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Abstract

Experimenting with formalisms for Natural Language Processing involves costly programming
overhead in conventional computing idioms, even as “advanced” as Lisp or Prolog. LIFE
(Logic, Inheritance, Functions, and Equations) is a programming language which incorporates
an elegant type system which supports a powerful facility for structured type inheritance. Also,
LIFE reconciles styles from Functional Programming and Logic Programming by implicitly
delegating control to an automatic suspension mechanism. This allows interleaving interpre-
tation of relational and functional expressions which specify abstract structural dependencies
on objects. Together, these features provide a convenient and versatile power of abstraction
for very high-level expression of constrained data structures. Computational linguistics is a
discipline where such abstractions are particularly useful. Therefore, obvious convenience
is offered by LIFE for experimentation to the computational linguist, who becomes relieved
from burdensome yet extrinsic programming complications. We presently attempt to show
how LIFE may be a natural computer language for processing natural human languages.

iii



Keywords

Natural Language Processing, Type Inheritance, Logic Programming, Functional Program-
ming, Delayed Evaluation.

Acknowledgements

We owe much to Roger Nasr for his momentous contribution to the conception and architecture
of LIFE. Many thanks also to Raymonde Guindon and Jon Schlossberg for their kind tutorial
help in computational linguistics while implementing the LIFE NL parser.

We would like to thank David Plummer for Still Life, his original partial implementation of
LIFE in Prolog which allowed us to experiment with many ideas presented in this paper. We
also thank Richard Meyer for implementing Wild Life a complete, portable, and efficient LIFE
interpreter realized in C [16]. Richard’s implementation was done at Digital, Paris Research
Lab., and is available as public domain software.

iv



Contents

1 Introduction 1

2 The Chemistry of LIFE 2
2.1 The Atoms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2

2.1.1 �-Calculus: Computing with Functions � � � � � � � � � � � � � � � 2
2.1.2 �-Calculus: Computing with Relations � � � � � � � � � � � � � � � 5
2.1.3 �-Calculus: Computing with Types � � � � � � � � � � � � � � � � � 7

2.2 The Bonds � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 13
2.2.1 ��-Calculus: Le Fun � � � � � � � � � � � � � � � � � � � � � � � � 13
2.2.2 ��-Calculus: Log In � � � � � � � � � � � � � � � � � � � � � � � � 16
2.2.3 ��-Calculus: FOOL � � � � � � � � � � � � � � � � � � � � � � � � � 18

2.3 The ��� Molecule � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 18

3 Natural Language 20
3.1 Traditional NLP � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 20
3.2 NLP in LIFE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 21

3.2.1 Syntax—The Grammar � � � � � � � � � � � � � � � � � � � � � � � 22
3.2.2 Semantics—The Constraints � � � � � � � � � � � � � � � � � � � � 23
3.2.3 Pragmatics—Anaphora � � � � � � � � � � � � � � � � � � � � � � � 25

4 Conclusion 26
4.1 Why LIFE? � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 26
4.2 Categorial Grammars � � � � � � � � � � � � � � � � � � � � � � � � � � � 27
4.3 Limitations of Current System � � � � � � � � � � � � � � � � � � � � � � 27

References 28

v





LIFE, a Natural Language 1

We modern Europeans (...) have lost the ability to think in large
dimensions. We need a change in Lebensgefuhl [our feeling for
life]. It is my hope that the enormous perspective of human
growth which has been opened to us by [this] research (...) may
serve to contribute in some small measure to its development.

LEO FROBENIUS, Volksmärchen und Volksdichtungen Afrikas.

1 Introduction

LIFE, so-denominated for Logic, Inheritance, Functions, and Equations, is a prototype
programming language. It is the product to date of research meant to explore whether
programming styles and conveniences evolved as part of Functional, Logic, and Object-
Oriented Programming could be somehow brought together to coexist in a single programming
language. Being aware that not everything associated to these three approaches to programming
is either well-defined or even uncontroversial, we have been very careful laying out some
clear foundations on which to build LIFE. Thus, LIFE emerged as the synthesis of three
computational atomic components which we refer to as function-oriented, relation-oriented,
and structure-oriented, each being an operational rendition of a well-defined underlying model.

Formalisms for linguistic analysis have emerged, based on Horn clause logic [20], frame
unification [23], �-calculus [25], each proving itself adequate for particular aspects of Natural
Language Processing (NLP). LIFE happens to reconcile all these approaches, therefore
offering a unique experimental tool for the computational linguist. To be sure, there are
other efforts attempting to tailor programming languages, typically logic programming, for
linguistic analysis. (As has been pointed out in [12], order-sorted logic is quite convenient
for parsing.) Among those known to us CIL [17, 18] is one that comes close to LIFE’s spirit
in that it combines partial features of Log In [3] (see Section 2.2.2) with delayed evaluation
handled with an explicit freeze meta-predicate borrowed from Prolog-II [11]. CIL’s constructs
are called Partially Specified Terms (PST’s) which are exactly the same as feature matrices
used in Unification Grammars [23], and are a strict particular case of Log In’s �-terms. To
our knowledge PST’s do not accommodate disjunctive constructs, nor do they use a type
hierarchy, let alone type definitions. In addition, judging from the literature, we find CIL
constructs rather unnecessarily convoluted as opposed to our simple LIFE style, although the
reader is encouraged to make an opinion for herself. On the programming language side, there
is a growing multitude dealing with integrating logic and functional programming. However,
none of them worries about bringing in frame-like unification or inheritance, and few have
higher-order functions. We refer the reader to [6] for a survey of prominent approaches.
LIFE stands apart as the only formalism we know which encompasses such a breadth of
functionality.

This document consists essentially of two parts: an informal overview of LIFE (Section 2)
and a particular experiment applying LIFE to linguistic analysis meant as an illustration of its
adequacy (Section 3). For a formal semantics of LIFE, the reader is referred to [9] where all
aspects of LIFE are given a rigorous mathematical meaning.
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2 Hassan Aı̈t-Kaci and Patrick Lincoln

2 The Chemistry of LIFE

LIFE is a trinity. The function-oriented component of LIFE is directly derived from
functional programming languages standing on foundations in the �-calculus like HOPE [10],
SASL [26], ML [13], or Miranda [27]. The convenience offered by this style of programming
is essentially one in which expressions of any order are first-class objects and computation
is determinate. The relation-oriented component of LIFE is essentially one inspired by the
Prolog [24] language, taking its origin in theorem-proving as Horn clause calculus with a
specific and well-defined control strategy—SLD-resolution. To a large extent, this way of
programming gives the programmer the power of expressing program declaratively using
a logic of implication rules which are then procedurally interpreted with a simple built-in
pattern-oriented search strategy. Unification of first-order patterns used as the argument-
passing operation turns out to be the key of a quite unique and heretofore unheard of generative
behavior of programs, which could construct missing information as needed to accommodate
success. Finally, the most original part of LIFE is the structure-oriented component which
consists of a calculus of type structures—the �-calculus [2, 4]—and rigorously accounts for
some of the (multiple) inheritance convenience typically found in so called object-oriented
languages. An algebra of term structures adequate for the representation and formalization of
frame-like objects is given a clear notion of subsumption interpretable as a subtype ordering,
together with an efficient unification operation interpretable as type intersection. Disjunctive
structures are accommodated as well, providing a rich and clean pattern calculus for both
functional and logic programming.

