Q/xl[N/zlM)):p

-+3 &y.(([Q/x][N/z]M) TP)

We call symbolic selective A-calculus the free wmbination

of these rules and iwwnversion.

Theorem 1 The symbolic selective A-calculus is confluent.

Proof: Consequence of the proof for selective A-calculus,

in [2] 5

4 A-Calculus with relative positions

This calculus is very similar to the previous one, Its syntax

is identical; the only difference is that the labels are positive
natural numbers:

Again, for compatibility with the classical }-calculus,

we shall use position 1 as default, That is, any unlabeled

abstraction or application is interpreted as being labeled by 1.

In other words, classical }-calculus is the special case when

N={l}.

The reduction rules are also similar, but with a twist.

They are are given in Figure 2. The main idea here is to

preserve wherence between argument position numbers and

the property used for currying that all functions are unary.

Hence, it is necessary to adjust a position number relatively

to the form on its left.

Similarly to what we do for symbolic labels, we will also

use a number-labeled rewrd-syntax variant of the raw syntax

for convenience, However, unlike the freely wmmuting

38

Reduction:

(P) (AZ~.Jq;N+[N/x]M

Reordering:

(4) Amx.A”y.M -+ Any.Am_,x.A4 nl>rl

(5) M; N;P+M;P~N m>n

(6) (&x.M)$N + &-lX.(M$N) m > n,x @FV(N)

(7) (Jnx.M)~N ~ &x.(Mn~l N) m < .,x@ W(N)

Figure 2. Reduction rules for numerical selective A-calculus

symbolic labels, the numbers used as labels in record notation

do not correspond directly to the relative position labels of

the raw syntax. Namely, translating from the record syntax

to raw syntax must readjust an argument’s position index

by subtracting an offset equal to the number of arguments

of lesser position indices on ita left. More precisely, let

(n~ *MI,..., nk + ikf~) be a record expression where

nietifori= 1,, ,., k. Then, for anyi= 1,..., kin

this expression, its rekztivepositimt offset is the number o(i)

of labels in the set {nl, ..., ni. 1} that are StliCtly leSS thtln

n~. For example, the relative position offsets of the record

expression

(4+ M1,1+MZ,5+MS,2+ M4,2+MS)

are o(l) = 0,0(2) = 0,0(3) = 2,0(4) = 1,0(5) = 1.

Hence, the syntactic equivalence is given by:

A(nl +x1,..., n~+x~).M s &xlA,~-O(~)x@

M(nl*f141,..., nk*fl4k) E (... (A4; M1) . . . &@)M).

Example:

(A(2ax,l~y,4~z) .M)(4aA’,6sP,2aQ)

z (A*x.A,y.A2z.h4) ;N3P:Q

+4 (A1y.}lX.AZZ.M) TN~P~Q

47 (A1y.((J1X.A2Z.M) SN))~PTn3

+5 (}ly.((A1X.A2Z.M) ;N))ZQIP

-t, (A1y.~lX.((J2Z.M) ;N))ZQIP

+@ (A1y.A1x.[N/z]M) ~QzP

+, (A1y.((&X.[N/Z]M) TQ))2P

-+@ (Jly.[Q/X][N/ZJM)IP

+7 Aly.([Q/xl[lv/m@lq

Theorem 2 The numerical selective A-calculus is confluent.

Proof: Consequence of the proof for selective }-calculus. ~

5 The selective A-calculus

The selective ~-calculus combines orthogonallythe symbolic

and the numerical selective J-calculi by using L = S x N

as set of labels.4 Thus its syntax is:

M::=x [Al,fk? I A4~f14’ where l=pn EL= SxAf.

The reduction system is the combination in Figure 3.

Applying these rules simply amounts to applying indepen-

Reduction:

(@) (~Ix.M) IN + [N/x]M

Symbolic reordering:

(1) &nx.&Y.M + &ny.&nx.M

(2) M@aN&P+M~P~N

(3) (&x.M) ZN + &nx.(M&N)

Numeric reordering:

(4) &nX.~pnY.M + ~pny+im- IX.M

(5) MGNGP + MGPPZI N

(6) (&~x.M) &N + &n-lx. (MfiN)

(7) (&mx.M) &N + &mX.(MPVI N)

p>q

p>q

P # 9,X@ Ww

m>n

rn>n

m > n,x @FV(N)

m < n,x @FV(N)

Figure 3. Reduction rules for selective)-calculus

dently the symbolic and numeric systems. One may see

reordering rules as stmctural equalities, and @xhwtion as

unique reduction rule. Since the combination is orthogonal,

it inherits cmlluence from both systems.

Theorem 3 The selective A-calculus is conjluent.

