
A New Analysis of LALR Formalisms

JOSEPH C. H. PARK, K. M. CHOE, AND C. H. CHANG
Korea Advanced Institute of Science and Technology

The traditional LALR analysis is reexamined using a new operator and an associated graph. An
improved method that allows factoring out a crucial part of the computation for defining states of
LR(0) canonical collection and for computing LALR(1) lookahead sets is presented. This factorization
leads to significantly improved algorithms with respect to execution time as well as storage require-
ments. Experimental results including comparison with other known methods are presented.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory-syntax; D.3.4 [Programming Languages]: Processors-compikrs,parsing, trandutor writ-
ing systems ancI compiler generators; F.4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and Other Rewriting Systems-context free, parsing

General Terms: Algorithms, Experimentation, Languages, Theory

Additional Key Words and Phrases: LALR(k) grammar, LALR(1) lookahead sets, parser generating
system

1. INTRODUCTION

Since the original invention of LR parsing by Knuth [8] many years ago, and the
subsequent realization of its practicality in the LALR form by DeRemer [5],
LALR analysis has been extensively investigated [11, and has come to be accepted
as the most powerful practical technique known for syntax analysis of program-
ming languages modelled as context-free languages.

The essential parts of the traditional LALR formalism, namely, those pertain-
ing to the definition of states and computation of lookahead sets, are recursive.
This, unfortunately, hinders derivation of efficient algorithms needed in imple-
menting a practical parser generating system. In the new approach, to be
described, an operator 6 is introduced to convert recursion into explicit iteration,
where appropriate, and, in so doing, obtain efficient algorithms together with
easily comprehensible proofs. The underlying ideas in an initial form have been
described in a working paper [12], and are refined in the present report on the
basis of extensive experimentation, lasting more than a year.

This work was funded in part by the Korea Traders Scholarship Foundation.
Authors’ present addresses: J. C. H. Park, Braegen Corp., 525 Los Caches St., Milpitas, CA 95035;
K. M. Choe and C. H. Chang, Project Micro Laboratory, Dept. of Computer Science, Korea Advanced
Institute of Science and Technology, P.O. Box 150, Chongyangni, Seoul, 131, Korea.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
@1985ACM0164-0925/85/0100-0159$00.75

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January B35, Pages 159-175.

160 l J. C. H. Park, K. M. Choe, and C. H. Chang

Section 2 is a summary of the basic terminology and definitions used through-
out this paper. A new operator 6 and the associated graph (called the L-graph)
are introduced in Section 3. On the basis of this approach, an explicit formula
for computing LALR(k) lookahead sets is derived in Section 4. In Section 5,
other known algorithms dealing with LALR(l) lookahead sets are recast and
modified using our formalism. In each case examined, significant improvement
in performance is obtained, culminating in new algorithms that are superior with
respect to computing time as well as storage requirements. Experimental results
supporting this fact are presented in Section 6.

2. TERMINOLOGY AND DEFINITIONS

The basic terminology and definitions in this paper are consistent with those of
Aho and Ullman [2, 31. Notational conventions are also stated.

A context-free grammar (CFG) is a quadruple (N, T, P, S), where N, T, P, and
S stand, respectively, for a set of nonterminal symbols, a set of terminal symbols,
a set of productions (each of which is of the form A + w), and a start symbol in
N. Given a grammar G, V ,(the vocabulary) stands for N U T and V* for the
reflexive-transitive closure of V; the transitive closure is indicated by the super-
script +.

Lower-case Greek letters such as LY, p, y, and w denote strings in V*, lower-
case Roman letters toward the beginning of the alphabet (a, b, and c) are
terminals, whereas those near the end (u, v, and w) are strings in T*; upper-case
letters in the beginning of the alphabet (A, B, and C) are nonterminals, whereas
those near the end (X, Y, and Z) are symbols in V. An empty string is denoted
by A.

Familiarity with LR parsing, particularly LALR parsing, is assumed. We take
for granted concepts such as FIRSTk, &, LR(k) item, and the canonical collection
of the set of LR(k) items. Also, a given grammar G is assumed to be augmented
with a new rule, S ’ + S$, to P, with a new start symbol S ’ not in N and an
endmarker $ not in T. In an LR(k) item, the symbol after the dot is referred to
as marked.

Let Ck be the canonical collection of states of LR(k) items. A state p in Ck is
characterized by its kernel KP of certain LR(k) items such that

p = CLOSURE (K,). (2.1)

Given a set K of LR(k) items, the CLOSURE [2] is defined as the smallest set
satisfying

CLOSURE(K)= K u ([X +.w, FIRST,J@u)]] [A + a.X& u]

(2.2)
E CLOSURE(K), X --* w E P).

The traditional LR(k) formalism makes use of another operation, called GOTO,
defined as follows. Let p E Ck and X E V. Then

GOTO@, X) = CLOSURE({[A * LYX.P, u]] [A + (Y.X/~, u] up]). (2.3)
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms l 161

For subsequent discussion, it is convenient to introduce another function, PRED
[9], whose effect is akin to an inverse of GOTO. Let p, q E Ck, and (Y be any
string in V*. Then,

PRED(p, 4 = iq I P E GOTOk, 41. (2.4)

In (2.4) the definition of GOT0 has been extended to a string such that

GOTO(p, Xa) = GOTO(GOTO(p, X), LY)

GOTO(p, A) = p.
(2.5)

A salient feature of the LR(k) formalism is that the canonical collection of
states, together with GOTO, defines a deterministic-finite automation (DFA) for
recognizing viable prefixes associated with the given grammar.

