
A Glimpse of Paradise

Hassan Ait-Kaci

Digital Equipment Corporation
Paris Research Laboratory

85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex

France
email: hak@prl.dec.com

A b s t r a c t

Having understood that most attractive programming paradigms introduced re-
cently in declarative symbolic programming languages need not be provided at the
detriment of one aalother, we also believe that they can and should coexist with
the more conventional state-effecting style of explicit control and data processing
of imperative programming. To this end, we language designers must provide three
primeval abstractions which could allow retrieving of most particular programming
styles as particular instances, with the additional freedom of manipulating these
abstractions explicitly. In the next decade, computer programming should allow
specifying (1) abstract data structures, (2) abstract control structures, and (3) ab-
stract constraint structures.

With these basic ideas in mind, we shall propose and sketch a specific design
for a language and lay out some explicit requirements. Doing so, we shall try to
compare this attempt to the state of the art.

It is true, that as the form often does not accord
with the intention of the art, because the material is
deaf to respond, so the creature sometimes deviates
from due course; ...

Dante Alighieri
The Divine Comedy--Paradise, Canto I:121

Motivat ion

I t is clear tha t there exists a wide chasm separating the present day's "real-life" pro-
gramming languages and the s tate of understanding of powerful high-level programming
paradigms. The former provide low-level primitives and complete specific command of
da ta and control. This results in efficiency but at the cost of prohibitive program devel-
opment overhead. On the other hand, high-level programming languages offer elegant
and powerful abstract ions such as polymorphic typing and constraint-solving, but impose

18

overly restrictive programming styles often excluding the more familiar and sorely missed
constructs.

Now, we believe that the application software market of the 90's will comprise as
a large part programs for advanced data and knowledge representation, graphics ob-
ject manipulation or reasoning thereof, natural language processing, CAD, hardware
design verification, combinatorial optimization and problem-solving. These exemplify a
category of programming challenges whose realization in conventional programming lan-
guages is currently very difficult and time-consuming. However, today's constraint-based
languages, although providing adequate tools for specific problem domains, still confine
the user to canned structures leading to unacceptable inefficiencies.

Thus, it is imperative to build a more appropriate programming environment than
either side of the gap. To structure our argument, we shall word this essay as a pro-
posal to design and build a prototypical programming environment of the 90's--dubbed
Paradisel--whose building blocks will reflect our technical assessment of its required
functionality. Namely, it must incorporate general and versatile abstractions to support
direct execution of high-level constraint specifications coexisting along with the famil-
iar imperative programming paraphernalia. This is bound to facilitate significantly the
development of advanced applications such as we have in mind.

Our key insight is based on our having understood that most attractive programming
paradigms introduced recently in declarative symbolic programming languages need not
be provided at the detriment of one another. This fact is clearly demonstrated and
amply illustrated in [AKN86,AKN89,AK90,AKP90,AKP91,AKM90]. More importantly,
they need not preclude the more conventional state-effecting style of explicit control and
data processing of imperative programming [FF89,Fe187]. Therefore, we believe that it
is quite feasible to set up a concrete and rigorous design plan based on building three
primeval abstractions which could allow retrieving of most particular programming styles
as instances, with the additional freedom of manipulating these abstractions explicitly.
Namely, programming in Paradise should allow specification of:

1. abstract data structures;

2. abstract control structures;

3. abstract constraint structures.

The first item is perhaps the most familiar and used through the machinery of mod-
ules, with added power supplied by generic modules. The second and third points are
less conventional, the second one having already been under serious investigation and
the last one being quite new.

With these basic ideas in mind, we can sketch a specific design for a language and
lay out some explicit requirements.

The Design
We offer to design and implement Paradise as a programming system combining compu-
tational paradigms from Constraint Logic Programming [JL87,HS88], Object-Oriented
Programming [GR80] and Typed Functional Programming [IIMT88]. The system will

1Since it c o m e s af ter L I F E [AK90] a n d could very well t ake a long t i m e to be reached.

19

allow for a free mixture of efficiency-oriented imperative programming with specification-
oriented declarative programming. At the same time, the system will be simple. Sim-
plicity will be achieved by having only a small number of basic constructs, which are
general and fit nicely together.

