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1. INTRODUCTION 

Since the original invention of LR parsing by Knuth [8] many years ago, and the 
subsequent realization of its practicality in the LALR form by DeRemer [5], 
LALR analysis has been extensively investigated [ 11, and has come to be accepted 
as the most powerful practical technique known for syntax analysis of program- 
ming languages modelled as context-free languages. 

The essential parts of the traditional LALR formalism, namely, those pertain- 
ing to the definition of states and computation of lookahead sets, are recursive. 
This, unfortunately, hinders derivation of efficient algorithms needed in imple- 
menting a practical parser generating system. In the new approach, to be 
described, an operator 6 is introduced to convert recursion into explicit iteration, 
where appropriate, and, in so doing, obtain efficient algorithms together with 
easily comprehensible proofs. The underlying ideas in an initial form have been 
described in a working paper [12], and are refined in the present report on the 
basis of extensive experimentation, lasting more than a year. 
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Section 2 is a summary of the basic terminology and definitions used through- 
out this paper. A new operator 6 and the associated graph (called the L-graph) 
are introduced in Section 3. On the basis of this approach, an explicit formula 
for computing LALR(k) lookahead sets is derived in Section 4. In Section 5, 
other known algorithms dealing with LALR(l) lookahead sets are recast and 
modified using our formalism. In each case examined, significant improvement 
in performance is obtained, culminating in new algorithms that are superior with 
respect to computing time as well as storage requirements. Experimental results 
supporting this fact are presented in Section 6. 

2. TERMINOLOGY AND DEFINITIONS 

The basic terminology and definitions in this paper are consistent with those of 
Aho and Ullman [2, 31. Notational conventions are also stated. 

A context-free grammar (CFG) is a quadruple (N, T, P, S), where N, T, P, and 
S stand, respectively, for a set of nonterminal symbols, a set of terminal symbols, 
a set of productions (each of which is of the form A + w), and a start symbol in 
N. Given a grammar G, V ,(the vocabulary) stands for N U T and V* for the 
reflexive-transitive closure of V; the transitive closure is indicated by the super- 
script +. 

Lower-case Greek letters such as LY, p, y, and w denote strings in V*, lower- 
case Roman letters toward the beginning of the alphabet (a, b, and c) are 
terminals, whereas those near the end (u, v, and w) are strings in T*; upper-case 
letters in the beginning of the alphabet (A, B, and C) are nonterminals, whereas 
those near the end (X, Y, and Z) are symbols in V. An empty string is denoted 
by A. 

Familiarity with LR parsing, particularly LALR parsing, is assumed. We take 
for granted concepts such as FIRSTk, &, LR(k) item, and the canonical collection 
of the set of LR(k) items. Also, a given grammar G is assumed to be augmented 
with a new rule, S ’ + S$, to P, with a new start symbol S ’ not in N and an 
endmarker $ not in T. In an LR(k) item, the symbol after the dot is referred to 
as marked. 

Let Ck be the canonical collection of states of LR(k) items. A state p in Ck is 
characterized by its kernel KP of certain LR(k) items such that 

p = CLOSURE (K,). (2.1) 

Given a set K of LR(k) items, the CLOSURE [2] is defined as the smallest set 
satisfying 

CLOSURE(K)= K u ([X +.w, FIRST,J@u)]] [A + a.X& u] 

(2.2) 
E CLOSURE(K), X --* w E P). 

The traditional LR( k) formalism makes use of another operation, called GOTO, 
defined as follows. Let p E Ck and X E V. Then 

GOTO@, X) = CLOSURE({[A * LYX.P, u] ] [A + (Y.X/~, u] up]). (2.3) 
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For subsequent discussion, it is convenient to introduce another function, PRED 
[9], whose effect is akin to an inverse of GOTO. Let p, q E Ck, and (Y be any 
string in V*. Then, 

PRED(p, 4 = iq I P E GOTOk, 41. (2.4) 

In (2.4) the definition of GOT0 has been extended to a string such that 

GOTO(p, Xa) = GOTO(GOTO(p, X), LY) 

GOTO(p, A) = p. 
(2.5) 

A salient feature of the LR(k) formalism is that the canonical collection of 
states, together with GOTO, defines a deterministic-finite automation (DFA) for 
recognizing viable prefixes associated with the given grammar. 

CLOSURE, an essential entity of the LR formalism, has been defined “recur- 
sively,” as in (2.2). An understanding of the underlying formalism as well as 
derivation of efficient algorithms is aided by devising an “iterative” formulation 
of CLOSURE, as described in the next section. 

