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Abs t rac t  

LIFE (Logic, Inheritance, Functions, Equations) is an experimental program- 
ming language with a powerful facility for structured type inheritance. LIFE rec- 
onciles styles from Functional Programming and Logic Programming by implicitly 
delegating control to an automatic suspension mechanism. This allows interleav- 
ing interpretation of relational and functional expressions which specify abstract 
structural dependencies on objects. Together, these features provide a convenient 
and versatile power of abstraction for very high-level expression of constrained data 
structures. 

Quelle est la vie du math~maticien ? Quels senti- 
ments exprime son langage 7 [...] Calembours, jeux 
de roots, associations fortuites, la piste est chaude 
pour l'analyste. Lh oh le rapport logique, conscient, 
est flottant, le rapport inconscient peut ~tre f~cond. 

Pierre Berloquin 
Un souvenir d'enfance d'Evariste Galois 

1 I n t r o d u c t i o n  

LIFE is the product  to date of research meant to explore whether programming styles 
and conveniences evolved as part  of Functional, Logic, and Object-Oriented Programming 
could be somehow brought together to coexist in a single programming language. Being 
aware that  not everything associated to these three approaches to programming is either 
well-defined or even uncontroversial, we have been very careful laying out some clear 
foundations on which to build LIFE. Thus, LIFE emerged as the synthesis of three com- 
putational atomic components which we refer to as function-oriented, relation-oriented, 

*This reports work done while the author was part of the Languages Group of the ACA Systems 
Technology Laboratory of MCC, in Austin, Texas. 



4:3 

and structure.oriented, each being an operational rendition of a well-defined underlying 
model. 

LIFE is a trinity. The function-oriented component of LIFE is directly derived 
from functional programming languages standing on foundations in the ,~-calculns like 
ML [IIMT88], or Miranda [Tur85,P387]. The convenience offered by this style of pro- 
gramming is essentially one in which expressions of any order are first-class objects and 
computation is determinate. The relation-oriented component of LIFE is essentially one 
inspired by the Prolog language [CM84,SS86,O'K90], taking its origin in theorem-proving 
as Horn clause calculus with a specific and well-defined control strategy--SLD-resolution. 
To a large extent, this way of programming gives the programmer the power of expressing 
program declaratively using a logic of implication rules which are then procedurally inter- 
preted with a simple built-in pattern-oriented search strategy. Unification of first-order 
patterns used as the argument-paasing operation turns out to be the key of a quite unique 
and hitherto unheard of generalive behavior of programs, which could construct missing 
information as needed to accommodate success. Finally, the most original part of LIFE 
is the structure-oriented component which consists of a calculus of type structures--the 
C-calculus [AK84,AK86]--and rigorously accounts for some of the (multiple) inheritance 
convenience typically found in so called object-oriented languages. An algebra of term 
structures adequate for the representation mad formalization of frame-like objects is given 
a clear notion of subsumption interpretable as a subtype ordering, together with an effi- 
cient unification operation interpretable as type intersection. Disjunctive structures are 
accommodated as well, providing a rich and clean pattern calculus for both functional 
and logic programming. 

Under these considerations, a natural coming to LIFE has consisted thus in first 
studying pairwise combinations of each of these three operational tools. Metaphorically, 
this means realizing edges of a triangle (see Figure 1) whose vertices would be some 
essential renditions of, respectively, ,~-calcutus, Horn clause resolution, and V-calculus. 
After informally sketching one of these three atoms pertaining with type inheritance, 
we shall describe how we achieve the pairwise bonding of these atoms in the molecule 
of LIFE. Lastly, we shall synthesize the full molecule of LIFE from the three atomic 
vertices and the pairwise bonds. For a detailed account of the formal semantics of LIFE, 
the reader is referred to [AKPg0,AKP91]. 

2 V-Calculus: Computing with Types 
This section gives a very brief and informal account of the calculus of type inheritance 
used in LIFE (V-calculus). The reader is assumed familiar with functional programming 
(A-calculus) and logic programming (r-calculus a.k.a. Horn clause SLD-resolution). 

The V-calculus consists of a syntax of structured types called V-terms together with 
subtyping and type intersection operations. Intuitively, as expounded in [AKN86], the 
V-calculus is an attempt at obtaining a convenience for representing record-like data 
structures in logic and functional programming more adequate than first-order terms 
without loss of the well-appreciated instantiation ordering and unification operation. 