The language must have one uniform, record-like data structure based on classes
and features. Classes are organized as an inheritance hierarchy and all operations are
bound to classes. The type system supports a few built-in polymorphic classes such as
pairs, lists, and arrays. Other parametric data structures can be implemented by means
of generic modules. Well-typedness is checked before program execution. Execution
of well-typed code is guaranteed to map well-typed memory states to well-typed mem-
ory states [Coo89]. Programs are then naturally organized as hypergraphs of possibly
parametric modules. The consistency of the module structure is checked automatically.

The programming system will be interactive and incremental. A program consists
of a hypergraph of modules that is created, inspected, and modified through a window
and menu oriented user interface. Module and type checking as well as compilation are
incremental and are done as early as possible [CCHO89]. Code that has passed the type
checker can be executed immediately.

Operators can take the form of functions, relations and procedures. Operators are
first-class objects. Operators are uniformly declared with a rank ~ ---, r, where ~r is the
type of the input argument (there is always exactly one) and r is the type of the result.
Functions do not have side-effects. Relations have monotonic side effects; that is, they
can impose additional constraints on existing values. Procedures have hard side-effects;
that is, they can nonmonotonically update the fields of a value.

The language is equipped with a type-safe exception handling similar to ML. However,
imposition of constraints and updates of fields can be trailed, which means that upon
return to a choice point (called an exception handler in ML) the initial memory state may
be recovered automatically. This yields exception controlled backtracking, which is more
powerful than the chronological backtracking underlying Prolog [CM84,SS86,O'K90].

One of the most innovative aspects of the language is the integration of constraint
solving. On the well-understood side, the language will support unification with re-
spect to its data structure, which amounts to sorted feature unification as realized in
LogIn [AKN86]. In addition, built-in constraint solving methods are accommodated for
common useful applications such as numerical problems and propositional logic. The
well-founded and efficient integration of these three families of methods alone will make
for an interesting subproject.

Finally, it must be made possible to program new constraint solving methods. Finding
the right control primitives and the appropriate abstraction mechanisms for this task is
an open research problem, solutions of which should provide for a major breakthrough
in programming.

P a r t i a l D a t a R e p r e s e n t a t i o n

Types are organized in a partial order hierarchy (inheritance). Data is uniformly repre-
sented as feature structures (attributed objects). This structure of objects respects type
schemas (classes).

The advantage of the fact that there is no (conceptual) difference between values and
types is that data may be added attributes compositionally and (variable) binding may

20

dereference
(binding identification)

type/value
attributes
constraint
closures

Figure 1: Partial Data Objects

set of variabies I
(object pointers) l suspended code .

Figure 2: Constraints as Closures

be seen as object identification. This has unusual pay-offs. First, compile-time resolves
some but not all types. Second, there is no need to distinguish between of c a s e and
t y p e c a s e [Rov86]. Third, binding as data identification gives a natural interpretation of
pointers as equivalence classes of references (coreference classes), and allows selectively
undoable side-effects.

Abstract Constraint Solving

Recent work in Logic Programming has shown that Prolog's unification can be generalized
to arbitrary (decidable) constraint-solving, as long as is provided an appropriate data
representation and interpretation thereof, and a constraint-solver in the form of a relevant
decidable, correct (sound and complete) algorithm on these structures [JL87,ttS88]. This
provides great possibilities to execute declarative specifications as programs.

Thus, constraint-solving is done incrementally and asynchronously. This is achieved
by seeing constraint-solving as a non-deterministic normalisation process over formulae
involving existential variables. Variable valuations are thus computed declaratively with
a mechanism of suspended constraints as closures [AKN89,AKP91].

ttence, given a representation of objects as feature structures interpreted as partial
approximations (see Fig. 1) a network of asynchronous constraints is established by
representing constraints as closures (see Fig. 2). For monotonic side-effects, objects in the
network are preserved by object identification realized through binding as dereference.

Abstract Control

Abstract control for programming languages in its most general form stems from research
in Denotational Semantics whose computational rendition as a higher-order formalism
(such as the A-calculus) give explicit "first-class citizenship" to continuations [FWFD88].
Thus, Scheme [RC86] is certainly the programming language instance having explored
the issue the furthest with its higher-order c a l l / c o primitive which allows arbitrarily

21

powerful control flow. The simpler exception-handling of ML [HMT88] and Modula-
2+/3 [CDG+89,Rov86], elaborations of Lisp's earlier ca tch/ throw construct [M+65,
Ste84], still offers some abstraction of control, although less than full continuations but
much simpler to implement as mere run-stack poppers. For Paradise, we propose a
compromise retaining the latter's simplicity and efficiency, yet providing a more flexible
management of the run-stack and heap.