CLOSURE, an essential entity of the LR formalism, has been defined “recur-
sively,” as in (2.2). An understanding of the underlying formalism as well as
derivation of efficient algorithms is aided by devising an “iterative” formulation
of CLOSURE, as described in the next section.

3. A NEW OPERATOR GAND THE L-GRAPH

The operator b is a mapping in the power set of LR(k) items, defined as follows.
Let [A + CY . XP, u] be an LR(k) item for a context-free grammar G = (N, T, P,
8). Then,

6]]A--,aXP u]]=((),ifX~TorX/3doesnotexist
* , 1 ([X +.w, y]] y E FIRST,#u), X ---) w E P). (3.1)

For brevity, we simply write:

6{[A + (Y .X/3, u]) = {[X --J.w, FIRST&3u)]] X + o E P). (3.2)

It turns out that the CLOSURE operation can be defined “iteratively” as the
reflexive-transitive completion 6* of 6:

CLOSURE(([A + a-X/3, u])) = &*{[A + a-X/3, u]). (3.3)

In pursuing properties of 6, it soon becomes obvious that it essentially reflects
a left dependency relation L C N x N:

BLC iff B + C-y E P. (3.4)

We also call the directed graph associated with relation L the L-graph. It is
constructed by representing each instance (3.4) as a pair of vertices connected
by a directed edge:

Y

Note that the edge has been labeled with the remaining part of the production
right-hand side (RHS) that follows C.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

162 l J. C. H. Park, K. M. Choe, and C. H. Chang

A useful property of 6 is established by the following lemma, a straightforward
proof for which is given in Appendix A.l.

LEMMA 3.1.

6{[A + a.BP, u]) = ([C +--7, Pcdhk(B, c)@JwlSTk(pu)]

(3.5)

with the notation:

Puthk(B, C)

1 BL-2, c + a E P),

= u (FIRST/&3,. . . P2Pl) I Bo = B, Bn = c, N 2 0,

(3.6)

Bo + B,b, E P, IA+ &Pa E P, . . . , h-1 + B,Pn E PI,

where the sequence PI . . . , /3,, describes a path from B to C in the L-graph of the
form

@+-@- -** +-Q
II Pl 02 Pn II

Bo B1 . . . B,

In (3.6) the U stands for union over all such paths from B to C.
Using Lemma 3.1, it is easy in turn to prove the following result, which

essentially captures the CLOSURE operation as recursively stated in (2.2).

LEMMA 3.2.

6+ ([A + a-B@, u]) = ([C +.y, Puthk(B, C)@~FIRST~(@.4]

(3.7)
IBL*C,C+yEP).

Observe that, even when cycles are present in the L-graph, only paths of finite
length are necessary in computing (3.6), due to FIRSTk, and that the total
number of paths involved is finite. Thus the union in (3.6) is finite, leading to a
well-defined Pathk(B, C) and the transitive closure of 6 in turn. For example,
when k = 1, a cycle never need be traversed more than once.

With 6, a state p in a canonical collection is characterized by its kernel K,, of
certain LR items such that

p = 6*K, = Kp U 6+K,,

where the two sets Kp and 6+K, are disjoint.

(3.8)

It is apparent in this formalism that both the construction of the GOT0
function of the underlying DFA and the propagation of lookahead sets depend
only on kernel items and one L-graph. The need for dealing with a large number
of items (due to CLOSURE operations) is thus explicitly eliminated, as suggested
by Aho and Ullman [2]. Furthermore, repeated traversals of the given L-graph
(which must equivalently be performed in all other known algorithms) are also
easily avoided in this approach, as elaborated subsequently.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms 163

In addition, the following lemma is useful in establishing Theorem 4.1, of the
subsequent section, dealing with lookahead sets. A proof is found in Appendix
A.2.

LEMMA 3.3. Let p, q E Ck such that q E PRED(p, 4, [A ---, W.(YZ, x] E p, and
A # S’. Then there must be at least one kernel item [B +- P1-A’P2, u] E K4,
satisfying

x E (z] z E Puthk(A’, A) @ kFIRSTk(&u),
(3.9)

q E PRED(p, (YI), A’L*A, [B + &.A’&, u] E K,).

4. LALR LOOKAHEAD SETS

Having characterized a state and lookahead sets through Eqs. (3.7) to (3.9), a
formula for LALR(k) lookahead sets is derived in a form amenable to efficient
computation. The starting point is the following theorem:

THEOREM 4.1. Let C, be the canonical collection of states of LR(0) items, and
let p E CO, [A --j al.02] E p, and A # S’. Then the LALR(k) lookahead set is the
smallest set satisfying

= {x] x E Pathk(A’, A) @k FIRST&) @k LAk(q, [B + ,&.A’&]), (4.1)

q E PRED(p, al), A’L*A, [B ---, ,%-A’&] E K,J.