Proof: This is a consequence of the proof for the sum system

in [2]. We extend easily the use of numerical indices, which

can be seen as being limited to a only one keyword in the sum

system, to all keywords thanks to channel independence. #

To let this system include the symbolic calculus and nu-

merical calculus as sub-calculi, we will identify a symbolic

keyword pin the former with the label (p, 1), and a numeric

index n in the latter with the label (~, n). Thus, the classical

unlabeled J-calculus is also syntactically embedded in se-

lective ~-calculus by taking (L, 1) as the default label of all

abstractions and applications.

4111[2] this pwticular variant was defied as a product system,and
whst we calledthereselectiveXcalcoks asthesumsystemC = 5 u hf.

Pmpetties of the two systemsbeing similar, we work here on the most
generalone.

39

6 Simple types

As in classical ~-calculus, we introduce simple types. There

are two benefits. Fimt, we gain a better understanding of

the label-selective calculus itself by explicating the type

structure that it needs. Second, simply typed selective A-

calculus gains the same nice expected properties; e.g., strong

normalization of well-typed terms.

6.1 Syntax and types

The original syntax of terms is extended to:

M::=x I Alx:t.Ml MTM’.

which requires abstracted variables to be explicitly typed.

We define the syntax of label-selective simple types with

the following gramrrw

1 ::= pn (labels)

u ::= U1 \ u? I ,.. (base types)

r ::= {1+ t, . ..} (record types)

t .._..— ulr--iu (general types)

where the expression {1 + t,...}denotes a finite partial

function from L to types, including the empty function {}.

We shall identify a functional type of the form{} + u with

the base type u. Note that record types are not types of

expressions of our term language. They are used exclusively

as the left subexpremion of function types.

The idea behind this syntax of types is to convey that an

application can be done indifferently through any label that

is present in the type, on a value of corresponding type.

6.2 Record concatenation

We shall provide a simple-type inference system as expected.

In order to do so, we must define a record-type concatena-

tion operation needed for extending the domain type of a

functional type. Before we give it formally, it is preferable

to build some preliminary intuition. We will illustrate the

essential mechanism on an example.

To simplify the discussion, let us first restrict ourselves

to numeric labels only. Consider the two record types
r= {2+t1,4+t2} ands = {2+u1,3+uZ}. Extending

the type r ontheright withs must be done such that the relative
positions be kept in wherence. Now, r expects tlin second

position and t2in fourth position. In other words, positions 1,

3,5 and up, are “free” in r in the sense that if more arguments

were to be expected by an extension of r, they could use

these free slots in sequence. Consider now extending r with

s. The first argument’s position in s is 2. Hence, in r’s

context, this argument corresponds to the second “free” slo~

i.e., position 3. The following one ims is in position 3, and

hencs corresponds to the third “free” slot in n i.e., position

5. Thus, the record type resulting from the concatenation of

randsis r.s={2+t1, 3+-ti1,4+tz, 5~uz],

The case of multiple channels is not more complicated

since the above scheme is to be used on each channel

independently. Intuitively, this operation reminds of stream

merging. In fact, this is exactly what is happening as the

indices on a given channel in a record indicate the expected

positions, but only relative to this specific record. Extending

the record with more indices on this channel necessitates

adjusting the new indices by taking their positions with

respect to the sequence of indices unused by the initial

record. We now proceed to defining formaIly this record-

type concatenation operation.

Letr={/l~tl, ..., Z.+ t.} be a record type. We shall

denote by D, = {11, 1.} the set of labels defined in r.

Recall that our record labels are not simple symbols, but

pairs of the formpn, a symbol and a position index.

Definition 1 (occupied position) The nrhposition on p in a

record type r is said to be occupied if r is such that pn E Dr.

Given a record type r, we denote by o,(pn) the offset
of n on p in r to be the number of occupied positions on

symbol p in r with index less than or equal to n. That is,

o,@m) = 1(-@} x [1, n]) n 2),1.

For example, consider the two following record types:

r= -@2*tl, p4*tz, ql*t3, q2*t4, q5*t5],

S = ~2+ul,p3+ W, q2+uJ, q3+ud).

Theoffseta of the labels ofs in r are, respectively, or(p2) = 1,

o,@3) = 1, 07(q2) = 2, and or(q3) = 2.

Given a record type r and a given symbol p, we need

to identify the least index of p in r that is not an occupied

position. More precisely, it is useful to know the nth such

free position for symbolp in r.

Definition 2 (free position) The nzk !& position for p in r

is given by #,,P(n) = rnin{i c Af I i – or(pi) = n}.

For example, given the two previous example’s record

types, the free positions in r available for the indices in s

are, respectively, #,,P(2) = 3, #,,P(3) = 5, &,~(2) = 4, and

&,~(3) =6.
For fixed r, this function is extended to work also on a

record type by distributing it on each label. Namely, for any

S = @[ni + ti}f= 1, A(s) = @i@r,pi (ni) + ‘i}!= I o

For example, for the types r and s used above, we have

#r(s) = @3 + ul, P5 %- u?, # +- u3, q6 + u~}. It is not

coincidental that the label domain of the 47(s) is disjoint

from that of r. It is easy to show that this is true in general.

