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Abstract

This document explains how to exploit the convenience of object-orientation — as supported by,

e.g., C++ (viz., multiple inheritance, template classes and functions, and operator overloading) —

for designing a minimal set of generic classes implementing linear fixed-point equation solvers for

a large variety of specific semiring structures. In terms of methodology, this illustrates how to use

a simple relativistic paradigm to obtain, with a minimal set-up, a large collection of algorithms

which can all be obtained as derived classes and instance objects of a single very abstract scheme.

The resulting system is a truly generic solver which can single-handedly and efficiently solve left-

or right-linear equational systems for optimization problems, not only in number structures, but

also in semirings of regular expressions, graphs, and networks.
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1 Purpose of this Document

This document means to illustrate how the we can exploit the convenience of object-orientation

— as supported by, e.g., C++ (viz., multiple inheritance, template classes and functions, and oper-

ator overloading) — for designing a minimal set of generic classes implementing linear-equation

solvers for a large variety of specific semiring structures. This will also illustrate a simple software

development methodology based on a simple relativistic interpretation of object orientation that

allows a minimal set-up to yield a large collection of algorithms that can all be obtained as derived

classes and instance objects of a single very abstract scheme.1

Because algebraic structures were invented in mathematics for the precise same purpose and

use as those of object-orientation in programming, it comes as no surprise that the two paradigms

match quite harmoniously. The design specified in this paper is a proof of this in the domain of

linear equation solving in a variety of algebraic structures.

If implemented correctly, this API can solve a variety of linear equation-solving problems rang-

ing from familar numerical equations, to regular expression equations, to graph path problems,

including network flow optimization problems [2], Abstract Interpretation of programs [4, 3],

or more generally procedural Program flow analysis [7], and more specifically static analysis of

declarative languages like Prolog or Datalog programs [5, 1].

Hence, this document is organized as a specification of an Application Program Interface (API)

consisting of a very small number of generic classes capable of linear-equation solving in an large

number of abstract algebraic structures (viz., semirings). The word “abstract” is used here it as in

object-oriented programming.

2 One Equation and One Unknown

2.1 Inverses and quasi-inverses

The left-linear fixed-point equation:

x = ax+ b (2.1)

is easily solved in a ring structure by:2

x = ax+ b

x− ax = b

(1− a)x = b

x = (1− a)−1b (2.2)

The right-linear version of Equation (2.1) is:

x = xa + b (2.3)

1See Section 6.
2Please refer to Section 5.2.3.
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that is, too, solved by:

x = xa+ b

x− xa = b

x(1 − a) = b

x = b(1− a)−1 (2.4)

If the ring is a commutative ring — i.e., ∗ is commutative as well — then Equations (2.1) and (2.3)

become identical, and so do solutions (2.2) and (2.4):

x =
b

1− a
. (2.5)

This is the most familar case, for most readers, of the field of rationals 〈Q,+, 0, ∗, 1〉.

Strictly speaking, a field is not quite a commutative ring as required; i.e., Q does not admit a

multiplicative inverse for 0. Then, the solution described by Equation (2.5) exists in Q only under

the condition that a 6= 1. In the case where a = 1, Equation (2.1) becomes degenerate. In Q,

a degenerate equation admits solutions iff b = 0, in which case any element of Q is a solution.

In general semirings, existence of solutions for a degenerate equation will depend on the specific

algebraic structure.

Let us now define x∗, the quasi-inverse of x, as the infinite sum:

x∗ def
=

∑

n≥0

xn. (2.6)

This sum is well known as the simplest of all Taylor series expansion:

1

1− x
= 1 + x+ x2 + x3 + · · · =

∞
∑

n=0

xn = x∗. (2.7)

It is then possible to rewrite the solution in (2.5) as either:

x = a∗b. (2.8)

or:

x = ba∗. (2.9)

Both can also be verified to be indeed bona fide solutions of Equations (2.1) and (2.3), respec-

tively, by direct substitution:

a(a∗b) + b = (aa∗)b+ b

= (a
∑

n≥0 a
n)b+ b

= (
∑

n>0 a
n)b+ b

= b+ (
∑

n>0 a
n)b

= (a0)b+ (
∑

n>0 a
n)b

= (
∑

n≥0 a
n)b

= a∗b;
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and

(ba∗)a+ b = b(aa∗) + b

= b(a
∑

n≥0 a
n) + b

= b(
∑

n>0 a
n) + b

= b+ b(
∑

n>0 a
n)

= b(a0) + b(
∑

n>0 a
n)

= b(
∑

n≥0 a
n)

= ba∗.

The forms x = a∗b and x = ba∗ of the solutions of Equations (2.1) and (2.3), are more general

than the forms (2.2) and (2.4) since they involve only the additive operation + and the multiplica-

tive operation ×, whereas the forms (2.2) and (2.4) involve as well both an additive and multi-

plicative inverse operations, neither of which appear in Equations (2.1) and (2.3): they use only

+ and ×, no inverses. Therefore, the forms (2.8) and (2.9) may be used to compute a solution to

Equations (2.1) and (2.3) for different interpretations of + and ×, when the sets where a, b, and x

take their values do not possess sufficient algebraic structure for + and × to provide all elements

with inverses. The only requirement is that the quasi-inverse’s infinite “Taylor” expansion (2.6)

converge to a limit ; i.e., it must denote a finitely expressible element, or an element that can be

finitely approximated.

Indeed, for well-known structures with different interpretations of + and ×, such as semilat-

tices,3 these operations are also idempotent and therefore quasi-inverses exist. Then, using the

solution’s form (2.8) or (2.9) enables solving systems of linear equations in a wider variety of al-

gebraic structures, including graphs, regular sets, distributive lattices, as well as the familiar ring

structures where the form (2.5) happens to be more easily expressible, as well as all the multi-

dimensional variations of all these structures using matrix semiring algebra.

In all these structures, a simple generic elimination algorithm such as, e.g., the standard Gaus-

sian elimination procedure, may be used to solve systems of linear fixed-point equations. Equation

solving may be made more efficient in specific structures using the particular algebraic properties

local to the specific structures. For example, the Ring class has both additive and multiplicative

inverse methods; if it has as well exact precision, then an algorithm based on Equation (2.5), rather

than on quasi-inverses, can be used.

