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1. INTRODUCTION 

Since  the  i n v e n t i o n  of LALR(1)  g r a m m a r s  by  D e R e m e r  [9], L A L R  g r a m m a r  
analys is  and  pars ing  t e c h n i q u e s  have  b e e n  popu l a r  as a c o m p o n e n t  of t r a n s l a t o r  

wr i t ing  sys tems  a n d  compi le r -compi le r s .  However ,  D e R e m e r  did  n o t  descr ibe  
how to c o m p u t e  the  n e e d e d  look-ahead  sets. Ins tead ,  L a L o n d e  was  the  f irst  to 
p r e sen t  an  a lgo r i thm [20]. S ince  then ,  L a L o n d e ' s  a lgo r i t hm has  b e e n  p u b l i s h e d  
by  A n d e r s o n  et  al. [6, pp. 21-22], who also p r e s e n t e d  the i r  own  a l go r i t hm [6, p. 
21]; Aho a n d  U l l m a n  [3, p. 238] h a v e  p u b l i s h e d  the  one used  in  Y A C C  [16]. 
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616 F. DeRemer and T. Pennello 

Kristensen and Madsen [19] have improved LaLonde's algorithm, extending the 
results to LALR(k). 

Various others have tried their hand at designing such an algorithm, often with 
the result of implementing a particular subset of LALR(1) that  we dub "not 
quite" LALR(1) or NQLALR(1) [7, 11, 23, 25]. Subsequently, Watt  at tempted to 
repair his original approach [24], as did Chaney with DeRemer's approach [5]. 
Neither of these later attempts was correct, although both were more complex 
and worked in more cases than did the NQLALR method. 

None of the correct LALR(1) algorithms, except the one developed by Kristen- 
sen and Madsen [19, Sec. 6.2], have been nearly as efficient as their NQLALR(1) 
counterparts. Later we describe the oversimplification that  results in the simple, 
efficient algorithms that are not quite right. The purpose of the current paper is 
to provide an algorithm that  efficiently exploits the essential structure of the 
problem. 

1.1 Preview 

When a grammar is not LR(0), one or more of the LR(0) parser's states must be 
"inconsistent", having either a "read-reduce" or a "reduce-reduce" conflict, or 
both. In the former case the parser cannot decide whether to read the next 
symbol of the input or to reduce a phrase on the stack. In the latter case the 
confusion is between distinct reductions. Looking ahead at the first symbol of the 
input may resolve the conflict, and DeRemer defined a grammar to be LALR(1) 
when each inconsistent state q can be augmented with look-ahead sets that 
resolve the conflict and result in a correct, deterministic or "consistent" parser 
[9]. 

More precisely, for each inconsistent state q and possible reduction A ---) ~o in 
q, let the "look-ahead set for A --* w in q"  be denoted by LA(q, A ---) w). When the 
parser is in state q and the symbol at the head of the input is in LA(q, A ---) ~), 

must be reduced to A. Thus the look-ahead sets in q must be mutually disjoint 
and not contain any of the symbols that could be read from q. 

Watt [24] has defined LA(q, A ~ ~0) as (t  E T I S ~  + a A t z  and a~0 accesses q}, 
where T is the set of terminals in the grammar. Intuitively, when the parser is in 
state q and a¢0 is on the stack, reduction of ~0 to A is appropriate exactly when the 
input begins with some terminal t that  can follow aA in a rightmost sentential 
form. Our purpose here is to investigate the underlying structure in this definition 
and to show how to compute LA efficiently. 

The problem can be decomposed into four separate computations. In reverse 
order of computation they are as follows: LA is computed from "Follow" sets of 
nonterminal transitions; Follow sets are computed from "Read" sets of nonter- 
minal transitions; Read sets are computed from "Direct Read" sets; and Direct 
Read sets are computed by inspecting the LR(0) parser. 

A relation inc ludes  on nonterminal transitions relating the Follow sets is 
defined, along with a relation r e a d s  relating the Read sets. The Read sets are 
initialized to the Direct Read sets by inspection of the parser. Then their values 
are completed by a graph traversal algorithm for finding "strongly connected 
components" (SCCs), adapted to compute unions of the sets appropriately as it 
searches the digraph induced by the r e a d s  relation. If a nontrivial SCC is found, 
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the g r a m m a r  in question is not  LR(k)  for any  k. Next  the  Read  sets are used as 
initial values for the  Follow sets, which are comple ted  by  the  SCC algor i thm 
applied to the  digraph of the i n c l u d e s  relation. Again, if a nontr ivial  SCC is 
encountered having a n o n e m p t y  Read  set  in it, (we conjecture that )  the  g r a m m a r  
is not  LR(k)  for any k. In  any  case, the  LALR(1) look-ahead  sets are s imply 
unions of appropr ia te  Follow sets. 

We now define terminology,  define LALR(1),  give theo rems  relat ing to look- 
ahead  set  computat ion,  present  the algori thm, discuss oversimplifications,  give 
statistics for some practical  g rammars ,  show how to generate  debugging diagnos- 
tics for g r ammars  t ha t  are not  LALR(1),  and present  conclusions• 

2. TERMINOLOGY 

The  notions of symbo l  and s t r ing  of symbols  are assumed here• A vocabu lary  V 
is a set of symbols.  V* denotes  the set  of all str ings of symbols  f rom V. V + 
denotes  V* - {•}, where • is the  e m p t y  string. T h e  l eng th  of any  string a is 
denoted by I a l. T h e  first symbol  of a n o n e m p t y  string a is denoted by  Fir s t  a; 
the string following is denoted by  R e s t  a; the  last  symbol  is denoted  by  L a s t  a. A s  
just  il lustrated, a rguments  to functions are not  parenthes ized when the  in tent  is 

clear. 
I f  R is a relation, R* denotes  the  reflexive, t ransi t ive closure of  R, and  R ÷ 

denotes  the transi t ive closure. We write X =8 F ( X )  to m e a n  tha t  X is the  smallest  
set  satisfying X = F ( X ) .  O ($1 . . . .  , Sn},  where the  Si are sets, denotes  $1 O . - .  
U S, .  

2.1 CFGs 

A context - free  g r a m m a r  (CFG) is a quadruple  G = (T, N, S, P ) ,  where  T is a 
finite set of t e r m i n a l  symbols,  N is a finite set  of n o n t e r m i n a l  symbols  such tha t  
T n N = O, S E N is the s tar t  symbol,  and P is a finite subset  of N x V*, where  
V = T O N and each m e m b e r  (A, ¢o) is called a produc t ion ,  wri t ten  A --> ~0. A is 
called the left p a r t  and ¢0 the  r igh t  par t .  We require a product ion  S --> S ' ±  for 
some S '  E N and ± E T such tha t  ± and S appea r  in no o ther  production.  

The  following {usual) convent ions hold in this paper:  

S , A , B , C , . . . E N  
X E V  
t, a, b, c . . . .  E T 
• . . , x , y , z  E T *  

a, fl, "~, . . . E V* 

T h e  relat ion ::=br is p ronounced  "direct ly (right) produces"  and is defined on V* 
such tha t  a A y  7 r  ao~y for all a E V*, y E T*, and A --* ¢0 E P.  T h e  r subscr ipt  is 
dropped hereaf ter  since we always mean  r igh t  produces.  Bo th  7 "  and 7 + are 
pronounced  "produces".  A nu l lab le  nontermina l  is one t ha t  produces  •. I f  S 7 "  
a, then  a is called a sen ten t ia l  form;  if a E T*, then  it is called a sentence .  T h e  
l a n g u a g e  L ( G )  generated by  G is the set  of sentences,  t ha t  is, (x E T* I S 7 + x) .  
All g r ammars  here  are assumed to be reduced ,  t ha t  is, S 7 + a A f l  and A 7 "  y for 
all A E N and some a, fl E V* and y E T*. 
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Let  G be a CFG and k _> 0. G is L R ( k )  iff S 7 "  a A y  ~ a~oy implies that ,  
if S 7 "  y ~ a~oy', then  y = a A y '  for all a, y E V* and y, y '  E T* such tha t  
Firstk ( y ' )  = Firstk (y) [17]. Here  Firstk (y) is the prefix of y of length k, or just  y 
i f [ y [  < k. 

2.2 LR parsers 

Next  we introduce a formalization of an LR parser, tha t  is, any one-symbol  look- 
ahead parser, such as an SLR(1), LALR(1),  or LR(1) parser  [1]. T h e  generaliza- 
tion to mult isymbol look-ahead is easy, bu t  not  re levant  here. Given some tabular  
representat ion of the "LR au tomaton"  defined below and the general LR parsing 
algorithm to interpret  those tables, we have an "LR  parser".  Th e  part icular  
states, transitions, and look-ahead sets are de termined  by the grammar  in 
question and by the construct ion technique.  For  example, the LALR(1) technique 
produces an "LALR(1) au tomaton" .  

An L R  a u t o m a t o n  for a CFG G = (T, N, S, P )  is a sextuple LRA(G)  = (X, V, 
P, Start ,  Next, Reduce) ,  where K is a finite set of states,  V and P are as in G, 
Star t  E K is the s tar t  state, Next:  K x V - *  K is called the t rans i t i on  func t ion ,  
and Reduce:  K x T -* 2 p is called the reduce  funct ion .  Next  m ay  be a part ial  
function. Nondeterminis t ic  or " inconsis tent"  LR au tomata  are allowed; the 
LALR(1) condition of Section 3 excludes such cases. A t rans i t i on  is a member  of 
K x V; it is a t e r m i n a l  t rans i t ion  if it is in K x T and a n o n t e r m i n a l  t rans i t i on  

if it is in K x N. The  transit ion (q, X)  is represented  by  q X ) p,  where p = 

Next(q, X),  or by q X ) when p is irrelevant, and we define A c c e s s i n g _ s y m b o l  
p -- X; each state has a unique accessing symbol, except  Start ,  which has none. 

In the diagrams in text, LR au tomata  are represented  by  state  diagrams in 
which states are connected by transitions. For  each state  q in which Reduce  
indicates possible reductions, the product ions are listed. 

A p a t h  H is a sequence of states q0 . . . . .  an such tha t  

x1 x .  
qo ~ ql . . . .  --* qn-1 ) qn. 

We say tha t  H spel ls  a = X1 . . .  X ,  and define S p e l l i n g  H = a and Top  H = q , .  
H i s  denoted by q o - -  .a.. --~ qn, pronounced "qo goes to q ,  under  a".  An al ternat ive 
notat ion for H is [qo: a], given the au tomaton  or its s tate  diagram. T h e  concate- 
nation of [q : a] and [q '  : a '] ,  where Top  [q: a] = q' ,  is wri t ten [q : a][q'  : a'] and 
denotes [q : aa ' ] .  [Star t  : a] can be abbreviated [a]; thus  [ ] denotes  S tar t  alone. 
We say tha t  a accesses  q if Top  [a] -- q. 