Under these considerations, a natural coming to LIFE has consisted thus in first studying
pairwise combinations of each of these three operational tools. Metaphorically, this means
realizing edges of a triangle (see Figure 2) whose vertices would be some essential operational
renditions of, respectively, �-calculus, Horn clause resolution, and �-calculus. (It is assumed
that the reader is familiar with the essential terminology and notions of functional and
logic programming.) Therefore, we shall first very briefly and informally describe what we
understand to be the canonical functionality found in each vertex. Then, we shall describe
how we achieve pairwise bonding. Lastly, we shall synthesize the molecule of LIFE from the
three atomic vertices and the pairwise bonds.

2.1 The Atoms

This section gives a very brief and informal operational account of functional programming,
logic programming, and type inheritance.

2.1.1 �-Calculus: Computing with Functions

The view taken by this way of computing is to formulate every computational object as
a functional expression. There are essentially two sorts of such expressions—constants and
reducible expressions. Constants may be of any order of type. Ground objects are null-order
constants (values) and abstractions are higher-order constants (functions). Typically, these
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evaluate to themselves. Reducible expressions are essentially applications. Indeed, the only
rule of computation is �-reduction in the context of a global store of defined constants.
Strategies of reduction consisting of whether arguments in a function application are reduced
first or last fall into pragmatic considerations, and are irrelevant to this particular description.
For the sake of choice, we shall assume applicative order of reduction, although normal order,
lazy or otherwise, could be as well considered.

Although the “pure” �-calculus is computationally complete, and therefore theoretically
sufficient to express all general recursive functions, a “real-life” functional programming
language will typically have a built-in store of constants of which the user’s definitions
may be seen as an extension. At the very least, the usual integer arithmetic constants and
functions would be assumed defined, as well as boolean constants and null-order equality—
i.e., equality on ground values. Notably, and regardless of the chosen evaluation strategy,
an exceptional constant function will also assumed defined for conditional expressions. The
simplest conditional function is a three argument if-then-else whose infix form usually is
if e1 then e2 else e3, and whose evaluation consists in first evaluating e1 whose boolean
value, upon termination, will determine evaluation of either e1 or e2, yielding the result of the
whole conditional expression. Thus, as an archetypical example, the factorial function may be
defined as:1

1We shall use � to express global definitions; i.e., the facility which installs a constant in the global constant
store.
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4 Hassan Aı̈t-Kaci and Patrick Lincoln

fact(n) � if n = 0 then 1 else n�fact(n� 1).

Some functional programming languages make recursion syntactically explicit by differen-
tiating two defining facilities. For instance a definition announced by a reserved word (rec,
say) as in

rec fact(n) � if n = 0 then 1 else n�fact(n � 1).

would explicitly specify that occurrences of the constant being defined in its own body are
recursive occurrences as opposed to namesakes which are presumably defined in the global
store. The reason has its roots in the simpleway these definitions can be parsed by left-recursive
descent and readily translated into a form stripped of syntactic adornments which requires the
explicit use of the recursion combinator Y . However, this is not strictly required as LL(1)
parsing or even implementation of recursion with Y are necessary, especially when efficiency
rather than simplicity of implementation is sought [21]. Thus, we shall dispense from such
explicit rec mentions, (mutual) recursion being systematically implicit when and only when
free occurring constants appear in definitions (as in the first of the two foregoing definitions).

These basic paraphernalia are yet not quite enough for even bare needs in symbolic
computing as no provision is made for structuring data. The most primitive such facility is
pairing (written as infix right-associative ‘.’). The pair constructor comes with two projection
functions fst and snd such that the following equations hold:

fst(x�y) = x

snd(x�y) = y

fst(z)�snd(z) = z

This allows the construction of binary tree structures and thus sufficient for representing any
symbolic structure such as trees of any arity, as well-known to Lisp programmers. For these
constructed pairs, a test of equality is implicitlydefined as physical equality (i.e., same address)
as opposed to structure isomorphism. Thus, linear list structures may be built out of pairing
and a nullary list terminator (written as [], as in 1�2�3�4�[]).

As an example, a function for concatenating two lists can be defined as:

append(l1� l2) � if l1 = [] then l2 else fst(l1)�append(snd(l1)� l2).

In fact, a pattern-directed syntax is preferable as it is expresses more perspicuous definitions
of functions on list structures. Thus, the above list concatenation has the following pattern-
directed definition:

append([]� l) � l.
append(h�t� l)� h�append(t� l)�
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LIFE, a Natural Language 5

Again, this can be viewed as syntactic adornment as the previous form may be recovered in
a single conditional expression covering each pattern case by explicitly introducing identifier
arguments to which projection functions are applied to retrieve appropriate pattern occurrences.
Not only are pattern-directed definitions more perspicuous, they also lead to more efficient
code generation. An efficient implementation will avoid the conditional by using the argument
pattern as index key as well as using pattern-matching to bind the structure variables to their
homologues in the actual argument patterns [21].

Clearly, when it comes to programming convenience, linear lists as a universal symbolic
construction facility can become quickly tedious and cumbersome. More flexible data
structures such as first-order constructor terms can be used with the convenience and efficiency
of pattern-directed definitions. Indeed, for each n-ary constructor symbol c, we associate n

projections 1c� . . . � nc such that the following equations hold (1 � i � n):

ic(c(x1� . . . � xn) = xi
c(1c(z)� . . . � nc(z)) = z

Pretty much as a linear list data structure could then be defined as either [] or a pair
�(x� y) whose second projection y is a linear list, one can then define any data structure as
a disjoint sum of data constructors using recursive type equations as a definition facility.
Then, a definition of a function on such data structures consists of an ordered sequence of
pattern-directed equations such as append above which are invoked for application using term
pattern-matching as argument binding.

A simple operational semantics of pattern-directed rewriting can thus be given. Given a
program consisting as a set of function definitions. A function definition is a sequence of
pattern-directed equations of the form:

f ( �A1) = B1�
...

f ( �An) = Bn�

which define a function f over patterns �Ai, tuples of first-order constructor terms. Evaluating
an expression f ( �E) consists in (1) evaluating all arguments (components of �E); then, (2)
finding the first successful matching substitution � in the order of the definitions; i.e., the first
i in the definition of f such that there is a substitution of the variables in the pattern �Ai such
that f ( �E) = f ( �Ai)� (if none exists, the expression is not defined); finally, (3) in evaluating in
turn the expression Bi�, which constitutes the result.

2.1.2 �-Calculus: Computing with Relations

Logic programming, of which Prolog is the canonical language, expresses programs as
relational rules of the form:

r0(�t0) � r1(�t1)� . . . � rn(�tn)�
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6 Hassan Aı̈t-Kaci and Patrick Lincoln

where the ri’s are relationals symbols and the �ti’s are tuples of first-order terms. One reads
such a rule as: “For all bindings of their variables, the terms �t0 are in relation r0 if the terms
�t1 are in relation r1 and ... the terms �tn are in relation rn.” In the case where n = 0, the rule
reduces to the simple unconditional assertion r0(�t0) that the terms �t0 are in relation r0. These
rules are called definite clauses; expressions such as ri(�ti) are called literals; the head of a
definite clause is the literal on the left of the arrow, and its body is the conjunction of literals
on the right of the arrow.