Definition 3 (concatenation) Record-Dpe concatenation is

dejinedas r.s = rti #r(s), where w denotes union offunctions

with disjoint domains.

Going back to the two record types r and s used in the
examples above, we have r. s = @2+ tl, p3 + ul, p4 +

t2, p5~uz, ql+tq, q2*tA, q4+u3, q5*t5, q6+ud}.

40

Proposition 4 Label-selective record-types form a monoid;

i.e., concatenation is associative with neutral element {}.

Proof: This is because #,.. = & o ~s (see appendix). H

6.3 Record matching

It is essential for a syntax-directed inference system, like the

typing system that we are about to give, to be able to solve

syntactic equations of the form r. x = s. More specifically,

to extract a subexpression r out of a record type expression

it is convenient to write the latter as r Ws (i.e., splitting it),

and let that be the result of an expression r. x, solving for x.

Remarkably, there is an inverse to record-type concatena-

tion that allows solving such an equation and thus may be

used to identify a given record type as the result of the con-

catenation of two other record types. We call this operation

record-type matching. 5 It will be used with great benefit in

typing rules as well as for polymorphic type unification and

type inference as shown in the next section.

Let r ands be two record types with disjoint label domains

(i.e., such as could be obtained by partitioning one into

two). Let pi be a label in s. For p, the position i can be

seen as the result of having concatenated r with the same

type originally at position i – or(pi). In fact, for all the

label indices i of p ins, this defines an inverse function for

&,p ~ @(i) = i – Or(Pi). That is, #;_(i) ~mput~ the
index corresponding to ion channel p slapping the occupied

positions on p in r that are less than or equal to i.

As before, for fixed r, #-1 is extended to record types.

Namely, for tUIy s = @ini + ?i}~=l such that Pini @ D, for
tii=l ,..., k, d; l(s) = ~id~~,(ni) + ti}f=l.

Definition 4 (matching) Record-~pe matching is defined

as r w s = r. #F i (s), where w denotes union of functions

with disjoint domains.

Letr= -@l+- tl, q2+tz)ands= ~2+u1, q3+uz},

The unique solution to the matching equation r Ws = r. x is

x= #;l(s) = @l*ul, q2*u2}.

6.4 Typing rules

We now have all we need to define well-typedness. We will

denote by T a typing environmen~ i.e., a mapping from term

variablea to types. The notation T [x ++ r] denotes the typing

environment that coincides with 1“ everywhere, except on x

for which it gives the type r,

Definition 5 A term M is well-typed if there is a mapping

r from the free variables of M to types and a type T such

that r 1- M : r is derivable in the type inference system of

Figure 4.

Simply typed selective J-calculus verifies the two funda-

mental properties of typed A-calculi.

r[x HT]Fx:T (I)

T[x+-+6]PM:r-+r
(II)

rt-~lx:O.M: {l+t9]. r-+r

rt-M:{(+6}. r-+r FFN:6

(III)

TFM~N:r+r

Figure 4. Typing of simply-typed label-selective calculus

Proposition 5 (subject reduction) Reduction preserves

the types; i.e., if T 1-M : T and M -+ N then I’ 1- N : r.

Theorem 6 (strong normalization) The simply-typed

label-selective ~-calculus is strongly normalizing.

7 Polymorphic selective A-calculus

While there exist typing systems that are more powerful

than ML’s (e.g., second-order polymorphic A-calculus), the

style of polymorphism used in ML is much simpler. This

is essentially due to restricting type quantification to appear

only at the outset of type type expressions, which facilitates

type instantiation to be done implicitly following applica-

tions. The principal advantage of this type system is that,

for A-calculus, any term has a principal (i.e., most general)

type that can be reconstructed from the shape of the term

alone. This obviates explicit type declarations: a simple type

unification algorithm synthesizea missing types.

We show here that this form of polymorphism is valid

also for label-selective ~-calculus. This means that, horn a

typing point of view, the addition of labels is coherent with

polymorphically typed A-calculus.

7.1 Syntax and types

The syntax is that of untyped selective A-calculus with a Iet

construct to introduce polymo@ism, types being provided

by inference. Thus, the syntax of terms is given by

M::=x I ~tx.M I M~M’ I Ietx= Min M’

and the reduction rule corresponding to the new construct is:

let x = M in N + [x/AiqN.