3. A NEW OPERATOR GAND THE L-GRAPH 

The operator b is a mapping in the power set of LR(k) items, defined as follows. 
Let [A + CY . XP, u] be an LR(k) item for a context-free grammar G = (N, T, P, 
8). Then, 

6]]A--,aXP u]]=((),ifX~TorX/3doesnotexist 
* , 1 ([X +.w, y] ] y E FIRST,#u), X ---) w E P). (3.1) 

For brevity, we simply write: 

6{[A + (Y .X/3, u]) = {[X --J.w, FIRST&3u)] ] X + o E P). (3.2) 

It turns out that the CLOSURE operation can be defined “iteratively” as the 
reflexive-transitive completion 6* of 6: 

CLOSURE( ([A + a-X/3, u])) = &*{[A + a-X/3, u]). (3.3) 

In pursuing properties of 6, it soon becomes obvious that it essentially reflects 
a left dependency relation L C N x N: 

BLC iff B + C-y E P. (3.4) 

We also call the directed graph associated with relation L the L-graph. It is 
constructed by representing each instance (3.4) as a pair of vertices connected 
by a directed edge: 

Y 

Note that the edge has been labeled with the remaining part of the production 
right-hand side (RHS) that follows C. 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985. 



162 l J. C. H. Park, K. M. Choe, and C. H. Chang 

A useful property of 6 is established by the following lemma, a straightforward 
proof for which is given in Appendix A.l. 

LEMMA 3.1. 

6{[A + a.BP, u]) = ([C +--7, Pcdhk(B, c)@JwlSTk(pu)] 

(3.5) 

with the notation: 

Puthk(B, C) 

1 BL-2, c + a E P), 

= u (FIRST/&3,. . . P2Pl) I Bo = B, Bn = c, N 2 0, 

(3.6) 

Bo + B,b, E P, IA+ &Pa E P, . . . , h-1 + B,Pn E PI, 

where the sequence PI . . . , /3,, describes a path from B to C in the L-graph of the 
form 

@+-@- -** +-Q 
II Pl 02 Pn II 

Bo B1 . . . B, 

In (3.6) the U stands for union over all such paths from B to C. 
Using Lemma 3.1, it is easy in turn to prove the following result, which 

essentially captures the CLOSURE operation as recursively stated in (2.2). 

LEMMA 3.2. 

6+ ([A + a-B@, u]) = ([C +.y, Puthk(B, C)@~FIRST~(@.4] 

(3.7) 
IBL*C,C+yEP). 

Observe that, even when cycles are present in the L-graph, only paths of finite 
length are necessary in computing (3.6), due to FIRSTk, and that the total 
number of paths involved is finite. Thus the union in (3.6) is finite, leading to a 
well-defined Pathk(B, C) and the transitive closure of 6 in turn. For example, 
when k = 1, a cycle never need be traversed more than once. 

With 6, a state p in a canonical collection is characterized by its kernel K,, of 
certain LR items such that 

p = 6*K, = Kp U 6+K,, 

where the two sets Kp and 6+K, are disjoint. 

(3.8) 

It is apparent in this formalism that both the construction of the GOT0 
function of the underlying DFA and the propagation of lookahead sets depend 
only on kernel items and one L-graph. The need for dealing with a large number 
of items (due to CLOSURE operations) is thus explicitly eliminated, as suggested 
by Aho and Ullman [2]. Furthermore, repeated traversals of the given L-graph 
(which must equivalently be performed in all other known algorithms) are also 
easily avoided in this approach, as elaborated subsequently. 
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1, January 1985. 
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In addition, the following lemma is useful in establishing Theorem 4.1, of the 
subsequent section, dealing with lookahead sets. A proof is found in Appendix 
A.2. 

LEMMA 3.3. Let p, q E Ck such that q E PRED(p, 4, [A ---, W.(YZ, x] E p, and 
A # S’. Then there must be at least one kernel item [B +- P1-A’P2, u] E K4, 
satisfying 

x E (z ] z E Puthk(A’, A) @ kFIRSTk(&u), 
(3.9) 

q E PRED(p, (YI), A’L*A, [B + &.A’&, u] E K,). 

4. LALR LOOKAHEAD SETS 

Having characterized a state and lookahead sets through Eqs. (3.7) to (3.9), a 
formula for LALR(k) lookahead sets is derived in a form amenable to efficient 
computation. The starting point is the following theorem: 

THEOREM 4.1. Let C, be the canonical collection of states of LR(0) items, and 
let p E CO, [A --j al.02] E p, and A # S’. Then the LALR(k) lookahead set is the 
smallest set satisfying 

= {x ] x E Pathk(A’, A) @k FIRST&) @k LAk(q, [B + ,&.A’&]), (4.1) 

q E PRED(p, al), A’L*A, [B ---, ,%-A’&] E K,J. 