The idea is to introduce two novel control primitives: (1) generalized exception
handling, and (2) event suspension. Generalized exception handling extrapolates from
exception-handling such as catch/ throw in Lisp, or t r y / w i t h in ML and Modula2+ to
handle general search strategies for variable valuations in arbitrary constraint-solving.
This necessitates a selective trailing and undoing of object bindings. Higher-order con-
tinuations (e.g., ca11/¢c in Scheme) are inadequate here as they are meant to work in a
deterministic calculus without undoing of effects. Besides, although quite powerful, they
are highly unintuitive. Our solution is to extend t r y / w i t h to allow structure-sharing and
undoing of side-effects. For this, we need a (selective) "trailing" of bindings mechanism
it la Prolog [AK91]. We can define the right primitives to get a minimal overhead while
being simpler to understand and implement.

Computation suspension is a natural consequence of seeing constraint-solving as asyn-
chronous binding propagation through a object-constraint network. Although this is to
happen implicitly in most cases, a control primitive to provide an explicit handle for this
is of the form wait/until and is inspired by Prolog-II's freeze [Co182]. This allows
adaptive control and automatic propagation of constraints. In particular, this is how one
can turn "generate-and-test" search into remarkably more efficient "test-and-generate"
search.

Sta te of the Art

Currently, there are just a few other programming systems with relatively comparable
breadth of functionality: Modula-3 done at Digital's SRC [CDG+89], CHIP done at
ECRC [DSvH89,vH89], CLP(~) done at IBM's T.J. Watson's Research Center [JM87,
JMSY88], Prolog-III developed by Prologia [Col90], and ThingLab done University of
Washington [BorSl]. We shall briefly overview how similar we perceive these efforts to
be as compared to Paradise's ambitions, but also express how we depart from each, yet
encompassing most of their combined functionalities.

Modula-3 is an elaboration of Modula-2+ [Rov86], itself an extension of Modula-
2 [Wir85]. It keeps most of Modula-2+'s features with mainly two additional capabilities:
Class (single) inheritance and dynamic types. Clearly, these new features are fully part of
our conception of Paradise. Paradise is expected to support (multiple) inheritance with
the additional power of object unification. Furthermore, the order-sortedness of Par-
adise's feature terms makes no real distinction between types and values--thus achiev-
ing precisely the behavior of dynamic types. As for what it inherits from Modula-2+,
Modula-3 has its traditional exception-handling mechanism--essentially non local exits,
and multi-threading. On the other hand, it does not support unification nor constraint-
solving (and therefore trailing of bindings) and side-effect unwinding exceptions. Finally,
it does not offer polymorphism nor partial-objects. It does have multi-threading which
we do not plan to worry about in Paradise--that is, in our current design plan.

CHIP, CLP(~), and Prolog-III are all instances of Constraint Logic Programming

22

(CLP). They are, in fact, very similar in conception, differing only in a few specific
constraint-solvers. A CLP language consists simply of an extension of Prolog with some
specific constraint solving capabilities in addition to simple term unification. As for
control, it relies entirely on Prolog's backtracking strategy. Thus, CHIP (Constraint
Handling In Prolog) has solvers for: (1) Numeric constraints (linear equations, inequa-
tions, and disequations with rational coefficients); (2) Boolean unification (propositional
logic theorem-proving); and (3) finite domains, which consist of finite discrete sets of
ground values useful for mutually exclusive assignment problems. CLP(~) has only (1)
but over real numbers. It allows, by an implicit delay mechanism, handling of nonlinear
numeric constraints, processing them only when enough variables have been instantiated
to make them linear. Finally, Prolog-III has (1) and (2), as well as (infinite) rational
tree unification. The latter also offers a control structure, known as freeze, which allows
explicit delay of execution of a piece of code until some variables become instantiated.