Given a set of such definite clauses, linear resolution is the non-deterministic computation
rule by which such rules are giving interpretations to query expressions of the form:

� q1(�s1)� . . . � qm(�sm)�

which may be read: “Does there exist some binding of variables such that the terms �s 1 are in
relation q1 and ... �sm are in relation qm?” The linear resolution rule is a transformation rule
applied to a query. It consists in choosing a literal q i(�si) in the query’s body and a definite
clause in the given set whose head r0(�t0) unifies with qi(�si) thanks to a variable substitution
� (i.e., qi(�si)� = r0(�t0)�), then replacing it by the body of that clause in the query, applying
substitution � to all the new query. That is,

� q1(�s1)�� . . . � qi�1(�si�1)�� r1(�t1)�� . . . � rn(�tn)�� qi+1(�si+1)�� . . . � qm(�sm)��

The process is repeated and stops when and if the query’s body is empty (success) or no rule
head unifies with the selected literal (failure). There are two non-deterministic choices made
in the process: one of a literal to rewrite in the query and one among the potentially many
rules whose head unify with this literal.

Prolog’s computation rule is called SLD-resolution. It is a deterministic flattening of linear
resolution; that is, it is a particular deterministic approximation implementing the above
non-deterministic computation rule. It consists in seeing a program as an ordered set of
definite clause, and a definite clause body as an ordered set of literals. These orders are
meant as a rigid guide for the two choices made by the linear resolution rule. Thus, Prolog’s
particular computation strategy transforms a query by rewriting the query literals in their order,
attempting to unify against heads of rules in the order of the rules. If failure is encountered, a
backtracking step to the latest choice point is made, and computation resumed there with the
next alternative.

In exactly the same spirit as �-reduction is for the �-calculus, strategies of choice of where
to apply the linear resolution computation rule are all theoretically consistent in the sense that
if computation terminates, the variable binding exhibited is a legitimate solution to the original
query. However, not all possible linear resolution strategies are complete. Indeed, pretty much
as applicative order reduction in the �-calculus may diverge on an expression which does have
a normal form, Prolog’s particular strategy of doing linear resolution may diverge although
finite solutions to a query may exist.
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LIFE, a Natural Language 7

Central to logic programming is the presence of first-order constructor terms as well as
unification.

2.1.3 	-Calculus: Computing with Types

The 	-calculus consists of a syntax of structured types called 	-terms together with
subtyping and type intersection operations. Intuitively, as expounded in [3], the 	-calculus
is an attempt at obtaining a convenience for representing record-like data structures in
logic and functional programming more adequate than first-order terms without loss of the
well-appreciated instantiation ordering and unification operation.

The natural interpretation of a 	-term is that of a data structure built out of construc-
tors, access functions, and subject possibly to equational constraints which reflect access
coreference—sharing of structure. Thus, the syntactic operations on 	-terms which stand
analogous to instantiation and unification for first-order terms simply denote, respectively,
sub-algebra ordering and algebra intersection, modulo type and equational constraints. This
scheme even accommodates type constructors which are known to be partially-ordered with a
given subtyping relation. As a result, a powerful operational calculus of structured subtypes is
achieved formally without resorting to complex translation trickery. In essence, the 	-calculus
formalizes and operationalizes data structure inheritance, all in a way which is quite faithful
to a programmer’s perception.

Let us take an example to illustrate. Let us say that one has in mind to express syntactically
a type structure for a person with the property, as expressed for the underlined symbol in
Figure 2, that a certain functional diagram commutes.

One way to specify this information algebraically would be to specify it as a sorted equational
theory consisting of a functional signature giving the sorts of the functions involved, and an
equational presentation. Namely,

X : person with

functions

name : person� id
first : id � string
last : id � string
spouse : person� person

equations

last(name(X)) = last(name(spouse(X)))
spouse(spouse(X)) = X

The syntax of 	-terms is one simply tailored to express as a term this specific kind of
sorted monadic algebraic equational presentations. Thus, in the 	-calculus, the information of
Figure 2 is unambiguously encoded into a formula, perspicuously expressed as the 	-term:
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8 Hassan Aı̈t-Kaci and Patrick Lincoln
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Figure 2: A Functional Diagram

X : person(name� id(first� string�
last� S : string)�

spouse� person(name� id(last� S)�
spouse� X)).

Since it is beyond the informal scope of this paper, we shall abstain from giving a complete
formal definition of 	-term syntax. (Such may be found elsewhere [4, 3].) Nevertheless, it
is important to distinguish among the three kinds of symbols which participate in a 	-term
expression. Thus we assume given a signature of type constructor symbols, a set A of access
function symbols (also called attribute symbols), and a set R of reference tag symbols. In
the 	-term above, for example, the symbols person� id� string are drawn from , the symbols
name� first� last� spouse from A, and the symbols X�S fromR. 2

A 	-term is either tagged or untagged. A tagged 	-term is either a reference tag inR or an
expression of the form X : t where X � R and t is an untagged 	-term. An untagged 	-term
is either atomic or attributed. An atomic 	-term is a type symbol in . An attributed 	-term is
an expression of the form s(l1 � t1� . . . � ln � tn) where s � and the 	-term principal type,
the li’s are mutually distinct attribute symbols in A, and the t i’s are 	-terms (n � 1).

Reference tags may be viewed as typed variables where the type expressions are untagged
	-terms. Hence, as a condition to be well-formed, a 	-term must have all occurrences of
reference tags consistently refer to the same structure. For example, the reference tag X in

2We shall use the lexical convention of using capitalized identifiers for reference tags.
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LIFE, a Natural Language 9

person(id � name(first� string�
last� X : string)�

father� person(id � name(last� X : string)))

refers consistently to the atomic 	-term string. To simplify matters and avoid redundancy, we
shall obey a simple convention of specifying the type of a reference tag at most once as in

person(id � name(first� string�
last� X : string)�

father� person(id � name(last� X)))

and understand that other occurrences are equally referring to the same structure. In fact, this
convention is necessary if we have circular references as in

X : person(spouse� person(spouse� X)).

Finally, a reference tag appearing nowhere typed, as in junk(kind � X) is implicitly typed by
a special universal type symbol 	 always present in . This symbol will be left invisible and
not written explicitly as in (age � integer� name� string). In the sequel, by 	-term we shall
always mean well-formed 	-term.

Similarly to first-order terms, a subsumption preorder can be defined on 	-terms which is
an ordering up to reference tag renaming. Given that the signature is partially-ordered (with a
greatest element	), its partial ordering is extended to the set of attributed	-terms. Informally,
a 	-term t1 is subsumed by a 	-term t2 if (1) the principal type of t1 is a subtype in of the
principal type of t2; (2) all attributes of t2 are also attributes of t1 with 	-terms which subsume
their homologues in t1; and, (3) all coreference constraints binding in t2 must also be binding
in t1.

For example, if student 
 person and austin 
 cityname in then the 	-term

student(id � name(first� string�
last� X : string)�

lives at� Y : address(city� austin)�
father� person(id � name(last� X)�

lives at � Y))

is subsumed by the 	-term

person(id � name(last� X : string)�
lives at� address(city� cityname)�
father� person(id � name(last� X))).
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10 Hassan Aı̈t-Kaci and Patrick Lincoln
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Figure 3: A Signature with Well-Defined GLB’s

In fact, if the signature is such that greatest lower bounds (GLB’s) exist for any pair of
type symbols, then the subsumption ordering on �-term is also such that GLB’s exist. Such
are defined as the unification of two �-terms. Consider for example the signature displayed in
Figure 3 and the two �-terms:

X : student(advisor � faculty(secretary � Y : staff,
assistant � X)�

roommate � employee(representative � Y ))

and

employee(advisor � f1(secretary � employee,
assistant � U : person)�

roommate � V : student(representative � V )�
helper � w1(spouse � U )).