2.2 Examples

〈Q,+, 0, ∗, 1〉

This is the most familiar setting: the usual field of rational numbers arithmetic. Strictly speaking,

the C++ types float and double are rational numbers because they use only a finite represen-

tation. The fact that real numbers can be approximated by finite rational number representations

is the reason why such types are also used for computing with real numbers. The only impor-

tant difference to keep in mind for the latter is that finite-representation types do rounding and/or

3Please refer to Section 5.1.5.
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truncating beyond the precision imposed by the finite representation. Such errors propagate and

therefore, comparisons among floats and doubles must be done up to that precision. That

is, rather than x == y, it is better to use x − y < ε, where ε is a small number (e.g., ε = 2−p,

where p is any non-negative number of precision bits allowed by the representation). The lesser

the precision p is, the slacker the approximation will be, but the faster will the convergence.

This is how the structure 〈Q,+, 0, ∗, 1〉 is interpreted:

• it is an field on the set Q of rational numbers (i.e., an Abelian ring without inverse for 0);

• the additive operation + is the addition of rationals;

• the additive unit (or zero) is 0 ∈ Q;

• the additive inverse of a rational r is its negative −r;

• the multiplicative operation is the multiplication of rationals;

• the multiplicative unit (or one) is 1 ∈ Q;

• the multiplicative inverse of a rational r is its reciprocal 1
r

(except for r = 0).

〈R,+, 0, ∗, 1〉

〈REΣ,+, ∅, ·, ǫ〉

The set REΣ is the set of all regular sets of finite strings of symbols of an alphabet Σ (e.g., as

denoted by regular expressions on Σ).

〈{0, 1},∨, 0,∧, 1〉

〈2S,∩, ∅,∪, S〉

〈R,max,−∞,min,∞〉

3 Many Equations and Many Unknowns

A system of m > 1 left-linear equations with n > 1 unknowns in fix-point form is shown in

Figure 1. Luckily, this case can be reduced to the previous single equation and single unknown

case.

3.1 Reduction to one equation and one unknown

There are two (equivalent) ways in which this reduction can be done. The first one is based on

Dynamic Programming, and the second one is based on Matrix Algebra.

Copyright c© 2019 by the Author All Rights Reserved
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x0 = a00x0 + · · · + a0jxj + · · · + a0(n−1)xn−1 + b0
...

...
...

...
...

...

xi = ai0x0 + · · · + aijxj + · · · + ai(n−1)xn−1 + bi
...

...
...

...
...

...

xm−1 = a(m−1)0x0 + · · · + a(m−1)jxj + · · · + a(m−1)(n−1)xn−1 + bm−1

Figure 1: System of m Left-Linear Fix-Point Equations With n Unknowns

Dynamic programming

The system of Figure 1 is expressed more concisely as:

S0 =

{

xi =
n−1
∑

j=0

aijxj + bi

}m−1

i=0

(3.1)

Expression (3.1) can be rewritten as:

S0 = {x0 = α0x0 + β0} ∪ S1 (3.2)

where:

α0 = a00, (3.3)

β0 = b0 +

n−1
∑

j=1

aijxj (3.4)

and

S1 =

{

xi =

n−1
∑

j=0

aijxj + bi

}m−1

i=1

. (3.5)

Since β0 is independent of x0, the equation:

x0 = α0x0 + β0 (3.6)

in Expression (3.2) is solved by:

x0 = α∗
0β0. (3.7)

Expression (3.7) gives x0 only as a parametric solution in terms of the n− 1 remaining parametric

variables x1, . . . , xn−1.

Substituting the value of x0 given by Expression (3.7) in Expression (3.5), we get:

S1 =

{

xi =
n−1
∑

j=1

a1ijxj + b1i

}m−1

i=1

(3.8)

Copyright c© 2019 by the Author All Rights Reserved
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where, for all i = 1, . . . , m− 1 and all j = 1, . . . , n− 1:

a1ij = aij + ai0a
∗
00a0j , (3.9)

and for all i = 1, . . . , m− 1:

b1i = bi + ai0a
∗
00b0. (3.10)

Having proceeded thus, the new system obtained as Expression (3.8) is a system of m−1 equations

and n− 1 variables (x1, . . . , xn−1). In other words, the system (3.8) contains one less variable (x0

has been eliminated) and one less equation (x0 =
∑n−1

j=0 aijxj has been eliminated).

Repeating this elimination process, it is straightforward to generalize the foregoing scheme by

induction as follows. We start with the base case (k = 0): for all i = 0, . . . , m − 1 and all

j = 0, . . . , n− 1,

a0ij = aij (3.11)

and, for all i = 0, . . . , m− 1,

b0i = bi. (3.12)

For all k, k = 0, . . . , m− 1, we have,

Sk =

{

xi =
n−1
∑

j=k

akijxj + bki

}m−1

i=k

. (3.13)

Expression (3.13) can be rewritten as:

Sk = {xk = αkxk + βk} ∪ Sk+1 (3.14)

where, for k = 0, . . . , m− 1:

αk = akkk, (3.15)

βk = bkk +
n−1
∑

j=k+1

akijxj . (3.16)

such that, for all i = k, . . . , m− 1 and all j = k + 1, . . . , n− 1:

akij =







aij if k = 0,

ak−1
ij + ak−1

i(k−1)α
∗
k−1a

k−1
(k−1)j if 0 < k < m;

(3.17)

and for all i = 1, . . . , m− 1:

bki =







bi if k = 0,

bk−1
i + ak−1

i(k−1)α
∗
k−1b

k−1
k−1 if 0 < k < m.

(3.18)
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Again, since βk is independent of x0, . . . , xk, the equation:

xk = αkxk + βk (3.19)

in Expression (3.14) is solved by:

xk = α∗
kβk. (3.20)

Thus, Expression (3.20) gives xk as a parametric solution in terms of the n − k − 1 remaining

parametric variables xk+1, . . . , xn−1.

Clearly, after at most m steps, this iterated parametric solving process halts. Indeed, substituting

m for k in Expression (3.13), we obtain:

Sm =

{

xi =
∑n−1

j=m amijxj + bmi

}m−1

i=m

= ∅. (3.21)

Therefore, the previous step’s equational system Sm−1 is independent of variables x0, . . . , xm−1:

Sm−1 = {xm−1 = αm−1xm−1 + βm−1}. (3.22)

where,

αm−1 = am−1
(m−1)(m−1), (3.23)

βm−1 = bm−1
m−1 +

n−1
∑

j=m

am−1
ij xj . (3.24)

Since βm−1 is independent of variables x0, . . . , xm−1, the equation:

xm−1 = αm−1xm−1 + βm−1 (3.25)

in Expression (3.22) is solved by:

xm−1 = α∗
m−1βm−1. (3.26)

There are three situations to consider:

1. m < n: more variables than equations;

2. m = n: as many variables as equations;

3. m > n: more equations than variables.