A con f igura t ion  is a member  of K + × T+; its first par t  is called the s ta te  s tack  
and its second the input .  The  relat ion }- on configurations is pronounced  "direct ly 
moves to" and is the union of ~--read and }--A~, for all A -*  co E P. t--read is 
pronounced "reads to": [q : a]tz F-r~ad [q : at]z  if Nex t (Top  [q : a], t) is defined. 
}--A~ is pronounced "reduces ¢o to A in moving to": [q : aco]tz F--A_~ [q : a A ] t z  i fA  
--* ~ @ Reduce(Top  [q:a60], t) (and if [ q : a A ]  is a path; bu t  this additional 
constraint  will always hold in the LR au tomata  considered here), t-* and }--+ are 
pronounced "moves to". The  l a n g u a g e  L(LRA(G))  parsed by LRA(G)  must  be 
identically L(G) and is {z ~ T* I[ ]z F -+ [S']  _L}. 
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A triple (A, a, fl) E N × V* × V* is called an item, wri t ten A ---> a.f i  i f A  --* aft 
is a production; if fl = e, it is a f inal item. A set of  i tems is called a (parse) table. 
The  set  of LR(0) parse tables P T ( G )  for a CFG G is 

P T ( G )  =~ (Closure (S---> . s '  ± )  ) u 
(Closure IS  I IS  E Successors IS '  for IS '  E P T ( G ) )  

where 

Closure I S  = IS  U (A ---~ .~o l B --) a .Af l  E IS  and A --) o~ E P ) 
Successors IS  = (Nucleus(IS,  X) IX E V) 
Nucleus(IS,  X)  = {A ---) aX . f l  l A ---) a .Xf l  E IS ) .  

An LR(O) automaton for a CFG G is an L R  a u t o m a t o n  LRA(G)  such tha t  
there exists a bijective function F :  K - - )  P T ( G )  - {O) where  

S ta r t  = F - l (C losu re  (S --~ . S '  ± )  ) 

and for all t E T, X E V, 

Next(q,  X)  = F - l ( C l o s u r e ( N u c l e u s ( F q ,  X)))  

Reduce(q,  t) = (A --~ 0~ I A --* o~. ~ F q}. 

F s imply establishes a one-to-one correspondence be tween  tables  (except O, the 
" t rap  table")  and s ta tes  and thus  is an i somorphism be tween  the  parse  tables  and 
the parser.  Hence,  hereaf ter  we elide all occurrences  of F and  F -1, since con- 
text  always de termines  whe ther  q denotes  a s ta te  or its corresponding parse  
table. The  "LR(0)-ness"  of the  a u t o m a t o n  is evident  in t ha t  the  definition of 
Reduce(q,  t) is independent  of t. Hereaf ter ,  "parser"  is often used r a the r  than  
au tomaton .  

I t  is well known tha t  the LR(0) a u t o m a t o n  A is a correct  parser  for G, t ha t  
is, L(A) = L(G);  however,  in general  it is nondeterminist ic ,  due to the existence 
of " inconsistent"  states. A s ta te  q is inconsistent iff there  exists a t E T 
such tha t  Next(q,  t) is defined and Reduce(q,  t) ~ ~ (read-reduce conflict), or 
I Reduce(q,  t) I > 1 (reduce-reduce conflict), or both.  

A shor thand  nota t ion  is useful for a certain sequence of moves:  

[ a l ] y z ~ *  [~lf l]z  iff (Top [a], yz) ~* ( [Top [a ] : f l ] ,  z). 

This  captures  the  notion tha t  the  parser  reads  y and reduces  it to fl, possibly 
including reduct ions on the e m p t y  string preceding y. T h e  vertical  bar  is needed 
because [a]yz F-* [afl]z does not necessari ly imply  t ha t  y was reduced to ft. For  
example,  consider [yAJtxz t--re,a [yAt]xz ~A---~At [yA]xz t-* [yAfl]z, where tx was 
not reduced to fl (here y = tx and a = yA). 

2.3 Graphs 

A directed graph or digraph is a pair  (V', E )  where V' is a set  of vertices and E 
is a subset  of V' x V', each m e m b e r  of which is called an edge. In  this pape r  V' 
is always finite. A digraph-path, or s imply a pa th  when the context  is clear, is a 
sequence of vert ices vl . . . . .  Vn, n > 1, such tha t  (vi, Vi+l) E E for 1 <_ i < n; we 
say there  is a pa th  from vl to Vn. A root is a ver tex  having no pa ths  to it. A 
directed acyclic graph (DAG) is a digraph in which there  is no pa th  f rom any 
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vertex back to itself. A forest is a DAG in which there  is at  most  one pa th  to each 
vertex from a given vertex. A tree is a forest having exactly one root. 

3. LALR LOOK-AHEAD SETS 

"LALR(1) parser"  can be defined by  refining the definition of Reduce  for an 
LR(0) parser. Intuitively, Reduce(q,  t) should contain A --* ~0 only if there  exist 
sentential  a A t z  and ao~tz such tha t  ao~ accesses q. T h e  definition of LALR(1) 
parser is given after  the definition of " look-ahead symbols" (LA): 

Definition. For  an LR(0) parser,  

LA(q ,  A --* ¢o) = (t  E T I [ao~]tz ~A-~¢o [aA]tz  t-* [S '  _L], and a¢o access q}. [] 

Definition. An L A L R  (1) parser  for a CFG G is like G's  LR(0) parser,  except  
tha t  

Reduce(q,  t) = {A ---> o~ I t E LA(q, A --* ~0)}. []  

Definition. A CFG is L A L R ( 1 )  iff its LALR(1) parser  has no inconsistent  
states. [] 

The  lat ter  defines LALR(1) g rammar  in te rms of LALR(1) parser; a g rammar  
is LALR(1) iff its LALR(1) parser  is deterministic.  I t  is desirable to have a 
definition of LALR(1) grammar  tha t  does not  involve the parser,  bu t  we know of 
no reasonable way to do this. We do, however,  come a little closer in the following 
theorem, which Wat t  gave as a definition [24]. 

THEOREM. LA(q,  A --* ¢o) = (t  E T I S 7 + a A t z  a n d  ao~ access q}. 

The  proof  depends essentially on the correctness of the LR(0) parser,  tha t  is, 
tha t  the moves faithfully reflect the derivation; we do not  prove this here. 

The  pr imary  goal here  is to show how to compute  the LA sets. To  do so we 
focus a t tent ion on nonterminal  transit ions and define "follow sets" for them. 

Definition. For  an LR(0)tparser  with nonterminal  t ransi t ion (p, A), 

Follow(p,  A)  = {t ~ T I [aA]tz  }-* [S'_L] and a accessesp}.  [] 

These  are just  the terminal  symbols tha t  can follow A in a sentential  form 
whose prefix a, preceding A, accesses s tate  p, given the correctness of the LR(0) 
parser. S ta ted  in terms of derivations, Follow(p, A)  = {t E T I S 7 + a A t z  and a 
accesses p}. Thus  it is easy to see tha t  each LA set is just  the  union of some 
related Follow sets. 

T H E O R E M  U N I O N  

LA(q ,  A ---> o~) = U{FoUow(p,  A)  I (P, A)  is a transi t ion a n d  p - - . ~ . .  ~ q}. 

(Proof is given in the Appendix.) T h a t  is, the  LA set for product ion  A --* ¢0 in 
state q is the union of the Follow sets for the A-transi t ions whose source state  p 
has a pa th  spelling ¢0 tha t  terminates  at  q. Intuitively, when the parser  reduces 
o~ to A in state q, each such p is a possible top state  af ter  ~0 is popped; t hen  the 
parser must  read A in p,  all with some terminal  t, the  first of the  input. 
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Diagrammatically, 

Follow(p~, A) 
• • e • • • is contained in 

~e03 

• ~ 3 e ~  Q LA(q, A ---~ ~o) 
• which contains 

• • • ~ • • • Follow(p., A) 

The parser should reduce A --) ~ when in state q if the next input symbol t is in  
any of the Follow(pi, A) (1 <_ i _ n), that  is, if t can follow A in any of the left 
contexts "remembered" by statespl through p,. The transitions (pi, A) of concern 
can be captured via the following relation: 

Definition [24]. (q,A--) o~) lookback (p,A) i ffp-- .~.---)  q. [] 

Thus LA(q, A --) ~) = U{Follow(p, A) I (q, A -* 0~) l ookback  (p, A)}. 
The follow sets are, in turn, related to each other. In particular, 

THEOREM. Follow(p', B) C_ Follow(p, A) if 

B--* flAy, 7 ~ * e ,  and p'--.fl".--> P. 

Diagrammatically, 

. . . ( ~  g ~ . . .  Follow(p',B) 

\ is contained in 

. z  

* ~  Follow(p, A) 

. • • G ~ - ~ 4 2 ) - -  • .". - - 0  a -~ 6,,~" "y =>* E 

This is easy to see since, given some string a accessing p' ,  we have aft accessing 
p, and in an appropriate right context, ariA can be reduced first to ariA), via 7 
7 "  • and then to aB. Thus those symbols that  can follow B in the left context 
remembered by p' can also follow A in the left context remembered by p. The 
above inclusion can be captured via a relation on nonterminal transitions. 

Definition. (p, A) includes (p', B) iff 

B--* flAT, y ~ * e ,  and p'--.fl . .--) p. [] 

Thus, Follow(p', B) __ Follow(p, A) if (p, A) inc ludes  (p', B). 
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Next, observe that  the symbols labeling terminal transitions "following" a 
nonterminal transition (p, A) are obviously in Follow(p, a). 

THEOREM. Read(p, A) C__ Follow(p, A). 

where 

Definition. For an LR(0) parser with nonterminal transition (p, A), 

Read(p, A) = {t E T I a accessesp and [aA I]tz 

b-* [aA I y]tz ~ , d  [aAyt]z b-* [S'±]}. 

Diagrammatically, 

[] 

v ~(__>. ~ - -  

Read(p, A) is the set of terminals that  can be read before any phrase including A 
is reduced. The definition is complicated by the possibility of numerous reductions 
of the empty string and nonterminals generating it, namely, 7 ~ *  e, before the 
read move finally occurs. Read(p, A) is just the "direct read symbols" (DR, 
below) from ro, if 7 = E in the above diagram (i.e., n = 0). 

All contributions to the Follow sets have now been considered, and the results 
may be summarized in the following theorem, of which the previous two theorems 
are corollaries: 

T H E O R E M  UP 

Follow(p, A) ---8 Read(p, A) U U{Follow(p',  B) I (P, A) includes (p', B)}. 