Their unification (up to tag renaming) yields the term:

W : workstudy(advisor � f1(secretary � Z : workstudy(representative � Z)�
assistant� W )�

roommate � Z�

helper � w1(spouse � W )).
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LIFE, a Natural Language 11

A detailed unification algorithm for �-terms is given in [3]. This algorithm is an adaptation
of an efficient unification algorithm based on a rooted labeled (directed) graph representation
of �-terms, such as is illustrated in Figure 2. The nodes are labeled with type symbols from
, and the arcs are labeled with attribute symbols. The root node is one from which every
other is reachable and is labeled with the principal type of the �-term (underlined in Figure 2).
Nodes which are shared in the graph correspond to tagged subterms. Such graphs are quite
like finite-state automata with -sorted nodes (Moore machines) and where the transitions are
attribute symbols. In fact, the �-term unification algorithm is an immediate adaptation of
the algorithm deciding equivalence of finite-state automata [1]. This algorithm merges nodes
which are reached by equal transition paths into coreference classes, starting from the roots
and following all reachable strings of attributes from them. Each merged class is assigned the
type symbol in which is the GLB of the types of all nodes in the class. The inconsistent type
� (the least element in ) may result which makes the whole unification fail.

Incidentally, if least upper bounds (LUBs) are defined as well in , so are they for �-terms.
Thus, a lattice structure can be extended from to �-terms [2, 4]. For example, for these two
�-terms, their LUB (denoting their most specific generalization) is:

person(advisor � faculty(secretary � employee,
assistant� person)�

roommate � person))�

Although it may turn out interesting in other contexts, we shall not use this generalization
operation here.

A technicality arises if is not a lower semi-lattice. For example, given the (non-lattice) type
signature:

john

employee

mary

student
HHHHHHHHH

���������

the GLB of student and employee is not uniquely defined, in that it could be john or mary.
That is, the set of their common lower bounds does not admit one greatest element. However,
the set of their maximal common lower bounds offers the most general choice of candidates.
Clearly, the disjunctive type fjohn; maryg is an adequate interpretation.3 Thus the �-term
syntax may be enriched with disjunction denoting type union.

3See [7] for a description of an efficient method for computing such GLB’s.
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12 Hassan Aı̈t-Kaci and Patrick Lincoln

For a more complete formal treatment of disjunctive �-terms, the reader is referred to [4]
and to [3]. It will suffice to indicate here that a disjunctive �-term is a set of incomparable
�-terms, written ft1; . . . ; tng where the ti’s are basic �-terms. A basic �-term is one which
is non-disjunctive. The subsumption ordering is extended to disjunctive (sets of) �-terms
such that D1 � D2 iff �t1 � D1� �t2 � D2 such that t1 � t2. This justifies the convention
that a singleton ftg is the same as t, and that the empty set is identified with �. Unification
of two disjunctive �-terms consists in the enumeration of the set of all maximal �-terms
obtained from unification of all elements of one with all elements of the other. For example,
limiting ourselves to disjunctions of atomic �-terms in the context of signature in Figure 3,
the unification of femployee; studentg with ffaculty; staffg is ffaculty; staffg. It is the set of
maximal elements of the set ffaculty; staff ;�; workstudyg of pairwise GLB’s.

In practice, it is convenient to allow nesting disjunctions in the structure of �-terms. For
instance, to denote a type of person whose friend may be an astronaut with same first name, or
a businessman with same last name, or a charlatan with first and last names inverted, we may
write such expressions as:

person(id � name(first � X : string�
last � Y : string)�

friend � fastronaut(id � name(first � X))
; businessman(id � name(last � Y ))
; charlatan(id � name(first � Y�

last � X))g)

Tagging may even be chained or circular within disjunctions as in:

P :fcharlatan
; person(id � name(first � X : ‘john’�

last � Y : f ‘doe’ ;Xg)�
friend � fP ; person(id � name(first � Y�

last � X))g)g

which expresses the type of either a charlatan, or a person named either “John Doe” or “John
John” and whose friend may be either a charlatan, or himself, or a person with his first and last
names inverted. These are no longer graphs but hypergraphs.

Of course, one can always expand out all nested disjunctions in such an expression, reducing
it to a canonical form consisting of a set of non-disjunctive �-terms. The process is described
in [2], and is akin to converting a non-deterministic finite-state automaton to its deterministic
form, or a first-order logic formula to its disjunctive normal form. However, more for
pragmatic efficiency than just notational convenience, it is both desirable to keep �-terms in
their non-canonical form. It is feasible then to build a lazy expansion into the unification
process, saving expansions in case of failure or unification against �. Such an algorithm is
more complicated and will not be detailed here.
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Last in this brief introduction to the �-calculus, we explain type definitions. The concept is
analogous to what a global store of constant definitions is in a practical functional programming
language based on the �-calculus. The idea is that types in the signature may be specified to
have attributes in addition to being partially-ordered. Inheritance of attributes of all supertypes
to a type is done in accordance to �-term subsumption and unification. Unification in the
context of such an inheritance hierarchy amounts to solving equations in an order-sorted
algebra as explained in [22], to which the reader is referred for a full formal account.

For example, given a signature for the specification of linear lists = flist� cons� nilg4 with
nil � list and cons � list, it is yet possible to specify that cons has an attribute tail � list.
We shall specify this as:

list := fnil; cons(tail� list)g.

From which the partial-ordering above is inferred.

As in this list example, such type definitions may be recursive. Then, �-unification modulo
such a type specification proceeds by unfolding type symbols according to their definitions.
This is done by need as no expansion of symbols need be done in case of (1) failures due to
order-theoretic clashes (e.g., cons(tail � list) unified with nil fails; i.e., gives �); (2) symbol
subsumption (e.g., cons unified with list gives just cons), and (3) absence of attribute (e.g.,
cons(tail � list) unified with cons gives cons(tail � list)). Thus, attribute inheritance is done
“lazily,” saving much unnecessary expansions.

2.2 The Bonds

In this section we indicate briefly how to operationalize pairwise combination calculi from
�, �, and � computation models. That is, we describe the edges of the triangle of LIFE in
Figure 2 on Page 3—the bonds between the atoms of the LIFE molecule. We shall keep an
informal style, illustrating key points with examples.

2.2.1 ��-Calculus: Le Fun

We now introduce a relational and functional programming language called Le Fun [5, 6]
where first-order terms are generalized by the inclusion of applicative expressions as defined
by Landin [15] (atoms, abstractions, and applications) augmented with first-order constructor
terms. Thus, interpreted functional expressions may participate as bona fide arguments in
logical expressions.

A unification algorithm generalized along these lines must consider unificands for which
success or failure cannot be decided in a local context (e.g., function applications may not
be ready for reduction while expression components are still uninstantiated.) We propose
to handle such situations by delaying unification until the operands are ready. That is, until

4We shall always leave� and� implicit.
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14 Hassan Aı̈t-Kaci and Patrick Lincoln

further variable instantiations make it possible to reduce unificands containing applicative
expressions. In essence, such a unification may be seen as a residual equation which will
have to be verified, as opposed to solved, in order to confirm eventual success—whence
the name residuation. If verified, a residuation is simply discarded; if failing, it triggers
chronological backtracking at the latest instantiation point which allowed its evaluation. This
is very reminiscent of the process of asynchronous backpatching used in one-pass compilers
to resolve forward references.