PROOF. Since the LALR(k) lookahead set of an LR(0) item [A + al-cy2] in 
state p of Co is the union of all lookahead sets x of LR(k) item [A -+ (~1 .cY~, x] in 
Ck [9, Definition 2.51, the theorem follows as a consequence of Lemma 3.3. Cl 

Equation (4.1) contains two union-loops. The first union in (4.1) is over all 
states q in C, reachable from p in the transition (GOTO) graph of the underlying 
DFA by a backward traversal of edges (through the PRED function as defined 
in (2.4)). Given such q, there may be more than one item [B + p1 .A’f12] in the 
kernel of q such that A’L*A. The second loop in (4.1) deals with such cases. 
Equation (4.1) can thus be recast in the following form: 

J%(P, [A --, (~1. (~21) 

= U U Pathk(A’, A) (4.2) 
4 [B-.&.A’A’L*A&JEKq 

q~PRED(p,q) 

@k FIRST,&) @k LAk(q, [B + PI-A’&&. 

Equation (4.2) explicitly exhibits why this approach is more efficient than 
other known methods. It is illuminating to digress and pursue this point. All 
known methods in other work [2, 4, 6, 9, lo] hinge on a formula that can be 
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9 

P 
P - PI.A’PPI E K, 

[A - .CY~CY~] E d+K, 
a1 Fig. 1. The GOT0 DFA and Items. 

Fig. 2. The L-graph. 
@+-@-... 

II 
A’wl wz 

. . -49 
II 

f-&IA 

Fig. 3. The rules. 

equivalently expressed in our notation as follows [9]: 

LMp, [A + al - 4) 
(4.3) 

= U 

qm-&p,m ) 
,c y yyzlEq FIRST/Ad 6 LAk(q, [C * ~1.&21). 

-+l 

Formula (4.3) involves all items [C --, y1 .Ay2] in a state q, whereas formula 
(4.2) only calls for items [B + ,& .A’p2] in the kernel of a given state q such that 
A’L*A. Thus the need for lookahead computation by recursion, involving items 
due to a CLOSURE operation, viz., from [B +- ,&.A’P2] to [C --, Y~-AY~] in the 
state q, is eliminated in our case by the use of a single quantity, Pathk(A’, A). 
Note also that since Pathk(A’, A) depends only on nonterminals (not on states), 
it is to be calculated once and for all, in contrast to other known methods, which 
involve repeated computations of an equivalent quantity for each state. 

Consider a path from A’ to A in the L-graph, and the corresponding CLOSURE 
(6’) operation. For n 2 0, let the vertices from A’ to A be A,,, Al . . . A, (where 
A’ = A0 and A = A,), and the edges be wl, o2 . . . w,, as shown in Figure 2. Due 
to the definition of the L-graph, there are corresponding productions, see Figure 
3. 

The state q of Theorem 4.1 has the kernel item whose “marked” symbol is 
A’ (=Ao), andp = GOTO(q, czi) is shown as the Figure 4. 

First, L& on the RHS of Eq. (4.2) comes into play (calling for recursive 
evaluation), only if both Pathk(A’, A) and FIRSTk(P2) contain A when k = 1. 
This is true when p2 derives A and there exists at least one path labelled w1 . . . 
w, from A’ to A in the L-graph such that all wi derive A. In that case, recursive 
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--, PI .A’Pzl E K, 
o +.Alwl] E d+K, where A0 = A’ 

q [AI 

P 

+Azwz] E a+& 
[A,-1 *.A,w,] E a+& where A, = A 

Fig. 4. The GOT0 DFA and Items. 1-4 +.cqa*] E a+K, 

use of formula (4.3) is needed n times in the state 4, and once in the Pi-predecessor 
state of q in the formalisms of others. In contrast, no recursion in the state q (by 
Pathk(A’, A)) or recursion to the Pi-predecessor state is needed in our formalism. 
The lookahead sets added by the CLOSURE (6+) operation in a state do not 
require recursion but only a single term, Pathk(A’, A). 

Second, since Path, which represents the lookahead sets contributed by the 
CLOSURE operation, is independent of states, another substantial reduction in 
recursion is obtained by computing it once for all states that have the same 
“marked” symbol A’ in the associated kernel. Equivalently stated, the need for a 
repeated recursive traversal of the L-graph (viz., the transitive completion of 6) 
found in the traditional method is eliminated explicitly by Pathk(A’, A) in our 
method, since the latter is independent of states. 

Finally, since our formalism (4.2) deals only with items in the kernel K of a 
state, space and/or time overhead for dealing with items due to 6+ are eliminated. 

5. ALGORITHMS FOR LALR(l) LOOKAHEAD SETS 

Having described the framework of our formalism, the purpose of this section is 
to derive explicit algorithms for computing LALR(l) lookahead sets, required in 
realizing an efficient LALR parser generator. A series of algorithms is given, 
including those of others, which are recast in our formalism and substantially 
improved. This discussion also serves as a basis for an experimental comparison, 
described in the next section. 