This is what happens in each case:

1. m < n — Underdefined system: in this case, Equation (3.26) gives an expression of xm−1

in terms of the n − m remaining variables xm, . . . , xn−1. Therefore, since xj , for j =
0, . . . , m−1, depends on the n−j−1 variables xj+1, . . . , xn−1, all m variables x0, . . . , xm−1

are expressed in terms of the n−m remaining parametric variables xm, . . . , xn−1.

Copyright c© 2019 by the Author All Rights Reserved
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2. m = n — Well-defined system: in this case, Equation (3.24) becomes βm−1 = bm−1
m−1, and

hence Equation (3.26) gives an expression of xm−1 independently of any variable. Therefore,

since xj , for j = 0, . . . , m − 2, depends on the m − j − 1 variables xj+1, . . . , xm−1, all m

variables x0, . . . , xm−1 are expressed independently of any parametric variable. In this case

the system is fully solved, and solutions are obtained by the propagation of values from

xm−1 back to x0.

3. m > n — Overdefined system: in this case, when we have a solution for x0, . . . , xm−1 by

back propagation of eliminated variables, there are still additional equations outstanding in

the system. The only way the outstanding m − n equations may be satisfied is if they are

redundant with the m first equations; that is, if the solution x0, . . . , xm−1 verifies the m− n

remaining equations.

If the structure R happens to be a ring 〈D,+, ∅,×, 1〉, then the expressions solving the system

in Figures 1 become, for all k = 0, . . . , m−1, for all i = k, . . . , m−1 and all j = k+1, . . . , n−1:

akij =



















aij if k = 0,

ak−1
ij + ak−1

i(k−1) ×
(

1 + (−αk−1)
)−1

×ak−1
(k−1)j

if 0 < k < m;

(3.27)

and, for all i = 1, . . . , m− 1:

bki =



















bi if k = 0,

bk−1
i + ak−1

i(k−1) ×
(

1+ (−αk−1)
)−1

×bk−1
k−1

if 0 < k < m.

(3.28)

The equation (3.19) is solved by:

xk =
(

1+ (−αk)
)−1

× βk (3.29)

and the equation (3.25) is solved by:

xm−1 =
(

1+ (−αm−1)
)−1

× βm−1. (3.30)

We leave expressions of the right version of the ring solutions as an exercise to the reader.

Matrix algebra

In the case where m = n, the systems of Figures 1 and 10 can be respectively rewritten, using

matrix notation, as:4

X = AX +B (3.31)

4See Section 5.2.7.
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where X ∈ Dn1, A ∈ Dnn and B ∈ Dn1, and:

X = XA+B (3.32)

where X ∈ D1n, A ∈ Dnn and B ∈ D1n.

Therefore, by Theorem 4,5 it comes that the solutions of Equations (3.31) and (3.32) are, re-

spectively:

X = A∗B (3.33)

and:

X = BA∗. (3.34)

3.2 Examples

〈Q,+, 0, ∗, 1〉

This structure is a commutative ring. Therefore, the two systems in Figures 1 and 10 are identical,

and the left and right solutions collapse into one solution. Namely, for all k = 0, . . . , m − 1, for

all i = k, . . . , m− 1 and all j = k + 1, . . . , n− 1:

akij = a′
k

ij =















aij if k = 0,

ak−1
ij +

ak−1
i(k−1)a

k−1
(k−1)j

1− αk−1
if 0 < k < m;

(3.35)

and for all i = 1, . . . , m− 1:

bki = b′
k

i =















bi if k = 0,

bk−1
i +

ak−1
i(k−1)b

k−1
k−1

1− αk−1

if 0 < k < m.

(3.36)

Finally, Equation (3.19) is solved in 〈Q,+, 0, ∗, 1〉 by:

xk =
βk

1− αk

(3.37)

and Equation (3.25) is solved by:

xm−1 =
βm−1

1− αm−1
(3.38)

where, for k = 0, . . . , m− 1:

αk = α′
k = akkk, (3.39)

βk = β ′
k = bkk +

n−1
∑

j=k+1

akijxj . (3.40)

5See Page 21.
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〈R,+, 0, ∗, 1〉

〈REΣ,+, ∅, ·, ǫ〉

〈{0, 1},∨, 0,∧, 1〉

〈R,max,−∞,min,∞〉

4 Three Solving Schemes

4.1 Structures with inverses and exact precision

〈Q,+, 0, ∗, 1〉

〈R,max,−∞,min,∞〉

4.2 Structures with inverses but no exact precision

〈R,+, 0, ∗, 1〉

4.3 Structures without inverses but with stationary points

〈REΣ,+, ∅, ·, ǫ〉

〈{0, 1},∨, 0,∧, 1〉

5 A Definitional Ontology of Algebraic Structures

We shall be concerned with algebraic structures derived on a set with one internal binary opera-

tion (monadic structures) and those derived on a set with two internal binary operations (dyadic

structures) defned on them.

5.1 Monadic structures

The monadic algebraic structures shown in Figure 5.1 are defined below. This taxonomy means

that each monadic structure inherits the characteristic algebraic properties of its super-structure.

DEFINITION 1 (MONADIC STRUCTURE) A monadic structure 〈D, ⋆〉 consists of a set D of el-

ements — the domain — with an internal binary operation:

⋆ : D ×D → D. (5.1)

Copyright c© 2019 by the Author All Rights Reserved
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Monadic Structure

Semigroup Abelian Structure

Monoid Abelian Semigroup Partially Ordered Set

Group Abelian Monoid Semilattice

Abelian Group Semilattice with Bottom

Figure 2: Taxonomy of Monadic Algebraic Structures

In a monadic structure, the operation ⋆ has an associated prefix relation defined for all x, y ∈ D

as:

x ≺⋆ y iff ∃z ∈ D, x ⋆ z = y. (5.2)

5.1.1 Semigroup

DEFINITION 2 (SEMIGROUP) A semigroup 〈D, ⋆〉 is a monadic structure with domain D whose

operation ⋆ (5.1) is associative. That is, for all x, y, z ∈ D:

x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z. (5.3)

Note that in a semigroup 〈D, ⋆〉, the prefix relation ≺⋆ is always transitive (by virtue of associa-

tivity of ⋆). However, but it is not necessarily reflexive.