We shall merely illustrate Le Fun’s operational semantics by giving very simple canonical
examples.

A goal literal involving arithmetic variables may not be proven by Prolog, even if those
variables were to be provided by proving a subsequent goal. This is why arithmetic expressions
cannot be nested in literals other than the is predicate, a special one whose operation will force
evaluation of such expressions, and whose success depends on its having no uninstantiated
variables in its second argument. Consider the set of Horn clauses:

q(X� Y� Z) :– p(X� Y� Z� Z)� pick(X�Y )�

p(X� Y�X + Y�X � Y )�
p(X� Y�X + Y� (X � Y ) � 14)�

pick(3� 5)�
pick(2� 2)�
pick(4� 6)�

and the following query:

?– q(A�B�C)�

From the resolvent q(A�B�C), one step of resolution yields as next goal to establish
p(A�B�C� C). Now, trying to prove the goal using the first of the two p assertions is
contingent on solving the equation A +B = A �B. At this point, Prolog would fail, regardless
of the fact that the next goal in the resolvent, pick(A�B) may provide instantiations for its
variables which may verify that equation. Le Fun stays open-minded and proceeds with the
computation as in the case of success, remembering however that eventual success of proving
this resolvent must insist that the equation be verified. As it turns out in this case, the first
choice for pick(A�B) does not verify it, since 3 + 5 �= 3 � 5. However, the next choice
instantiates both A and B to 2, and thus verifies the equation, confirming that success is at
hand.

To emphasize the fact that such an equation as A + B = A � B is a left-over granule
of computation, we call it a residual equation or equational residuation—E-residuation, for
short. We also coin the verb “to residuate” to describe the action of leaving some computation
for later. We shall soon see that there are other kinds of residuations. Those variables whose
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instantiation is awaited by some residuations are called residuation variables (RV). Thus, an E-
residuation may be seen as an equational closure—by analogy to a lexical closure—consisting
of two functional expressions and a list of RV’s.

There is a special type of E-residuation which arises from equations involving an uninstan-
tiated variable on one hand, and a not yet reducible functional expression on the other hand
(e.g., X = Y + 1). Clearly, these will never cause failure of a proof, since they are equations in
solved form. Nevertheless, they may be reduced further pending instantiations of their RV’s.
Hence, these are called solved residuations or S-residuations. Unless explicitly specified
otherwise, “E-residuation” will mean “equational residuations which are not S-residuations.”

Going back to our example, if one were interested in further solutions to the original query,
one could force backtracking at this point and thus, computation would go back eventually
before the point of residuation. The alternative proof of the goal p(A�B�C� C) would then
create another residuation; namely, A + B = (A � B) � 14. Again, one can check that this
equation will be eventually verified by A = 4 and B = 6.

Since instantiationsof variables may be non-ground, i.e., may contain variables, residuations
mutate. To see this, consider the following example:

q(Z) :– p(X� Y� Z)� X = V �W�Y = V + W� pick(V�W )�

p(A�B�A �B)�

pick(9� 3)�

together with the query:

?– q(Ans)�

The goal literal p(X� Y�Ans) creates the S-residuationAns = X �Y . This S-residuation has
RV’s X and Y . Next, the literal X = V �W instantiates X and creates a new S-residuation.
But, since X is an RV to some residuation, rather than proceeding as is, it makes better sense
to substitute X into that residuation and eliminate the new S-residuation. This leaves us with
the mutated residuation Ans = (V �W ) � Y . This mutation process has thus altered the
RV set of the first residuation from fX� Y g to fV�W� Y g. As computation proceeds, another
S-residuation instantiates Y , another RV, and thus triggers another mutation of the original
residuation into Ans = (V �W ) � (V + W ), leaving it with the new RV set fV�Wg. Finally,
as pick(9� 3) instantiates V to 9 and W to 3, the residuation is left with an empty RV set,
triggering evaluation, and releasing the residuation, and yielding final solutionAns = 72.

The last example illustrates how higher-order functional expressions and automatic currying
are handled implicitly. Consider,

sq(X) � X � X�

twice(F�X) � F(F(X))�
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valid op(twice)�

p(1)�

pick(lambda(X�X))�

q(V ) :– G = F (X)� V = G(1)� valid op(F )� pick(X)� p(sq(V ))�

with the query,

?– q(Ans)�

The first goal literal G = F (X) creates an S-residuation with the RV set fF�Xg. Note that
the “higher-order” variable F poses no problem since no attempt is made to solve. Proceeding,
a new S-residuation is obtained as Ans = F (X)(1). One step further, F is instantiated to the
twice function. Thus, this mutates the previous S-residuation to Ans = twice(X)(1). Next,
X becomes the identity function, thus releasing the residuation and instantiating Ans to 1.
Finally, the equation sq(1) = 1 is immediately verified, yielding success.

2.2.2 ��-Calculus: Log In

Log In is simply Prolog where first-order constructor terms have been replaced by �-terms,
with type definitions [3]. Its operational semantics is the immediate adaptation of that of
Prolog’s SLD resolution described in Section 2.1.2. Thus, we may write a predicate for list
concatenation as:5

list := f[]; [ jlist]g�

append([]� L : list� L)�
append([HjT : list]� L : list� [HjR : list]) :– append(T� L�R)�

This definition, incidentally, is fully correct as opposed to Prolog’s typeless version for
which the query append([]� t� t) succeeds incorrectly for any non-list term t.

Naturally, advantage of the type partial-ordering can be taken as illustrated in the following
simple example. We want to express the facts that a student is a person; Peter, Paul, and Mary
are students; good grades and bad grades are grades; a good grade is also a good thing; ‘A’
and ‘B’ are good grades; and ‘C’, ‘D’, ‘F’ are bad grades. This information is depicted as the
signature of Figure 4. This taxonomic information is expressed in Log In as:

student � person�
student := fpeter; paul; maryg�
grade := fgoodgrade; badgradeg�

5First-order terms being just a particular case of �-terms, we use such an expression as f (t 1� . . . � tn) them
as implicit syntax for f (1 � t1� . . . � n� tn). Thus, pure Prolog is fully subsumed. In particular, we adopt its
notation for lists, and for “don’t-care” a.k.a. �.
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person

student

peter paul mary

goodthing grade

goodgrade badgrade
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Figure 4: The Peter-Paul-Mary Signature

goodgrade � goodthing�
goodgrade := fa; bg�
badgrade := fc; d; fg�

In this context, we define the following facts and rules. It is known that all persons like
themselves. Also, Peter likes Mary; and, all persons like all good things. As for grades, Peter
got a ‘C’; Paul got an ‘F’, and Mary an ‘A’. Lastly, it is known that a person is happy if she
got something which she likes. Alternatively, a person is happy if he likes something which
got a good thing. Thus, in Log In,

likes(X : person�X)�
likes(peter�mary)�
likes(person� goodthing)�

got(peter� c)�
got(paul� f )�
got(mary� a)�

happy(X : person) :– likes(X� Y)� got(X� Y)�
happy(X : person) :– likes(X� Y)� got(Y� goodthing)�

From this, it follows that Mary is happy because she likes good things, and she got an
‘A’—which is a good thing. She is also happy because she likes herself, and she got a good
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thing. Peter is happy because he likes Mary, who got a good thing. Thus, a query asking for
some “happy” object in the database will yield:

?– happy(X)�

X = mary;

X = mary;

X = peter;

No

2.2.3 ��-Calculus: FOOL

FOOL is simply a pattern-oriented functional language where first-order constructor terms
have been replaced by �-terms, with type definitions. Its operational semantics is the
immediate adaptation of that described in Section 2.1.1. Thus, we may write a function for list
concatenation as:

list := f[]; [ jlist]g�

append([]� L : list) � L�
append([HjT : list]� L : list) � [Hjappend(T� L)]�

Higher-order definition and currying are also naturally allowed in FOOL; e.g.,

map([]� ) � []�
map([HjT]�F) � [F(H)jmap(T�F)]�

Thus, the expression map([1� 2� 3]� +1) evaluates to [2� 3� 4].