As in Damas and Milner’s definition [8], typea are par-

titioned into monotypes, ranged over by t,and polytypes,

ranged over by a, Thus, the language of types is given by:

w ..—..—
Ulv (return types)

r ::= {Z+t,...} (record types)

t ..—..— w I r + w (monotypes)

o’ ::= t I VV.C7 (polytypes)

41

where return types u stand for base types and v for type vari-

ables. Here again, record types are not types of expressions

of the tam language.

7.2 Type substitution

The distinction we introduce here between return types and

monotypes is specific to selective A-calculus. Indeed, as

we shall see, the principal difficulty in our system, when

compared to 2-calculus with ML-style polymorphic types,

is that function types are always kept flat. Observe, indeed,

that function types are not return types. For example,

{1+ a} + ({Z’+ /3} --+ T) is not a valid type expression

in our type language. It is possible, however, to obtain such

an expression as the result of substituting a valid type for a

type variable in another valid. For example, doing a direct

substitution with {1 ~ y} -i 6 for,8 in type {1 + ~} -+ /3

would result in{l+({l+~} + 6)} + ({l+T} + 6).

This means that when we substitute a variable that appears

as return type with a functional type, we will need to modif y

the structure of the type.

The solution is to detine type substitution with a built-in

flattening of the domain type. We will denote this operation

as [T’\cY]r (i.e., substitute type T’ for type variable CYin r)

and it is performed as expressed by the following simple

rule

[(r’ + u)\cY](r --+ CY)= (([(r’ + w)\a]r) . r’) --+ w.

WMI this rule, our example above results in the valid type

{1*({ 1+ ’y}+6),2*-f}-+6

This illustrates how our domain of types is radically

different from the conventional Herbrand universe with the

arrow and base type constructors, whose well-known term

unification is exploited for ML-type inference. We shall thus

need to provide our explicit unification algorithm. It is a nice

property of our system that unique most general unifiers exist

for our type terms. As we shall see, this is essentially due

to the well-foundedness of normalization to flattened types

which does not change the size of types.

7.3 Typing rules

The typing rules are given in Figure 5, It is interesting

to remark that Rules (IV)-(W) are in no way specific to

selective ~-calculus. Since type quantifiers are external,

they are independent of the structure of monotypes. Thus,

these rules are exactly the same used in classical A-calculus.
Their roles are generalization (IV), instantiation (V), and

let-introduction (VI), The only, but important, difference

between these rules and the classical ones is hidden in the

use of our flattening type substitution [T\rx]a in Rule (V).

Again, all the desirable properties hold for the polymor-

phically typed selective A-calculus, as expressed by the two

following propositions.

Proposition 7 (subject reduction) Zf r !- M : T in po/y-

morphically typed selective A-calculus, and M --+ N, then

rtN; T.

l“[x++O]EM:r-+r

(II)

rl-Alx.M:{l*e]. r+T

rtM:u
a not free in r (w)

rFM:vcY.o

rFM:vcl.ff
(v)

r!- M : [T\a]cJ

rl-M:r r[x Hu]t N:r

(VI)

rt-letx=Min N:T

Figure 5. Typing rules for polymorphic selective ,1-calculus

Theorem 8 (strong normalization) Polymorphic selective

A-calculus is strongly normalizing.

7.4 Type unification

The key for type synthesis is unification, We give here a

unification algorithm for the label-selective monotypes de-

fined above. It can be expressed as a simpIe E-unification

problem [11], where the equational theory is that deciding

equality of record types. Then, our type substitution opera-

tion using record-type concatenation constitutes a complete

set of reduction for this theory. We next give this unifica-

tion procedure as a complete set of equivalen~-preserving

transformations on a set of type equations.

A set of type equations p is said to be in solved form

if every equation in it is of the form a = T such that the

type variable Q ocmrs only once in p; viz., as this equation’s

Iefklmnd-side. As usual, such a solved-form detlnes a variable

substitution that can be applied to type expressions.

Figure 6 contains the complete set of transformations for

the unification of label-selective monotypes. We use the

notation CYfor type variables, w for return types, and -r or@

for any type expression, (Recall that {} + u is identified

with u.)

These rules work on a set (a conjunction)of type equations,

transforming it into another such set, Upon termination,

having started from a set p of equations, the resulting

equation set is either 1-, the inconsistent equation indicating

42

(Base type) (Function type)

p,u=v
u#v p,u=r+u u base type

L u, v base types -L r#{}

(Variable recurrence) (Variable elimination)

$0, CY=T
T#CI

p,a=l-
a C Var(~) – Var(~)

-1- a G var(T) [7-\cY]p, a = T if ~ variable,then T ● Var(~)

(Variable orientation) (Redundancy)

~, T=(Y
ct variable

yJ, e=e

$0, Q==T T not variable Y

(Decomposition)

P, {l*d}.r+u ={l?+e’}. f+w’

p,8=0’, r+w=r’+w’

(Label completion)

Figure 6. Equation-rewriting rules for type unification

that no solutions exist, or sol(p), a set of equations in solved

form equivalent top.