From various known methods for computing LALR lookahead sets [2, 4, 6, 8, 
lo], it is instructive to select two representative approaches: one based on 
recursive calls and another on traversing a digraph, due to DeRemer and Pennello 
[6]. The former is conceptually the simplest, while the latter represents the most 
time-efficient method known prior to our result. Since our formalism is applicable 
to both types, we are led to distinguish four methods: (1) recursion only (R); (2) 
modified recursion using the new formalism (NR); (3) digraph traversal only (D); 
and, finally, the best method, (4) modified digraph traversal (ND). All of these 
algorithms are stated in a Pascal-like language. 

5.1 Computing LALR(l) Lookahead Sets by Recursive Calls 

Using recursive calls, Eq. (4.3) yields the simplest algorithm R [9] for computing 
the LALR lookahead sets; it is straightforward and is omitted. This algorithm 
can be improved substantially by using our result (4.2). 
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Algorithm NR. Computing Lookahead Sets by Recursive Calls Using the L-Graph 
function LALR(p:state, kitem): set of T; 

assume Z = [A + al. ap]; 
LALR := 1); 
for q E PRED(p, (Ye) do 

for [B ---* & .A’&] E K, where A’L*A do 
LALR := LALR U Path(A’, A); 
if A E Path(A’, A) then 

begin 
LALR := LALR u FIRST(/?J; 
if A E FIRST&) then LALR := LALR U LALR(q, [Z? + ,&-A’/3P]) 
end 

end for 
end for 

end function. 

Note 1. Algorithm NR requires an additional mechanism for avoiding patho- 
logical cases of recursive calls to the same state and item, giving rise to infinite 
loops. Details are omitted for simplicity; but the mechanism should be included 
in actual programs. 

Note 2. FIRST&) in NR plays a role equivalent to TRANS(GOTO(q, A’)) of 
Kristensen and Madsen [9]. 

Algorithm NR is an improvement over algorithm R because (1) the former 
involves only items in the kernel for each stat,e, eliminating items due to a 
CLOSURE operation (this is the case even after taking into account the effects 
of L-graph and Path); and (2) the if test for A in Path(A, A’), which prevents 
recursive calls to items in the same state, effectively reduces recursion. 

These observations are quantitatively verified in actual experiments, as dis 
cussed in Section 6. 

5.2 Computing LALR(l) Lookahead Sets by Traversing a Digraph 

In an improved method, suggested by DeRemer and Pennello [6], instead of 
recursive calls, a partial ordering, called an includes relation, is introduced for 
sets determined to be giving rise to a digraph. A generalized topological sorting 
a la Tarjan [15] then yields a linear ordering of sets, to be evaluated from the 
smallest to the largest through “union” operations. The number of “union” 
operations is at least that of the edges in the digraph, which is essentially the 
minimum number of recursive calls required; this represents the best possible 
behavior of algorithm R. 

To recast DeRemer and Pennello’s approach in our formalism, it is convenient 
to redefine their Follow. Let q E CO, A E N, and a E T. Then 

Follow(q, A) 
= b I a E FIRST(h) @ LA(q, [B + PI.A’PzI), LB + /%-A’&1 E 41. (5.1) 

With this definition of Follow, DeRemer and Pennello’s method is compactly 
recaptured by the following three results, whose proofs are given in Appendix 
A.3. Parenthetically, DeRemer and Pennello’s concept “Read” is not necessary 
in our presentation, since it is effectively handled by FIRST. Note that compu- 
tation of FIRST is also required in constructing LR(0) states. Hence, the results 
are available at no additional cost. 
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Let p, q E CO. Then, 

LA(p, [A + LY~.(Y~]) = (a ] a E Follow(q, A), q E PRED(p, LYJ~. 

Let q, r E CO. Then, 

(5.2) 

Follow(q, A) = (a ] a E FIRST(&), @ Follow(r, B), [B + P1.A/3,[ E q, (5.3) 

r E PREWq, PA [C -+ YI.BYZI E r). 
Let q, r E Co, [B + P1-APz] E q, [C ---) Y~.~Y~] E r, A, B E N. If r E PRED(a, 

,&) and A E FIRST&), then, 

Follow(q, A) 2 Follow(r, B) or Follow(q, A) “includes” Follow(r, B). (5.4) 

Evaluation of lookahead sets then proceeds in three steps: 

(1) Construct the digraph of vertices, each representing Follow(q, A) initialized 
with the value FIRST(&), as in (5.1), and of edges corresponding to an 
“includes” relation, as in (5.4). 

(2) Compute a Follow(q, A) traversing digraph (according to Tarjan’s algorithm). 
(3) Finally, compute lookahead sets using Follow and PRED as prescribed by 

(5.2). 

