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A b s t r a c t  

Having understood that most attractive programming paradigms introduced re- 
cently in declarative symbolic programming languages need not be provided at the 
detriment of one aalother, we also believe that they can and should coexist with 
the more conventional state-effecting style of explicit control and data processing 
of imperative programming. To this end, we language designers must provide three 
primeval abstractions which could allow retrieving of most particular programming 
styles as particular instances, with the additional freedom of manipulating these 
abstractions explicitly. In the next decade, computer programming should allow 
specifying (1) abstract data structures, (2) abstract control structures, and (3) ab- 
stract constraint structures. 

With these basic ideas in mind, we shall propose and sketch a specific design 
for a language and lay out some explicit requirements. Doing so, we shall try to 
compare this attempt to the state of the art. 

It is true, that as the form often does not accord 
with the intention of the art, because the material is 
deaf to respond, so the creature sometimes deviates 
from due course; ... 

Dante Alighieri 
The Divine Comedy--Paradise, Canto I:121 

Motivat ion  

I t  is clear tha t  there exists a wide chasm separating the present day's  "real-life" pro- 
gramming languages and the s tate  of understanding of powerful high-level programming 
paradigms. The  former provide low-level primitives and complete specific command  of 
da ta  and control. This results in efficiency but  at the cost of prohibitive program devel- 
opment  overhead. On the other hand, high-level programming languages offer elegant 
and powerful abstract ions such as polymorphic typing and constraint-solving, but  impose 
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overly restrictive programming styles often excluding the more familiar and sorely missed 
constructs. 

Now, we believe that the application software market of the 90's will comprise as 
a large part programs for advanced data and knowledge representation, graphics ob- 
ject manipulation or reasoning thereof, natural language processing, CAD, hardware 
design verification, combinatorial optimization and problem-solving. These exemplify a 
category of programming challenges whose realization in conventional programming lan- 
guages is currently very difficult and time-consuming. However, today's constraint-based 
languages, although providing adequate tools for specific problem domains, still confine 
the user to canned structures leading to unacceptable inefficiencies. 

Thus, it is imperative to build a more appropriate programming environment than 
either side of the gap. To structure our argument, we shall word this essay as a pro- 
posal to design and build a prototypical programming environment of the 90's--dubbed 
Paradisel--whose building blocks will reflect our technical assessment of its required 
functionality. Namely, it must incorporate general and versatile abstractions to support 
direct execution of high-level constraint specifications coexisting along with the famil- 
iar imperative programming paraphernalia. This is bound to facilitate significantly the 
development of advanced applications such as we have in mind. 

Our key insight is based on our having understood that most attractive programming 
paradigms introduced recently in declarative symbolic programming languages need not 
be provided at the detriment of one another. This fact is clearly demonstrated and 
amply illustrated in [AKN86,AKN89,AK90,AKP90,AKP91,AKM90]. More importantly, 
they need not preclude the more conventional state-effecting style of explicit control and 
data processing of imperative programming [FF89,Fe187]. Therefore, we believe that it 
is quite feasible to set up a concrete and rigorous design plan based on building three 
primeval abstractions which could allow retrieving of most particular programming styles 
as instances, with the additional freedom of manipulating these abstractions explicitly. 
Namely, programming in Paradise should allow specification of: 

1. abstract data structures; 

2. abstract control structures; 

3. abstract constraint structures. 

The first item is perhaps the most familiar and used through the machinery of mod- 
ules, with added power supplied by generic modules. The second and third points are 
less conventional, the second one having already been under serious investigation and 
the last one being quite new. 

With these basic ideas in mind, we can sketch a specific design for a language and 
lay out some explicit requirements. 