Our main observation about the CLP class of languages is that they are all closed
designs with each constraint-solver intricately wired in as opposed to being user- or
library-specified. Also, control is rigidly frozen as backtracking, with the mild extension
of explicit delays--but then only controlled by variable instantiation. Our proposed
design naturally supersedes all this while retaining trailing and unwinding capabilities.
Of course, none of these CLP languages supports object-oriented inheritance nor any
imperative programming constructs.

Finally, ThingLab is yet another constraint-based programming paradigm developed
at the University of Washington at Seattle. It is based on Smalltaik [GR80] and therefore
makes heavy use of object-oriented style of programming. ThingLab treats constraints
as networks of variables depending on one another by explicit or implicit dependencies--
a super-spreadsheet. These are used to propagate values as soon as they appear as
some variables' bindings, failing on conflicts. One great innovation of ThingLab is its
organization of constraints into a hierarchy with different degrees of strength assigned to
each level. [BDFB+87] This results in surprising flexibility for expressing default behavior
of constrained systems. ThingLab also has a rich collection of strategies for controlling
propagation of constraints along the network (local, decaying, etc.), as well as a library
of, and user-specifiable, constraint-solvers.

Ideas from ThingLab (especially constraint hierarchies) are quite interesting and we
are tempted, eventually, to fit some into Paradise's design. However, we have yet to work
out a satisfactory formal foundation for this paradigm. On the other hand, we feel that its
demon-based control mechanism, although quite powerful, is a bit too ad-hoc. The trail-
and stack-effecting exception handling that we have in mind offers all the power needed
with a simple and uniform semantics. Finally, we must mention intriguingly promising
on-going work in the spirit of what we propose but taking directly after Thinglab [FB90].

Conclusion

We are convinced that a major momentum in programming of the 90's will be the in-
clusion of constraint-solving as a basic tool. Combined with the abstractions already
accepted with the advent of symbolic and object-oriented programming as well as the fa-
miliar older (and irremediably useful) imperative structures, this new concept will bring
significant power to the programmer. The time is ripe to start experimenting with a
prototype design simply based on today's scattered and apparently uncompatible know-

25

how. We have sketched the basic requirements for such a ideal realization. Work is
underway towards achieving it. In summary, we believe that we can already synthesize,
from our experience and the current state of the art, a substantial improvement on the
most advanced programming language designs--and this, without sacrificing simplicity,
efficiency, nor convenience. We are truly aiming for Paradise.

R e f e r e n c e s

[AK90] ttassan A'/t-Kaci. An overview of LIFE. Research paper, Digital Equipment
Corporation, Paris Research Laboratory, Rueil-Malmaison, France, 1990.

[AK91] Hassan Ait-Kaci. Warren's Abstract Machine, A Tutorial Reconstruction.
Series on Logic Programming. MIT Press, Cambridge, MA, USA, 1991.

[AKM90] Hassan Ai't-Kaci and Richard Meyer. Wi ld l iFE, a user manual. PRL Tech-
nical Note 1, Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison, France, 1990.

[AKN86] IIassan A'/t-Kaci and Roger Nasr. LOGIN: A logic programming language
with built-in inheritance. Journal of Logic Programming, 3:185-215, 1986.

[AKN89] Hassan A'/t-Kaci and Roger Nasr. Integrating logic and functional program-
ming. Lisp and Symbolic Computation, 2:51-89, 1989.

[AKP90] IIassan Ai't-Kaci and Andreas Podelski. Is there a meaning to LIFE? Re-
search paper, Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison, France, 1990.

[AKP91] Hassan Ai't-Kaci and Andreas Podelski. Functions as passive constraints
in LIFE. Research paper, Digital Equipment Corporation, Paris Research
Laboratory, Rueil-Mahnaison, France, 1991.

[BDFB+87] Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel Kramer, and
Michael Woolf. Constraint hierarchies. In Proceedings of the Conference on
Object-Oriented Systems Languages and Applications, pages 48-60, 1987.

[Bor81] Alan Borning. The programming language aspects of Thinglab. ACM
Transactions on Programming Languages and Systems, 3(4):353-387, Oc-
tober 1981.

[cciio89] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. Interfaces
for strongly-typed object-oriented programming. In Proceedings of the Con-
ference on Object-Oriented Systems Languages and Applications, October
1989.