(Proof is given in the Appendix.) That  is, Follow(p, A) is exactly (1) the set of 
terminals that  can be read, via the first read, after reducing a phrase to A in the 
left context "remembered" by p, before any phrase including A is reduced, 
together with (2) the Follow sets of the nonterminals to which some phrase 
containing A, followed at most by some nullable nonterminals, can be reduced 
before reading another symbol, each such nonterminal in the appropriate left 
context, of course. Diagrammatically, for n such nonterminals, B1 through B,, 

O O Q ~ O Q O  

• . \\includes 

•@ 
• ~ ,," / % 

,n,  / / i n c l u d e s  

B O•• •00 

(Bi, Bj; Bi, BJ; 7i, ~j are not necessarily distinct.) The dashed arrows indicate the 
hneludes relation. In a similar manner the Read sets can be decomposed. 
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T H E O R E M  ACROSS 

Read(p, A) = 8 DR(p, A) U U {Read (r, C)I (p, A) reads  (r, C)}. 

(Proof is given in the Appendix.) 

where 

Definition. For an LR(0) parser with nonterminal transition (p, A), 

D R(p ,A )  f f i { t E T I p  A , r t ~}. [] 

Definition. (p,A) reads (r, C) iff p A ~ r C ~ a n d C ~ * e .  [] 

The "direct read symbols" (DR) are simply those that  label terminal transitions 
of the successor state r of the (p, A) transition. "Indirect read symbols" arise 
when nullable nonterminals can follow. Diagrammatically, 

reads reads 

e , .  
I=>'E e o e  On =>* E: 

Here, (p, A) r e a d s  (ro, el) r e a d s  . . .  r e a d s  (r.-1, C.); thus, DR(rn-1, On) 
Read(p, A) so that t ~ Read(p, A). 

In summary, to compute the LA sets, the Follow sets are needed, for which the 
Read sets are needed, for which the DR sets are needed. The Follow sets are 
interrelated as described by the inc ludes  relation, as are the Read sets by the 
r e a d s  relation. In the next section the computation of these sets is described by 
carrying information along the edges of the graphs induced by the r eads  and 
i n c l u d e s  relations. A graph traversal algorithm is used to determine an optimum 
order for doing so, and simultaneously, to compute the sets. 

4. GRAPH ALGORITHMS FOR LALR COMPUTATION 

Theorems Up and Across relate Follow, Read, and DR in such a way that  an 
appropriate graph traversal algorithm can be applied first to compute Read from 
DR, and then to compute Follow from Read. Note that  DR is already directly 
available in the LR(0) parser. The two graphs of interest are those induced by 
the relations reads  and includes,  respectively. However, let us consider a more 
general problem first and then return to this specific LALR application. 

4.1 General Case 

Let R be a relation on a set X. Let F be a set-valued function such that  for all 
x E X ,  

F x =s F' x U U{F y I xRy} (4.1) 

where F' x is given for all x E X. Let G = (X, R) be the digraph induced by R, 
that is, G has vertex set X and (x, y) is an edge iff xRy. Then F x can be efficiently 
computed from F '  x by traversing G appropriately, as we shall consider first when 
G is a forest, then a DAG, and finally a general digraph. 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4, October 1982. 



Suppose G is a forest, such as 

624 F. DeRemer and T. Pennello 

© 

Each  leafx has  no y such t ha t  xRy; thus  F x is s imply  F' x. Each  nonleafx is a 
parent of one or more  children; a child of x is a ver tex y such t ha t  xRy, and F x 
in this case is F' x unioned with  the  F-values  of the  children of x. Thus,  a 
s tandard,  recursive, t ree- t raversa l  a lgor i thm T can be used to compute  F in this 
case by carrying informat ion f rom the leaves to the  roots.  

Now consider a DAG, such as 

O () 

O 
Vertices a and c "share"  the child b. Algor i thm T correct ly  computes  F for all 
vertices, bu t  it t raverses  b and its subt rees  twice, once as a subtask  of comput ing  
F a and again as a subtask  of F c. An a lgor i thm D, based  on T, can avoid such 
recomputa t ion  by  mark ing  each ver tex on first encounte r  and  never  re t ravers ing  
marked  vertices. 

Finally, consider the  general  case of  a digraph with  cycles and  possibly no roots, 
for example,  

(~4.2) 

I f  a lgor i thm D were to s ta r t  its t raversa l  a t  ver tex  a, it would visit a then  b then  
c, incorrect ly comput ing F c = F '  c U F '  a, a l though it would correct ly  compute  
F a and F b. Worse  yet, a lgor i thm T would loop forever. No te  t ha t  by  the  
definition o f F ,  F a _ C F b _ F c _ F a ,  s o F a = F b = F c = F ' a U F ,  b U F ,  c. 
A second tr ip a round the  cycle would solve the  p rob lem for s imple loops such as 
the above, but  in the general  case there  migh t  be loops inside loops or shor tcu t  
pa ths  be tween loops, so t ha t  a "second t r ip"  is not  so easy to define. 
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T h e  generalization of such cycles is a s t rong ly  connec ted  c o m p o n e n t  (SCC), a 
maximal  subset  V" of the vert ices of a g raph  G = ( V' ,  E )  such tha t  for all distinct 
vi, vj E V" ,  there  is a pa th  f rom vi to vj (thus, vice versa).  Call an  SCC t r iv ia l  iff 
it is a single ver tex with no p a t h  to itself {recall t ha t  d igraph pa ths  mus t  be  of 
length one or more).  This  notion has  impor tance  in la ter  theorems.  

I t  is easy to see, as i l lustrated above, tha t  if V "  = (xl, . . . ,  x,} then  F xl = 
. . . .  F Xn and this com m on  value contains F '  xl U . - .  U F '  xn. Thus,  each SCC 
could be  collapsed to a single ver tex x "  with F '  x "  = F '  xl  U . . .  U F '  x , ,  to fo rm 
a new digraph G'. T h e n  algor i thm D could be applied and the  resul ts  could be 
distr ibuted f rom G '  to G, for example,  F Xl . . . .  F Xn = F x" .  I t  is well known 
tha t  if all such SCCs were collapsed, G' would have  no cycles, t ha t  is, it would be 
a DAG. Thus,  a lgori thm D will work correct ly on G'. 

Note  tha t  each ver tex v in G not  involved in any  cycle will be the  only m e m b e r  
of a trivial SCC and will thus  appea r  unchanged  in G'. For  example,  the  digraph 

reduces to the DAG 

f i  
e n d  Traverse 

e n d  Digraph 

a s s i g n  N x .-- Min(N x, N y) 

N x = d  
r e p e a t  ass ign N(Top of S) ~--Infinity 

u n t i l  (Pop of S) = x 
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; F x ( - - F x U F y  

; F ( T o p o f S )  ~---Fx 
I Vertices I 

o d  
i f  

t h e n  

In  pract ice the collapsed graph G '  need not  actual ly  be constructed.  R a t h e r  
the computa t ion  of F can be effected while finding the  SCCs. T h e  following 
algorithm, Digraph,  is an adapta t ion  of one given by  Eve  and Kurki -Suonio  
[14]. We first modified the  exposit ion of the  a lgor i thm to improve  its readabi l i ty  
and understandabil i ty .  T h e n  we added the  three  s t a t emen t s  set  off to the  r ight  to 
compute  F. Fur the r  explication is given below the  algori thm. 

a l g o r i t h m  Digraph: 
i n p u t  R, a relation on X, and F', a function from X to sets. 
o u t p u t  F, a function from X to sets, such that F x satisfies (4.1). 
l e t  S be an initially empty stack of elements of X 
l e t  N be an array of zeros indexed by elements of X 
for x E X s u c h  t h a t  N x --- 0 d o  c a l l  Traverse  x o d  
where  recurs ive  Traverse x = # ] Vertices I 

call Push x o n  S 
c o n  d: Depth of S 
a s s i g n  N x ~-- d ; F x ~-- F '  x 
for  y E X s u c h  t h a t  xRy  # I Edges I 

d o  i f  N y = 0 then  call Traverse y fi 
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The array N serves three purposes: (1) recording unmarked vertices (N x = 0), 
(2) associating a positive integer value with vertices that are under active 
consideration (0 < N x < Infinity), and (3) marking with Infinity vertices whose 
SCCs have already been found. Each unmarked vertex is Traversed. Traverse 
pushes its argument on the stack S, marks it (via N) with its depth on S, and 
Traverses its "subtrees". If ever an edge is encountered from some descendent D 
to an ancestor A already on the stack (see diagram (4.3) below), then there exists 
a path from A to D to A and hence at least A and D and the intervening nodes on 
the stack belong to an SCC. The N-value of D is minimized to that  of A to 
prevent D from being popped as the recursion unwinds. (In diagram (4.3) there 
is also an edge from A to B; thus A and B are in the same SCC.) 

Finally, when all of the "subtrees" of some node B have been traversed and 
the N-value of B has not been reduced, B is recognized as the root of an SCC 
({B, A, D} in diagram (4.3)). As the SCC's members are popped, they are marked 
with Infinity. This prevents their interference in the discovery of other SCCs, for 
example, (Y, Z}. If, regarding diagram (4.3), N A were not set to Infinity, N Z 
would have been set to 2 and the algorithm would have incorrectly declared 
{X, Y, Z) an SCC. 

1 

2 2 

(4.3) 

43  

THEOREM. Algorithm Digraph correctly determines SCCs. 
For a proof the reader is referred to that  given by Eve and Kurki-Suonio [14], 

since Digraph is but a slight modification of their algorithm. 

THEOREM LINEARITY. Algorithm Digraph is order I Verticesl + lEdges] of  
the digraph induced by relation R, that is, linear in the "size" of R. 

PROOF. Traverse is called once for each vertex v, due to the immediate marking 
and the avoidance of retraversing marked vertices. Inside Traverse, v is pushed 
on the stack once, and the for-loop body is executed once for each edge from v. 
The r epea t  loop executes only intermittently, when an SCC is determined, and 
simply pops vertices off the stack; ultimately I Vertices I are popped since that  
many were pushed. Thus, each vertex is pushed once and popped once, and each 
edge from it is traversed once. [] 

COROLLARY. Algorithm Digraph performs one set union per edge of relation 
R, that is, F x +- F x U F y. 

In fact, it is possible to reduce the number of such unions inside each nontrivial 
SCC from the number of edges to the number of vertices in the SCC [14]. This 
improvement would become important in "highly connected" SCCs in a grammar 
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with many terminal symbols, that is, in which set unions become expensive. We 
did not include the improvement here (nor in our own implementation [12]) 
because it would obscure the essential algorithm. In addition, nontrivial SCCs 
are infrequent in practice. 

THEOREM. Algorithm Digraph correctly computes F. 