The natural interpretation of a V-term is that of a data structure built out of con- 
structors, features functions, and subject possibly to equational constraints which reflect 
feature coreference---sharing of structure. Thus, the syntactic operations on V-terms 
which stand analogous to instantiation and unification for first-order terms simply de- 
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Funct ions  Relat ions 

Figure 1: The LIFE molecule 

note, respectively, sub-algebra ordering and algebra intersection, modulo type and equa- 
tional constraints [AKPg0]. This scheme even accommodates type constructors which 
are known to be partially-ordered with a given subtyping relation) As a result, a rich 
calculus of structured subtypes is achieved formally without resorting to complex trans- 
lation trickery. In essence, the C-calculus formalizes and operationalizes data structure 
inheritance, all in a way which is quite faithful to a programmer's perception. 

Let us take an example to illustrate. Let us say that one has in mind to express syn- 
tactically a type structure for a person with the property, as expressed for the underlined 
symbol in Figure 2, that a certain functional diagram commutes. 

One way to specify this information algebraically would be to specify it as a sorted 
equational theory consisting of a func t ional  signature giving the sorts of the functions 
involved, and an equational presentalion.  Namely, 

X : person with 

func t ions  

n a m e  

firs¢ 
lasl 

: person ~ id 
: id --. string 
: id -* string 

spouse : person ~ person 

equations 

1 We shall use "types" in reference to ~b-terms arts "sorts" in reference to the part ial ly-ordered symbols.  
Thus,  we may consistently refer to the lat ter  as "types" or "sorts" interchangeably as a sort  symbol  is 
also an  atomic C-term.  
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fi last l 
I 

spouse  

) e r s o t  ~,, 

Figure 2: A functional diagram 

Zast(name(X)) = l a s t ( n a m e ( s p o u s e ( X ) ) )  
spouse(spouse(X)) = X 

The syntax of C-terms is one simply tailored to express as a term this specific kind 
of sorted monadic algebraic equational presentations. Thus, in the C-calculus, this in- 
formation of Figure 2 is unambiguously encoded into a formula, perspicuously expressed 
as the C-term: 

X : person(name ~ id(first ~ string, 
last ~ S : string), 

spouse ~ person(name ~ id(last ~ S), 
spouse ~ X)) .  

We shall abstain in this summary from giving a complete formal definition of C-term 
syntax. (Such may be found elsewhere [AK86,AKN86].) Nevertheless, it is important to 
distinguish among the three kinds of symbols which participate in a C-term expression. 
Thus we assume given a set E of type constructor symbols, a set A of feature function 
symbols (also called attribute symbols), and a set 7~ of reference tag symbols. In the 
C-term above, for example, the symbols person, id, string are drawn from E, the symbols 
name,first, last, spouse from A, and the symbols X , S  from 7~. 2 

A C-term is either tagged or u~tagged. A tagged C-term is either a reference tag in 
7~ or an expression of the form X : t where X E 7~ and t is an untagged C-term. An 
untagged C-term is either atomic or attributed. An atomic C-term is a type symbol in E. 
An attributed C-term is an expression of the form s(ll ~ Q , . . . , l n  ~ tn) where s E E 
and the C-term principal type, the li's are mutually distinct attribute symbols in A, and 
the ti's are C-terms (n _> 1). 

2We shall use the lexical convention of using capitalized identifiers for reference tags. 



46 

Reference tags may be viewed as typed variables where the type expressions are 
untagged C-terms. Hence, as a condition to be well-formed, a C-term must have all 
occurrences of reference tags consistently refer to the same structure. For example, the 
reference tag X in: 

person( id =~ name(first ~ string, 
last ~ X : string), 

father ~ person(id ~ name(last ~ X :  string))) 

refers consistently to the atomic C-term string. To simplify matters and avoid redun- 
dancy, we shall obey a simple convention of specifying the type of a reference tag at most 
once as in: 

person( id ~ name(first ~ string, 
last ~ X : string), 

father ~ person(id ~ name(last ~ X))) 

and understand that other occurrences are equally referring to the same structure. In 
fact, this convention is necessary if we have circular references as in: 

x : person(spouse person(spouse X)). 

Finally, a reference tag appearing nowhere typed, as in junk(kind ~ X)  is implicitly 
typed by a special universal type symbol T always present in E. This symbol will be left 
invisible (i.e., not written explicitly as in (age =~ integer, name =v string)) or written as 
'@' (anything) as in @(age ~ integer, name ~ string). In the sequel, by C-term we shall 
always mean well-formed C-term. 