Algorithm Dl deals with construction of the digraph as sketched in step (l), 
and Algorithm D3 performs step (3). Details for step (2) are omitted, since it is 
the well-known problem of ubiquitous generalized topological sorting [6, 151. 

Algorithm Dl. Construction of the Digraph 

for q E Co do 
for [B + /3I.A/32] E q where A E N do 

Follow(q, A) := FIRST(P,); 
if A E FIRST@,) then 

for r E PRED(q, &) do 
for [C + /3, .Bp2] E r where B E N do 

Follow(q, A) “includes” Follow(r, B) 
end for 

end for 
end for 

end for. 

Algorithm D3. Lookahead Computation Using Follow 

forpEC,,do 
for [A + a.] E p do 

LA@, [A + a.]) := (); 
for q E PRED(p, a) do 

LA@, [A + cz.]) := LA(p, [A + a.]) U Follow(q, A) 
end for 

end for 
end for. 

DeRemer and Pennello’s strategy, as paraphrased above, results in a striking 
improvement in computing time when compared with methods based on recursive 
calls. Unfortunately, it considers all items-those due to 6+ as well as kernels. 
Thus it is not surprising that the digraph of Follow vertices and “includes” edges 
is large. A substantial reduction in size results if this method is modified to deal 
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with kernel items only, as in our formulation. The result, as presented below, 
enhances storage requirements, while gaining time efficiency. 

Expressions (5.2) through (5.4) are modified as in (5.5) through (5.7), respec- 
tively, with the use of Path and the L-graph so that only kernel items are 
involved. The proofs are given in Appendix A.4, and the corresponding algorithms 
are given as ND1 and ND3. 

Let p, q E CO. Then, 

LA(p, [A + al. a& = (a 1 a E Path(A’, A) @ Follow(q, A’), 
q E PRED(p, cyl), A’L*A, [B ---) &.A’&] E K,). 

(5.5) 

Let p, q E C,,. Then, 

Follow(q, A’) = (a 1 a E FIRST&) @ Path@‘, B) @ Follow(r, B’), 

P --j PI-A’PzI E Kp 
r E PRED(q, &), [C-B Y~.B’Y~] E K,, B’L*BJ. 

(5.6) 

Let 4, r, ~2 CO, [B -+ PIeA’P21 E &, [C -+ YI-B’YZI E K. If r E PREJXq, PA, 
A E FIRST(P2), and A E Path@‘, B). Then, 

Follow(q, A’) 2 Follow(r, B’) or Follow(q, A’) “includes” Follow@, B’). (5.7) 

Algorithm NDl. Construction of the Digraph-Using Kernel Items Only 

for q E C,, do 
for[B+&.A’&JE&whereA’ENdo 

Follow(q, A’) := FIRST@,); 
if A E FIRST&) then 

for r E PRED(q, pl) do 
for [C + &-B’P,( E K, where B’L* B do 

Follow(q, A’) := Follow(q, A’) U Path(B’, B); 
if A E Path(B’, B) 

then Follow(q, A’) “includes” Follow(r, B’) 
end for 

end for 
end for 

end for. 

Algorithm ND3. Lookahead Computation Using Follow 

forpE &do 
for[A-+cu.]Epdo 

LA(p, [A + ct.]) := I); 
for q E PRED(p, LY) where [B + &.A’&J E K, do 

LA(p, [A + a.]) := LA(p, [A + (Y.]) U Path(A’ A); 
if A E Path(A’, A) 

then LA@, [A -, a.]) := LA@ [A --, a.]) U Follow(q, A’) 
end for 

end for 
end for. 

The number of Follow vertices in the digraph is reduced significantly in the 
new method, since, as mentioned earlier, only those of kernels are involved, with 
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“Includes” 

Fig. 5. The “includes” relations in the 
digraph and lookahead propagation. 

f Path(A’, A) 

the effect of vertices due to items 6+ taken care of by the L-graph. Consider a 
situation depicted in Figure 5. If Follow(q.A’) “includes” Follow(r, B’), then the 
number of edges (i.e., “includes” in the original approach) is n + 1, when n is the 
path length in L-graph from B’ to B. In the modified approach for the same 
case, only one edge appears, as opposed to n + 1. Thus not only the number of 
vertices, but also that of edges, is substantially reduced. 

Furthermore, for all other states whose kernels contain the “marked” symbol 
B’, the same reduction phenomenon occurs, since the lookahead sets are com- 
puted using the Path of (5.5) through (5.7), in a manner independent of states. 
Thus the overall reduction in number of edges, and hence union costs, is 
substantial. 