PROOF. The theorem is based on the following facts. First, if F x satisfies (4.1), 
then F x = U {F' y lxR*y);  this is due to Theorem Equivalent, below. Second, 
Digraph implicitly computes R* [14]. In fact, if F '  x = (x), for all x ~ X, then 
F x = {y ~ X[xR*y} ,  the set of all vertices reachable from x in the digraph 
induced by R. [] 

THEOREM EQUIVALENT. Suppose F and F'  are functions on X x 2 z, and R is 
a relation on X x X. I f V x E X : F x  =~ F'  x U U { F y l x R y } ,  then V x E X : F x  = 
U ( F ' y l x R * y ) .  

(Proof is given in the Appendix.) 

4.2 Application to LALR 

Let the set X in algorithm Digraph be the set of nonterminal transitions of an 
LR(0) parser. First, let F '  be DR and R be reads.  Then the resulting F will be 
Read, that is, according to Theorem Across, the computed result will be 

Read(p, A) = DR(p, A)U U{Read(r, C) I (P, A) r eads  (r, C)}. 

Second, let F '  be Read and R be includes.  Then the resulting F will be Follow, 
that is, according to Theorem Up, 

Follow{p, A) = Read(p, A) U U{Follow(p', B) I (p, A) inc ludes  (p', B)}. 

Finally, compute 

LA(q, A --* o~) = U{Follow(p, A)I (q, A --* o~) lookback  (p, A)} 

according to Theorem Union. Thus, the desired LALR(1) look-ahead sets result 
from two applications of algorithm Digraph and a final series of set unions. 

From a relational point of view, t E LA(q, A --* o~) iff (q, A --* ¢0) lookback  
(p, A) includes* (p', B) r eads  (r, C) d i rec t ly - reads  t, where 

Definition. (r, C) direct ly-reads t iff t E DR(r, C). [] 

Watt proposed this formulation, although he (erroneously) omitted the r eads  
relation altogether [24]. Watt 's proposed bit matrix representations of the sparse 
relations reads  and includes  would be wasteful of space and time; for example, 
for a particular Ada grammar [13], each matrix contains almost five million bits 
(see Table I in Section 6.1). We have effectively provided an efficient way to 
compute R = reads* o d i rec t ly - reads  (Read), then I = includes* oR (Follow), 
and finally lookback  o I (LA). 

4.3 Need for Digraph 

Finally, we demonstrate that  the generality of algorithm Digraph is needed 
because both the digraphs induced by inc ludes  and reads  can, in general, be 
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non-DAGs. In each case the existence of a nontrivial SCC implies that  the 
grammar is not LR(k) for any k and may or may not be ambiguous. 

4.3.1 SCCs in the includes Relation 
Consider the LR(0) parser with the following state diagram: 

\ 
\ \  / r - - - - - - \ \  

/ I \ \  \ \  \ \ 

d : C~dA 

a ~  A+ a 

The dashed lines indicate the edges of the digraph induced by the inc ludes  
relation. The digraph is not a DAG, since there is a cycle, and the corresponding 
grammar is not only LALR(1) but LR(0). (Adding the production A ~ b would 
make it non-LR(0), but still LALR(1).) 

The above example, is, however, "dangerously close to being non-LR", in the 
sense that, if the Read set were nonempty for any of the A-, B-, or C-transitions 
involved in the loop, then the grammar would not be LR(k) for any k. It is our 
belief that the following generalization of this statement holds: 

Conjecture Includes-SCC. z Let (p, A) be a nonterminal transition that  is in a 
nontrivial SCC of the digraph induced by the inc ludes  relation. Then the 
corresponding grammar is not LR(k) for any k if Read(p, A) # 9.  [] 

Such a problem can be illustrated in the above parser by adding the production 
B ~ cCf. This changes state Co to the following: 

(•) B.+ cC 

f ~ O B ÷ c C f  

' A related, but simpler, result is proved by Pager [22, p. 41]. Unfortunately, Pager's result does not 
seem to help in proving this conjecture. 
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Thus f i s  in DR, Read, and Follow of the C-transition; thus it is in the Follow set 
of the A-transition in the loop; thus it is in Follow for the B-transition; thus it is 
in LA(C0, B ----> cC); and hence there is a read-reduce conflict, since f can  also be 
read from state Co. (The symbol 2. is the only other symbol in each of these 
Follow rots, due to the A-transition from the start state.) 

The grammar is not only non-LR but is also ambiguous. The ambiguity is 
evident in that B ~ *  cdbB and distinctly B ~ *  cdbBf .  This is essentially the 
classical "dangling else problem", where f is the else clause and cdb is the if-  
then  clause: B ~ *  cdbB ~ *  cdbcdbB f and distinctly B ~ *  cdbB f ~ *  cdbcdbB f. 

This example can be made arbitrarily more subtle and complex by adding 
strings of nullable nonterminals to the ends of the various productions and prior 
to the f in  the added production. Additionally, changing B ---* cC to B ~ cCX, for 
example, where X--* e, still produces a read-reduce conflict on symbol f, but now 
the production involved is X --* • in state Co. If instead B ----> cCf  is changed to B 
---> cCXf,  then a reduce-reduce conflict results on symbol f in state Co, since 
LA(C0, B---* c C ) =  {f,_L} and LA(C0, X--* • ) =  {f}. 

4.3.2 SCCs in the reads relation 

Now consider the LR(0) parser whose state diagram is 

~ " S ' ~  B .+ E 

A J_ 

r I I ~ ,  
/ \ 

/ /  
/ d y  / p _  m \  

/ / \ 
~ ' ~ ( " ~  D "+ t \>  

Y / /  

\ \ 
\ \ 
\ \ 
\ \ 

\ 
\ \, 
\ \ v- (b 

\\m2} a? 

) B ÷ ~  

~ ~ )  A-* BCDA 

A - , a  

(4.5) 

Here the dashed lines represent the edges of the r eads  relation. DR for the two 
B-transitions and the C-transition is empty, but for the D-transition it is {a}. 
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Thus Read for each is {a} because the B's r e a d  C-, C- r eads  D-, and D- r eads  
(the lower) B-transition. Hence a read-reduce conflict results on symbol a in 
state Do, since LA(Do, B --* e) contains Follow of the lower B-, which contains 
Read of the lower B-, which contains a. 

In this particular case the grammar is ambiguous, since the empty string can 
be reduced to BCD many times prior to reducing to A, the only a in the only 
string in the language. However, by changing production A --* BCDA to A -~ 
BCDAf the ambiguity is eliminated, while retaining the conflict. Now the gram- 
mar is unambiguous, since the number of f s  fixes the number of reductions of 
empty to BCD, but it is still not LR(k) for any k, since the BCDs must be reduced 
before a is reduced to A, but the f s  follow the a. In general, 

THEOREM READS-SCC. I f  the digraph induced by the reads relation contains 
a nontrivial SCC, then the corresponding grammar is not LR(k) for any k. 

5. OVERSIMPLIFICATIONS 

Two "clever ideas" come to mind, each of which is shown below to be inadequate. 

5.1 NQLALR(1) Parsers 
The most notable one, an oversimplification of the computation of LALR(1) look- 
ahead sets, has been invented independently by several researchers [7, 11, 23, 25] 
and continues to be reinvented. It involves defining another relation receives  
that is closely related to the union of inc ludes  and r eads  and leads to what we 
call "not quite LALR(1)" or NQLALR(1) parsers. The basic idea is to relate 
states rather than transitions. The reasoning is that  LA(q, A --> ~0) must include 
all symbols that  can be looked-ahead-at or read from any "restart" state s such 
that there is a "look-back" state r with an A-transition to s and path spelling ¢o 
to q: 

Aq 
( ~  ~lookback' 

If o~ is reduced to A in q, r may be the top state after popping I ~01 states. Then A 
is read and s entered, so any symbol looked-ahead-at or read by s would be in 
LA(q, A --* ¢0), or really NQLA(q, A --* ¢o). Any state s' reachable from s by 
reductions also contributes: 
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If we reduce y to B in s, then we may enter state s' ,  and any symbol valid to s '  is 
in NQLA(q, A -* ¢o). Formally, 

Defini t ion.  (q, A -*  ~ )  l o o k b a c k '  s iff there is an r ~ Ksuch  that 

r ~ A  s and r - - . .~ . - -*q,  where A - * w .  Eq .  [] 

Def in i t ion .  s r e c e i v e s  s '  i f f  (s, p) lookback '  s '  for some production p. [] 

Def in i t ion  

NQLA(q, A --* o~) = U{NQFollow(s) I (q, A -* ~0) lookback '  s}. [] 

Def in i t ion  

NQFollow(s) •, NQDR(s) U U {NQFollow(s') ] s receives  s '} .  [] 

Def in i t ion .  NQDR(s) = {t ~ T ] Next(s, t) is defined}, that  is, the same as DR 
except defined for states rather than transitions. [] 

THEOREM. N Q F o l l o w ( s )  ffi U { N Q D R ( s ' )  ] s r ece i ves* ,  s '} .  

COROLLARY 

N Q L A  ( q , A --~ ~ ) = U { N Q D R ( s ) I ( q, A ~ ~ ) l o o k b a c k '  o r e c e i v e s  * s } . 

The theorem follows from applying Theorem Equivalent to the definition of 
NQFollow, and the corollary follows from back-substitution into the definition of 
NQLA. 

Note that the nullable nonterminals cause no problem here. For example, 

The dashed arrow from s to s '  comes directly from the definition of receives  and 
obviously serves a purpose similar to the edges of reads.  Thus, NQLA(q, A --~ 
w) is just the union for all the NQDRs of the states reachable via 
lookback 'oreceives*.  Our old IBM 360 implementation [11] just computes 
lookback '  °receives* via bit matrix techniques, then unions the related read 
sets (NQDR) to get the NQLAs. 

The inadequacy of NQLALR arises from the fact that  inappropriate "paths of 
reductions" are traced through the parser, in effect, first reducing w to A and 
landing in state s, but then reducing in s, say B --* x A ,  w i t h o u t  r e q u i r i n g  t h a t  the  
s a m e  A - t r a n s i t i o n  t h a t  led  into s ta te  s be i nvo l ved  w h e n  l eav ing  v ia  reduc t ion .  
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The following LR(0) parser illustrates this point: 

O 
S'-~ a A ¢ - - , , t ,  rec e ~ e s ~ _ / / t / / / -  S'+ bAd 

o o : ® , . o  

O= J ,,:,,,,,b.o,,, I , . .  ° 
S'-+ ag d S'~,b gc 

The relevant rece ives  and l ookback '  edges are indicated by dashed arrows. 
In this case both NQLA(go, B --) g) and NQLA(gl, B --) g) contain {c, d}, 

because the rece ives  relation connects state Bo with both states A0 and A1, which 
can read c and d, respectively. Hence the grammar is not NQLALR(1) because 
we have read-reduce conflicts in both states go and gl. The grammar is, however, 
LALR(1) and our correct approach (and our new implementation [12] results in 
LA(g0, B ---) g) = {c} and LA(gl, B ---) g) = {d}, which are the correct LALR(1) 
sets. It would be instructive for the reader to draw in the two l o o k b a c k  and the 
two inc ludes  edges and observe how the two halves of the parser remain 
separated. 