PROOF. Since the LALR(k) lookahead set of an LR(0) item [A + al-cy2] in
state p of Co is the union of all lookahead sets x of LR(k) item [A -+ (~1 .cY~, x] in
Ck [9, Definition 2.51, the theorem follows as a consequence of Lemma 3.3. Cl

Equation (4.1) contains two union-loops. The first union in (4.1) is over all
states q in C, reachable from p in the transition (GOTO) graph of the underlying
DFA by a backward traversal of edges (through the PRED function as defined
in (2.4)). Given such q, there may be more than one item [B + p1 .A’f12] in the
kernel of q such that A’L*A. The second loop in (4.1) deals with such cases.
Equation (4.1) can thus be recast in the following form:

J%(P, [A --, (~1. (~21)

= U U Pathk(A’, A) (4.2)
4 [B-.&.A’A’L*A&JEKq

q~PRED(p,q)

@k FIRST,&) @k LAk(q, [B + PI-A’&&.

Equation (4.2) explicitly exhibits why this approach is more efficient than
other known methods. It is illuminating to digress and pursue this point. All
known methods in other work [2, 4, 6, 9, lo] hinge on a formula that can be

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

164 l J. C. H. Park, K. M. Choe, and C. H. Chang

9

P
P - PI.A’PPI E K,

[A - .CY~CY~] E d+K,
a1 Fig. 1. The GOT0 DFA and Items.

Fig. 2. The L-graph.
@+-@-...

II
A’wl wz

. . -49
II

f-&IA

Fig. 3. The rules.

equivalently expressed in our notation as follows [9]:

LMp, [A + al - 4)
(4.3)

= U

qm-&p,m)
,c y yyzlEq FIRST/Ad 6 LAk(q, [C * ~1.&21).

-+l

Formula (4.3) involves all items [C --, y1 .Ay2] in a state q, whereas formula
(4.2) only calls for items [B + ,& .A’p2] in the kernel of a given state q such that
A’L*A. Thus the need for lookahead computation by recursion, involving items
due to a CLOSURE operation, viz., from [B +- ,&.A’P2] to [C --, Y~-AY~] in the
state q, is eliminated in our case by the use of a single quantity, Pathk(A’, A).
Note also that since Pathk(A’, A) depends only on nonterminals (not on states),
it is to be calculated once and for all, in contrast to other known methods, which
involve repeated computations of an equivalent quantity for each state.

Consider a path from A’ to A in the L-graph, and the corresponding CLOSURE
(6’) operation. For n 2 0, let the vertices from A’ to A be A,,, Al . . . A, (where
A’ = A0 and A = A,), and the edges be wl, o2 . . . w,, as shown in Figure 2. Due
to the definition of the L-graph, there are corresponding productions, see Figure
3.

The state q of Theorem 4.1 has the kernel item whose “marked” symbol is
A’ (=Ao), andp = GOTO(q, czi) is shown as the Figure 4.

First, L& on the RHS of Eq. (4.2) comes into play (calling for recursive
evaluation), only if both Pathk(A’, A) and FIRSTk(P2) contain A when k = 1.
This is true when p2 derives A and there exists at least one path labelled w1 . . .
w, from A’ to A in the L-graph such that all wi derive A. In that case, recursive
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms l 165

--, PI .A’Pzl E K,
o +.Alwl] E d+K, where A0 = A’

q [AI

P

+Azwz] E a+&
[A,-1 *.A,w,] E a+& where A, = A

Fig. 4. The GOT0 DFA and Items. 1-4 +.cqa*] E a+K,

use of formula (4.3) is needed n times in the state 4, and once in the Pi-predecessor
state of q in the formalisms of others. In contrast, no recursion in the state q (by
Pathk(A’, A)) or recursion to the Pi-predecessor state is needed in our formalism.
The lookahead sets added by the CLOSURE (6+) operation in a state do not
require recursion but only a single term, Pathk(A’, A).

Second, since Path, which represents the lookahead sets contributed by the
CLOSURE operation, is independent of states, another substantial reduction in
recursion is obtained by computing it once for all states that have the same
“marked” symbol A’ in the associated kernel. Equivalently stated, the need for a
repeated recursive traversal of the L-graph (viz., the transitive completion of 6)
found in the traditional method is eliminated explicitly by Pathk(A’, A) in our
method, since the latter is independent of states.

Finally, since our formalism (4.2) deals only with items in the kernel K of a
state, space and/or time overhead for dealing with items due to 6+ are eliminated.

5. ALGORITHMS FOR LALR(l) LOOKAHEAD SETS

Having described the framework of our formalism, the purpose of this section is
to derive explicit algorithms for computing LALR(l) lookahead sets, required in
realizing an efficient LALR parser generator. A series of algorithms is given,
including those of others, which are recast in our formalism and substantially
improved. This discussion also serves as a basis for an experimental comparison,
described in the next section.

From various known methods for computing LALR lookahead sets [2, 4, 6, 8,
lo], it is instructive to select two representative approaches: one based on
recursive calls and another on traversing a digraph, due to DeRemer and Pennello
[6]. The former is conceptually the simplest, while the latter represents the most
time-efficient method known prior to our result. Since our formalism is applicable
to both types, we are led to distinguish four methods: (1) recursion only (R); (2)
modified recursion using the new formalism (NR); (3) digraph traversal only (D);
and, finally, the best method, (4) modified digraph traversal (ND). All of these
algorithms are stated in a Pascal-like language.