Similarly to first-order terms, a subsumption preorder can be defined on C-terms 
which is an ordering up to reference tag renaming. Given that the set of sorts E is 
partially-ordered (with a greatest element T), its partial ordering is extended to the set 
of attributed C-terms. Informally, a C-term tl is subsumed by a C-term t2 if (1) the 
principal type of tl is a subtype in E of the principal type of t2; (2) all attributes oft2 
are also attributes oft1 with C-terms which subsume their homologues in 11; and, (2) all 
coreference constraints binding in t.~ naust also be binding in tl .  

For example, if student < person and paris < cityname in E then the C-term: 

student(zd ~ name(first ~ string, 
last :=~ X :strtng), 

lives_at ~ Y : address(city ~ paris), 
faIher ~ person(id ~ name(last ~ X) ,  

lives_at ~ Y))  

is subsumed by the C-term: 

person(id ~ name(last ~ X : sfring), 
lives_at ~ address( czty ~ cityname ), 
father ~ person(id ~ name(last ~ X))) .  

In fact, if the set of sorts E is such that greatest lower bounds (GLB's) exist for any pair 
of type symbols, then the subsumption ordering on C-term is also such that GLB's exist. 
Such are defined as the umfication of two C-terms. A detailed unifieation algorithm for 
¢-terrns is given in [AKN86]. Consider for example the set of sorts displayed in Figure 3 
and the two C-terms: 
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person ] 

Figure 3: A partially-ordered set of sorts 

and: 

X :  s ludeut (adv isor~  faculty(secretary ~ Y :  staff, 
assislant ~ X), 

roommate ~ employee(representative ~ Y ) )  

employee(advisor ~ f l ( secretary ~ employee, 
assistant ~ U : person), 

roommate =2;. V : siudenl(representalive ~ V),  
helper~ w1(spouse ~ U)). 

Their unification (up to tag renaming) yields the term: 3 

W :  workstudy( advisor ~ f l ( secrelary ~ Z :  workstudy( representative :~ Z),  
assistanl ~ W) ,  

roommale ~ Z, 
helper ~ w~ (spouse ~ W)). 

A technicality arises if E is not a lower semi-lattice. For example, given the (non- 
lattice) set of sorts: 

aIncidentally, if least upper bounds (LUBs) are defined as well in ~,  so are the)" for ~b-terms. For 
example for these two O-terms, their LUB (most specific generalization) is 

person(advisor ~ ]acuity(secretary =~ employee, 
assistant :2~ person), 

roommate =:). person)). 

Thus, a lattice s tructure can be extended from ~ to e- terms [AK84,AK86]. Although it  may turn  out 
useful in other  contexts, we shall ignore this generalization operation here. 
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the GLB of student and employee is not uniquely defined, in that  it could be john or 
mary. That  is, the set of their common lower bounds does not admit one greatest element. 
However, the set of their maximal common lower bounds offers the most general choice 
of candidates. Clearly, the disjunctive type {john; mary} is an adequate interpretation. 4 
Thus the C-term syntax may be enriched with disjunction denoting type union. 

For a more complete formal treatment of disjunctive C-terms, the reader is referred 
to [AK86] and to [AKN86]. It will suffice to indicate here that  a disjunctive C-term is 
a set of incomparable C-terms, written { t l ; . . .  ;tn} where the ti's are basic C-terms. A 
basic C-term is one which is non-disjunctive. The subsumption ordering is extended to 
disjunctive (sets of) C-terms such that  D1 < D2 iffVtl E D1,3t2 E D2 such that  tl  _< t2. 
This justifies the convention that  a singleton {t} is the same as t, and that  the empty set 
is identified with _1_. Unification of two disjunctive C-terms consists in the enumeration 
of the set of all maximal C-terms obtained fi'om unification of all elements of one with 
all elements of the other. For example, limiting ourselves to disjunctions of atomic C- 
terms in the context of set of sorts in Figure 3, the unification of {employee; student} 
with {faculty;staff} is {faculty;staff}. It is the set of maximal elements of the set 
{faculty; staff; _k; workstudy} of pairwise GLB's. 