In either case, this process can be seen as returning a

substitution. In the first case, it is the failing substitution

J- such that 1 (~) =1 for all types r, where 1 denotes

the inconsistent type, In the second case, the solved form

sol(w) is the most general unifier (MGU) of p (up to variable

renaming). The rules are written as rewrite rules using a

comma as an associative and commutative set constructor,

an the equal sign as a commutative equation constructor.

That is, in these rules the particular order of equations in the

set as well as the orientation of an equation are irrelevant,

As established by the following theorem, they are solution-

preserving and there is a deterministic strategy that makes

them always terminate,

Theorem 9 (label-selective type unification) There is an

algorithm that computes the most general unijier of a set of

equations on monotypes or reports failure if there is none.

7.5 Type inference

It is now easy to derive a type inference algorithm by
combining type unification with the typing rules of Figure 5.

It is sufficient to following the syntactic structure of a given
term, accumulating new equations in a set, as shown in

Figure 7. The function Tp takes a typing environment 1’ (a

function from from term variables to types) and a selective

A-term M, and returns a pair (p, r) where p is a set of

type equations in solved form (i.e., a type substitution), and

~ is the principal type of M. The function strip applies

to a type expression VQ1. . . .Va~.r, where n > 0, and
returns the expression obtained from -r where all the ~is,

if any, are replaced with fresh names,c The expression

IT(r) is the set of free variables in T, and by extension

W(T) = UX FV(l’(x)), The expression SOI(P), where p

is a set of type equations, is the solved form of q (i.e., the

MGU of ~). It is the result of applying the transformation

rules of Figure 6 to p until none applies. The expression

p(~) is the result of applying the substitution p to the type

expression T. By extension, q(~) is the function defined by

‘POW)=%@@)). ‘ -
This algorithm constructs a derivation tree whose root is

P FM: r, where r and Mare given. Since there is only one

way to construct this tree, by induction on the structure of M,

this algorithm is complete and correct. This is because only

necessary equations are added, except for generalization and

instantiation, which are handled in the most general way in

the variable and let caaes.

61f n = O there is no quantifier, and thus strip n4ums the given type

expression as is.

43

Tp(l’, x) = (0, strip(~(x)))

Tp(r, A~x.M) = ($0, [T\@] ({l.* a} -+ /3)) where

{

T’(l_’, letx = M inlkf’) = (sol(p u P’), T’) where

[

Figure 7. me inference algorithm

8 Conclusion and further work

We have proposed two typing systems for label-selective A-

calculus: simple types and ML-style polymorphic types. The

latter are smoothly accommodated thanks to the existence

of a simple but flexible record-type concatenation operation

that facilitates building label-selective currying right into

type substitution and unification. Integrated into a polymor-

phic functional progr atnrning language with currying, this

provides a powerful tool, extending currying facilities and

helping to memorize multi-argument functions.

An interesting subject is how to mix record operations

and selective ,1-calculus. The idea comes from the natural

encoding of records in the untyped calculus, as:

{l~+al,..., 4!. *an} ---+ ~..p.(s~ al . . . ~ a.)

where sel is a distinguished fixed channel ands is a function

selecting a label and dkcarding the others individually (we

have no way to dkcard them at once), like ~~,xl.~~mx..xk.

We can even have function using more than one label. This is

in fact the basic idea for a transformation calculus. However,

there are some essential differences between a classical

definition of records and this encoding as it accommodates

numerical indices, We suspect that type inference of such a

calculus with useful operations might turn out to be rather

complex,

Another application of this calculus might be found in

parallel processing. If we now see labels on a stream

as identifying threads, the commutation capability duectly

interprets a concurrent evaluation. This is an idea very close

to the dataflow paradigm, but we hope to replace flow analysis

by type synthesis. Another, but not contradictory, view is

to see labels as names, like for process communication. It

shows a link, which can easily be made more evident, with

(p, T)= Tp(l’[x ++ aJ, M)

cq~fresh

(Y-1~)= ~P(~>w

(p’, +)= Tp(l’, M’)

a fresh

(9, 7)= Tp(T, M)

($0’, T’) = Tp(r’, M’)

r’= r[x i-i V(FV(T) – FV($7(I’))) .7]

calculi like Milner’s mcalculus [16]. The conjunction of

those two views seems an interesting prospective.

The last, but more immediate, concern is compilation.

Two differentversions of selective A-calculus using de Bruijn

indices, through explicit substitutions [1], have been devel-

oped. They reflect two different levels of compilation one

that is faithfd to label names, and one where they can be

replaced by numeric stack offsets. This might k the basis

for an efficient compilation method, which should be built

on a completely curried vision, That is, there should be

no overhead caused by currying. The eflicient compilation

method given by Ohori for a record calculus [18] gives us

some evidence .that this is possible.