5.1 Computing LALR(l) Lookahead Sets by Recursive Calls

Using recursive calls, Eq. (4.3) yields the simplest algorithm R [9] for computing
the LALR lookahead sets; it is straightforward and is omitted. This algorithm
can be improved substantially by using our result (4.2).

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

166 l J. C. H. Park, K. M. Choe, and C. H. Chang

Algorithm NR. Computing Lookahead Sets by Recursive Calls Using the L-Graph
function LALR(p:state, kitem): set of T;

assume Z = [A + al. ap];
LALR := 1);
for q E PRED(p, (Ye) do

for [B ---* & .A’&] E K, where A’L*A do
LALR := LALR U Path(A’, A);
if A E Path(A’, A) then

begin
LALR := LALR u FIRST(/?J;
if A E FIRST&) then LALR := LALR U LALR(q, [Z? + ,&-A’/3P])
end

end for
end for

end function.

Note 1. Algorithm NR requires an additional mechanism for avoiding patho-
logical cases of recursive calls to the same state and item, giving rise to infinite
loops. Details are omitted for simplicity; but the mechanism should be included
in actual programs.

Note 2. FIRST&) in NR plays a role equivalent to TRANS(GOTO(q, A’)) of
Kristensen and Madsen [9].

Algorithm NR is an improvement over algorithm R because (1) the former
involves only items in the kernel for each stat,e, eliminating items due to a
CLOSURE operation (this is the case even after taking into account the effects
of L-graph and Path); and (2) the if test for A in Path(A, A’), which prevents
recursive calls to items in the same state, effectively reduces recursion.

These observations are quantitatively verified in actual experiments, as dis
cussed in Section 6.

5.2 Computing LALR(l) Lookahead Sets by Traversing a Digraph

In an improved method, suggested by DeRemer and Pennello [6], instead of
recursive calls, a partial ordering, called an includes relation, is introduced for
sets determined to be giving rise to a digraph. A generalized topological sorting
a la Tarjan [15] then yields a linear ordering of sets, to be evaluated from the
smallest to the largest through “union” operations. The number of “union”
operations is at least that of the edges in the digraph, which is essentially the
minimum number of recursive calls required; this represents the best possible
behavior of algorithm R.

To recast DeRemer and Pennello’s approach in our formalism, it is convenient
to redefine their Follow. Let q E CO, A E N, and a E T. Then

Follow(q, A)
= b I a E FIRST(h) @ LA(q, [B + PI.A’PzI), LB + /%-A’&1 E 41. (5.1)

With this definition of Follow, DeRemer and Pennello’s method is compactly
recaptured by the following three results, whose proofs are given in Appendix
A.3. Parenthetically, DeRemer and Pennello’s concept “Read” is not necessary
in our presentation, since it is effectively handled by FIRST. Note that compu-
tation of FIRST is also required in constructing LR(0) states. Hence, the results
are available at no additional cost.
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms l 167

Let p, q E CO. Then,

LA(p, [A + LY~.(Y~]) = (a] a E Follow(q, A), q E PRED(p, LYJ~.

Let q, r E CO. Then,

(5.2)

Follow(q, A) = (a] a E FIRST(&), @ Follow(r, B), [B + P1.A/3,[E q, (5.3)

r E PREWq, PA [C -+ YI.BYZI E r).
Let q, r E Co, [B + P1-APz] E q, [C ---) Y~.~Y~] E r, A, B E N. If r E PRED(a,

,&) and A E FIRST&), then,

Follow(q, A) 2 Follow(r, B) or Follow(q, A) “includes” Follow(r, B). (5.4)

Evaluation of lookahead sets then proceeds in three steps:

(1) Construct the digraph of vertices, each representing Follow(q, A) initialized
with the value FIRST(&), as in (5.1), and of edges corresponding to an
“includes” relation, as in (5.4).

(2) Compute a Follow(q, A) traversing digraph (according to Tarjan’s algorithm).
(3) Finally, compute lookahead sets using Follow and PRED as prescribed by

(5.2).

Algorithm Dl deals with construction of the digraph as sketched in step (l),
and Algorithm D3 performs step (3). Details for step (2) are omitted, since it is
the well-known problem of ubiquitous generalized topological sorting [6, 151.

Algorithm Dl. Construction of the Digraph

for q E Co do
for [B + /3I.A/32] E q where A E N do

Follow(q, A) := FIRST(P,);
if A E FIRST@,) then

for r E PRED(q, &) do
for [C + /3, .Bp2] E r where B E N do

Follow(q, A) “includes” Follow(r, B)
end for

end for
end for

end for.

Algorithm D3. Lookahead Computation Using Follow

forpEC,,do
for [A + a.] E p do

LA@, [A + a.]) := ();
for q E PRED(p, a) do

LA@, [A + cz.]) := LA(p, [A + a.]) U Follow(q, A)
end for

end for
end for.