The Design 
We offer to design and implement Paradise as a programming system combining compu- 
tational paradigms from Constraint Logic Programming [JL87,HS88], Object-Oriented 
Programming [GR80] and Typed Functional Programming [IIMT88]. The system will 

1Since it  c o m e s  af ter  L I F E  [AK90] a n d  could very well t ake  a long t i m e  to be  reached.  
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allow for a free mixture of efficiency-oriented imperative programming with specification- 
oriented declarative programming. At the same time, the system will be simple. Sim- 
plicity will be achieved by having only a small number of basic constructs, which are 
general and fit nicely together. 

The language must have one uniform, record-like data structure based on classes 
and features. Classes are organized as an inheritance hierarchy and all operations are 
bound to classes. The type system supports a few built-in polymorphic classes such as 
pairs, lists, and arrays. Other parametric data structures can be implemented by means 
of generic modules. Well-typedness is checked before program execution. Execution 
of well-typed code is guaranteed to map well-typed memory states to well-typed mem- 
ory states [Coo89]. Programs are then naturally organized as hypergraphs of possibly 
parametric modules. The consistency of the module structure is checked automatically. 

The programming system will be interactive and incremental. A program consists 
of a hypergraph of modules that is created, inspected, and modified through a window 
and menu oriented user interface. Module and type checking as well as compilation are 
incremental and are done as early as possible [CCHO89]. Code that has passed the type 
checker can be executed immediately. 

Operators can take the form of functions, relations and procedures. Operators are 
first-class objects. Operators are uniformly declared with a rank ~ ---, r, where ~r is the 
type of the input argument (there is always exactly one) and r is the type of the result. 
Functions do not have side-effects. Relations have monotonic side effects; that is, they 
can impose additional constraints on existing values. Procedures have hard side-effects; 
that is, they can nonmonotonically update the fields of a value. 

The language is equipped with a type-safe exception handling similar to ML. However, 
imposition of constraints and updates of fields can be trailed, which means that upon 
return to a choice point (called an exception handler in ML) the initial memory state may 
be recovered automatically. This yields exception controlled backtracking, which is more 
powerful than the chronological backtracking underlying Prolog [CM84,SS86,O'K90]. 

One of the most innovative aspects of the language is the integration of constraint 
solving. On the well-understood side, the language will support unification with re- 
spect to its data structure, which amounts to sorted feature unification as realized in 
LogIn [AKN86]. In addition, built-in constraint solving methods are accommodated for 
common useful applications such as numerical problems and propositional logic. The 
well-founded and efficient integration of these three families of methods alone will make 
for an interesting subproject. 

Finally, it must be made possible to program new constraint solving methods. Finding 
the right control primitives and the appropriate abstraction mechanisms for this task is 
an open research problem, solutions of which should provide for a major breakthrough 
in programming. 

P a r t i a l  D a t a  R e p r e s e n t a t i o n  

Types are organized in a partial order hierarchy (inheritance). Data is uniformly repre- 
sented as feature structures (attributed objects). This structure of objects respects type 
schemas (classes). 

The advantage of the fact that there is no (conceptual) difference between values and 
types is that data may be added attributes compositionally and (variable) binding may 
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dereference 
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constraint 
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Figure 1: Partial Data Objects 

set of variabies I 
(object pointers) l suspended code . 

Figure 2: Constraints as Closures 

be seen as object identification. This has unusual pay-offs. First, compile-time resolves 
some but not all types. Second, there is no need to distinguish between of c a s e  and 
t y p e c a s e  [Rov86]. Third, binding as data identification gives a natural interpretation of 
pointers as equivalence classes of references (coreference classes), and allows selectively 
undoable side-effects. 

Abstract Constraint Solving 

Recent work in Logic Programming has shown that Prolog's unification can be generalized 
to arbitrary (decidable) constraint-solving, as long as is provided an appropriate data 
representation and interpretation thereof, and a constraint-solver in the form of a relevant 
decidable, correct (sound and complete) algorithm on these structures [JL87,ttS88]. This 
provides great possibilities to execute declarative specifications as programs. 