In practice, it is convenient to allow nesting disjunctions in the structure of C-terms. 
For instance, to denote a type of person whose friend may be an astronaut with same 
first name, or a businessman with same last name, or a charlatan with first and last 
names inverted, we may write such expressions as: 

person( id ~ name(first ~ X : string, 
last ~ Y : string), 

friend ~ {aslronaut(id ~ name(first ~ X))  
;businessman(id ~ name(last ~ Y)) 
; charlatan(id ~ name(frst ~ Y, 

last x))}) 

Tagging may even be chained or circular within disjunctions as in: 

P :{ charlatan 
; person( id ~ name(first ~ X :  'john', 

last ~ Y : { 'doe';X}),  
friend ~ {P; person(id ~ name(first ~ Y, 

last x))})} 

which expresses the type of either a charlatan, or a person named either "John Doe" or 
"John John" and whose friend may be either a charlatan, or himself, or a person with 
his first and last names inverted. These are no longer graphs but hypergraphs. 

aSee [AKBLN89] for a description of an efficient me thod  for comput ing  such GLB's.  
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Of course, one can always expand out all nested disjunctions in such an expression, 
reducing it to a canonical form consisting of a set of non-disjunctive C-terms. The 
process is described in [AK84], and is akin to converting a non-deterministic finite-state 
automaton to its deterministic form, or a first-order logic formula to its disjunctive normal 
form. However, more for pragmatic efficiency than just  notational convenience, it is both 
desirable to keep C-terms in their non-canonical form. It is feasible then to build a lazy 
expansion into the unification process, saving expansions in case of failure or unification 
against T. Such an algorithm is more complicated and will not be detailed here for lack 
of space. 

Last in this brief introduction to the C-calculus, we explain type definitions. The con- 
cept is analogous to what a global store of constant definitions is in a practical functional 
programming language based on the h-calculus. The idea is that  sorts may be specified 
to have attributes in addition to being partially-ordered. Inheritance of attributes of 
all supertypes to a type is done in accordance to t - t e r m  subsumption and unification. 
Unification in the context of such an inheritance hierarchy amounts to solving equations 
in an order-sorted algebra as explained in [SAK89], to which the reader is referred for a 
full formal account. 

For example, given a simple signature for the specification of linear lists ~ = 
{list, cons, nil} 5 with nil < list and cons < list, it is yet possible to specify that  cons has 
an attr ibute tail ~ list. We shall specify this as: 

list := {nil; cons(tail ~ list)}. 

/.From which the partiM-ordering above is inferred. 
As in this list example, such type definitions may be recursive. Then, C-unification 

modulo such a type specification proceeds by unfolding type symbols according to their 
definitions. This is done by need as no expansion of symbols need be done in case of 
(1) failures due to order-theoretic clashes (e.g., cons(tail ~ list) unified with nilfails; i.e., 
gives _1_); (2) symbol subsumption (e.g., cons unified with list gives just cons), and (3) ab- 
sence of attribute (e.g., cons(tail ~ cons) unified with cons gives cons(tail ~ cons)). 
Thus, attribute inheritance is done "lazily," saving much unnecessary expansions. 

3 T h e  Pa irwi se  B o n d s  

In this section we indicate briefly how to achieve pairwise combination calculi from ¢, 7r, 
and )t, edges of the triangle of LIFE in Figure 1--the bonds between the atoms of the 
LIFE molecule. We shall keep an informal style, illustrating key points with examples. 

3 .1  7 r e - C a l c u l u s :  L o g  I n  

Log In is simply Prolog where first-order constructor terms have been replaced by t -  
terms, with type definitions [AKN86]. Its operational semantics is the immediate adap- 
tation of that of Prolog's SLD resolution. Thus, we may write a predicate for list con- 
catenation as: ¢ 

5We shall always leave T and ± implicit. 
6First-order terms being just a particular case of ~b-terms, an expression as ](tl . . . .  ,tn) 

is implicit syntax for f(1 ~t l , . . . , n=~t ,~ ) .  More flexibly, LIFE allows freely mixing posi- 
tion and keyword arguments. For instance, ] (a=~X,g(X,bz~e ,Y) ,Z)  is the same thing as 
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goodthzng [ gr ,e I 

Figure 4: The "Peter-Paul-Mary" sort hierarchy 

Zis  := {D; 

append(D, L : list, L). 
appe~d([tt[T : list], L: list, [H[R: list]) :- append(T, L, R). 

This definition, incidentally, is fully correct as opposed to Prolog's typeless version 
for which the query append(~, t, t) succeeds incorrectly for any non-list term t. 