Acknowledgements

The authors are indebted to Atsushi Ohori for invaluable

discussions.

Appendix: Proofs of theorems

Proposition 4 Record-~pe concatenation is associative.

Proof: Let us show that&o ~. = 4ti@r(,). We proceed with

inverses:

~&,(.J,P(i) = i - ~tior($)(pi)

= i – or(pi) – o~(~~~(i))

= d~~(d~~(i)).

We then have

44

r. (s. t) = rw qi,(s W ~.(t))

= r W #,(s) W @,(#.(t))

= r U d,($) ~ &U@rtS)(~)

=(r. s). t, 1

Proposition 5 (subject reduction) If r t-M: ~ and A4 +

Nthen T1-N:r.

Proof: We only need to prove this property when M is a

redex and N is the result of this reduction. We can then

generalize by substitution and repetition.

If M is a @xiex, it is of the form (ltx: 6.P) ~Q. Then, the

basis of the proof tree is:

~[x++6]hP:r+~
rtQ:e

P1-Alx:O.P: {la6). r+r

rkkl:r-+r

After reduction the result is N = [x/Q]P. We obtain

a derivation tree for r k [x/Q]P from those of r [x w

6] FP:r+rand T1-Q:tJasfoIlows: (l) doing

all a-conversions necessary to the substitution of x by Q;

(2) suppressing x in the environments (except where it is

redefined by an abstraction); (3) where x appears without

being defined in the environment, replacing P f x: 0 by the

derivation tree of r’ h Q :6. This poses no problem since

VYEW(Q) r(y) = r’(y).

If the reduction is a reordering, we have seven cases. We

will only work out in detail cases (3), (6) and (7).

Case (3): If the reduction is (3), then the derivation tree must

have the following form

r[x+6]t- M:{qn+6’}. r--+~

rFN; O’

rkAPA:O.M: ~m+0,qn~6’}. r+r

r b (&&6.M)&N: @?2*6}”r+ T

Since x @ FV(N), we can obtain the following derivation

tree after reordering:

r[xtid] t- M:{qn+O’}. r+~ r[xl+6]}N:e’

r 1- 2Pd:6.(M@N) : @m&8}. r+ r

Case (6): If the reduction is (6), then n < m, and the

derivation tree must have the following form:

1’[x+8] l- M:@z+O’}. r+r

rt-N:e’
rkAP~x:8.M: @na6’, pm+ O). r+r

r 1- (2P~x:0.M)&N: @(m– 1)>6}. r + ~

Since x $? FV(N), we can obtain the following derivation

tree after reordering:

r[xw@]t- M:@n+O’}. r+~ r[x He]h N:6’

r[x H8]k M& N:r+r

r ~ &~-lJX:O. (MfiN): -@(m– l)*@}. r+ ~

Case (7): If the reduction is (7), then m < n, and the

derivation tree must have the following form

I’[x~O] l- M:@(n-l)a&}. r+~
rl-N:O’

rk AP~x:6.M: @m~O, pn~6’j. r+r

r 1- (Apmx:O.M);.N: @ma OJ. r--+ r

Since x @ FV(N), we can obtain the following derivation

tree after reordering:

r[x++O] l- M:@(n-l)a6’}. r+~ r[x~6]t-N:6’

l’[xW6]t-MP~l)N:r+~

r F APmX:6.(M&fv):@???*e}” I_+ T

9

Theorem 6 The simply typed selective A-calculus is

strongly normalizing.

Proof: The idea is to construct a function that gives the

longest reduction of a term in function of its input. By

reduction steps, we only mean here @ductions, since we

already know that reordering is Noetherian.

First, let us define zero functions, and the operation of

rech”fication of a function. h fact, we use Selecti”vefinctions

in place of classical functions, labeling arguments. They

are only a practical notation since we know that selection

is deterministic by the confluence theorem, and we could

translate them to classical functions using their types and the

order on labels.

Let T={~l +71,.,,, & * r.} + u be a simple type. The

zero-function for T, noted 07, is the function ~(11 % xl :

T;, ..,, l“ ~ X. : rJ).0, of type r“, where * is defined by

induction as ({11 a rl, .,.} +u)”={ll +r; ,...}+int

(we replace every base type with int).

45

To rectify a iimction ~ of type ‘r = {11 + T1, ..., & ~

rn}.r -+ u to r -+ u one simply applies it to the corresponding

zero-functions: rect(r + u,f : I-) = f(ll * Or],& +

07”) .

We define our function Tr (M) by induction on the structure of

the term M, annotated with types in some typing environment

r. We suppose that keywords S and variables V are

independent, and use Y U S as symbols for the respective

selective functions.