Thus, constraint-solving is done incrementally and asynchronously. This is achieved 
by seeing constraint-solving as a non-deterministic normalisation process over formulae 
involving existential variables. Variable valuations are thus computed declaratively with 
a mechanism of suspended constraints as closures [AKN89,AKP91]. 

ttence, given a representation of objects as feature structures interpreted as partial 
approximations (see Fig. 1) a network of asynchronous constraints is established by 
representing constraints as closures (see Fig. 2). For monotonic side-effects, objects in the 
network are preserved by object identification realized through binding as dereference. 

Abstract Control 

Abstract control for programming languages in its most general form stems from research 
in Denotational Semantics whose computational rendition as a higher-order formalism 
(such as the A-calculus) give explicit "first-class citizenship" to continuations [FWFD88]. 
Thus, Scheme [RC86] is certainly the programming language instance having explored 
the issue the furthest with its higher-order c a l l / c o  primitive which allows arbitrarily 
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powerful control flow. The simpler exception-handling of ML [HMT88] and Modula- 
2+/3 [CDG+89,Rov86], elaborations of Lisp's earlier ca tch/ throw construct [M+65, 
Ste84], still offers some abstraction of control, although less than full continuations but 
much simpler to implement as mere run-stack poppers. For Paradise, we propose a 
compromise retaining the latter's simplicity and efficiency, yet providing a more flexible 
management of the run-stack and heap. 

The idea is to introduce two novel control primitives: (1) generalized exception 
handling, and (2) event suspension. Generalized exception handling extrapolates from 
exception-handling such as catch/ throw in Lisp, or t r y / w i t h  in ML and Modula2+ to 
handle general search strategies for variable valuations in arbitrary constraint-solving. 
This necessitates a selective trailing and undoing of object bindings. Higher-order con- 
tinuations (e.g., ca11/¢c in Scheme) are inadequate here as they are meant to work in a 
deterministic calculus without undoing of effects. Besides, although quite powerful, they 
are highly unintuitive. Our solution is to extend t r y / w i t h  to allow structure-sharing and 
undoing of side-effects. For this, we need a (selective) "trailing" of bindings mechanism 
it la Prolog [AK91]. We can define the right primitives to get a minimal overhead while 
being simpler to understand and implement. 

Computation suspension is a natural consequence of seeing constraint-solving as asyn- 
chronous binding propagation through a object-constraint network. Although this is to 
happen implicitly in most cases, a control primitive to provide an explicit handle for this 
is of the form wait/until and is inspired by Prolog-II's freeze [Co182]. This allows 
adaptive control and automatic propagation of constraints. In particular, this is how one 
can turn "generate-and-test" search into remarkably more efficient "test-and-generate" 
search. 

Sta te  of  the  Art  

Currently, there are just a few other programming systems with relatively comparable 
breadth of functionality: Modula-3 done at Digital's SRC [CDG+89], CHIP done at 
ECRC [DSvH89,vH89], CLP(~) done at IBM's T.J. Watson's Research Center [JM87, 
JMSY88], Prolog-III developed by Prologia [Col90], and ThingLab done University of 
Washington [BorSl]. We shall briefly overview how similar we perceive these efforts to 
be as compared to Paradise's ambitions, but also express how we depart from each, yet 
encompassing most of their combined functionalities. 

Modula-3 is an elaboration of Modula-2+ [Rov86], itself an extension of Modula- 
2 [Wir85]. It keeps most of Modula-2+'s features with mainly two additional capabilities: 
Class (single) inheritance and dynamic types. Clearly, these new features are fully part of 
our conception of Paradise. Paradise is expected to support (multiple) inheritance with 
the additional power of object unification. Furthermore, the order-sortedness of Par- 
adise's feature terms makes no real distinction between types and values--thus achiev- 
ing precisely the behavior of dynamic types. As for what it inherits from Modula-2+, 
Modula-3 has its traditional exception-handling mechanism--essentially non local exits, 
and multi-threading. On the other hand, it does not support unification nor constraint- 
solving (and therefore trailing of bindings) and side-effect unwinding exceptions. Finally, 
it does not offer polymorphism nor partial-objects. It does have multi-threading which 
we do not plan to worry about in Paradise--that is, in our current design plan. 