Naturally, advantage of the type partial-ordering can be taken as illustrated in the 
following simple example. We want to express the facts that a student is a person; Peter, 
Paul, and Mary are students; good grades and bad grades are grades; a good grade is 
also a good thing; 'A' and 'B' are good grades; and 'C', 'D', 'F' are bad grades. This 
information is depicted as the set of sorts of Figure 4. This taxonomic information is 
expressed in Log In as: 

student < person. 
student := {peter; paul; mary}. 
grade : :  {goodgrade; badgrade }. 
goodgrade ~ goodihzng. 
goodgrnde := {a; b}. 
badgrade := {c; d;f} .  

In this context, we define the following facts and rules. It is known that all persons 
like themselves. Also, Peter likes Mary; and, all persons like all good things. As for 
grades, Peter got a 'C'; Paul got an 'F', and Mary an 'A'. Lastly, it is known that a 
person is happy if she got something which she likes. Alternatively, a person is happy if 
he likes something which got a good thing. Thus, in Log In, 

f ( a  =~s X, 1 :=# g(1 :=~ X, b =~ c, 2 ==~ Y), 2 ==~ Z). Thus, Prolog's notation is fully subsumed. In particu- 
lar, we adopt its notation for lists. Finally, recall that as well as using Prolog's notation for anonymous 
variables ("2'),  LIFE uses the symbol @ for "don't-care" a.k.a.T. 
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likes( X : person, X ). 
likes(peter, mary).  
likes(person, goodlhing). 

got(peter, c). 
got(paul,f). 
got(mary,  a). 

happy(X: person) :- likes(X, Y), got(X, Y). 
happy(X: person) :- tikes(X, Y), go ( Y , goodthing). 

£From this, it follows that  Mary is happy because she likes good things, and she got 
an 'A'--which is a good thing. She is also happy because she likes herself, and she got a 
good thing. Peter is happy because he likes Mary, who got a good thing. Thus, a query 
asking for some "happy" object in the database will yield: 

7- happy(X) .  

X = mary; 

X = mary; 

X = peter; 

No 

3 . 2  ¢ ) ~ - C a l c u l u s :  F O O L  

The basic paraphernalia the A-calculus are not quite enough for even bare needs in 
symbolic computing as no provision is made for structuring data. The most primitive 
such facility is pairing (written as infix right-associative '?). The pair constructor comes 
with two projection functions fsl and sad such that the following equations hold: 

fst(x.y)  = 
snd(x .y)  = y 

f s t ( z ) . snd ( z )  = z 

This allows the construction of binary tree structures and thus sufficient for representing 
any symbolic structure such as trees of any arity, as well-known to Lisp programmers. 
For these constructed pairs, a test of equality is implicitly defined as physical equality 
(i.e., same address) as opposed to structure isomorphism. Thus, linear list structures 
may be built out of pairing and a nullary list terminator (written as 11, as in 1.2.3.4.D). 

As an example, a function for concatenating two lists can be defined as: 

append(tl,12) ~ i f  x = ~ ~hen 12 else fs t ( l l ) .append(snd(l l ) ,12) .  

In fact, a pattern-directed syntax is preferable as it is expresses more perspicuous 
definitions of functions on list structures. Thus, the above list concatenation has the 
following pattern-directed definition: 

append(D,l ) ~ l. 
append( h.t, l) ~ h. append(t, l). 
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Again, this can be viewed as syntactic adornment as the previous form may be recovered 
in a single conditional expression covering each pattern case by explicitly introducing 
identifier arguments to which projection functions are applied to retrieve appropriate 
pattern occurrences. But again, this is for simplicity rather than effic!ency. An efficient 
implementation will avoid the conditional by using the argument pattern as index key 
as well as using pattern-matching to bind the structure variables to their homologues in 
the actual argument patterns [PJ87]. 

Clearly, when it comes to programming convenience, linear lists as a universal sym- 
bolic construction facility call become quickly tedious and cumbersome. More flexible 
data  structures such as first-order constructor terms can be used with the convenience 
and efficiency of pattern-directed definitions. Indeed, for each n-ary constructor symbol 
c, we associate n projections lc . . . . .  nc such that the following equations hold (1 < / < n): 

ic (C(Xl , . . . ,  z , )  = zi 
c( l¢(z) , . . . ,  no(z)) = z 

Pretty much as a linear list data structure could then be define as either ~ or a pair 
.(x, y) whose second projection y is a linear list, one can then define any data  structure as 
a disjoint sum of data  constructors using recursive type equations as a definition facility. 
Then, a definition of a function on such data structures consists of an ordered sequence of 
pattern-directed equations such as append above which are invoked for application using 
term pattern-matching as argument binding. 