It is easy to see that LA(q, A ---) o~) _ NQLA(q, A ---) ¢o); this is because (q, A 
--) o~) l o o k b a c k  (p, A) only if (g, A ---) o~) l o o k b a c k '  Next(p, A), and (p, A) 
inc ludes  (p', B) only if p r ece ives  Next(p' ,  B). NQLALR look-ahead sets are 
only "slightly larger" than LALR look-ahead sets. In practice, we have encoun- 
tered only a few programming language grammars that are LALR but not 
NQLALR. NQLALR is a large improvement over SLR, however. In summary, 
SLR-LA(q, A --* o~) ~_ NQLA(q, A --) oJ) ~_ LA(q, A ---) o~). 

5.2 Combining includes and reads 

The second oversimplification consists of unioning inc ludes  and r e a d s  and 
running the Digraph algorithm only once. It implies that instead of computing 

Follow(p, A) = U {DR(r, C) I (P, A) includes* o reads*(r ,  C)} 

as described above (this formula can be obtained by applying Theorem Equivalent 
to rewrite the expressions for Follow and Read (see Theorems Up and Across) 
and back-substituting the rewritten Read in the rewritten Follow), we instead 
compute 

Follow(p, A) = U(DR(r ,  C) I (P, A) ( includes U reads)*(r,  C)}. 

The two equations are not equivalent in general, as indicated by the following 
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counterexample: 

DR 

a S' aSO 

L - 2  "-4 °°,,,.e, 
; \ E  B + D E  

/ ~  reads" . . . . .  \ 

B g S"+CBo 
~-~xJ D + ~ ~-J 

\ . l o o k b a c k  

c ;.. \ ~ 0  S " + c d  

LA(c0, C --) c) contains Follow of the C-transition which r e a d s  the D-, which 
r e a d s  the E- ,  which i n c l u d e s  the upper B-transit ion, whose D R  set contains d, 
so a read-reduce conflict results in Co. On the other  hand, with the correct 
approach the relevant LA set contains g only. We have seen no one make this 
oversimplification, but  it occurred to us when we tried to reduce the number  of 
applications of Digraph from two to one. 

6. LALR IMPLEMENTATION 

A complete procedure to compute  LALR(1) look-ahead sets from an LR(0) 
au tomaton  is as follows: 

A. Compute which nonterminals are nullable. 
B. Initialize Read to DR: one set (bit vector of length the number of terminals) for each 

nonterminal transition, by inspection of the transition's successor state. 
C. Compute reads: one list of nonterminal transitions per nonterminal transition, by 

inspection of the successor state of the latter transition. 
D. Apply algorithm Digraph to reads to compute Read; if a cycle is detected, announce 

that the grammar is not LR(k) for any k. 
E. Compute includes and lookback: one list of nonterminal transitions per nonterminal 

transition and reduction, respectively, by inspection of each nonterminal transition and 
associated production right parts, and by considering nullable nonterminals appropri- 
ately. 

F. Apply algorithm Digraph to includes to compute Follow: use the same sets as 
initialized in part B and completed in part D, both as initial values and as workspace. 
If a cycle is detected in which a Read set is nonempty, announce that (as we conjecture) 
the grammar is not LR(k) for any k. 

G. Union the Follow sets to form the LA sets according to the lookback links computed 
in part F. 

H. Check for conflicts; if none, announce that the grammar is LALR(1)--we have a parser. 

6.1 Efficiency 

The number  of bit vectors needed and the number  of relation edges traversed 
may be minimized by following the strategy given below. 
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First, the assignment F{Top of  S) ~-- F x in algorithm Digraph should only be 
done if x # Top o f  S. This saves the expense of the set copy for trivial {singleton) 
SCCs, which in fact are in the majority. (Avoiding all set copy expense in 
nontrivial SCCs by doing the assignments by reference, that is, by having F (Top  
o f  S) and F x point to the same bit vector, will not work; the scheme described 
here uses the same bit vector to represent the Read set and the Follow set of 
each nonterminal transition. Since the SCCs of the r e a d s  and inc ludes  relations 
are different, this would imply different "sharing" and would in fact invalidate 
the algorithm.) 

Next compute the inc ludes  and l o o k b a c k  relations as described in step E 
above. Initially, allocate no sets to the nonterminal transitions. If the grammar 
contains any nullable nonterminals, then only for each nonterminal transition 
(p, A) involved in the r eads  relation, apply Digraph {with R = reads )  to compute 
Read(p, A). Afterward, the only transitions having sets allocated to them will be 
those involved in the r eads  relation {typically, few or none at all). For each such 
transition (p, A), the set will be equal to Read(p, A). 

Rather than specially detecting the transitions involved in the r e a d s  relation, 
the latter application of Digraph can be achieved by applying it to all nonterminal 
transitions where Digraph has been modified as follows: delete the assignment 
F x ~-- F '  x; insert code to detect either fetching iF, x} or s t o r ing /F  x ~-- . . .  ) 
Read(p, A) when (p, A) has not had a set allocated to it. In such a case Digraph 
should allocate a set to {p, A) and initialize it with DRip, A) IF' X). 

Finally, note that the r e a d s  relation need not be precomputed (step C above) 
since it can be easily retrieved from the LR(0) automaton as Digraph needs it. 

For each inconsistent state q and final item A --~ ~0. in q, follow each l o o k b a c k  
edge to a nonterminal transition (p, A). Invoke Digraph on (p, A) {with R = 
includes)  to compute Follow(p, A). Take the union of all the Follow sets 
indicated by l o o k b a c k  to obtain LA(q, A ~ col With the modifications made to 
Digraph and the Read set computation as described above, any transition {p, A} 
inspected by Digraph when computing Follow will either have a set allocated to 
it that  contains Read(p, A), or Digraph will allocate a set to it and initialize it to 
DR(p, A), which must equal Read(p, A), because no set was allocated. Thus 
Read(p, A) will be either already computed or computed when needed by 
Digraph. 

Due to this strategy, sets are needed only for those transitions involved in the 
r e a ds  relation or needed for the computation of the look-ahead set of final items 
in inconsistent states; in addition each such item needs a set to represent its look- 
ahead set. The only relation edges traversed will be the r e a d s  edges and that  
subset of the inc ludes  and l o o k b a c k  edges needed for the look-ahead set 
computation. Thus, fewer set unions and less set storage are needed, as described 
in Table I. 

Table I lists the total number of unions performed by our implementation. This 
equals the sum of the number of includes ,  l ookback ,  and r e a d s  edges plus a 
few more unions that occur when Digraph copies the F value of the root of an 
SCC to the values of the other vertices in the SCC (for Pascal, e.g., there were 4 
SCCs with a total of 30 vertices, and 841 = 552 + 256 + 7 + (30 - 4)). Under the 
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Edges traversed/ 
actual edges 

Grammar Unions includes  lookback  reads  Sets FI 

PAL 1754 1160/1336 571/1565 0 555 25 
XPL 660 423/ 613 233/ 978 0 279 26 
PASCAL 841 552/ 579 256/1134 7 344 51 
SL300 3678  2298/3226 1360/5845 27 1340 152 
Ada 4534  3051/4739 1388/6501 69 1376 161 
Ada' 2875 2641/4739 139/6501 69 1236 21 

SCC NTX LR(0) LA YACC Reference 

PAL 25 590 4.97 7.45 9503 [4] 
XPL 5 420 3.43 4.09 5292 [21] 
PASCAL 30 337 4.36 5.12 6096 [15] 
SL300 23 1886 ? ? ? [8] 
Ada 7 2257 ? ? ? [13] 
Ada' 7 2257 ? ? ? [13] 

heading Sets in the table is recorded the total number of bit vectors (Read, 
Follow, LA) that  are required. By subtracting the number of actual look-ahead 
sets for final items (FI) in inconsistent states from the Sets column, one may 
determine how many sets were allocated solely to nonterminal transitions. The 
SCC column records the total number of vertices of the inc ludes  relation 
involved in nontrivial SCCs. NTX is the number of nonterminal transitions. The 
CPU time in seconds for the LR(0) computation and the look-ahead (LA} 
computation is for an HP-3000 computer with a 1.5 ps memory and includes 
checking for the LALR(1) condition. YACC tends to perform five to eight times 
as many set unions as does our algorithm (the YACC column). 

Both SL300 and Ada were too large to run on YACC. Neither could they be 
run on the memory-limited HP 3000, and timing statistics for the machine they 
w e r e  run on are not available. The Ada grammar referenced is close to the 
grammar used to produce the statistics; the latter has not yet been published. 
The Ada' entry is explained in a later section. 

A slight time improvement could be made by only traversing necessary reads  
edges. Do not apply Digraph separately to compute Read sets. Rather, compute 
only the Follow sets. While computing a Follow set, if Digraph discovers a 
transition (p, A) for which Read(p, A) has not yet been computed, it calls itself 
to compute Read(p, A). To do this requires separate allocation of Read(p, A) and 
Follow(p, A); otherwise, the intermixing of the computation of Follow with that 
of Reads would be tantamount to the oversimplification described in Section 5.2. 
Since there are so few reads  edges, the extra space needed is not worth the time 
saved. 

To reduce storage consumption, an implementation should only store those 
lookback  edges demanded by look-ahead computation. L o o k b a c k  edges leading 
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from final items in consistent states should be discarded. For Ada, for example, 
only 1388 lookback  edges were needed, 21 percent of the total. In fact, more 
space and time can be saved by using SLR(1) look-ahead sets to resolve incon- 
sistencies in as many states as possible. The Ada' row in  the table indicates the 
results if this is done; only 21 final items need LALR(1) look-ahead sets, and only 
139 lookback  edges are useful. Further, fewer inc ludes  edges are traversed, 
reducing the number of set unions and sets needed. Certainly, if a grammar is 
SLR(1) then none of the i n c i n d e s / l o o k h a c k  computation is necessary. 

SLR(1} look-ahead sets may be computed from the LR(0) parser and the Read 
sets by an application of Digraph. SLR-LA(q, A --* ~) = SLR-Follow{A) = 
U{Read(p, B) I B 7 "  f lAy,  y 7 "  E, fl E V*, and (p, B}  is a nonterminal 
transition}. This was first observed by DeRemer [10], with minor errors regarding 
nullable nonterminals. Restated, SLR-Follow(A) = F '  A U U {SLR-Follow(B) I A 
R B}, where F '  A = {Read(p, A) I (P, A) is a nonterminal transition} and A R B 
iff B 7 "  flAy, 7 7 "  e, thus casting the SLR definition in a form suitable for 
computation by Digraph. 