5.1.2 Monoid

DEFINITION 3 (MONOID) A monoid 〈D, ⋆, ǫ〉 is a semigroup 〈D, ⋆〉 with a special element ǫ ∈
D, called a unit, such that, for all x ∈ D:

x ⋆ ǫ = ǫ ⋆ x = x. (5.4)

Note that in a monoid 〈D, ⋆, ǫ〉, the prefix relation ≺⋆ is also reflexive (by virtue of the unit

element). Therefore, it is a preorder, and is sometimes called the monoid’s prefix approximation.
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5.1.3 Group

DEFINITION 4 (GROUP) A group 〈D, ⋆, ǫ〉 is a monoid such that any element x has an inverse.

That is, for any x ∈ D, there exists a (necessarily unique) x−1 ∈ D such that:

x ⋆ x−1 = x−1 ⋆ x = ǫ. (5.5)

5.1.4 Abelian structure

DEFINITION 5 (ABELIAN STRUCTURE) An Abelian structure is any of the foregoing monadic

structures whose operation ⋆ (5.1) is commutative. That is, for all x, y ∈ D:

x ⋆ y = y ⋆ x. (5.6)

Thus, we speak of an Abelian operation, an Abelian semigroup, an Abelian monoid, an Abelian

group, etc., . . . Alternatively, the more suggestive adjective “commutative” is sometimes preferred

to “Abelian.”

5.1.5 Semilattice

DEFINITION 6 (SEMILATTICE) A semilattice 〈D, ⋆〉 is a commutative semigroup such that ⋆ is

idempotent; i.e., for all x ∈ D:

x ⋆ x = x. (5.7)

A natural partner to the ⋆ operation is the relation defined as ≤⋆ on D by:

∀x, y ∈ D, x ≤⋆ y iff x ⋆ y = y. (5.8)

The relation ≤⋆ is called the semilattice ordering and indeed defines a partial order on D. Namely,

≤⋆ is reflexive (by idempotence of ⋆), anti-symmetric (by commutativity of ⋆) and transitive (by

associativity of ⋆).

In a semilattice 〈D, ⋆〉, the prefix relation ≺⋆ is also an ordering and furthermore it coincides

with the semilattice ordering. Namely:

THEOREM 1 (ALGEBRAIC APPROXIMATION ORDERING) ∀x, y ∈ D, x ≺⋆ y iff x ≤⋆ y.

PROOF Assume that x ≤⋆ y. By definition, this means that x ⋆ y = y. Thus, it is clear that

∃z, x ⋆ z = y (taking z = y). Therefore, x ≺⋆ y.

Now assume that x ≺⋆ y. Then, by definition, x ⋆ zxy = y for some zxy ∈ D. Hence,

x ⋆ y = x ⋆ (x ⋆ zxy) (replacing y by its value)

= (x ⋆ x) ⋆ zxy (associativity)

= x ⋆ zxy (idempotence)

= y

and so, x ≤⋆ y. �
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Note that, ⋆ is automatically a supremum operation for its semilattice ordering; namely:

THEOREM 2 (ALGEBRAIC APPROXIMATION SUPREMUM) For all x, y, z ∈ D:

if y ≤⋆ x and z ≤⋆ x then y ⋆ z ≤⋆ x. (5.9)

PROOF Assume that y ≤⋆ x and z ≤⋆ x; then,

y ⋆ x = x by (5.8) (a)
z ⋆ x = x by (5.8) (b)
(y ⋆ x) ⋆ (z ⋆ x) = x ⋆ x by (a) and (b)
(y ⋆ x) ⋆ (z ⋆ x) = x by (5.7)

(y ⋆ z) ⋆ (x ⋆ x) = x by (5.3) and (5.6)

(y ⋆ z) ⋆ x = x by (5.7)

y ⋆ z ≤⋆ x by (5.8).

�

Finally, note that if a semilattice 〈D, ⋆〉 is also a monoid 〈D, ⋆, ǫ〉, Equation (5.8) entails that ǫ is

the (necessarily unique) least element of D for ≤⋆. Then, it is sometimes written as ⊥ (and called

bottom). Thus, a semilattice with bottom can also be described as an idempotent Abelian monoid.

5.2 Dyadic structures

The dyadic algebraic structures shown in Figure 5.2 are defined below. As for monadic algebras,

this taxonomy means that each dyadic structure inherits the characteristic algebraic properties of

its super-structure.

DEFINITION 7 (DYADIC STRUCTURE) A dyadic structure 〈D, ⋆, ∗〉 is a pair of monadic struc-

tures 〈D, ⋆〉 and 〈D, ∗〉 sharing the same domain D.

In the notation used for an abstract structure, the particular symbols that denote the operation

and unit element (if it is a monoid), are, of course, generic. Thus, in our definitions so far, we

have used ⋆ for the operation, and ǫ for the unit element. Clearly, however, other symbols could be

used instead — what matters is that the chosen symbols substituted for ⋆ and ǫ obey the appropriate

equations. This being said, the familiar arithmetic operation symbols+ and ×, with associated unit

symbols ∅ and 1, respectively, are sometimes used as generic symbols, despite their conventional

arithmetic meaning. Generally, this is to suggest that the structure at hand will behave as, or mostly

as, in familiar arithmetic. The adjective additive (resp., multiplicative) is then used to designate

properties of a structure whose operation is written + (resp., ×).

Many common dyadic structures combine they additive and multiplicative operations using dis-

tributivity of the multiplication over the addition — this is a characteristic of semirings.
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Dyadic Structure

Distributive Dyadic Structure Associative Dyadic Structure

Semiring

Abelian Semiring Ring Path Algebra

Abelian Ring Distributive Lattice Boolean Ring

Boolean Lattice

Figure 3: Taxonomy of Dyadic Algebraic Structures
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5.2.1 Semiring

DEFINITION 8 (SEMIRING) A semiring 〈D,+, ∅,×, 1〉 is a dyadic (additive and multiplicative)

structure on a single set D such that:

• 〈D,+, ∅〉 is a commutative monoid;

• 〈D,×, 1〉 is a monoid;

• × is distributive over +; that is, for all x, y, z ∈ D:

x× (y + z) = (x× y) + (x× z) (5.10)

and

(x+ y)× z = (x× z) + (y × z). (5.11)

To distinguish between the two operations’s unit elements in a semiring, the additive unit ∅ is

referred to as the zero element, and the multiplicative unit 1 as the unit element.

A semiring is an Abelian (or commutative) semiring if its multiplicative operation × is commu-

tative (i.e., if 〈D,×, 1〉 is a commutative monoid).

5.2.2 Path algebra

DEFINITION 9 (PATH ALGEBRA) A path algebra 〈D,+, ∅,×, 1〉 is a semiring such that:

• + is idempotent; i.e., for all x ∈ D:

x+ x = x; (5.12)

• ∅ is absorptive for ×; i.e., for all x ∈ D:

x× ∅ = ∅ × x = ∅; (5.13)

In other words, a path algebra is a semiring that is also an additive semilattice as well as a

∅-absorptive multiplicative semigroup.