DeRemer and Pennello’s strategy, as paraphrased above, results in a striking
improvement in computing time when compared with methods based on recursive
calls. Unfortunately, it considers all items-those due to 6+ as well as kernels.
Thus it is not surprising that the digraph of Follow vertices and “includes” edges
is large. A substantial reduction in size results if this method is modified to deal

ACM Transactions on Programming Languages and Systems, Vol. ‘I, No. 1, January 1985.

168 ’ J. C. H. Park, K. M. Choe, and C. H. Chang

with kernel items only, as in our formulation. The result, as presented below,
enhances storage requirements, while gaining time efficiency.

Expressions (5.2) through (5.4) are modified as in (5.5) through (5.7), respec-
tively, with the use of Path and the L-graph so that only kernel items are
involved. The proofs are given in Appendix A.4, and the corresponding algorithms
are given as ND1 and ND3.

Let p, q E CO. Then,

LA(p, [A + al. a& = (a 1 a E Path(A’, A) @ Follow(q, A’),
q E PRED(p, cyl), A’L*A, [B ---) &.A’&] E K,).

(5.5)

Let p, q E C,,. Then,

Follow(q, A’) = (a 1 a E FIRST&) @ Path@‘, B) @ Follow(r, B’),

P --j PI-A’PzI E Kp
r E PRED(q, &), [C-B Y~.B’Y~] E K,, B’L*BJ.

(5.6)

Let 4, r, ~2 CO, [B -+ PIeA’P21 E &, [C -+ YI-B’YZI E K. If r E PREJXq, PA,
A E FIRST(P2), and A E Path@‘, B). Then,

Follow(q, A’) 2 Follow(r, B’) or Follow(q, A’) “includes” Follow@, B’). (5.7)

Algorithm NDl. Construction of the Digraph-Using Kernel Items Only

for q E C,, do
for[B+&.A’&JE&whereA’ENdo

Follow(q, A’) := FIRST@,);
if A E FIRST&) then

for r E PRED(q, pl) do
for [C + &-B’P,(E K, where B’L* B do

Follow(q, A’) := Follow(q, A’) U Path(B’, B);
if A E Path(B’, B)

then Follow(q, A’) “includes” Follow(r, B’)
end for

end for
end for

end for.

Algorithm ND3. Lookahead Computation Using Follow

forpE &do
for[A-+cu.]Epdo

LA(p, [A + ct.]) := I);
for q E PRED(p, LY) where [B + &.A’&J E K, do

LA(p, [A + a.]) := LA(p, [A + (Y.]) U Path(A’ A);
if A E Path(A’, A)

then LA@, [A -, a.]) := LA@ [A --, a.]) U Follow(q, A’)
end for

end for
end for.

The number of Follow vertices in the digraph is reduced significantly in the
new method, since, as mentioned earlier, only those of kernels are involved, with
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms 169

“Includes”

Fig. 5. The “includes” relations in the
digraph and lookahead propagation.

f Path(A’, A)

the effect of vertices due to items 6+ taken care of by the L-graph. Consider a
situation depicted in Figure 5. If Follow(q.A’) “includes” Follow(r, B’), then the
number of edges (i.e., “includes” in the original approach) is n + 1, when n is the
path length in L-graph from B’ to B. In the modified approach for the same
case, only one edge appears, as opposed to n + 1. Thus not only the number of
vertices, but also that of edges, is substantially reduced.

Furthermore, for all other states whose kernels contain the “marked” symbol
B’, the same reduction phenomenon occurs, since the lookahead sets are com-
puted using the Path of (5.5) through (5.7), in a manner independent of states.
Thus the overall reduction in number of edges, and hence union costs, is
substantial.

It is straightforward to calculate Path(A’, A), as defined in (3.6), by traversing
the associated L-graph, with the direction of edges reversed for convenience.
Tarjan’s algorithm, mentioned earlier, for traversing the Follow digraph is
modified to traverse the L-graph effectively, twice for this purpose. The saving
in union costs, mentioned above, is partially offset by union operations required
in calculating Path in this manner.

This traversal yields the transitive closure L* and linked lists representing
Path (A’, A). The scheme used involves searching such a list for a given
nonterminal (via., for A’ starting for an element H[A] of an array of list headers).
The experimental data reported in the next section include such time overhead.

The advantage in our method, however, does not hinge on clever implementa-
tion details. For example, in processing Ada with 182 nonterminals, DeRemer
and Pennello’s method must deal with 2022 Follow(q, A) sets, whereas our
method requires only 322 Follow sets and 768 nonempty Path sets. The order of
magnitude reduction in Follow sets comes about because our method requires
those due to kernel items only. The remaining Follow sets (i.e., those due to
CLOSURE items) are effectively taken into account by Path sets. Note that in
general far fewer Path sets are required than Follow sets, since the former depend
only on nontermirials, in contrast to the latter, involving states. A theoretical
assessment of this saving requires a formula relating the number of states to that
of nonterminals for a given LALR(1) grammar, the derivation of which appears
to be quite difficult, and is beyond the scope of the present paper. Experimental
investigations are discussed in the next, section.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985

170 l J. C. H. Park, K. M. Choe, and C. H. Chang

6. EXPERIMENTAL RESULTS

The four methods for computing LALR(l) lookahead sets, namely algorithms R,
NR, D, and ND have been implemented using Standard Pascal in an LALR(l)
parser-generating system PGS82 [131, running on a midsize computing facility
based on an IBM System/370-145, and used to experimentally evaluate their (the
algorithms’) performance.