In fact Digraph is generally useful in computing other functions on context- 
free grammars, for example, whether a nonterminal can be derived from the start 
symbol or whether a nonterminal is both left and right recursive. This is 
essentially due to Digraph's relationship with the transitive-closure problem 
[14]. Replacing standard fast bit-matrix techniques by a variant of Digraph 
tripled the speed of the grammar-checking phase of the MetaWare TM translator 
writing system [12]. For sparse relations, Digraph does a much better job of 
computing transitive closure than do bit-matrix techniques. 

6.2 Linearity 

Algorithm Digraph is linear in the size of the relation to which it is applied, as 
established by Theorem Linearity of Section 4. For practical grammars, the size 
(number of edges) of the inc ludes  relation is about two to three times the 
number of nonterminal transitions in the parser. Each nonterminal transition 
(p, A) has one includes  edge to it for each production for A that  ends in a 
nonterminal B, or B 7 where ), 7 "  E, that  is, usually only two or three at most. 
The reads  relation is virtually nonexistent in practical cases, so it can be ignored. 
Thus, for practical LR(0) parsers, Digraph is about linear in the number of 
nonterminal transitions. These statements are substantiated by the statistics 
given in Table I. 

In the worst case the size of the inc ludes  relation could be proportional 
to the square of the number of nonterminal transitions, since the relation 
could be nearly complete, that  is, x inc ludes  y for all nonterminal transitions x 
and y. This worst case is illustrated by the grammar whose productions are 
{S--* $1 ±, Si--~ Sj, Si-+ t l l  - i , j  < - n}. Ignoring the path [$1 ±], the LR(0) 
parser for this grammar has n nonterminal transitions, one for each &, 1 _ i <_ n, 
and each has n includes  edges to it; that  is, each nonterminal transition has an 
edge to it from each of the others and from itself! Of course, this example is 
contrived, highly ambiguous, and has no redeeming virtue from a practical 
viewpoint. 
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6.3 Comparison with Other Algorithms 

Both the algorithms of Aho and Unman [3] and Anderson et al. [6] work by 
"propagating" look-ahead sets across the edges of an implicit (virtual) graph. 
When propagation causes the look-ahead information at a vertex to be increased, 
the vertex is queued up so that it may in turn cause propagation of the new 
information to other vertices. This process is iterated until the queue becomes 
empty. The order of propagation may not be optimal, in the sense that  each edge 
is traversed only once. This causes the YACC algorithm to perform considerably 
more poorly than ours, as indicated by Table I. (YACC in fact does not even use 
a queue, but repeatedly scans al l  vertices until propagation ceases [3]. The author 
of YACC thought it might perform better on ambiguous grammars, which it 
accepts, but in fact it is even worse for them than for unambiguous grammars.} 

LaLonde's algorithm [20] is essentially algorithm D of Section 4, but to avoid 
incorrect computation of look-ahead sets (see digram (4.2)), no information is 
retained at the vertices between the computation of the look-ahead sets for 
distinct reductions. Thus, edges may need to be traversed repeatedly as different 
look-ahead sets are computed. 

In contrast to the abovementioned algorithms, ours traverses each edge exactly 
once. 

Kristensen and Madsen [19] have improved LaLonde's algorithm so that 
intermediate results exactly analogous to our Follow sets are retained and used 
for future computation. To accomplish this, Kristensen and Madsen's algorithm 
detects SCCs by occasionally adding certain vertices to the sets F x being 
computed. After traversing the successors of a vertex x, either F x contains no 
vertices, or it contains exactly one vertex v. In the former case x is the root of a 
trivial SCC; in the latter, if v = x, then x is the root of a nontrivial SCC, and all 
occurrences o fx  in sets F y  are replaced by F x  - (x). The technique is clever but 
somewhat clumsy (all details have not been given here), and in fact the UNION- 
FIND algorithm [2] is necessary to keep the complexity of Kristensen and 
Madsen's algorithm to (very close to, but not exactly) linear in the size of the 
relation traversed. We believe that their algorithm incurs greater overhead than 
O u r S .  

Kristensen and Madsen effectively use relations i t em- inc ludes  and i tem- 
l o o k b a c k  that are similar to inc ludes  and l o o k b a e k  but are defined on i t ems  
instead of nonterminal transitions. Thus the vertices of the graph traversed are 
items. Since each nonterminal transition (p, A) in the parser in general is the 
result of one or more items B --> t~. A~, in p, Kristensen and Madsen's approach 
incurs the cost of additional F sets. Since Kristensen and Madsen present no 
empirical data, it is difficult to determine the practicality of their algorithm. 

In contrast, our algorithm nowhere uses the concept of item; thus all LR items 
may be discarded before look-ahead set computation beings. As a consequence, 
our algorithm may work on other than LR automata. For example, it may be 
possible to define an automaton using a precedence technique such that, if our 
algorithm is applied, it will compute some "precedence look-ahead sets" and thus 
determine whether the grammar is, say, simple precedence. We leave the explo- 
ration of such ideas for future research. 
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LR items are necessary, however, to produce the diagnostic debugging traces 
described in the next section. 

7. DEBUGGING GRAMMARS THAT ARE NOT LALR(1) 

As a pleasant by-product of our research into the area of look-ahead set compu- 
tation, we found that the edges of the inc ludes  and lookback  relations are just 
what are needed to produce helpful debugging information for grammars that  are 
not LALR(1). These edges link back through the automaton from look-ahead 
sets, in particular those involved in conflicts, to the sources of the conflict symbols 
(CSs). This is exactly the trace through the grammar that  the user usually has to 
find manually. For example, the MetaWare"  translator writing system [12] prints 
roughly the following trace for the conflict in state Co of a parser like that  of 
diagram (4.4), to which the production B ~ c C f h a s  been added to introduce the 
conflict: 

A ±  
b B  

c C f  

I (7.1) 
d A  

b B  
c C reduce  B ---> c C. ( f} ? 

r e a d  B - - * c C . f  ? 

The diagram indicates that after the parser has read bcdbcC and sees an f, it 
has two courses of action: 

(1) reduce cC to B, reduce bB to A, reduce d A  to C, read f; or 
(2) read f. 

Item B --* cC.  f i n  state Top [bcC] contributes an f t o  LA(C0, B --> cC) by virtue 
of the productions C -* dA,  A --~ bB, and B ---> cC that  trace a path from p '  = 
Top [bc] to Co. The trace consists of two derivations, and each right part in a 
derivation is positioned vertically beneath the nonterminal that  derives it. The 
derivation above the line consisting of the single vertical line shows how the start 
state traces a path to p ' .  Immediately above the vertical line is the item that  
contributes the look-ahead symbol f. Below the vertical line is the derivation from 
the (nonterminal C in the) contributing item to the inconsistent state, ending in 
the final item with the conflict. The latter derivation induced the l ookback  and 
includes  edges that  relate (Co, B --> cC) to transition (p', C), whose Read set 
contains f. Item B --> cC.  f in Co causes f to be a read symbol also; hence the 
conflict. 

Consider next the parser of diagram (4.5) and the following trace for state Do: 

A ±  
B C D A  
] D A  
] A  
] a  

E r e d u c e  B --) ~. {a} ? 
r ead  A --~ • a ? 
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The  parser ' s  two choices of  action are 

(1) reduce e to B, reduce e to C, reduce E to D, read a (after which a is reduced 
to A); or 

(2) read a. 

I t em A ~ B .  C D A  in s ta te  Top  [B]  contr ibutes  a to LA(Star t ,  B ---> e) by  vir tue 
of the product ion B --~ e and the fact  tha t  C D A  ~ +  A .  This  la t ter  der ivat ion is 
presented jus t  to the right of  the " tower"  of  vert ical  lines. Notice how C and D 
"vanish"  in the derivat ion because they  are nullable; here  C --* e and D --~ ~ are 
productions.  Were  C or D not  to direct ly derive ~, the addit ional  der ivat ion s teps 
could be printed; however,  we feel this would clut ter  the  trace. 

The  general form of a t race is as follows: 

S '  ± 
81 B1 Vl 

81 B2 /22 ~ Der iva t ion  f rom the s ta r t  s ta te  

8n Bn Pn 

a B f l ,  ~ - t o  the contr ibut ing item. 

*-- How the contr ibut ing i t em 
tim--1 (7 .3)  

t tim ~-- contr ibutes  t. 

)'2 

al A1 )'1 
012 A2 (-- How the contr ibut ing i t em 

ors-1 As-1)'s-1 (-- relates  to the  i t em with the CS. 
a8 r e d u c e  A8-1 --* a~. {t) ? 

(list of  conflicting i tems here) 

Here,  i tem Bn ---> a B .  fil in T o p  [81 . . .  8naB] contr ibutes  t to the  look-ahead  set  
ofA~_l ~ a~. because fll ~ fi2 ~ . . .  ~ trim as shown, and because the chain of  
product ions below the vertical  line causes A~-I --> as .  to be re la ted to the B- 
transit ion via l o o k b a c k  o inc ludes* ;  here  each )'i ~ *  ~ (but not  necessari ly so for 
each vi). Each  Ai and Bi and the B produces  the  r ight  pa r t  below it. 

Traces  are constructed by  beginning with a final i t em A,-1 --* a~. in an 
inconsistent s ta te  q and t ravers ing a l o o k b a c k ,  then  some i n c l u d e s  edges until  
a nonterminal  t ransi t ion (p ' ,  B)  is found whose Read  set  contains one of the  CSs. 
There  exist one or more  i tems Bn ---> a B  . i l l  in Nex t (p ' ,  B)  such t ha t  fll ~ *  trim 
and t is a CS. A trace should be pr inted for each such i t em (barring redundan t  
traces; see below). (Note tha t  we do not  inspect  the Follow sets during the  
t raversal  f rom A,-1 --* a , . .  While Fol low(p ' ,  B)  m a y  contain a CS, there  is no 
guarantee  tha t  Nex t (p ' ,  B)  contains CS-contr ibut ing items; Fol low(p ' ,  B)  could 
have  inheri ted its CS f rom ano ther  Follow set. CSs "or iginate"  a t  Read  sets, not  
at  Follow sets.) 
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The trace consists of three components: 

(a) the derivation from S' that gave rise to B ,  ---) a B .  fi~ in Next(p' ,  B); 
(b) the derivation of trim from fi~; and 
(c) the productions that induced the inc ludes  and l o o k b a c k  edges from 

(q, As-, --* as) to (p', B). 