A simple operational semantics of pattern-directed rewriting can thus be given. Given 
a program consisting as a set of function definitions. A function definition is a sequence 
of pattern-directed equations of the form: 

/ ( £ )  = B1.  

f (An)  = Sn. 

which define a function f over patterns Ai, tuples of first-order constructor terms. Eval- 
uating an expression f(J~) consists in (1) evaluating all arguments (components of/~);  
then, (2) finding the first successful matching substitution ~r in the order of the defini- 
tions; i.e., the first / in the definition of_/such that  there is a substitution of the variables 
in the pattern Ai such that  f(/~) = f(Ai)o" (if none exists, the expression is not defined); 
finally, (3) in evaluating in turn the expression Bier, which constitutes the result. 

FOOL is simply a pattern-oriented functional language where first-order constructor 
terms have been replaced by ¢-tern~s, with type definitions. Its operational semantics is 
the immediate adaptation of that  described above. Thus, we may write a function for 
list concatenation as: 

list := {[]; [~llist]}. 

append([], L: list) ~ L. 
append([HIT : listl,L : list) ~ [Hlappend( T, L)]. 

Higher-order definition and currying are also naturally allowed in FOOL; e.g., 

m p(D, I1. 
map([HIT], F) ::¢, [F(tt)]map( T, F)]. 
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Thus, the expression map([1, 2, 3], +1) evaluates to [2, 3, 4]. 
The C-term subsumption ordering replaces the first-order matching ordering on con- 

structor terms. In particular, disjunctive patterns may be used. The arbitrary richness 
of a user-defined partial-ordering on types allows highly generic functions to be writ- 
ten, thus capturing the flavor of code encapsulation offered by so called object-oriented 
languages. For example, referring back to Figure 3 on Page 6, the function: 

age(person( dob ~ date(year ~ X)), ThisYear : integer) ~ ThisYear - X.  

will apply generically to all subtypes and instances of persons with a birth year. 

3 . 3  ATr -Ca lcu lus :  L e  F u n  

Le Fun [AKLN87,AKN89] is a relational and functional programming language where 
first-order terms are generalized by the inclusion of applicative expressions as defined 
by Landin [Lan63] (atoms, abstractions, and applications) augmented with first-order 
constructor terms. Thus, ~nterpreied functional expressions may participate as bona fide 
arguments in logical expressions just as conventional constructor terms do in Prolog. 

Thus unification must consider unificands for which success or failure cannot be de- 
cided in a local context (e.g., function applications may not be ready for reduction while 
expression components are still uninstantiated.) We propose to handle such situations by 
delaying unification until further variable instantiations make it possible to reduce unifi- 
cands containing applicative expressions. In essence, such a unification may be seen as a 
residual equation which will have to be verified, as opposed to solved, in order to confirm 
eventual success--whence the name res~duation. If verified, a residuation is simply dis- 
carded; if failing, it triggers chronological backtracking at the latest instantiation point 
which allowed its evaluation. This is very reminiscent of the process of asynchronous 
backpatching used in one-pass compilers to resolve forward references. 

We shall merely illustrate Le Fan's operational semantics by giving very simple canon- 
ical examples. 

A goal literal involving arithmetic variables may not be proven by Prolog, even if 
those variables were to be provided by proving a subsequent goat. This is why arithmetic 
expressions cannot be nested in literals other than the is predicate, a special one whose 
operation will force evaluation of such expressions, and whose success depends on its 
having no uninstantiated variables in its second argument. Consider the set of Horn 
clauses: 

q(X, Y, Z) :- p(X, Y, Z, Z), pick(X, Y). 

p ( X , Y , X  + Y , X  * Y). 
p ( X , Y , X + Y , ( X  , Y ) -  14). 

pick(3, 5). 
pick(2, 2). 
pick(4, 6). 

and the following query: 

?- q(A, B, C). 
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/,From the resolvent q(A, B, C), one step of resolution yields as next goal to establish 
p(A, B,C, C). Now, trying to prove the goal using the first of the two p assertions 
is contingent on solving the equation A + B = A * B. At this point, Prolog would 
fail, regardless of the fact that  the next goal in the resolvent, pick(A, B) may provide 
instantiations for its variables which may verify that  equation. Le Fun stays open-minded 
and proceeds with the computation as in the case of success, remembering however that  
eventual success of proving this resolvent must insist that  the equation be verified. As it 
turns out in this case, the first choice for pick(A, B) does not verify it, since 3 + 5  ~ 3*5. 
However, the next choice instantiates both A and B to 2, and thus verifies the equation, 
confirming that  success is at hand. 