It is straightforward to calculate Path(A’, A), as defined in (3.6), by traversing 
the associated L-graph, with the direction of edges reversed for convenience. 
Tarjan’s algorithm, mentioned earlier, for traversing the Follow digraph is 
modified to traverse the L-graph effectively, twice for this purpose. The saving 
in union costs, mentioned above, is partially offset by union operations required 
in calculating Path in this manner. 

This traversal yields the transitive closure L* and linked lists representing 
Path (A’, A). The scheme used involves searching such a list for a given 
nonterminal (via., for A’ starting for an element H[A] of an array of list headers). 
The experimental data reported in the next section include such time overhead. 

The advantage in our method, however, does not hinge on clever implementa- 
tion details. For example, in processing Ada with 182 nonterminals, DeRemer 
and Pennello’s method must deal with 2022 Follow(q, A) sets, whereas our 
method requires only 322 Follow sets and 768 nonempty Path sets. The order of 
magnitude reduction in Follow sets comes about because our method requires 
those due to kernel items only. The remaining Follow sets (i.e., those due to 
CLOSURE items) are effectively taken into account by Path sets. Note that in 
general far fewer Path sets are required than Follow sets, since the former depend 
only on nontermirials, in contrast to the latter, involving states. A theoretical 
assessment of this saving requires a formula relating the number of states to that 
of nonterminals for a given LALR(1) grammar, the derivation of which appears 
to be quite difficult, and is beyond the scope of the present paper. Experimental 
investigations are discussed in the next, section. 
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6. EXPERIMENTAL RESULTS 

The four methods for computing LALR(l) lookahead sets, namely algorithms R, 
NR, D, and ND have been implemented using Standard Pascal in an LALR(l) 
parser-generating system PGS82 [ 131, running on a midsize computing facility 
based on an IBM System/370-145, and used to experimentally evaluate their (the 
algorithms’) performance. 

LALR grammars for five languages, namely ADA [14], Pascal [7], PL360 
[ 161, XPL [ 111, and PAL [3], have been investigated using PGS82. The results 
are summarized in Tables I and II. 

In Table I, Part 1 pertains to data common to all four methods considered 
(number of rules(P), nonterminals( terminals(T), and LR(0) states(S)). Part 
2 refers to the number of items; the top entry represents total numbers, including 
those of 6+K, whereas the bottom represents those of kernels K only. Under 
Parts 3 and 4, the number of recursive calls and properties (number of vertices 
and edges) of the Follow digraph, respectively, are given; upper (lower) numbers 
represent unmodified (modified) results. Under Part 5, the properties of the L- 
graph and the number of nonempty sets of Path, needed in the modified methods 
only, are summarized. 

In Table II, the time characteristics of all four methods are given. The numbers 
are actual execution times in seconds on an IBM system 370/145 (under OS/ 
VSl). The data show the relative performances. The PGS82 [13] used in these 
experiments consists of two passes. Pass 1 deals with initialization such as 
grammar input, validity checks of the grammar, and the conversion of the 
grammar into the internal representation, etc.; this part is common to all four 
methods studied. Pass 2 is logically divided into four or five subsections dealing 
with initialization, computation of FIRST, L-graph and Path (needed in modified 
methods only), LR(0) states, and, finally, lookahead sets. Actual time spent in 
each subsection is listed; in each entry the upper (lower) refers to the unmodified 
(modified) case. 

As shown in Part 2 of Table I, the total number of items to be dealt with is 
reduced in the modified version by a factor ranging from 3 to 9, compared to the 
unmodified case. This reduction in the size of data to be processed contributes 
to an overall gain in time/space efficiency for CFSM computation. 

Table II indicates that, for the method based on recursion, the modified 
approach (NR) in pass 2 achieves a 20 to 50 percent reduction in CPU time when 
compared with the traditional approach (R). This gain is attributable to the 10 
to 20 percent reduction in the computation of LR(0) state sets and the 40 to 60 
percent reduction in computation of LALR( 1) lookahead sets. 

As expected, the more elaborate schemes D and ND exhibit better time 
characteristics than the corresponding R and NR in computing lookahead sets. 
As listed in Table II, the reduction in time of ND compared to that of D ranges 
from 15 to 20 percent. This is attributable to the 10 to 20 percent reduction in 
computing LR(0) states and the 20 to 30 percent in computing LALR(l) look- 
ahead sets; the latter includes time taken for Path computation. 