For a variable T h x: r, the associated function is ~xx: T“ .x.

~Eletx=Min N:T

We first perform ail a-conversions necessary to the sub-

stitution of x by M. After reduction, we obtain a tree

with root T I [x/M]N : T from the derivation tree of

r [x ~ u] F N : ~ by replacing every occurrence of the ax-

iom I’/[x F-+a] t- x: o by the derivation tree of I’f F M: a;

observing that Yye W(M) r(y) = T’(y). 1

For an abstraction r t ALX: 0.M : {1+ 0} . r --+ T, the Theorem 8 Polymorphic selective J-calculus is strongly

associated function is Alx: 0“ .Tr[&el (M). normalizing.

For an application r k MTN : r -+ T, with r h N :6, the Proof: We find an upper bound of the longest evaluation
associated function is: of M by that of M, which is M where all occurrences

Tr(M2N) = AXIX1.

of let are suppressed by transforming let x = P in N into
&x~.((Tr(M)2xl . . . XX~TNa) K; ([x/P]N)YP, where K = Alx.A lY.x. We need K for

+ rec[(int, N“ : O*) + 1) the case where x does not appear in N. Since the result

is monomorphic everywhere, the argument for the simply

where. typed calculus holds. 1

1. FV(N) = {Xl, XI/}.

2. FV(M)n FV(N) = {Xi,...,Xk},O< k< n;

3. Na=Tr(N)~xl... ~;.;

4. for~ : {11 301,lnaOn }--+intanda.int,

This sum of three terms expresses that N may be reduced

after substitution in M, or before, and that there maybe one

step of ~-reduction.

In this function we make two approximations. The first one

is that we count one step for each application, whether or

not there is an abstraction to reduce. The second one is

that we take the sum of the call-by-name and tail-by-vaiue

strategies, and not their maximum. Since these are only

over-estimations, our function gives an upper-bound of the

longest reduction path.

Ifrk M:{ll+ @l,..., /. + 6.} + T ~d rlw@j =

{XI I-+ TI,... , Xm +-+ rm}, then TF(M) is a total function

from f3; x.. .xO~x~~x ~~tointo This meansthat that

on any complete input that is coherent with its typing, M will
terminate. Moreover, an upper bound of its longest reduction

path is given by rect(int, Tr (M) : (r -+ ~)”). I

Proposition 7 (subject reduction) Z~r 1- M : T in poly-

morph ically typed selective ~-calculus, and M + N then

rFN:T.

Theorem 9 (label-selective type unification) There is an

algorithm that computes the most general unifier of a set of

equations on monotypes or reports failure if there is none.

Proof: We first prove the correctness of the rewriting system

of Figure 6. That is, for each rewrite rule, any solution of the

denominator is a solution of the numerator, and conversely,

any solution of the numerator can be extended into a solution

of the denominator, possibly by introducing new variables

missing in the numerator.

The rules labeled Base type, Variable recurrence, Function

type detect inconsistencies in the equations. That is, respec-

tively, equation between two different base types, between a

type variable and a type containing it, or between a base type

and a functional type. When one of these rules applies, the

system has no unifier.

The Variable elimination rule substitutes variables (using

flattening type substitution), while keeping their referents.

Let a be a solution of the numerator. Then, “by construction,

U(Q) = CT(T), thus it is also a solution of the denominato~

and wnversely.

The Variable orientation rule simply reorients an equation.

It is not really necessary and is provided oniy to obtain the

solved form with all solved variables on the left. Clearly, it

leaves unchanged the set of unifiers. So does the Redundancy

rule which just suppresses tautological equations.

Decomposition takes a label already present on the two sides

of an equation, and equates the types. Correctness is clear.

Proof: Since polymorphism can only be used in injunction
Whenever a label appears only on one side of an equation, it

is necessary to introduce it in the other side. This is done by
with let, the proof for simple types is enough except for

let-reduction.
the Label completion rule using record-type matching. Any

unifier of the denominator is also a solution of the numerator,

In this last case, the derivation tree starts with sin= {[q O}uti+~= fl. ~~l{!~$}+~, wtichis

46

by unification equal to / --+ u’. Conversely, if u is a unifier

of the numerator, then it maps w‘ to a functional type of the

form q$~1{1+ c(6)} ./’ --+ u“, which can be extended for

the denominator by adding a(a) = /’ + w”.

We next prove that there is a terminating strategy. Ter-

mination follows for the well- foundedness of a decreasing

measure. A variable is solved when it appears only once, and

as the lefthand-side of an equation. We exhibit a strategy that

reduces the lexicographical measure (number of unsolved

variables,sum of sizes), where the size of a type is the total

number of labels, variable occurrences and base types it

contains.

The three failing rules terminate. Redundancy, and Decom-

position reduce the sum of sizes. Variable elimination and

Variable orientation reduce the number of unsolved variables.