For component (c) a breadth-first search should be employed during the 
original traversal of the inc ludes  edges. This keeps the size of the inc ludes  
"chain" to a minimum, giving the "simplest" possible explanation to the reader. 
The production inducing an inc ludes  edge from (p~, X0 to (p2, X2) can be 
rediscovered by following the automaton transitions from state p2 under the right 
parts of productions for X2. Thus, inducing productions need not have been 
redundantly stored when the inc ludes  edges were originally computed. 

For component (b), compute the set 

E = s  (Bn --~ a B .  ill} 

U { A - - ) 6 X . ~ ?  I A - - * 6 . X n E E A X ~ * e }  

U (C--->.a [ A - - - , 6 . C ~ E A C - - - > a ~ P }  

linking additions to E back to the item that generated them. Items of the form C 
--).  trim with t a CS will be in E and can be traced back to B ,  ---) a B .  fil by 
following the links. All derivations of CSs from fl~ can thus be produced. 

Component (a) requires two computations. First, find the shortest path [4] 
from the start state to Next(p' ,  B). In our own implementation, this entails 
repeatedly asking for the lowest numbered state that has a transition to a given 
state, since the states are computed and numbered in a breadth-first manner. 
Then compute 

E'  =s ( ( S  ---). S '  ±, 1)) 
U ( ( C - o . a , j )  I ( A - - - ) 6 " C ~ , J ) E  E ' / ~ C - - ) a E P }  (7.4) 

U ((A--* 6X .~? , j+  1)[ (A---> 6.X~?,j)  E E ' A X =  }jAj-----I 4 [} 

in a breadth-first fashion, linking additions to E '  back to the pairs that generated 
them. Eventually (B,~ --> a B .  ill, [ 4[ + 1) will appear in E',  and the computation 
may stop: all of E '  need not be computed. The desired production sequence may 
be obtained from inspecting the links. The breadth-first search and the fact that 
[4] is the shortest path keep the size of the production sequence to a 
minimum. [4] also serves to limit the size of E '  by constraining the addition of 
pairs. 

In practical grammars, an item B ,  ~ aB .  fll may appear in several different 
left contexts, and in each may contribute First fll to the same particular LA set. 
Therefore, to prevent redundant trace output, only one trace per contributing 
item for an LA set should be printed. Additionally, if (referring to trace (7.3)) tim-1 
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immediately, derives more  t han  one string of the  fo rm trim with t a CS, then  all of 
those strings can be listed on successive lines. 

The  following informal  t race-print ing a lgor i thm summar izes  the foregoing: 

for  each inconsistent state q 
do let Conflict-set = the set of symbols for which q is LALR(1)inconsistent 

for  A,_, --) a,. ~ q such tha t  LA(q, As-, ---) as) n Conflict-set # O 
do let E I  = 0 # E I  = Explained items. 

for  (p' ,  B) found in a breadth-first manner such t h a t  
(q, As-1 --* as-) lookbackoincludes*  (p ' ,  B) /X Read(p' ,  B) I"1 
Conflict-set # O 

do let T = 
for I = B ,  --* a B .  fl~ E Nucleus(Next(p', B)) such t ha t  I ~ E I  

do for  each derivation fl, ~ *  tfl~ such tha t  t E Conflict-set 
do Print trace components (a), (b), and (c) above 

ass ign E I  (-- E I  O {I}; T (-- T O {t} 
od 

od 
# See "Read-item traces" below for next three lines: 
for  I = Dr-1 ~ ~r"  t~?~ ~ q s u c h  t h a t  t E T 

do Print read-item trace for I 
od 

od 
od 

od 

R e a d - I t e m  T r a c e s .  While the  tracing me thods  presented  thus  far indicate how 
terminals  enter  into look-ahead sets, they  do not  show how (conflicting) read- 
transi t ions arise in inconsistent  states. Such informat ion would be useful to the  
user t rying to de termine  why the  parser  can ei ther  reduce or  read  in a par t icular  
inconsistent  state. 

Trace  (7.3) indicates why the  parser  can reduce when the s tack contains ~ = 
~1"'" ~naal' '  "as- A read t race c o r r e s p o n d i n g  to t race  (7.3) should indicate why 
the parser  can read  when the s tack contains ~. Such a t race  appears  as follows: 

S '  ± 
~1 D1 71 

~r-1 Dr-1 ~?~-1 
~r. t ~r r e a d  D~-l --* ~r" t~r? 

where ~1.. "~r = ~ and each Di  produces  the r ight  pa r t  on the  next  line. T h e  
constraint  on the ~i's guarantees  the correspondence;  consequently,  the  inconsist- 
ent  s tate  q contains D~-I ---) ~ .  t ~ ,  the "conflicting" item. 

For each conflicting read i t em I = Dr-] "-> ~" t~r in q, the shor tes t  possible t race  
can be constructed for I by  the computa t ion  described in (7.4) above,  except  
where ~ is replaced with 6 1 . . . 6 n a a l . . . a s ,  and the  computa t ion  s tops when  I is 
produced in E ' .  
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For trace (7.1), the MetaWare TM translator writing system produces the follow- 
ing read-conflict trace: 

A ±  
b B  

c C  
d A  

b B  
c C. f r e a d  B --* cC. f? 

For trace (7.2), the corresponding trace produced is 

A ±  
• a r e a d A - o  .a  ? 

The above traces are simple enough that  the reader may not be convinced that  
they are generally useful. Consider, however, the following traces produced by 
the MetaWare TM translator writing system for an Ada grammar that  was not 
LALR(1): 

Ada-compilation ± 
Compilation-unit 
Program-unit 
Subprogram-body 
Subprogram-spec i s  Unit-body 

Dclns begin  Compound end  
Declaration ; 
Subprogram-spec is s epa ra t e  
I 
procedure  (ID) Params 

e reduce  Params --) e. ( i s}  ? 
Ada-compilation _k 
Compilation-unit 
Program-unit 
Subprogram-body 
Subprogram-spec is Unit-body 

Dclns begin  Compound end  
Declaration ; 
Subprogram-dcln 
p rocedure  ( ID) . i s  new Name r ead  . . . .  i s . . . ?  

Here, after the left context Subprogram-spec is ,  either another Subprogram-spec 
can produce a procedure header with an empty parameter list, or a Subprogram- 
dcln can produce a generic instantiation of a procedure. Clearly, the traces 
pinpoint the problem. 

Reduce-Reduce Conflicts and L A L R  Versus LR. For read-reduce conflicts, 
we have advocated displaying corresponding traces that show how either the 
read or the reduction is legal, given a particular left context (parse stack) [~] 
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(~ ~- ~ 1 ' ' "  ~nOta]... as in reduce trace (7.3)). However,  for a reduce- reduce  conflict, 
say between productions pl  and p2, our algori thm does not  necessarily print  
corresponding traces for pl  and p2, tha t  is, t races tha t  share the same left context. 
Indeed, it is possible tha t  no trace for pl  will have the same left context  as any 
trace for p2. 

This  can happen in the following two circumstances: (1) the grammar  is LR(1) 
but  not  LALR(1); 2 (2) an "accident"  of our algorithm occurs. In ei ther  case, the 
person debugging the grammar  may be confused: since the traces do not  show 
why two different reduce moves are possible given a single left context, he may  
not  unders tand why the conflict exists. 

In the first case, when a reduce- reduce  conflict exists both  in the LALR(1) and 
the LR(1) automaton,  a trace for each reduct ion exists (in each automaton)  with 
the same left context. This  is due to the LR(k)  definition. But  when the conflict 
is present  in the LALR(1) au tomaton  and not  in the LR(1) au tomaton  (call such 
a conflict LALR-on ly ) ,  then  no such corresponding traces exist. The  space-saving 
aspect of the LALR construction technique can cause a conflict by "merging" 
together  two distinct left contexts. 

In the second case, because we suggest printing only one reduce trace per 
contributing i tem and printing the shortest  pa th  from the s tar t  state to the i tem 
(these measures reduce the volume and size of the reduce traces), it is possible to 
construct  a grammar  tha t  has an LALR-only  and a distinct LR conflict, but  for 
which no two printed reduce traces have the same left context. One might  then  
erroneously guess tha t  the conflict is LALR-only.  

One way to avoid such confusion is as follows: when a reduce- reduce  conflict 
occurs for productions pl, p2 . . . . . .  pn, produce traces for pl; then, for the other  
productions, produce only traces tha t  correspond to the traces for p~. If  no 
corresponding trace can be found, then  an LALR-only  conflict has been pin- 
pointed and should be repor ted as such (and noncorresponding traces should 
then be printed). But  again, due to our l imited selection of traces for p~, even if 
corresponding traces for p2 . . . . .  , pn are found, this does not  necessarily mean  tha t  
the grammar has no LALR-only  conflicts. Some other  (nonprinted) trace for pl  
might shed light on such a conflict. 

However,  if the user i teratively removes the t raced conflicts f rom his grammar  
and resubmits the grammar  to the generator,  the omit ted  trace will eventual ly 
appear. Thus,  while the generator  does not  necessarily indicate all conflicts in a 
single run, it will eventually pinpoint  all conflicts and indicate whether  they  are 
LR or LALR only. This  seems to be an acceptable solution, since users (and we) 
can typically only cope with a few conflicts at a t ime anyway. In practice, we 
have never  encountered an LR reduce- reduce  conflict for which the algorithm, 
as presented in the prior subsection, has not  yielded corresponding traces. In 
addition, we have seen only one practical grammar  containing an LALR-only  
conflict, and it was indicated by the lack of corresponding traces. 

The  best  solution would be never  to produce an au tomaton  with LALR-only  
conflicts. The  state-splitting approach suggested by Pager  [22, p. 38] could be 

2 It  is well known that  any read-reduce conflict present in the LALR automaton is also present in the 
LR automaton. Thus,  corresponding read-item traces may always be produced. 
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employed to expand the LALR(1) automaton so that  it is locally LR(1) where 
reduce-reduce conflicts occur (and thus any LALR-only conflicts are eliminated}. 
Then, corresponding reduce traces may always be found. LALR is too complicated 
a notion for the average translator writing system user to spend time unraveling-- 
he needs to know what an LR item is, how states are constructed by merging 
item sets, etc.; consequently, correcting LALR-only conflicts is usually not easy. 

In contrast, the traces presented in this section require n o  concept of item or 
of item-set merging. The user need only know that  the parser's interpretation of 
the input text is restricted to one-symbol look-ahead; the traces pinpoint how 
two different interpretations of the same text (prefix) can arise. Anyone who can 
understand the LR(k) definition can understand the traces (assuming LALR- 
only conflicts have been removed by state-splitting and corresponding reduce 
traces are provided). The majority of MetaWare TM translator writing system users 
know little or nothing of LR automaton construction, and many do not understand 
the LR(k) definition; yet they have profitably used the traces. An important 
aspect of our traces is that they are well engineered for humans, that  is, they 
relate to the grammar via derivations, not states or items. 