Recall that a (possibly empty) path of a graph G = (V,A), where V is a finite set of vertices

and A ⊆ V × V is a set of arcs, is a (possibly empty) ordered sequence of n arcs (n ≥ 0)

〈v1, v2〉, . . . , 〈vn, vn+1〉, such that ∀i ∈ {2, . . . , n − 1}, vi = vi+1. A cycle is such a path where

v1 = vn+1. A simple path has no arc occurring more than once. Hence, if a path is not simple then

it must contain a cycle. An elementary path has no vertex occurring more than twice. Therefore,

any elementary path is a simple path that contains no cycle.

A path algebra is so-named because, as listed in Table 1, many graph-theoretic path problems

in networks consisting of (arc-)labeled graphs with labels coming from a set having a path-algebra
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Path Algebra

Path Problem Name Domain Sum Zero Product One

Determination of accessible sets P1 {0, 1} max(x, y) 0 min(x, y) 1

Determination of shortest paths P2 R min(x, y) +∞ x+ y 0.0

Critical (longest) paths P3 R max(x, y) −∞ x+ y 0.0

Most reliable paths P4 [0.0, 1.0] max(x, y) 0.0 x× y 1.0

Paths of greatest capacity P5 R+ max(x, y) 0.0 min(x, y) +∞

Listing of all paths P6 P(Σ∗) X ∪ Y ∅ X · Y {ǫ}

Listing of simple paths P7 P(S(Σ∗)) X ∪ Y ∅ X · Y {ǫ}

Listing of elementarY paths P8 B b(X ∪ Y ) ∅ X · Y {ǫ}

Table 1: Some network path problems formulated as equation-solving in specific path algebras

structure can be formulated as solving systems of simultaneous fix-point linear equations where

the unknowns are the vertices and the coefficients are the labels on the arcs.6

In Table 1, [0.0, 1.0] denotes the closed unit interval in R; R denotes the set of real numbers,

including both ±∞; and, R+ denotes the set of non negative elements of R. The powerset P(S)
of a set S is the set of all the subsets of S. For a set strings S on a finite alphabet Σ, the notation

S(S) denotes the set of all the simple strings of S; i.e., in which no symbol of Σ occurs more

than once. The set-concatenation of two sets of strings S1 and S2, is the set of strings S1 · S2
def
=

{ s1 · s2 | s1 ∈ S1 and s2 ∈ S2 }; i.e., the set of all strings that are the concatenation of a string in

S1 and a string in S2. Given a language B ⊆ Σ∗, a string s ∈ Σ∗ is basic for B iff B does not

contain any substring of s (including ǫ). Given any set of strings S, we use the expression b(S) to

denote the subset of S of strings that are basic for S; viz., b(S)
def
= { s ∈ S | s is basic for S }. In

other words, b(S) is the subset of S obtained from S after removing any string that is a substring

of another string in S (including ǫ). Note in particular that both the empty language ∅ and the

one-element language { ǫ } are elements of any basic language B.

Therefore, the graph-path problems in Table 1 can all be formulated as solving a system of

fix-point linear equations in a path algebra. This is computationally possible in a path algebra

because quasi-inverses exist and may be computed since all iterated self-composition involved in

the computation of a ∗-closure converges to a stable limit in a finite number of iterations.

6This table is adapted from [2] (Table 3.1, Page 86).
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5.2.3 Ring

DEFINITION 10 (RING) A ring is a special case of a semiring. In fact, a ring structure is to a

group what a semiring structure is to a monoid. Indeed, a ring 〈D,+, ∅,×, 1〉 is a dyadic (additive

and multiplicative) structure on a set D such that:

• 〈D,+, ∅〉 is a commutative group;

• 〈D,×, 1〉 is a group;

• the multiplicative operation × is distributive over the additive operation +; that is, Equa-

tions (5.10) and (5.11) hold for all x, y, z ∈ D.

A ring is an Abelian (or commutative) ring if its multiplicative operation × is commutative (i.e.,

if 〈D,×, 1〉 is a commutative group).

5.2.4 Lattice

DEFINITION 11 (LATTICE) A lattice 〈D,+,×〉 is a dyadic structure such that:

• 〈D,+〉 is a semilattice (called its additive semilattice);

• 〈D,×〉 is a semilattice (called its multiplicative semilattice);

• its two operations are mutually absorptive; i.e., for all x, y ∈ D:

x+ (x× y) = x = x× (x+ y). (5.14)

Thus, the structure of a lattice is symmetric with respect to its two operations in the sense that

〈D,+,×〉 is a lattice iff 〈D,×,+〉 is a lattice. This important property is called duality. It makes a

valid statement equally valid when changing every additive part into its multiplicative counterpart,

and vice versa.

Note that a lattice is partially ordered both as an additive semilattice and as a mutiplicative

semilattice. In fact, it is easy to see that the two partial orders are mutual inverses. That is,

≤+ = ≤−1
× , (5.15)

and thus also, by duality:

≤× = ≤−1
+ . (5.16)

By convention, because the additive and multiplicative orderings of a lattice are mutual inverses,

we write simply ≤ for ≤+ and ≥ for ≤×. Thus, if a lattice is an additive (resp., multiplicative)

monoid, ∅ is the least (resp., 1 is the greatest) element for ≤ and is often referred to as “bottom”

(resp., “top”) and sometimes written “⊥” (resp., “⊤”).
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Note also that if a lattice 〈D,+,×〉 is an additive monoid 〈D,+, ∅〉, then ∅ is necessarily absorp-

tive for ×; i.e., Equation (5.13) holds for all x ∈ D. Dually, if a lattice 〈D,+,×〉 is a multiplicative

monoid 〈D,×, 1〉, then 1 is necessarily absorptive for +; i.e., Equation (5.17) holds for all x ∈ D:

x+ 1 = 1+ x = 1. (5.17)

It is important to realize that a lattice is neither an instance of, nor is it more general than, a

semiring (it lacks distributivity). However, it is easy to show that the following “sub-distributive”

inequality holds in a lattice:

THEOREM 3 (SUBDISTRIBUTIVITY) Let L = 〈D,+,×〉 be a lattice. Then, for all x, y and z in

D:

x× (y + z) ≥ (x× y) + (x× z) (5.18)

and, dually:

x+ (y × z) ≤ (x+ y)× (x+ z). (5.19)

PROOF We need only establish Inequality (5.19); the proof of Inequality (5.18) is the same up

to duality.