[CDG+89] Luca Cardelli, James Donahue, Lucille Glassman, Mike Jordan, Bill Kalsow,
and Greg Nelson. Modula-3 report (revised). Research Report 52, Digital
Equipment Corporation, Systems Research Center, Pato Alto, CA, USA,
November 1989.

[CM84]

[Co182]

[Col9O]

[Coo89]

[DSvH89]

[FB90]

[Fel87]

[FF89]

[FWFD88]

[GR80]

[HMT88]

[Hs88]

[JL87]

24

William F. Clocksin and Christopher S. Mellish. Programming in Prolog.
Springer Verlag, Berlin, Germany, 2nd edition, 1984.

Alain Colmerauer. PROLOG II reference manual and theoretical model.
Internal report, Groupe d'Intelligence Artificielle, Universit~ d'Aix-Marseille
II, October 1982.

Alain Colmerauer. An introduction to PROLOG III. Communications of
the ACM, pages 70-90, July 1990.

William Cook. A proposal for making Eiffel type-safe. The Computer Jour-
nal, 32(4):305-311, 1989.

Mehmet Dincbas, Hehnut Simonis, and Pascal van tIentenryck. Extending
equation-solving and constraint-handling in logic programming. In ttassan
AYt-Kaci and Maurice Nivat, editors, Resolution of Equations in Algebraic
Structures, Vol. 2: Rewriting Techniques, chapter 3, pages 87-115. Academic
Press, Boston, MA, USA, 1989.

Bjorn Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and im-
perative programming. In Joint Proceedings of the European Conference
on Objecl-Oriented Programming, and the Conference on Object-Oriented
Systems Languages and Applications, pages 77-88. ACM, 1990.

Matthias Felleisen. The Calculi of A-v-CS-Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Indiana University, 1987.

Matthias Felleisen and Daniel Friedman. A syntactic theory of sequential
state. Theoretical Computer Science, 69:243-287, 1989.

Matthias Felleisen, Mitchell Wand, Daniel Friedman, and Bruce Duba. Ab-
stract continuations: a mathematical semantics for handling full functional
jumps. In Proceeding of the Conference on Lisp and Functional Program-
ming, pages 52-62, 1988.

Adele Goldberg and David Robson. Smalltalk 80: The Language and its
Implementation. Addison-Wesley, 1980.

Robert Harper, Robin Milner, and Mads Tofte. The definition of standard
ML - Version 2. Report LFCS-88-62, University of Edinburgh, Edinburgh,
UK, 1988.

Markus HShfeld and Gert Smolka. Definite relations over constraint lan-
guages. LILOG Report 53, IWBS, IBM Deutschland, Stuttgart, Germany,
October 1988. To appear in the Journal of Logic Programming.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In
Proceedings of the 14th ACM Symposium on Principles of Programming
Languages, Munich, Germany, January 1987.

[JM87]

[JMSY88]

[M+65]

[O'K90]

[ac861

[ROv86]

[SS86]

[Ste84]

[vHS9]

[Wir85]

25

Joxan Jaffar and Spiro Michaylov. Methodology and implemetation of a CLP
system. In Jean-Louis Lassez, editor, Proceedings of the Fourth International
Conference on Logic Programming, pages 196-218. MIT Press, 1987.

Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(~)
language and system. Report draft, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY, April 1988.

John McCarthy et al. Lisp 1.5 Programmer's Manual. MIT Press, second
edition edition, 1965.

Richard O'Keefe. The Craft of Prolog. Series on Logic Programming. MIT
Press, Cambridge, MA, USA, 1990.

John Rees and William Clinger. The revised 3 report on the algorithmic
language Scheme. SIGPLAN Notices, 21(12):37-79, 1986.

Paul Rovner. Extending Modula-2 to build large, integrated systems. IEEE
Software, 3(6), November 1986.

Leon Sterling and Ehud Shapiro. The Art of Prolog. Series on Logic Pro-
gramming. MIT Press, Cambridge, MA, USA, 1986.

Guy Steele. Common LISP, The Language. Digital Press, 1984.

Pascal van ttentenryck. Constraint Satisfaction in Logic Programming. Se-
ries on Logic Programming. MIT Press, Cambridge, MA, USA, 1989.

Niklaus Wirth. Programming in Modula-~. Springer-Verlag, third edition
edition, 1985.