The �-term subsumption ordering replaces the first-order matching ordering on constructor
terms. In particular, disjunctive patterns may be used. The arbitrary richness of a user-defined
partial-ordering on types allows highly generic functions to be written, thus capturing the
flavor of code encapsulation offered by so called object-oriented languages. For example,
referring back to the signature in Figure 3 on Page 10, the function:

age(person(dob � date(year � X))� ThisYear : integer) � ThisYear� X�

will apply generically to all subtypes and instances of persons with a birth year.

2.3 The ��� Molecule

Now that we have put together the pairwise bonds between the atoms; i.e, what constitutes
the LIFE molecule as advertised in Figure 2 on Page 3. In LIFE one can specify types,
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functions, and relations. Rather than simply coexisting, these may be interwoven. Since the
�-calculus is used in Log In and FOOL to provide a type inheritance systems of sorts to logic
and functional programming, we can now enrich the expressiveness of the �-calculus with
the power of computable functions and relations. More specifically, a basic �-term structure
expresses only typed equational constraints on objects. Now, with FOOL and Log In, we can
specify in addition arbitrary functional and relational constraints on �-terms.

In LIFE, a basic �-term denotes a functional application in FOOL’s sense if its root symbol
is a defined function. Thus, a functional expression is either a �-term or a conjunction of
�-terms denoted by t1 : t2 : . . . : tn. An example of such is append(list� L) : list, where
append is the FOOL function defined above. This is how functional dependency constraints
are expressed in a �-term in LIFE. For example, in LIFE the �-term

foo(bar � X : list� baz� Y : list� fuz� append(X� Y) : list)

is one in which the attribute fuz is derived as a list-valued function of the attributes bar and
baz. Unifying such �-terms proceeds as before modulo residuation of functional expression
whose arguments are not sufficiently refined to be subsumed by a function definition.

As for relational constraints on objects in LIFE, a �-term t may be followed by a such-that
clause consisting of the logical conjunction of literals l1� . . . � ln. It is written as t j l1� . . . � ln.
Unification of such relationally constrained terms is done modulo proving the conjoined
constraints.

Let us take an example. We are to describe a LIFE rendition of a soap opera. Namely, a
soap opera is a television show where a cast of characters is a list of persons. Persons in that
strange world consist of alcoholics, drug-addicts, and gays. The husband character is always
called “Dick” and his wife is always an alcoholic, who is in fact his long-lost sister. Another
character is the mailman. The soap opera is such that the husband and mailman are lovers, and
the wife and the mailman blackmail each other. Dick is gay, Jane is an alcoholic, and Harry is
a drug-addict. In that world, it is invariably the case that the long-lost sister of gays are named
“Jane” or “Cleopatra.” Harry is a lover of every gay person. Also, Jane and a drug-addict
blackmail one another if that drug-addict happens to be a lover of Dick. No wonder thus that
it is a fact that this soap opera is terrible.

In LIFE, the above could look like:

cast := f[]; [personjcast]g�

soap opera := tv show(characters � [H�W�M ]�
husband � H : dick�
wife � W : alcoholic : long lost sister(H)�
mailman �M )

j lovers(M�H)�blackmail(W�M )�

person := falcoholic; drug addict; gayg�
dick � gay�
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jane � alcoholic�
harry � drug addict�

long lost sister(gay) � fjane; cleopatrag�

lovers(harry� gay)�

blackmail(jane�X : drug addict) :– lovers(X� dick)�

terrible(soap opera)�

Then, querying about a terrible TV show with its character cast is:

?– terrible(T : tv show(characters � cast))�

which unfolds from the above LIFE specification into:

T = soap opera(characters � [H : dick�W : jane�M : harry]�
husband � H�

wife � W�

mailman �M )

It is instructive as well as entertaining to convince oneself that somehow everything falls into
place in this LIFE sentence.

3 Natural Language

This section is a description of a specific parser of a very small subset of English where
syntactic, semantic, and pragmatic constraints are expressed all at once. This alleviates the
need to pipeline many invalid forms from syntax to semantics, then to pragmatics. This
example is by no means to imply that its parsing scheme is what we recommend: We are,
indeed, mere neophytes in computational linguistics. We nonetheless hope to convince the
computational linguist that we, as programming language designers, did put together in LIFE
a unique functionality for NLP.

3.1 Traditional NLP

Natural language understanding systems are notoriously large, inefficient systems with slow
response times. Thus, optimizing the parsing process is an important task if natural language
is to be used in realistic user interfaces.

Traditional natural language processing systems work in three phases. The first, syntactic
analysis, phase determines the surface structure of the input—looking up words in a dictionary,
checking word order, etc. The second phase determines some of the semantic content of
the input—checking semantic agreement and enforcing selectional restrictions. Finally, the
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third phase determines the deepest meaning behind an input—binding anaphora to their
referents, analyzing paragraph or discourse structure, and checking the consistency of the
guessed meaning of the input with world knowledge. Although quite standard even in state
of the art natural language processing systems, this sequential method contains some inherent
inefficiencies.

Obviously, if there is a deep semantic clash at the beginning of a long input, one would
hope that a system would not waste too much time processing the entire input before noticing
the clash. More commonly, there will be many readings of an input, and most of them will be
be semantically flawed. It is desirable that the semantic flaws be found as soon as possible,
eliminating the wasted work of doing even the surface analysis of the rest of the input under
the bad readings. However, this is very difficult to achieve using the traditional approach of
three phase processing. Only by doing all levels of processing simultaneously can a system
achieve the desired behavior.

By processing input syntax, semantics, and pragmatics at the same time a system has the
further opportunity to use the semantics to drive the syntax. For instance, if the semantics of
the first part of an input have been discovered, and the topic is known, any lexical ambiguities
(multiple word definitions, etc) may be correctly interpreted immediately. In traditionally
constructed systems, the lexical forms of all ambiguous readings would be fully fleshed out,
and only upon semantic checking would they be thrown out.

Pushing the semantics and pragmatics through to the initial grammar seems daunting to
those familiar with implementations of natural language systems. Efficiently handling all
the constraints on language is very difficult, even in such high level languages as Lisp or
Prolog. However, LIFE’s formalism is one in which complex constraints are easily and cleanly
incorporated in declarative programs through the intermingling of relational and functional
expressions.

3.2 NLP in LIFE

A simplified natural language processing system was built in LIFE as an experiment in
using LIFE’s full functionality on a complex problem. First, a simple best first chart parser
was constructed using a standard logic programming cliche. Second, constraints were added
to the categories and objects in the parser, in order to enforce number agreement and similar
trivial conditions. Then semantic functions which expressed the meanings of certain words
were included in the dictionary definitions of those words. The grammar was also modified to
use those functions, when present, to enforce semantic agreement and selectional restrictions.
Finally, the grammar was modified slightly to force unification of pronouns with referents,
resolving all anaphora into coreferences.