Let x, y, and z be arbitrary elements of a lattice 〈D,+,×〉. Clearly, we have:

x ≤ x+ y (5.20)

(since x+ (x+ y) = x+ y). Similarly,

x ≤ x+ z. (5.21)

Since × is an infimum operation for ≤, it follows from Inequalities (5.20) and (5.21) that:

x ≤ (x+ y)× (x+ z). (5.22)

On the other hand, we also have:

y × z ≤ y ≤ x+ y (5.23)

and

y × z ≤ z ≤ x+ z. (5.24)

Again, because × is an infimum operation for ≤, Inequalities (5.23) and (5.24) imply that:

y × z ≤ (x+ y)× (x+ z). (5.25)

Finally, because + is a supremum operation for ≤, Inequalities (5.22) and (5.25) imply In-

equality (5.19). �
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A distributive lattice is a lattice in which equality, rather than ≤, holds in (5.18) for all x, y

and z (or equivalently, by duality, if equality, rather than ≥, holds in (5.19)). Thus, a distributive

lattice with top and bottom is both an additive and a multiplicative commutative semiring. That is,

Equations (5.10) holds for all x, y, z ∈ D (and so does (5.11), by commutativity of ×).7

Finally, note that a distributive lattice with top and bottom is simultaneously an additive and a

multiplicative path algebra.

5.2.5 Boolean ring

DEFINITION 12 (BOOLEAN RING) A boolean ring is a ring in which any element admits a (nec-

essarily unique) complement with respect to the additive and multiplicative operations. That is,

for any x ∈ D, there exists a unique x̄ ∈ D such that:

x+ x̄ = x̄+ x = 1, (5.28)

and

x× x̄ = x̄× x = ∅. (5.29)

5.2.6 Boolean lattice

DEFINITION 13 (BOOLEAN LATTICE) A boolean lattice is a lattice that is also a boolean ring;

i.e., it is a distributive complemented lattice.

5.2.7 Matrix liftings

DEFINITION 14 (MATRIX LIFTINGS) Given a semiring structure R = 〈D,+, ∅,×, 1〉 and two

positive natural numbers m and n, we can construct its m× n matrix lifting:

M
mn(R) = 〈Dmn,+mn, ∅mn,×mn, 1mn〉. (5.30)

as shown as follows in Equations (5.31)–(5.35).

The domain of m× n matrices over R is defined as:

Dmn def
=

{

d ∈ Dm×n | d = {dij ∈ D}m−1,
i=0,

n−1
j=0

}

(5.31)

7This is equivalent, by duality, to the additive operation + being also distributive over the multiplicative operation

×; that is:

x+ (y × z) = (x + y)× (x+ z) (5.26)

or, by commutativity of +:

(x× y) + z = (x + z)× (y + z). (5.27)

Copyright c© 2019 by the Author All Rights Reserved



Page 22 Linear-Equation Solving in Arbitrary Semi-Rings December 19, 2019

Matrix addition is defined as follows. If a ∈ Dmn and b ∈ Dmn are two m × n matrices, then

∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

(a+mn b)ij
def
= aij + bij ; (5.32)

The null m× n matrix is defined as follows: ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

∅mn
ij

def
= ∅ ∈ D; (5.33)

Matrix multiplication is defined as follows. If a is an m × n matrix in Dmn, and b is an n × p

matrix in Dnp, then ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ p− 1,

(a×mp b)ij
def
=

n−1
∑

k=0

aik × bkj ; (5.34)

The unit m× n matrix is defined as follows: ∀i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

1
mn
ij =

{

1 ∈ D if i = j,

∅ ∈ D otherwise.
(5.35)

We can simplify the mn notation in Equations (5.32)–(5.35) by dropping the dimension super-

scripts, with the dimension constraints implicit. Hence, Equations (5.32)–(5.35) become Equa-

tions (5.36)–(5.39):

(a+ b)ij
def
= aij + bij ; (5.36)

∅ij
def
= ∅ ∈ D; (5.37)

(a× b)ij
def
=

n−1
∑

k=0

aik × bkj ; (5.38)

1ij =

{

1 ∈ D if i = j,

∅ ∈ D otherwise.
(5.39)

An element d = {dij ∈ D}m−1,
i=0,

n−1
j=0 of Dmn is written:

















d00 · · · d0j · · · d0(n−1)

...
. . .

...
...

di0 · · · dij · · · di(n−1)

...
...

. . .
...

d(m−1)0 · · · d(m−1)j · · · d(m−1)(n−1)

















(5.40)
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Given a matrix d ∈ Dmn, an element dij of d is referred to as the entry of d at row i and column

j. The ordered pair mn is called the dimension of the matrix: m is called the row dimension and

n is called the column dimension. Note that the multiplicative matrix operation is not an internal

function, but can only be applied if the first matrix’ column dimension is equal to the second

matrix’ row dimension. However,

THEOREM 4 Given a semiring R, its matrix lifting M
n2

(R) for n fixed, is also a semiring.

Note however that, even if R is a ring, Mn2

(R) is still only a semiring.

6 A Relativistic View of Object Orientation

The essence of object-orientation coincides with that of Einstein’s Special and General Relativity

theories [6].

Einstein’s Special Relativity Theory (SRT) is all based on the observation that there is a math-

ematical duality between being at rest on one hand, and being in motion on the other hand: all

motion is relative to a set of reference. Hence, it is mathematically irrelevant whether I sit in a

train moving along with it at some speed with respect to the scenery, or whether I sit in a motion-

less train while the scenery moves by in the opposite direction at the same speed.

Similarly, Einstein’s General Relativity Theory (GRT) is all based on the observation that there

is a mathematical duality between free falling frictionless in a straight line on one hand, and the

texture of space being warped by massive bodies on the other hand: the curvature of all trajectory

of motion is relative to space’s own curvature. Hence, it is mathematically irrelevant whether

the Earth is orbiting the Sun elliptically is a closed curve, or whether it free-falls frictionless

indefinitely in a straight line, while space in which it moves is itself curved by the same opposite

factor into the (hyper) elliptical (hyper) “eddy” created by the Sun’s gravity.8 Thus is GRT the key

to explaining the mystery of “action at a distance” of gravity.