Label completion by itself does not reduce the measure, But

if it is always used it in wmbination with Decomposition on

the same equation, eliminating or failing as soon as possible,

this always reduces the number of unsolved variables. If u’

is not a variable, we fail immediately. Otherwise, it is solved,

but we create a new variable CZ.We repeat this until we can

solve a “successor” of a with the left hand side (which may

suppose creating a lineage to u too, if completion is mutual).

This sequence terrninatea, since there is only a finite number

of labels on each side.

Last, we must show that our result is in solved form. First, in

every equation, at least one side is a solved variable, If the

two sides are functional types, then either Decomposition or

Completion applies, If one side is a base type, then the other

side is a solved variable, otherwise Elimination, Redundancy

or some failure applies. If the two sides are variables, then

at least one is solved.

We construct the substitution a by taking for each equation

CY= T, CYsolved, cr(cY) = ~. a is a most general unifier

of the final system, and, as a consequence, if we suppress

definitions for all variables introduced by completion, & is a

most general unifier of the original system. B

References

1.

2.

3.

4.

Martfn Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-
JacquesL&y. Explicit substitutions. In Proceedings of ACM

Symposium on Principles of Programming Languages, pages
31-46 (1990).

Hassan kit-Kaci and Jacques Garrigue. Label-selective ,4-
calculus. PRL Research report 31, Digital Equipment Corpo-
ration, Paris ResearchLaboratory (May 1993).

Hassan /fit-Kaci and Jacques Garrigue. Label-selective A-
calculus: Syntax and confluence. In Proceedings of the 13th

International Conference on Foundations of So@are Technol-

ogy and Theoretical ComputerScience (Bombay, India), LNCS
761. Springer-Verlag (December 1993).

Hassan Aiit-Kaci and Andreas Podelski. Towards a meaning
of LIFE. Journal of Logic Programming, 16(3 -4]195-234

(July-August 1993).

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18,

19.

20.

21.

22.

Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Prov-
able isomorphisms of types. Technical Report LIENS-90-14,

LIENS (July 1990).

Luca Cardelli. A semantics of multiple inheritance. Informa-

tion and Computation, 76:138-164 (1988).

Luca Crmielli and Peter Wegner. On understanding types,
data abstraction, and polymorphism. Computing Surveys,

17(4):457-522 (1985).

Luis Damas and Robin Milner. Principal type-schemes for
functional programs. In Proceedings of ACM Symposium on

Principles of ProgrammingLanguages, pages 207-212 (1982).

N. G. de Bruijn. Lambda calculus notation with namelessdum-
mies, a tool for automatic formula manipulation. Indag. Math.,

34:381-392(1972).

Pierre Weis et al. The CAML Reference Manual, version 2.6.1.

Projet Fennel, INRIA-ENS (1990).

Jean Gailier and Wayne Snyder. Designing aniiication proce-
dmes using transformations: a survey. In Y. N. Moschovakis,
editor, Logicfiom Computer Science, pages 153–215. Springer-
Verlag (1989).

Jacques Garrigue. Label-selective J-calculus. Rapport de
D.E.A., Universit6 Paris VII (1992).

Lalita Jategaonkar and John Mitchell. ML with extended
pattern matching and subtypes. In Proceedings of ACM Con-

ference on LISP andFunctionalProgramming, pages 198-211
(1988).

John Lamping. A untied system of parameterization for
progmmming languages. In Proceedings of ACM Conference

on LISP and Functional Programming, pages 316-326 (1988).

Henry Ledgard. ADA: An Introduction, Ada Reference Manual

(July 1980). Springer-Verlag (1981).

Robin Milner. The polyadic x-calculus: A tutorial. LFCS Re-
port ECS-LFCS-91 -180, Laboratory for Foundations of Com-
puter Science, Department of Computer Science, University of
Edinburgh (October 1991).

Martin Odersky, Dan Rabin, and Paul Hudak. Call by name,
assignmen~ and the lambda calculus. In Proceedings of ACM

Symposium on Principles of Programming Languages, pages
43-56 (1993).

Atsushi Ohori. A compilation method for ML-style polymor-
phic Kcords. In Proceedings of ACM Symposium on Principles

of Programming Languages, pages 154-165 (1992).

Didier R6my. Typechecking records and variants in a natural
extension of ML. In Proceedings of ACM Symposium on

Principles of Programming Languages, pages 77-87 (1989).

R. Stansifer. Type inference with subtypes. In Proceedings of

ACM Symposium on Principles of Programming Languages,

pages 88–97 (1988).

Guy L. Steele. Common LISP, The Language. Digital Press

(1984).

Mitchell Wand. Complete type inference for simple objects.
In Proceedings of IEEE Symposium on Logic in Computer

Science (1988).

47