As a direct consequence of the reduced time for computing lookahead sets (in 
D and ND), the time for computing LR(0) states becomes significant. Here, 
again, our approach (lower entries under the LR(0) heading of Table II) consis- 
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Table I. Performance Comparison 

Part 3 Part 4 
Part 2 - Follow 

Part 5 

Recur- 
Part 1 Item sions Vertex Edge L-graph Path 

all R D D vertex Edge 
P N T S kernels NR ND ND (NR, ND) 

Ada 398 182 93 823 -5943 13237 2022 2857 
1305 4599 322 1177 182 205 768 

Pascal 201 99 65 374 2732 5465 831 1361 
526 1840 111 753 99 102 308 

PL360 153 64 61 227 1067 987 289 280 
317 337 52 129 64 74 316 

XPL 112 52 47 186 1290 2001 484 564 
257 515 62 260 52 63 231 

PAL 80 32 47 156 1770 8710 590 1336 
205 1045 63 827 32 39 280 

Table II. Time Characteristics 

Pass 2 

Init. First L-gr. LRW LRLR(l) Total 
Pass 1 R, D R, D R, D R, D R D R D 

Ada 71.69 3.56 0.50 
71.69 3.56 0.50 

Pascal 28.41 2.34 0.30 
28.41 2.34 0.30 

XPL 12.83 1.69 0.14 
12.83 1.69 0.14 

PL360 17.83 1.87 0.27 
17.83 1.87 0.27 

PAL 9.43 1.51 0.16 
9.43 1.51 0.16 

NA 100.43 396.15 36.10 500.64 140.59 
1.95 91.03 150.41 22.25 247.45 119.29 
NA 36.22 91.94 12.03 1.30.80 50.89 

0.74 32.74 60.37 7.75 96.49 43.87 
NA 11.01 20.97 5.76 33.81 18.60 

0.58 9.02 12.53 3.47 23.96 14.90 
NA 9.90 8.31 4.87 20.35 16.91 

0.61 7.96 5.21 3.35 15.92 14.06 
NA 12.88 169.73 8.36 184.28 22.91 

0.68 10.18 101.50 5.54 114.03 18.07 

tently shows improvement. Note that the time taken for Path computation (listed 
separately under L-gr. in Table I) is insignificant. 

Finally, as summarized in Parts 4 and 5 of Table I, the number of Follow 
vertices and entries for Path in ND is about half that of Follow vertices required 
in D (with the exception of PL360), implying the corresponding reduction in 
storage requirements in our method (ND). 

7. CONCLUSIONS 

In our research, originally motivated by a desire to understand the LALR(l) 
analysis, we were led to a formalism that (1) makes the underlying analysis more 
transparent, in that fewer definitions and lesser levels of argument are needed, 
and one that is easily comprehensible, in that the arguments needed are to a 
large degree reduced to formula manipulations; and (2) that by providing explicit 
formulas, leads to efficient algorithms both in space and time for constructing 
LR(0) states and computing LALR(l) lookahead sets. 

Specifically, in traditional methods of computing LR(0) states and LALR(l) 
lookahead sets, certain relationships between nonterminals in the grammar are 
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repeatedly reexamined, and the values that depend on these relationships only 
are repeatedly recomputed. A new method is devised in which (by factoring out 
Path) the relationships are examined once and the values are precomputed. This 
results in time and/or space saving for the LR(0) states and LALR(1) lookahead 
set computation. 

Experiments have been performed involving comparisons with other known 
methods to verify the ensuing advantages of our approach in actual use. 
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APPENDIX A 

A.l. Proof of Lemma 3.1. Induction on n. 

(1) For n = 1, from (3.2), 6 ([A + a.B& u]) = ([B +.y, FIRSTk(@)] ] B + y 
E P). Since B = C, A E Pathk(B, C), and BLOC. Lemma 3.1 holds for n = 1. 

(2) Assume Lemma 3.1 holds for n = i, 

6’([A + a.BP, u]) 
= ([C +--y, Pathk(B, C)@kFIRST@u)] ] BL’-lC, C + y E P). 

Now, 

rSi+l([A + cu.&I, u]j 
= 6([C +-y, Path,@, C)&FIRSTk(Pu)] ] BL’-lC, C + y E PI. 

But, according to (3.2), property of 6&, and definition of Pathk 

= ([C’ +-y ‘, FIRST(-/ ‘)@Pathk(B, C)G.&FIRSTk(/3u)] 
IBL’-‘C,C4yEP,y=C’P’,C’-,y’EP). 

= {[C’ +.y’, Pathk(B, C’)@kFIRST,(Pu)]] BL’C’, C’ ---) y’ E PI. 

A.2. Proof of Lemma 3.3. (See also Fig. 6.). Since q E PRED(p, ai). 
[A +-CY~CQ, x’] E q, where 

x E (x’ /[A +-.cQ(Y~, x’] E q, q E PRED(p, (~1)). 

Since A = S ‘, [A +. (Ye (Ye, x ‘3 E a+&. Hence, there must be at least one item 
[C + Y~.AYP, ~1 E q. And 

x E {x’ ([A 3.(~i(~p, x’] E a+&, q E PRED(p, al)). 
(A.1) 

= (z I z E FIRST,(y2y), q E PREDb, ~11, [C + m-A~2, ~1 E 41, 

by Eq. (3.2). 