Kristensen and Madsen [18] show how to determine when a grammar is LR(k) 
(versus LALR(k)) by inspecting only the LR(0) automaton. They present diag- 
nostic traces that  distinguish between LR and LALR-only conflicts. Although 
their results are theoretically interesting, the LALR-only traces are not very 
useful in practice for the general translator writing system user, as we have 
already argued. The example traces they present rely heavily on the reader's 
technical knowledge of LR and LALR automata, and as such are appropriate 
only for persons well trained in LR theory. 

In summary, from the algorithms presented in this section we may produce 
diagnostic debugging traces that  pinpoint both LALR-only and LR conflicts in 
the grammar. Such traces are easily read by even a novice grammar designer, 
and they are an essential component of any well-engineered translator writing 
system. 

8. CONCLUSION 

The two relations includes  and r eads  have been defined to capture the essential 
structure of the problem of computing LALR(1) look-ahead sets. The look-ahead 
sets may be computed from information obtained by two successive applications 
of a graph traversal algorithm, one to each relation. The algorithm is linear in the 
size of the relation to which it is applied. Thus, barring minor and constant 
improvements in underlying representations, we suspect that  this is the best 
possible algorithm for this problem. We leave any proof or disproof of this 
conjecture for future research. 

A conjecture and a theorem relating the appearance of nontrivial SCCs in the 
inc ludes  and reads  relations to properties of the grammar were presented. The 
relations were shown to be valuable for printing information to aid the grammar 
designer in debugging non-LALR(1) grammars. 

Finally, the popular NQLALR algorithm was formalized and proved incorrect. 
This should help others avoid the same mistake. 
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APPENDIX. PROOFS OF THEOREMS 

PROOF OF THEOREM UNION 

LA(q, A ---) ~) 

= {t E T] [a~o]tz ~n-~, [aA]tz t-* [S'_L] A aw accesses q} 

= {t E T I [aA ]tz t-* [S'_L ] A aw accesses q} (by Lemma 1, below) 

= {t E T] [aA]tz  ~-* [S '±] ,  a accessesp A p  -- . .~.--)  q} 

= U {Follow(p, A)I (q, A ---) ¢o)lookback(p, A)}. 

LEMMA 1 

(t E T] [a~]tz t-* [a¢l),]tz t--A~,y [aA ]tz F-* [S'± ] 
= (t  e T I [aA]tz  ~* [S '±]}.  

[] 

PROOF. Due to the LR(0) parser construction, if [aA] is a path, so is [aT] and 
[a~0y] and in fact for every z E T*, [a~0]z F-* [awl y]z F-A_~ [aA]z. [] 

PROOF OF THEOREM UP. We prove the following equivalent to Theorem Up 
(see Theorem Equivalent): Follow(p, A) = U {Read(p' ,  B) I (P, A) inc ludes*  
(p', B)}. 

Follow(p, A) = {t ~ T I [aA]tz  t-* [S '±] ,  a accessesp} 

= (t  ~ T] [aA]tz ~* [a']tz ~--read [a't]z ~* [S'_L ], a accessesp}. 

Tha t  is, reductions may  occur in configuration [aA]tz before t is read. These 
reductions are specified more fully next: 

[aA ]tz t-* [a']tz }"-read [~'t]z 

iff there exist n __ 0 and productions B~ ~ fl~A~[~, Be ~ flhB13,1 . . . . .  Bn 
flnB~-ayn with yi ~ *  e such tha t  

[an ]tz = [oO]~lA I ] t z  I---* [ a l v i n  I ~[1]tz ~-P1 where P1 = B ,  ---> fliA~,l 

[a,B~]tz = [a2fl2B1]]tz ~* [a2fl2B1 ] yz]tz }"-P2 where P2 = B2 ---> ]~2B1y2 

[olzB2]tz = [a~fl3B~l]tz t-* [a3fi3B21y3]tz t--p3 where P3 = B3 --* f13B23,3 

[anBn [ ]tz ~-* [anBnl ~'n+l]tz t--,oad [anB~)'n+lt]z = [a't]z. 

Tha t  is, possible reductions of • (to the ),i) are interspersed between other stack 
reductions until finally t is read. Thus, 

Follow(p, A) 

= Un=0,~{t ~ Tl [aA] t z  = [alf l iAI]tz t-* . . .  (as above) F-* [S '±] ,  

a accesses p, 

B1 --) fllAyx, B2 --) flhA~2 . . . . .  B ,  ---> fl, Bn-l~,,, 

and y i ~ *  •}. 
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By Lemma 1, the steps [aA]tz I-* [anBn]tZ can be "ignored" since they are all 
reductions, obtaining 

Follow(p, A) 

= Un=o,~o {t ~ TI [anBn I]tz I-* [anBn I~/n+l]tZ ~-read [anBn'yn+lt]Z 

~-* IS'±], 

a accessesp,  a = anflnfl,-1 "'" ill, 

B1 ---) iliA'/1, B2 --* f12Bl~/2 . . . . .  Bn "") flnBn-l~[n, 

and ~'i ~ *  ~}. 

Finally, observe that  

Top[an]  - -  -fl"'--> Top  [an-l]  " -  Top  [a2] - -  .ft.2.__) Top  [ax] - -  .ft.1 --. Top[a ]  

so that  

(Top [an], Bn) i n c l u d e s - l ( T o p  [an-l], Sn-]) . . .  i n c l u d e s - l ( T o p  [a], A).  

Set  p '  = Top [an] to obtain 

Follow(p,  A)  

= On=0.= {t E Tl[anBnl]tz  t-* [a,B,l~n+l]tz }--read [anBn~[n+lt]Z} --* [S'_L], 

(p, A) i n c l u d e s  n (p', B,) ,  a ,  accessesp '}  

= Un=o.= U {Read(p ' ,  Bn)[ (p, A)  i n c l u d e s "  (p ' ,  Sn)} 

= U {Read(p ' ,  B)  ] (p, A) i nc ludes*  (p ' ,  B)}.  [] 

Now, to prove Theorem Across below, the following observat ion is needed: 

LEMMA 2 

(t e T I [a]tz [--read [at]z ~"-* [ S t - L ] }  

= (t E T]Next(Top[a],  t) is defined (= Top[at])}.  

This follows from the definition of t--read and the construction of the LR(0) parser. 

PROOF OF THEOREM ACROSS. We prove the equivalent result: Read(p ,  A)  = 
U{DR(q ,  C) I(p,  A)  r e a d s *  (q, C)}. 

Read(p,  A) = {t E Tl[aAI]tz  I-* [aAly]tz I--re,d [aA~rt]z I-* [S'-L], a accesses p}. 

Now ~/is of the form C1 . . .  Ca, where Ci E N and Ci ~ *  e, so 

Read(p ,  A ) 

= U n = o ,  oo {t E T I [aA I ]tz ~* [aA I C~ . . .  Cn]tZ }--'read [ c~4C1  - . .  Cnt]z }-'* [S'-L ], 
a accessesp,  Ci E N, Ci ~ *  c, 1 <_ i <_ n}. 

Due to Lemma 1, the steps [aA I]tz F-* [aA I C~ . . .  Cn]tZ can be eliminated: 

Read(p ,  A)  

= g .=o ,~o( t  ~E TI[aAC,  . . .  Cn]tZ }--read [aAC~ . . .  CntJz I-* [S'_L], 
a accesses p, Ci E N, Ci ~ *  e, 1 <_ i <_ n}. 
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Let  aAC1 - . .  Cn-1 access q. Then  by Lemma 2, 

Read(p,  A) 

= U,=o,={t E TiNext(Next(q,  C,), t) is defined, a accessesp,  

aAC1 . . .  Cn-1 accesses q, 
C l a N ,  C i ~ *  e, l <_i<_n}. 

The definition of D R  combined with the fact tha t  (p, A) r e a d s  (Top [aA ], C~) 
r e a d s  (Top [aAC1], C2) . . .  r e a d s  (Top [aA . . .  Cn-1], C,) yields 

Read(p,  A)  = U,=o,~ U {DR(q, Cn)I(P, A)  r e a d s  n (q, Cn)} 

= U {DR(q, C ) I ( p , A )  r e a d s *  (q, C)}. []  

PROOF OF THEOREM EQUIVALENT. Let  G x = U { F '  ylxR*y}.  Let  P(F) be the 

predicate 

V x : F x  = F' x U U { F y i x R y } .  

We show tha t  

(1) P(G);  
(2) if P(F) holds, then Vx : G x __ F x 

thus establishing that  Vx : G x =~ F' x U U {G y I xRy}. 

(a) Vx: G x = U{F'y IxR*y}  

= F' x U U{F '  zlxR+z} 

= F '  x U U { U { F '  ziyR*z} IxRy} 

= F' x U U{GylxRy} .  

(b) Assume P(F) holds for some F. Thus  

Vx: F x = F' x U U{F x~ixRxl}. 

We can apply the expression itself to F Xl to obtain 

Vx: F x  = F '  x U U { F '  xl U U{Fx2ix~Rx2} IxRxl} 

= F' x U U { F ' x l i x R l x l }  U U[Fx2ixR2x2}. 

By repeating the process, for any n _ 0 we can show tha t  

= F x . + 1  Vx: F x U(F '  YixR°"ny} U U{ n+IIxR Xn+l} 

where R ° ' ' "  = R ° U . . .  U R n. Now i f z  E U { F ' y l x R * y } ,  then z E {F ' y l xR"y}  
for some n >_ 0. Hence G x __ F x. []  

PROOF OF THEOREM READs-SCC. Let  (pl, A1) . . . . .  (pn, A , )  be the vertices of 
the SCC. By the definition of r eads ,  without  loss of generality, the following loop 

exists in the LR (0) automaton:  

A1 A 2  A ,  
p ,  ~ p2 ~ . . .  p .  ~p l .  
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Let a access  p l .  T h e n  a(A1 . . .  An)* is an infinite set  o f  prefixes of  r ightmost  
sentential  forms that  trace paths  from the parser's start state.  As a special  case, 
[ o ~ A I  . . .  An] is such a path. It indicates that  the parser, with  pi  = Top  [a] on the 
stack top, can reduce e success ive ly  to A~ . . . .  , An until  pl  = Top [aA~ . . .  An] 
again appears on the stack top. But  the  parser has  fo l lowed a loop wi thout  reading 
any input, and therefore will do so forever. T h u s  the  parser is incorrect,  so that  
the grammar cannot  be LR(1).  N o w  all LR(k)  parsers for the  grammar must  
contain a loop, similar to the one  above,  in which  s o m e  mult iple  of  A1 • • • An can 
be read, since a(A~ . . .  An)* are all valid prefixes of  r ightmost  sentent ial  forms. 
Thus  no LR(k)  parser can be correct, so the  grammar  is not  LR(k)  for any  k. [ ]  
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