To emphasize the fact that such an equation as A + B = A • B is a left-over granule 
of computation,  we call it a residual equation or equational residualion--E-residuation, 
for short. We also coin the verb "lo residuate" to describe the action of leaving some 
computation for later. We shall soon see that there are other kinds of residuations. 
Those variables whose instantiation is awaited by some residuations are called residuation 
variables (RV). Thus, an E-residuation may be seen as an equational closure--by analogy 
to a lexical closure--consisting of two functional expressions and a list of RV's. 

There is a special type of E-residuation which arises from equations involving an 
uninstantiated variable on one hand, and a not yet reducible functional expression on 
the other hand (e.g., X = Y + 1). Clearly, these will never cause failure of a proof, since 
they are equations in solved form. Nevertheless, they may be reduced further pending 
instantiations of their RV's. IIence, these are called solved residualions or S-residuations. 
Unless explicitly specified otherwise, "E-residuation" will mean "equational residuations 
which are not S-residuations." 

Going back to our example, if one were interested in further solutions to the original 
query, one could force backtracking at this point and thus, computation would go back 
eventually before the point of residuation. The alternative proof of the goal p(A, B, C, C) 
would then create another residuation; namely, A + B = (A * B) - 14. Again, one can 
check that  this equation will be eventually verified by A = 4 and B = 6. 

Since instantiations of variables may be non-ground, i.e., may contain variables, resid- 
uations mutate.  To see this, consider the following example: 

q(Z) :- p ( X , ) ' , Z ) , X  = Y -  W,Y = V +  W, pick(~;W). 

p(A, B, A * B). 

pick(9, 3). 

together with the query: 

?- q(Ans). 

The goal literal p(X,Y, Ans) creates the S-residuation Ans = X * Y. This S- 
residuation has RV's X and Y. Next, the literal X = V -  W instantiates X and creates 
a new S-residuation. But, since X is an RV to some residuation, rather than proceeding 
as is, it makes bet ter  sense to substitute X into that  residuation and eliminate the new 
S-residuation. This leaves us with the mutated residuation Arts = ( V - W ) * Y .  This muta- 
tion process has thus altered the RV set of the first residuation from {X, Y} to {V, W,Y}. 
As computation proceeds, another S-residuation instantiates Y, another RV, and thus 
triggers another mutation of the original residuation into Ans = (V - W) * (V + W), 
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leaving it with the new RV set {V, W}. Finally, as pick(9, 3) instantiates V to 9 and W 
to 3, the residuation is left with an empty RV set, triggering evaluation, and releasing 
the residuation, and yielding final solution Ans  = 72. 

The last example illustrates how higher-order functional expressions and automatic 
currying are handled implicitly. Consider, 

sq (X)  ~ X • X .  

twice(F, X )  => F(F(X) ) .  

valid_op( twice ). 

p(1). 

pick( lambda( X , X ) ). 

q(V) :- G = F (X ) ,  V = G(2 ::v 1), valid_op(F), p ick(X) ,p(sq(V)) .  

with the query, 

?- q(Ans).  

The first goal literal G = F ( X )  creates an S-residuation with the RV set {F, X}. Note 
that  the "higher-order" variable F poses no problem since no at tempt is made to solve. 
Proceeding, a new S-residuation is obtained as Ans  = F(X)(2  =v 1) = F ( X ,  1). One 
step further, F is instantiated to the twice fimction. Thus, this mutates the previous S- 
residuation to Ans  = twice(X)(1).  Next, X becomes the identity function, thus releasing 
the residuation and instantiating Ans  to 1. Finally, the equation sq(1) = 1 is immediately 
verified, yielding success. 

4 The ATr¢ Molecule  

Now that  we have put together the pairwise bonds between the atoms; i.e, what consti- 
tutes the LIFE molecule as advertised in Figure 1 on Page 3. In LIFE one can specify 
types, functions, and relations. P~ther than simply coexisting, these may be interwoven. 
Since the e-calculus is used in Log In and FOOL to provide a type inheritance systems 
of sorts to logic and functional programming, we can now enrich the expressiveness of 
the ¢-calculus with the power of computable functions and relations. More specifically, 
a basic e - te rm structure expresses only typed equational constraints on objects. Now, 
with FOOL and Log In, we can specify in addition arbitrary functional and relational 
constraints on e-terms. 