Case 1. [C + y1 .AY~, y] E K4. Since the item [C + y1 .AY~, y] is in the kernel 
K4, it can be regarded as the same item as item [B ---) pi -A ’ p2, U] that is in the 
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Fig. 6. The GOT0 DFA and Items. 

condition of Lemma 3.3 Thus, from Eq. (A.l), 

x E (2 I z E FIRST/Jay), q E PREW, ~1, [C + YI.AYZ, ~1 E &I. 
= (z ] z E FIRST,&+), 

4 E PREDb, PI), A ‘L*A, P + P1.A ‘P2, ~1 E &I. 
= {z ] z E Pathk(A ‘, A)@+FIRSTk(&u), 

4 E PREW, a~), A’L*A, [B + P1.A ‘P2, ~1 E &I, 

since A E Path(A ‘, A), and if Path(A ‘, A) contains nonempty lookahead sets, 
it must be equivalently considered in Case 2. 

Case 2. [C + y1 .Ay2, y] E 6+K,yi = A. By Lemma 3.2, there must be at least 
one kernel item [B + &-A ’ p2, U] E KQ. And, from Eq. (A.l), 

1~ E (z I z E FIRSTdyzyL q E PREW, .a), [C -+A72, yl E 6+K,J. 
= {z ] z E FIRSTk(y2)@kPathk(A ‘, C)&FIRSTk(P2u), q E PRED(p, CQ), 

A ‘L*A, [C -+A72, y] E 6+Kq, [B + P1.A ‘P2, u] E K,}, 

according to the definition of the FIRSTk, &, and Lemma 3.2, 

= (z ] z E Pathh(A ‘, A)@FIRSTk(P2u), 

q E PREJXp, @I), A ‘L*A, P + ,@,.A ‘P2, ul E Kq), 
according to the definition of Path. 

A.3. Proofs of (5.2), (5.3), and (5.4). From (4.3), 

LA(IA [A + w-a21) 
= (a I a E FIRSWM@LA(q, [B + PI-AP21), 

q E PREDb, a~), [B + P1.4321 E 41, 

which can be rewritten using (5.1) as 

= ]a ] a E Follow( q, A), q E PRED(p, al)). 

End of proof for (5.2). Cl 

According to (5.1), for A E N, 

Follow( q, A) 

= (a I a E FIRST(Pd@LA(q, P -+ P1.4321), P - PI-4321 E 41, 

which can be rewritten using (4.3) as 

= (a ] a E FIRST(/32)@FIRST(y2)@LA(r, [C --, yl-B72]), 

P --, PI-A&I E 4, r E PRENq, PI), [C -+ YI-~Y~I E 4, 
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which, according to (5.1), is 

= ]a I a E FIRST(P,)@Follow(r, B), 
P * PI.APzI E a r E PRED(q, ,&I, [C + -,~.B~~I E TJ. 

End of proof for (5.3). Cl 

According to (5.3), if 

A E FIRST(&) then Follow( q, A) 2 Follow(r, B). 

End of proof for (5.4). Cl 

A.4. Proofs of (5.5), (5.6), and (5.7). From (4.1), 

LAtp, [A + w-4) 
= (a 1 a E Path(A ‘, A @FIRST(P2)@LA( q, [B + ,&.A ‘p2J), 

q E PREDtp, ~1, A ‘L*A, LB + @,.A ‘Pzl E &I, 
which can be rewritten using (5.1) as 

= (a ] a E Path(A ‘, A)@Follow( q, A ‘), 
q E PRED(p, CQ), A ‘L*A, [B + /I,.A ‘/32] E &). 

End of proof for (5.5). 0 

According to (5.1), for A ’ E N, 

Follow( q, A > 

= Ia I a E FIRST(Pd@LA(q, [B -+ /%.A ‘PA P -+ P1.A ‘hl E &I, 
which can be rewritten using (4.1) as 

= (a ] a E FIRST(&)@Path(B ‘, B)@FIRST(y,)@LA(r, [C + rl.B’-yz]), 
B ‘L*B, [B -+ P1.A ‘1621 E &, rWRED(q, bd, KC + YI-B’Y~I E K), 

which, according to (5.1), is 

= (a ] a E FIRST(P2)$Path(B ‘, B)$Follow(r, B ’ ), B ‘L*B, 

P + PI-A ‘Pzl E Kq, r E PREDtq, PI), [C + YI.B’Y~I E Kl. 

End of proof for (5.6). Cl 

According to (5.6), if 

A E FIRST(P2) and A E Path(B ‘, B), then Follow( q, A) 2 Follow(r, B). 

End of proof for (5.7). Cl 
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