Thus when an input is presented, all the constraints come to bear immediately. As soon
as a verb with a semantic function is looked up in the dictionary, its entire semantics are
enforced. LIFE automatically handles the delayment of functional expressions until certain
arguments are sufficiently bound, firing the function at the earliest possible time. Using this
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functionality, powerful semantic functions can be posted as constraints as soon as they apply.
Also, LIFE’s unification routine supports partially ordered partially specified types, which is
useful in capturing semantic information.

3.2.1 Syntax—The Grammar

The initial parsing routine was encoded as a set of facts and relations, broken up into three
main categories; a set of grammar rules expressing English word order and basic grammar,
a dictionary relation from words to categories, and a parser, which relates lists of words to
categories such as noun phrase or sentence.

Each grammar rule was encoded as a LIFE fact, relating some number of constituent
categories to a single result category. For example,

grammar rule(np� art� n)�
grammar rule(s� np� vp)�

could be read as “an article followed by a noun can be a noun phrase, and a noun phrase
followed by a verb phrase can be a sentence.” Then a small dictionary was constructed which
related words to their definition. For example,

dictionary(compilers� n)�
dictionary(john� pn)�
dictionary(the� art)�
dictionary(runs� iv)�

could be read as “‘compilers’ is a noun, ‘john’ is a proper noun, ‘the’ is an article, and ‘runs’ is
an intransitive verb.” A particular word may have multiple definitions in the dictionary, which
are chosen nondeterministically. To complete the base system, a simple parser was constructed
which attempts to find a reading of the input list of words which satisfies the given category.

parse(List� null� List)�

parse([WordjRest]�Cat� S1) :–
dictionary(Word�Def )�
grammar rule(Cat�Def �Needing)�
parse(Rest�Needing� S1)�

parse([WordjRest]�Cat� S1) :–
dictionary(Word�Def )�
grammar rule(Cat�Cat1�Cat2)�
parse([Def jRest]�Cat1� S2)�
parse(S2�Cat2� S1)�
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One might call the parser with

parse([john� runs]� s� [])�

In order to prevent useless search in a chart parser, it is necessary to precompute a “next
word” attribute for each grammar rule. As given above, parsing would progress bottom-up.
In order to enforce a left-to-right strategy, one needs to restrict which grammatical rules can
be used based on the next word in the sequence. For instance, the first grammar-rule given
above describing noun phrases should only be applied when the next word in the sequence is
an article. The next word for the second grammar rule above is fart; n; adj; pn; prong which
stands for article or noun or adjective or proper noun or pronoun. (Other rules for sentences
which start with interjections, adverbs, etc, and rules for noun phrases starting with nouns,
adjectives, proper nouns and pronouns do exist.) In order to take advantage of the precomputed
next word, an extra argument was added to each grammar rule. Thus, given a list of words, the
category of the first word is looked up in the dictionary. The two rules above have become:

grammar rule(np� art� art� n)�
grammar rule(s� fart; n; adj; pn; prong� np� vp)�

Then, only those grammar rules which have the proper category as a possible first word are
tried.

Thus extended, these grammar rules can now be read as “a string of words starting with an
article, if made up of an article followed by a noun, can be seen as a noun phrase, and a string
of words starting with either an article, noun, adjective, proper noun, or pronoun, if made up of
a noun phrase followed by a verb phrase, can be seen as a sentence.” Thus, if given a string of
words beginning with an adverb, neither rule would fire, since the precomputed “next word”
attributes both fail to unify with adverb. However, given a list of words starting with a proper
noun, the second rule could fire.

The operation of this parser is simply to find the first reading of an input form that satisfies
the user specified category. If there is a choice at any point, for instance the choice of which
definition of a word, or which grammar rule to use, a non-deterministic choice is made. If there
is a failure along the way, due to some category not unifying with another, or the precomputed
next word disallowing the use of a grammar rule, then backtracking ensues. Control returns
to the last nondeterministic choice made, where a new choice is demanded. If there are no
choices left to make, control returns to the previous choice. If there is no previous choice,
then failure has occurred, and it is reported that the input form cannot be parsed into the given
category.

3.2.2 Semantics—The Constraints

Using the above as a base, additional rules of proper English were encoded by modifying
dictionary entries and grammar rules. For instance, number agreement is enforced by adding
a number field to certain dictionary entries:
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dictionary(compilers� n(number� plural))�
dictionary(john� pn(number� singular))�
dictionary(the� art)�
dictionary(runs� iv(number� singular))�

Since ‘the’ can be either singular or plural, the number field is left out, and is implicitly
anything. Also, certain grammar rules were restricted to constituents that agreed:

grammar rule(fart; n; adj; pn; prong� s�
np(number � N)� vp(number � N))�

So long as the number of the noun phrase can be coerced to be the same as the number of the
verb phrase, the two together can be read as a sentence. Thus, ‘john runs’ is accepted, since the
number of ‘john’ and ‘runs’ agree. However, ‘compilers runs’ is rejected, since ‘compilers’ is
plural, and ‘runs’ is singular.

Gender agreement was added in precisely the same manner, although less words and rules
have an explicit gender. The gender attribute is also useful in anaphora resolution. Moreover,
selectional restrictions were added. Fields of dictionary definitions were added to enforce
these constraints:

dictionary(throws� tv(number� singular�
object � projectile�
subject � animate))�

dictionary(john� pn(number� singular� class� human))�
dictionary(frisbee� n(number� singular� class� projectile))�

The first entry above describes the transitive verb ‘throw’. Its object must be a projectile, and
its subject mush be animate. The second entry is a slight modification of the above definition
of ‘john’, the added information is that ‘john’ is human. The corresponding grammar rules
were then modified to use this information:

grammar rule(fart; n; adj; pn; prong� s�
np(number � N� class � X)�
vp(number � N� subject � X))�

Here the sentence rule is modified to ensure that the verb phrase’s subject can be unified with
the class of the noun phrase. In this way, semantic information is gathered at the same time
that syntactic constraints are met.

A semantic hierarchy was constructed to account for the meanings of the classes mentioned
in the dictionary; e.g.,

human � animate�
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which can be read as “anything which is human is also animate.” This semantic hierarchy can
be very rich. Using the powerful inheritance mechanisms of LIFE, complex semantic domains
can be described very economically. Rules of the type shown above express simple type
subsumption, but if the type animate has any attributes, those are inherited by the type human.
Thus, the list of words ‘John throws the frisbee’ can be parsed only if john is animate, which
he is since he is human, and if the frisbee is a projectile, which it is. This kind of constraint is
very simple to enforce, since it has been translated into type checking during unification.

Simple constraints like “only projectiles can be thrown” are thus simple to implement. In
order to express more complex constraints, like “carnivores eat meat,” functions were used.
Each definition of a verb can have a semantic function which can express constraints on its
subject or object that are dependent on something else. Consider the verb ‘eat.’

dictionary(eat� tv(subject � animate(eating habit � EH)�
object � food : eaten by(EH)�
number � plural))�

The word ‘eat’ is a plural transitive verb whose subject must be animate, and whose object
must be food. Further, if the subject has an eating habit, then the object must be edible
by something with that eating habit. The pattern-directed function eaten by expresses the
relationship between an eating habit and eaten objects:

eaten by(vegetarian) � vegetable�
eaten by(carnivore) � meat�
eaten by(omnivore) � food�

As a consequence, certain nouns were modified with further dictionary information:

dictionary(john� pn(number� singular�
class � human(eating habit � omnivore)))�

dictionary(monk� n(number� singular�
class � human(eating habit � vegetarian)))�

The semantic functions can take advantage of any of the information available, using
higher-order functions and complex type attributes. Arbitrary amounts of computation can be
done in order to determine the proper category of the subject or object.