LALR grammars for five languages, namely ADA [14], Pascal [7], PL360
[161, XPL [111, and PAL [3], have been investigated using PGS82. The results
are summarized in Tables I and II.

In Table I, Part 1 pertains to data common to all four methods considered
(number of rules(P), nonterminals(terminals(T), and LR(0) states(S)). Part
2 refers to the number of items; the top entry represents total numbers, including
those of 6+K, whereas the bottom represents those of kernels K only. Under
Parts 3 and 4, the number of recursive calls and properties (number of vertices
and edges) of the Follow digraph, respectively, are given; upper (lower) numbers
represent unmodified (modified) results. Under Part 5, the properties of the L-
graph and the number of nonempty sets of Path, needed in the modified methods
only, are summarized.

In Table II, the time characteristics of all four methods are given. The numbers
are actual execution times in seconds on an IBM system 370/145 (under OS/
VSl). The data show the relative performances. The PGS82 [13] used in these
experiments consists of two passes. Pass 1 deals with initialization such as
grammar input, validity checks of the grammar, and the conversion of the
grammar into the internal representation, etc.; this part is common to all four
methods studied. Pass 2 is logically divided into four or five subsections dealing
with initialization, computation of FIRST, L-graph and Path (needed in modified
methods only), LR(0) states, and, finally, lookahead sets. Actual time spent in
each subsection is listed; in each entry the upper (lower) refers to the unmodified
(modified) case.

As shown in Part 2 of Table I, the total number of items to be dealt with is
reduced in the modified version by a factor ranging from 3 to 9, compared to the
unmodified case. This reduction in the size of data to be processed contributes
to an overall gain in time/space efficiency for CFSM computation.

Table II indicates that, for the method based on recursion, the modified
approach (NR) in pass 2 achieves a 20 to 50 percent reduction in CPU time when
compared with the traditional approach (R). This gain is attributable to the 10
to 20 percent reduction in the computation of LR(0) state sets and the 40 to 60
percent reduction in computation of LALR(1) lookahead sets.

As expected, the more elaborate schemes D and ND exhibit better time
characteristics than the corresponding R and NR in computing lookahead sets.
As listed in Table II, the reduction in time of ND compared to that of D ranges
from 15 to 20 percent. This is attributable to the 10 to 20 percent reduction in
computing LR(0) states and the 20 to 30 percent in computing LALR(l) look-
ahead sets; the latter includes time taken for Path computation.

As a direct consequence of the reduced time for computing lookahead sets (in
D and ND), the time for computing LR(0) states becomes significant. Here,
again, our approach (lower entries under the LR(0) heading of Table II) consis-
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms 171

Table I. Performance Comparison

Part 3 Part 4
Part 2 - Follow

Part 5

Recur-
Part 1 Item sions Vertex Edge L-graph Path

all R D D vertex Edge
P N T S kernels NR ND ND (NR, ND)

Ada 398 182 93 823 -5943 13237 2022 2857
1305 4599 322 1177 182 205 768

Pascal 201 99 65 374 2732 5465 831 1361
526 1840 111 753 99 102 308

PL360 153 64 61 227 1067 987 289 280
317 337 52 129 64 74 316

XPL 112 52 47 186 1290 2001 484 564
257 515 62 260 52 63 231

PAL 80 32 47 156 1770 8710 590 1336
205 1045 63 827 32 39 280

Table II. Time Characteristics

Pass 2

Init. First L-gr. LRW LRLR(l) Total
Pass 1 R, D R, D R, D R, D R D R D

Ada 71.69 3.56 0.50
71.69 3.56 0.50

Pascal 28.41 2.34 0.30
28.41 2.34 0.30

XPL 12.83 1.69 0.14
12.83 1.69 0.14

PL360 17.83 1.87 0.27
17.83 1.87 0.27

PAL 9.43 1.51 0.16
9.43 1.51 0.16

NA 100.43 396.15 36.10 500.64 140.59
1.95 91.03 150.41 22.25 247.45 119.29
NA 36.22 91.94 12.03 1.30.80 50.89

0.74 32.74 60.37 7.75 96.49 43.87
NA 11.01 20.97 5.76 33.81 18.60

0.58 9.02 12.53 3.47 23.96 14.90
NA 9.90 8.31 4.87 20.35 16.91

0.61 7.96 5.21 3.35 15.92 14.06
NA 12.88 169.73 8.36 184.28 22.91

0.68 10.18 101.50 5.54 114.03 18.07

tently shows improvement. Note that the time taken for Path computation (listed
separately under L-gr. in Table I) is insignificant.

Finally, as summarized in Parts 4 and 5 of Table I, the number of Follow
vertices and entries for Path in ND is about half that of Follow vertices required
in D (with the exception of PL360), implying the corresponding reduction in
storage requirements in our method (ND).

7. CONCLUSIONS

In our research, originally motivated by a desire to understand the LALR(l)
analysis, we were led to a formalism that (1) makes the underlying analysis more
transparent, in that fewer definitions and lesser levels of argument are needed,
and one that is easily comprehensible, in that the arguments needed are to a
large degree reduced to formula manipulations; and (2) that by providing explicit
formulas, leads to efficient algorithms both in space and time for constructing
LR(0) states and computing LALR(l) lookahead sets.