Similarly as well, object-orientation (OO) is based on the observation that there is a mathemat-

ical duality between an object being acted upon by a function on one hand, and a function being

acted upon by an object on the other hand: the orientation of f(x) is relative to the structure of

interpretation of the object x or the function f . Hence, it is mathematically irrelevant whether the

function f is applied to the object x, or whether the object x is sent the message f . In the first

case (the conventional view), the function f knows what to do with an object of the type of x

and performs it on x; in the second case (the object-oriented view), the object x knows what to

do when it is asked to respond to the message sent to it as f , and performs it. Thus is OO the

key to a new decentralizing view of computation that allows distributed computation and code

modularity: whereas the conventional view’s centralizing computation in functions made them

huge, inefficient, and quickly impractical to maintain, the (mathematically equivalent) OO view

now delegates computation to objects by making them react to messages sent to them by using

8“Hyper” because space is at least 3-dimensional. . .
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class Object

{

virtual Object *method (Context *context);

}

Figure 4: Object Class Skeleton

class Context

{

Object *method (Object *object)

{

return object.method(this);

}

}

Figure 5: Context Class Skeleton

methods specified for them by their class definitions. Therefore, object-orientation may simply be

construed as exploiting a mathematical relativity principle. This relativistic view can be used as a

systematic object-oriented software design methodology.

To be precise, the change of perspective, when orienting computation with reference to an object

rather than a function, is expressed mathematically by the set isomorphism:

A → (B → C) ≃ B → (A → C). (6.1)

This equation essentially captures the dual relativity of computation alluded to above between

computation expressed as (1) applying a function to an object or as (2) invoking a method on an

object. In the former (classical) case, it is the function that reacts to being passed an object as a

parameter; it the latter (object-oriented) case, it is the object that reacts to a function being invoked

on it.

This article is an example of the general case that can be expressed as follows:

function : Context → (Object → Object)

≃

method : Object → (Context → Object).

(6.2)

Therefore, we can define two class structures, Object and Context, that always respectively

declare a method (here called method) as shown in Figures 4 and 5.9 Some examples are given

in Figure 6.

9Using C++ syntax.̇.
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Context Object method

Name Value Environment Expression evaluate

Name Type Environment Expression typecheck

Run Time Environment Instruction execute

Algebraic Structure Equation solve

Logical Theory Theorem prove

Constraint Structure Constraint resolve
...

Figure 6: Some Use Cases for the Context/Object Relativity Principle

7 Implementation

A simple linear-equation solver over an algebraic dual structure (the parameter class Structure)

should provide:

• a class to substitute for Structure, the type of elements in the structure’s domain. This

is the type of the coefficients a, and b, and that of the unknown x as well. This algebraic

structure class will have:

– a private member rep whose type is an adequate representation of the structure’s do-

main elements.

– a public friend method operator+ that takes two arguments of type const

&Structure and returns a result of type &Structure;10

– a public friend method operator- that takes only one argument of type const

&Structure and returns a result of type &Structure;

– a public friend method operator- that takes two arguments of type const

&Structure and returns a result of type &Structure;

– a public const Structure zero;

– a public friend method operator* that takes two arguments of type const

&Structure and returns a result of type &Structure;

– a public friend method operator/ that takes two arguments of type const

&Structure and returns a result of type &Structure;

10The & return type may appear odd; however, keep in mind that the generic design eventually will actually allow

the overloading of operators on very big structures such as, e.g., matrices (i.e., multidimensional arrays), and therefore

saving the return copy space/time is worth saving. Be that as it may, we are free to choose to return a Rational in-

stead of &Rational if we so wish. The & return type version has the advantage of generic uniformity for inheritance

if doing the complete generic API.
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– a public const Structure one;

– a public friend method operator== that takes two arguments of type const

&Structure and returns a result of type bool;

• a class Equation representing a linear fix-point equation on the Structures; this class

must have a private member structure of type *Structure;

We must also provide the methods solve for both Structure and Equation<Structure>

classes following the design scheme of Section 6.

For example, solving over rational numbers should provide:

• a class Rational representing a rational number; this can be represented by pairs of inte-

gers, or decimal doubles, or whatever other equivalent representation of a rational number

one may decide;11

– a private member rep of, say, type double;

– a public friend method operator+ that takes two arguments of type const

&Rational and returns a result of type &Rational;

– a public friend method operator- that takes only one argument of type const

&Rational and returns a result of type &Rational;

– a public friend method operator- that takes two arguments of type const

&Rational and returns a result of type &Rational;

– a public const Rational zero(0.0);

– a public friend method operator* that takes two arguments of type const

&Rational and returns a result of type &Rational;

– a public friend method operator/ that takes two arguments of type const

&Rational and returns a result of type &Rational;

– a public const Rational one(1.0);

– a public friend method operator== that takes two arguments of type const

&Rational and returns a result of type bool;

• a class Equation representing a linear fix-point equation on the Rationals; this class

must have a private member structure of type *Rational;

We must also provide the methods solve for both Rational and Equation<Rational>

classes.

11Recall that a rational number r ∈ Q is a pair of integers written r = n
d

, where n ∈ N is the numerator and d ∈ N

is the denominator, or equivalently as a number in decimal “dot” notation written r = i.d, where i ∈ N is the integer

part and d ∈ N is the decimal part.
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7.1 Discussion

7.1.1 Purpose of structure

The class Equation representing a linear fix-point equation on the Rationals actually does

not need to have the structure member of type *Rational. In fact, this member comes in

handy only when carrying out the implementation for arbitrary semirings.

If one does not wish carry out the implementation for arbitrary semirings, this member should be

inherited by the instance Equation<Rational> from a generic class Equation<Semi Ring>.

In the latter, the structure member is of type Semi Ring, the type parameter.

The taxonomy of algebraic structures of semirings, or special cases of semirings, can easily be

encoded as a class taxonomy deriving from a base class Dual Structure:12

Abstract class hierarchies can now easily be defined following the formal specification given by

the mathematical ontologies in Section 5. There are two kinds of classes: one for the monadic

algebras shown in Figure 5.1, and the other for the dyadic algebras Figure 5.2.

In the generic linear-equation-solver software architecture we are defining, each of these classes

is parameterized by the type variable Domain, of its (private) representation. For example, the

class Rational can be defined as a subclass of Abelian Ring<double>.13

Figures 7–9 show a skeleton for a C++ implementation of a solver using dynamic program-

ming.14

7.1.2 Purpose of Rational::solve(Equation)

We would not need to worry about invoking Rational::solve(Equation) unless the sys-

tem also means to allow the scheduling of the simultaneous resolution of several systems from the

context of a given semiring structure. Only then is this method needed.