CHIP, CLP(~), and Prolog-III are all instances of Constraint Logic Programming 
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(CLP). They are, in fact, very similar in conception, differing only in a few specific 
constraint-solvers. A CLP language consists simply of an extension of Prolog with some 
specific constraint solving capabilities in addition to simple term unification. As for 
control, it relies entirely on Prolog's backtracking strategy. Thus, CHIP (Constraint 
Handling In Prolog) has solvers for: (1) Numeric constraints (linear equations, inequa- 
tions, and disequations with rational coefficients); (2) Boolean unification (propositional 
logic theorem-proving); and (3) finite domains, which consist of finite discrete sets of 
ground values useful for mutually exclusive assignment problems. CLP(~) has only (1) 
but over real numbers. It allows, by an implicit delay mechanism, handling of nonlinear 
numeric constraints, processing them only when enough variables have been instantiated 
to make them linear. Finally, Prolog-III has (1) and (2), as well as (infinite) rational 
tree unification. The latter also offers a control structure, known as freeze, which allows 
explicit delay of execution of a piece of code until some variables become instantiated. 

Our main observation about the CLP class of languages is that they are all closed 
designs with each constraint-solver intricately wired in as opposed to being user- or 
library-specified. Also, control is rigidly frozen as backtracking, with the mild extension 
of explicit delays--but then only controlled by variable instantiation. Our proposed 
design naturally supersedes all this while retaining trailing and unwinding capabilities. 
Of course, none of these CLP languages supports object-oriented inheritance nor any 
imperative programming constructs. 

Finally, ThingLab is yet another constraint-based programming paradigm developed 
at the University of Washington at Seattle. It is based on Smalltaik [GR80] and therefore 
makes heavy use of object-oriented style of programming. ThingLab treats constraints 
as networks of variables depending on one another by explicit or implicit dependencies-- 
a super-spreadsheet. These are used to propagate values as soon as they appear as 
some variables' bindings, failing on conflicts. One great innovation of ThingLab is its 
organization of constraints into a hierarchy with different degrees of strength assigned to 
each level. [BDFB+87] This results in surprising flexibility for expressing default behavior 
of constrained systems. ThingLab also has a rich collection of strategies for controlling 
propagation of constraints along the network (local, decaying, etc.), as well as a library 
of, and user-specifiable, constraint-solvers. 

Ideas from ThingLab (especially constraint hierarchies) are quite interesting and we 
are tempted, eventually, to fit some into Paradise's design. However, we have yet to work 
out a satisfactory formal foundation for this paradigm. On the other hand, we feel that its 
demon-based control mechanism, although quite powerful, is a bit too ad-hoc. The trail- 
and stack-effecting exception handling that we have in mind offers all the power needed 
with a simple and uniform semantics. Finally, we must mention intriguingly promising 
on-going work in the spirit of what we propose but taking directly after Thinglab [FB90]. 

Conclusion 

We are convinced that a major momentum in programming of the 90's will be the in- 
clusion of constraint-solving as a basic tool. Combined with the abstractions already 
accepted with the advent of symbolic and object-oriented programming as well as the fa- 
miliar older (and irremediably useful) imperative structures, this new concept will bring 
significant power to the programmer. The time is ripe to start experimenting with a 
prototype design simply based on today's scattered and apparently uncompatible know- 
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how. We have sketched the basic requirements for such a ideal realization. Work is 
underway towards achieving it. In summary, we believe that we can already synthesize, 
from our experience and the current state of the art, a substantial improvement on the 
most advanced programming language designs--and this, without sacrificing simplicity, 
efficiency, nor convenience. We are truly aiming for Paradise. 
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