Specifically, in traditional methods of computing LR(0) states and LALR(l)
lookahead sets, certain relationships between nonterminals in the grammar are

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

172 l J. C. H. Park, K. M. Choe, and C. H. Chang

repeatedly reexamined, and the values that depend on these relationships only
are repeatedly recomputed. A new method is devised in which (by factoring out
Path) the relationships are examined once and the values are precomputed. This
results in time and/or space saving for the LR(0) states and LALR(1) lookahead
set computation.

Experiments have been performed involving comparisons with other known
methods to verify the ensuing advantages of our approach in actual use.

ACKNOWLEDGMENTS

The authors are grateful to the referees for suggesting various improvements
pertaining to writing style. In particular, one of the concluding paragraphs is
almost verbatim that of one of the referees.

This research would not have been possible if the computing facility of the
Computer Science Research Center, established as a collaborative effort with
IBM, had not been available.

APPENDIX A

A.l. Proof of Lemma 3.1. Induction on n.

(1) For n = 1, from (3.2), 6 ([A + a.B& u]) = ([B +.y, FIRSTk(@)]] B + y
E P). Since B = C, A E Pathk(B, C), and BLOC. Lemma 3.1 holds for n = 1.

(2) Assume Lemma 3.1 holds for n = i,

6’([A + a.BP, u])
= ([C +--y, Pathk(B, C)@kFIRST@u)]] BL’-lC, C + y E P).

Now,

rSi+l([A + cu.&I, u]j
= 6([C +-y, Path,@, C)&FIRSTk(Pu)]] BL’-lC, C + y E PI.

But, according to (3.2), property of 6&, and definition of Pathk

= ([C’ +-y ‘, FIRST(-/ ‘)@Pathk(B, C)G.&FIRSTk(/3u)]
IBL’-‘C,C4yEP,y=C’P’,C’-,y’EP).

= {[C’ +.y’, Pathk(B, C’)@kFIRST,(Pu)]] BL’C’, C’ ---) y’ E PI.

A.2. Proof of Lemma 3.3. (See also Fig. 6.). Since q E PRED(p, ai).
[A +-CY~CQ, x’] E q, where

x E (x’ /[A +-.cQ(Y~, x’] E q, q E PRED(p, (~1)).

Since A = S ‘, [A +. (Ye (Ye, x ‘3 E a+&. Hence, there must be at least one item
[C + Y~.AYP, ~1 E q. And

x E {x’ ([A 3.(~i(~p, x’] E a+&, q E PRED(p, al)).
(A.1)

= (z I z E FIRST,(y2y), q E PREDb, ~11, [C + m-A~2, ~1 E 41,

by Eq. (3.2).

Case 1. [C + y1 .AY~, y] E K4. Since the item [C + y1 .AY~, y] is in the kernel
K4, it can be regarded as the same item as item [B ---) pi -A ’ p2, U] that is in the

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

A New Analysis of LALR Formalisms 173

Fig. 6. The GOT0 DFA and Items.

condition of Lemma 3.3 Thus, from Eq. (A.l),

x E (2 I z E FIRST/Jay), q E PREW, ~1, [C + YI.AYZ, ~1 E &I.
= (z] z E FIRST,&+),

4 E PREDb, PI), A ‘L*A, P + P1.A ‘P2, ~1 E &I.
= {z] z E Pathk(A ‘, A)@+FIRSTk(&u),

4 E PREW, a~), A’L*A, [B + P1.A ‘P2, ~1 E &I,

since A E Path(A ‘, A), and if Path(A ‘, A) contains nonempty lookahead sets,
it must be equivalently considered in Case 2.

Case 2. [C + y1 .Ay2, y] E 6+K,yi = A. By Lemma 3.2, there must be at least
one kernel item [B + &-A ’ p2, U] E KQ. And, from Eq. (A.l),

1~ E (z I z E FIRSTdyzyL q E PREW, .a), [C -+A72, yl E 6+K,J.
= {z] z E FIRSTk(y2)@kPathk(A ‘, C)&FIRSTk(P2u), q E PRED(p, CQ),

A ‘L*A, [C -+A72, y] E 6+Kq, [B + P1.A ‘P2, u] E K,},

according to the definition of the FIRSTk, &, and Lemma 3.2,

= (z] z E Pathh(A ‘, A)@FIRSTk(P2u),

q E PREJXp, @I), A ‘L*A, P + ,@,.A ‘P2, ul E Kq),
according to the definition of Path.

A.3. Proofs of (5.2), (5.3), and (5.4). From (4.3),

LA(IA [A + w-a21)
= (a I a E FIRSWM@LA(q, [B + PI-AP21),

q E PREDb, a~), [B + P1.4321 E 41,

which can be rewritten using (5.1) as

=]a] a E Follow(q, A), q E PRED(p, al)).