7.1.3 Testing the design

Since Q is not quite a ring (because 0 has no multiplicative inverse), we must test whether a[0][0]

is equal to structure.one. If so, the equation x = x+ b is solvable only if the structure is an

additive semilattice — that is, has an idempotent plus (i.e., such that x+ x = x). In this case, any

x such that b ≤+ x is a solution. The alternatives are:

• abort solving;

• if underdefined, give a parameterized solution;

12We do not have to include all these classes, of course, unless we actually want to implement a complete API

library...
13Assuming that we use a double to represent a rational number in Q.
14Please note the “informal” C++ syntax. . . This is just a program skeleton, not a complete solution.
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// FILE. . . . . lineq.h

#ifndef LINEQ_H

#define LINEQ_H

template <class Structure>

class System;

template <class Structure>

class Equation

{

Structure *a;

Structure *b,

Structure *x;

bool left;

public:

Structure *a () { return a; }

Structure *b () { return b; }

Structure *x () { return x; }

bool isLeft () { return left; }

Equation (Structure &a, Structure &b, bool left=true)

: a (a)

, b (b)

, left (left)

{

solve();

}

Equation (System<Structure> s, bool left=true)

{

this = s.solve(left);

}

Equation *solve ()

{

x = isLeft() ? a().quasi_inverse() * b()

: b() * a().quasi_inverse();

return this;

}

};

Figure 7: Header File — Part I
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const int DefaultNumberOfEquations = 2;

const int DefaultNumberOfUnknowns = 2;

template <class Structure>

class System

{

int m = DefaultNumberOfEquations;

int n = DefaultNumberOfUnknowns;

Structure* a[m][n];

Structure* b[m];

Structure* x[n];

bool left = true;

public:

int numberOfEquations () { return m; }

int numberOfUnknowns () { return n; }

Structure* a[][] () { return a; }

Structure* b[] () { return b; }

Structure* x () { return x; }

bool isLeft () { return left; }

System (Structure* a[], Structure* b[], bool left)

: m (sizeof(b))

, n (sizeof(a)/m)

, a (a)

, b (b)

, left (left)

{

if (m == 0 | m != n) exit(1);

}

Equation<Structure> *solve ();

};

#endif

Figure 8: Header File — Part II
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#include "lineq.h"

template <class Structure>

Equation<Structure> *System<Structure>::solve ()

{

Structure* newa[][], newb[];

Equation<Structure> *eq;

int i,j;

if (m == 1)

return new Equation<Structure>(a[0][0],b[0],left);

newa = new Structure[m-1][n-1];

newb = new Structure[m-1];

Structure qi = a[0][0].quasi_inverse();

if (isLeft())

for (i=1; i<=m-1; i++)

{

for (j=1; j<=n-1; j++)

newa[i-1][j-1] = a[i][j] + a[i][0] * qi * a[0][j];

newb[i-1] = b[i] + a[i][0] * qi * b[0];

}

else

for (i=1; i<=m-1; i++)

{

for (j=1; j<=n-1; j++)

newa[i-1][j-1] = a[i][j] + a[i][0] * a[0][j] * qi;

newb[i-1] = b[i] + a[i][0] * b[0] * qi;

}

eq = new Equation<Structure>

( new System<Structure>(newa,newb,left)

, left);

return new Equation<Structure>

( a[0][0]

, b[0] + (left ? a[0][1] * eq->x : eq->x * a[0][1])

, left);

}

Figure 9: Implementation File
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x0 = x0a00 + · · · + xja0j + · · · + xn−1a0(n−1) + b0
...

...
...

...
...

...

xi = x0ai0 + · · · + xjaij + · · · + xn−1ai(n−1) + bi
...

...
...

...
...

...

xm−1 = x0a(m−1)0 + · · · + xja(m−1)j + · · · + xn−1a(m−1)(n−1) + bm−1

Figure 10: System of m Right-Linear Fix-Point Equations with n Unknowns

• if overdefined:

– solve for the square subsystem, and check whether or not the partial solution satisfies

the outstanding equations;

– solve for the least-squares.15

Finally, let us note that the skeleton given above can solve only for well-defined systems, and

aborts otherwise. One should use exceptions for a more graceful control.

Appendix

A Right-Linear Equations

A system of m right-linear equations with n unknowns in fix-point form is shown in Figure 10.

The right version of all that was done for the left system in Figure 1 is of course valid for the

right system in Figure 10. Namely, the base case (k = 0): for all i = 0, . . . , m − 1 and all

j = 0, . . . , n− 1,

a′
0
ij = aij (A.1)

and, for all i = 0, . . . , m− 1,

b′
0
i = bi. (A.2)

For all k, k = 0, . . . , m− 1, we have,

S ′
k =

{

xi =

n−1
∑

j=k

xja
k
ij + bki

}m−1

i=k

. (A.3)

15The least-square approximant of a system in canonical form Ax + b = 0 that is overdefined is the well-defined

system AtAx + Atb = 0. This system is always square and can therefore be solved. Its solution xlq is such that its

“distance” from any solution x of the overdefined system Ax + b = 0 — i.e., the inner product (x − xlq)
t(x − xlq)

— is minimal; that is, ∀x, ∅ ≤+ x− xlq .
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Expression (A.3) can be rewritten as:

S ′
k = {xk = xkα

′
k + β ′

k} ∪ S ′
k+1 (A.4)

where, for k = 0, . . . , m− 1:

α′
k = a′

k

kk, (A.5)

β ′
k = b′

k

k +

n−1
∑

j=k+1

xja
′k

ij . (A.6)

such that, for all i = k, . . . , m− 1 and all j = k + 1, . . . , n− 1:

a′
k

ij =







a′ij if k = 0,

a′
k−1
ij + a′

k−1
i(k−1)a

′k−1
(k−1)jα

′∗

k−1 if 0 < k < m;
(A.7)

and for all i = 1, . . . , m− 1:

b′
k

i =







bi if k = 0,

b′
k−1
i + a′

k−1
i(k−1)b

′k−1
k−1α

′∗

k−1 if 0 < k < m.

(A.8)

Hence, the equation:

xk = xkα
′
k + β ′

k (A.9)

in Expression (A.4) is solved by:

xk = β ′
kα

′∗

k. (A.10)

After m− 1 steps, we obtain:

S ′
m−1 = {xm−1 = xm−1α

′
m−1 + β ′

m−1}. (A.11)

where,

α′
m−1 = a′

m−1
(m−1)(m−1), (A.12)

β ′
m−1 = b′

m−1
m−1 +

n−1
∑

j=m

xja
′m−1
ij . (A.13)

The equation:

xm−1 = xm−1α
′
m−1 + β ′

m−1 (A.14)

in Expression (A.11) is solved by:

xm−1 = β ′
m−1α

′∗

m−1. (A.15)
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