3.2.3 Pragmatics—Anaphora

Not surprisingly, the most difficult aspect of natural language processing to push into the
syntactic parser was pragmatics. However, even this was fairly simple to encode in LIFE.

The approach to anaphora and their referents is demonstrative. As a list of words is
parsed, each possible referent of an anaphora is pushed onto a list. Whenever an anaphora
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is encountered it has to unify with some element of the list. The unification would ensure
that all the information known about the anaphora in place matched all the information known
about the referent in its place. Thus in ‘John runs and he walks’ unifying ‘john’ and ‘he’ is
correct, where in ‘John runs and she walks’ unifying ‘john’ and ‘she’ is not, due to the fact
that the pronoun ‘he’ has the attribute (gender� male) and so does ‘john’. Thus ‘he’ and
‘john’ are unifiable. However, ‘she’ has the attribute (gender� female) which does not unify
with ‘john’s attribute (gender� male).

Even paragraphs such as ‘The computer compiled my file. It then deleted it.’ are parsed
correctly using this scheme. There are four possible meanings of “It then deleted it” in this
context:6 ‘the computer then deleted the computer’, ‘the computer then deleted my file’, ‘my
file then deleted the computer’, and ‘my file then deleted my file’. However, only one of these
is semantically coherent. Computers can not be deleted, and files are not animate, and thus
can not delete anything. Thus ‘The computer compiled my file. The computer then deleted my
file.’ is the only reading generated.

Interestingly, even anaphora resolution is performed at the same time as syntactic and
semantic checking. As a list of words is parsed, as soon as an anaphora is encountered, its
referent is identified before any following words are even looked up in the dictionary.

The result of all this is a parse graph which represents the syntactic, semantic, and pragmatic
information corresponding to the input list of words. In the parse graph anaphora and their
referents corefer; that is, they point to the same data structure. The parse graph contains the
surface structure of the input in much the same way a traditional natural language processing
system represents parse trees. Semantic information is represented as additional information
on the parse graph. Embedded in the graph are also pointers to the dictionary definitions of
words, reduced functional constraints, and complex objects.

4 Conclusion

4.1 Why LIFE?

There are several unique aspects of LIFE which make it suitable for natural language
processing. The first and most useful is the logic programming base. Declarative encoding
of grammar rules and parsing strategies is extremely elegant and is not inherently inefficient.
LIFE’s powerful type system allows an even more declarative style with added programming
convenience. Addressing LIFE term’s by label instead of position allows quick extensions to
existing code without significant rewriting. Partially ordered types allow an unprecedented
economy of expression, and extremely powerful constructions obtainable in standard logic
programming languages only through large amounts of redundant code. Higher-order
functions allow one to express extremely complex and powerful semantic notions in simple

6In fact, there could be more interpretations of ‘it’ than just ‘the computer’ or ‘my file’. The act of compiling
could be referred to as ‘it’, or if any previous sentence had a neuter referent those objects could be referred to as
‘it’. For simplicity, we will only discuss the two obvious meanings.
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ways. Complex meaning dependencies can be encoded with little effort.

4.2 Categorial Grammars

LIFE is suitable for the examination of alternative grammars such as originally inspired by
Lambek [14]—so called Categorial Grammars. We have in mind, especially, the combination of
a unification-based formalism and the categorial parsing paradigm. As we have demonstrated,
a unification-based grammar could easily be encoded in LIFE thanks to its native structured
type calculus. Higher-order functions being also a basic feature in LIFE, they ought to come as
handy to formulate a Categorial Unification Grammars such as proposed by Wittenburg [28].

We are in the process of implementing a Categorial Grammar in LIFE. The lexical category
functions on which these grammars are based, with their attendant type raising and function
composition, can be easily encoded as higher-order functions in LIFE. In Categorial Grammars,
each word has an associated function. For example, in the sentence ‘John ate lunch’, ‘john’
has the categorial function ‘S/VP’ which can be roughly read as “sentence looking for verb
phrase”. The word ‘ate’ has the category ‘VP/NP’, and ‘lunch’ has the category ‘NP.’ Through
function composition and function application, the whole string can be reduced to ‘S.’ In order
to capture syntactic issues such as long distance dependencies (as in the sentence ‘What did
john eat’) higher-order functions are necessary. The search strategy using such a grammar
could be encoded, as above, using the nondeterministic mechanism of logic programming. In
the near future we hope to build a Categorial Unification Grammar following Wittenburg’s
approach closely [28].

4.3 Limitations of Current System

The current system was constructed in less than two weeks for demonstration purposes.
Although improvements have been made, the scope of this project has been limited by time
more than technical difficulties. Thus, the user must type perfect English. This sort of fragility
makes the system impractical, but this limitation may be surmountable. The most important
extension seems to be the addition of some sort of scoring mechanism for failures—if every
reading of an input fails, the system should go back and try to find a reading which “almost”
succeeded.

Also, certain constructs demand that the semantic checking be turned off, or at least altered.
‘I dreamt...’ is one such phrase. ‘I dreamt I ate my frisbee’ is an acceptable English sentence.
In order to accomplish this some sort of flag needs to be set which determines how much
analysis to perform.

Idiomatic phrases are often rejected. ‘John threw up’ should be acceptable, but is not,
since ‘up’ is not a projectile. Some sort of intermediate idiom processing needs to be done to
accomplish this.

The dictionary and grammar are fairly small, and thus the language accepted by the system
is a very small subset of English. This project was a proof of concept, not construction of
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realistic system.

Finally, performance of the system can and must be improved. Using the original
implementation (Still Life), on a Sun-3, simple sentences take just a few seconds, but large
sentences can take over a minute to process. Paragraphs (with ever-lengthening lists of
possible anaphora referents, and other deep semantic information) take several minutes to
process. On the other hand, with the C version of the LIFE interpreter (Wild Life) which is
about 50 times faster than Still Life, performance becomes quite acceptable. On a fast machine
like a DECstation-3100, performance matches that of compiled Common Lisp on a Sun 3.

Even then, independently of which platform is used, there is room for improvement. The
most obvious is that we have constructed a natural language interpreter on top of a LIFE
interpreter. Furthermore, the grammar is not well tuned, and often searches less frequently
successful branches before searching the most often successful. (Although properly called a
“best first chart parser” what is implemented is a parser that could perform best first search
if we had the empirical evidence from English text about which forms are truly most often
successful.) It is our belief that once a LIFE compiler is implemented with, in particular,
indexing facilities as in Prolog’s [8], the parser will perform in much more reasonable, even
competitive time.

In conclusion, with this paper, we hope to have achieved our goal to illustrate the unique
adequacy of LIFE’s functionality for the specific purpose of Natural Language Processing.
The point of our statement is that it is our responsibility as symbolic programming language
designers to cater to the needs of high-level applications. Although much work has yet to be
done to make the idea a competitive one, we nonetheless have the conviction that LIFE is a
natural choice of computer language for the computational linguist.
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