End of proof for (5.2). Cl

According to (5.1), for A E N,

Follow(q, A)

= (a I a E FIRST(Pd@LA(q, P -+ P1.4321), P - PI-4321 E 41,

which can be rewritten using (4.3) as

= (a] a E FIRST(/32)@FIRST(y2)@LA(r, [C --, yl-B72]),

P --, PI-A&I E 4, r E PRENq, PI), [C -+ YI-~Y~I E 4,
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

174 l J. C. H. Park, K. M. Choe, and C. H. Chang

which, according to (5.1), is

=]a I a E FIRST(P,)@Follow(r, B),
P * PI.APzI E a r E PRED(q, ,&I, [C + -,~.B~~I E TJ.

End of proof for (5.3). Cl

According to (5.3), if

A E FIRST(&) then Follow(q, A) 2 Follow(r, B).

End of proof for (5.4). Cl

A.4. Proofs of (5.5), (5.6), and (5.7). From (4.1),

LAtp, [A + w-4)
= (a 1 a E Path(A ‘, A @FIRST(P2)@LA(q, [B + ,&.A ‘p2J),

q E PREDtp, ~1, A ‘L*A, LB + @,.A ‘Pzl E &I,
which can be rewritten using (5.1) as

= (a] a E Path(A ‘, A)@Follow(q, A ‘),
q E PRED(p, CQ), A ‘L*A, [B + /I,.A ‘/32] E &).

End of proof for (5.5). 0

According to (5.1), for A ’ E N,

Follow(q, A >

= Ia I a E FIRST(Pd@LA(q, [B -+ /%.A ‘PA P -+ P1.A ‘hl E &I,
which can be rewritten using (4.1) as

= (a] a E FIRST(&)@Path(B ‘, B)@FIRST(y,)@LA(r, [C + rl.B’-yz]),
B ‘L*B, [B -+ P1.A ‘1621 E &, rWRED(q, bd, KC + YI-B’Y~I E K),

which, according to (5.1), is

= (a] a E FIRST(P2)$Path(B ‘, B)$Follow(r, B ’), B ‘L*B,

P + PI-A ‘Pzl E Kq, r E PREDtq, PI), [C + YI.B’Y~I E Kl.

End of proof for (5.6). Cl

According to (5.6), if

A E FIRST(P2) and A E Path(B ‘, B), then Follow(q, A) 2 Follow(r, B).

End of proof for (5.7). Cl

REFERENCES

1. AHO, A.V. Translator writing systems: Where do they now stand? IEEE Comput. Msg. 13, 8
(Aug. 1980), 9-14.

2. AHO, A.V., AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,
1977.

3. AHO, A.V., AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling; vol. 1,
Parsing; vol. 2. Compiling. Prentice-Hall, Englewood Cliffs, N. J., 1972, 1973.

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

-

A New Analysis of LALR Formalisms l 175

4. ANDERSON, T., EVE, J., AND HORNING, J.J. Efficient LR(1) parser. Acta Znf. 2 (1973), 12-39.
5. DEREMER, F.L. Simple LR(k) grammars. Commun. ACM 24, 7 (July 1971), 453-460.
6. DEREMER, F.L., AND PENNELLO, T.J. Efficient computation of LALR(1) lookahead sets. ACM

Trans. Program. Lang. Syst. 4, 4 (Oct. 1982), 615-649; also ACM SZGPLAN Not. 14, 8 (Aug.
1979), 176-187.

7. JENSEN, K., AND WIRTH, N. Pascal User Manual and Report. 2nd ed., Springer-Verlag, New
York, 1975.

8. KNUTH, D.E. On the translation of languages from left to right. Znf. Control 8, 6 (Dec. 1965),
607-639.

9. KRISTENSEN, B.B., AND MADSEN, O.L. Methods for computing LALR(k) lookahead. ACM
Trans. Program. Lang. Syst. 3, 1 (Jan. 1981), 60-82.

10. LALONDE, W.R. An efficient LALR parser generator. Tech. Rep., Computer Systems Research
Group, Univ. of Toronto, 1971.

11. MCKEEMAN, W.M., HORNING, J.J., AND WORTMAN, D.B. A Compiler Compiler. Prentice-Hall,
Englewood Cliffs, N. J., 1977.

12. PARK, J.C.H. A new LALR formalism. ACM SZGPUN Not. 17, 7 (July 1982), 47-61; CSRC
Tech. Rep. TR81-0002-0, Computer Science Research Center, Korea Advanced Institute of
Science and Technology, Seoul, July 1981.

13. PARK,J.C.H.,CHOE,K.M.,CHANG,C.H.,YOO,J.W.,ANDOH,S.M. User’sMandforPGS82-
An Efficient LALR Parser Generating System. Computer Science Research Center, Korea Ad-
vanced Institute of Science and Technology, Seoul. In preparation.

14. PERSCH, G., WINTERSTEIN, G., DROSSOPOULOU, A., AND DAUSSMAN, M. An LALR(l) grammar
for (revised) Ada. ACM SZGPLAN Not. 16, 3 (Mar. 1981), 85-98; see also the Reference Manual
for the ADA Programming Language, DOD, July 1980.

15. TARJAN, R.E. Depth-first search and linear graph algorithms. SIAM J. Comput. I, 2 (1972),
146-160.

16. WIRTH, N. PL360, a programming language for the 360 computers. J. ACM 15, 1 (Jan. 1968),
37-74.

Received August 1982; revised November 1983; accepted January 1984

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985.