In LIFE, a basic e- term denotes a functional application in FOOL's sense if its 
root symbol is a defined function. Thus, a funclional expression is either a e- term 
or a conjunction of e-terms denoted by tl : t~ : . . .  : tn. An example of such is 
append(list, L) : list, where appe~d is the FOOL function defined above. This is how 
functional dependency constraints are expressed in a e- term in LIFE. For example, in 
LIFE the ¢- term foo(bar ~ X : list, baz ~ Y : l isl , fuz ~ append(X, Y)  : list) is one in 
which the attribute fuz is derived as a list-valued function of the attributes bar and baz. 
Unifying such e-terms proceeds as before modulo residuation of functional expression 
whose arguments are not sufficiently refined to be subsumed by a function definition. 

As for relational constraints on objects in LIFE, a e- term t may be followed by a 
such-that clause consisting of the logical conjunction of literals 11, . . . ,  t,~. It is written as 
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t [ 11,. .. ,1,~. Unification of such relationatly constrained terms is done modulo proving 
the conjoined constraints. 

Let us take an example. We are to describe a LIFE rendition of a soap opera. Namely, 
a soap opera is a television show where a cast of characters is a list of persons. Persons in 
that  strange world consist of alcoholics, drug-addicts, and gays. The husband character 
is always called "Dick" and his wife is always an alcoholic, who is in fact his long-lost 
sister. Another character is the mailman. The soap opera is such that  the husband and 
mailman are lovers, and the wife and the maihnan blackmail each other. Dick is gay, 
Jane is an alcoholic, and IIarry is a drug-addict. In that  world, it is invariably the case 
that  the long-lost sister of gays are named "Jane" or "Cleopatra." Harry is a lover of 
every gay person. Also, Jane and a drug-addict blackmail one another if that  drug-addict 
happens to be a lover of Dick. No wonder thus that it is a fact that  this soap opera is 
terrible. 

In LIFE, the above could look like: 

cast := {I]; [personlcast]}. 

soap_opera := iv_show(characters ~ [H, W, M], 
husband ~ H : dick, 
wife ::~ W : alcoholic: long_lost_sister(H), 
mailman ~ M)  

I loversCM, H),blac~'ma,l(W, 114). 

person := {alcoholic; dr~ug_addict; gay}. 
dick ,~ gay. 
jane ,~ alcohohc. 
harry ,~ drug_addict. 

long_lost_sister(gay) ::~ {jane; cleopatra}. 

lovers(harry, gay). 

blackmail(jane, X : drug_addict) :- lovers(X, dick). 

terrible(soap_opera). 

Then, querying about a terrible TV show with its character cast is: 

?- terrible(T: iv_show(characters ~ cast.)). 

which unfolds from the above LIFE specification into: 

T = soap_opera(characters ~ [H : dick, W : jane, 111 : harry], 
husband ~ H, 
wife =~ W, 
mailman ~ 11f) 

It is instructive as well as entertaining to convince oneself that  somehow everything falls 
into place in this LIFE sentence. 
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5 C o n c l u s i o n  

We have overviewed some of the basic features of LIFE, a prototype programming lan- 
guage combining logic and functional programming, with a type system designed to 
accommodate multiple inheritance. Together, these features confer to LIFE a unique ca- 
pability for AI applications like Natural Language Processing [AKL91], Computer-Aided 
Design, etc. We have illustrated LIFE's operations on various examples, and explained 
how the capabilities of each components may be combined. In fact, LIFE's conception as 
a composition of three calculi turns out to yield more power than intrinsic to each. Some 
of the examples we have shown already substantiate this claim, but there are even more 
pleasantly startling additional conveniences which have also come unexpectedly with our 
design such as (bounded) potymorphic types, infinite streams, deamonic constraints, and 
more. Examples of these may be found in [AKP90,AKM90,AKP91]. 

Finally, we must mention that quite a decent C implementation of a LIFE interpreter 
embodying all the concepts presented here has been realized by Richard Meyer. It is 
called Wild_LIFE [AKM90], and is in the process of being released as public domain 
software by Digital's Paris Research Laboratory. We hope to share it soon with the 
progranaming community at large so that LIFE may benefit from the popular wisdom 
of real life users, and hopefully contribute a few effective conveniences to computer pro- 
gramming, then perhaps evolve into ReaLLIFE. 
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