
An Abstract and Reusable

Programming Language Architecture

Hassan Aı̈t–Kaci

ILOG

1

Outline

I Motivation

I Overview

I Syntax

I Kernel

I Types

I Backend

I Conclusion

2

Motivation

I Synthesis of language front-ends to dedicated engines

I Syntactic interface between several application domains

I Scripting tools

I Rapid prototyping, academic experimentation, etc., ...

Basic idea: Factoring out . . .

. . . syntax analysis,

. . . type checking,

. . . code generation.

Seeking an open design—i.e., easily adaptable and extensible.

3

Overview

The design consists in Java packages and classes that offer a
basic service.

One can thus import (some of) these packages and derive (some
of) of these classes and (possibly) complete them with specific
features to:

I Specify a grammar for a surface syntax;
I Possibly augment the basic design with new:

– kernel expressions;
– built-in types;
– built-in instructions;
– runtime objects and structures.

I Translate AST’s into kernel language expressions.

4

Processing diagram

parsing name resolution

boxing analysis type checking

code generation execution

5

Syntax front-end

JACC - Just Another Compiler Compiler:

I “100% Pure Java” LALR(1) parser generator à la yacc

I AST construction and manipulation

I partial parsing

I dynamically (re-)definable operators à la Prolog

6

Jacc dynamic operators

%token ’!’

%dynamic op1

%op1 ’!’ yf 200

%dynamic op2

%op2 ’!’ yfx 500

%%

expression : expression1 _op1_ expression1

| expression2 _op2

| ’!’ expression

;

7

Kernel Expressions

I constants
I names
I functions
I control
I indexed structures
I tuples
I objects
I collections
I updates
I nonstandard constructs
I monoids

8

Kernel Expressions (ctd.)

I constants

– Char

– Int

– Real

– StringConstant

– BuiltinObjectConstant

I names

– Unresolved

– Global

– Local

– Parameter

9

Kernel Expressions (ctd.)

I functions

– Abstraction function x1, . . . , xn · e

– Application f (e1, . . . , en)

– Let let x1 = e1, . . . , xn = en in e

I control

– Sequence { e1; . . . ; en }

– IfThenElse if e1 then e2 else e3

– And e1 and e2

– Or e1 or e2

– Loop while e1 do e2

10

Kernel Expressions (ctd.)

I indexed structures

– NewArray new type[indexer] . . . [indexer]

– ArraySlot e[e1] . . . [en]

– ArrayExtension #[e1, . . . , en]# or #[i1 : e1, . . . , in : en]#

– ArrayInitializer NewArray = ArrayExtension

– ArrayToMap e!indexer

I tuples

– Tuple 〈e1, . . . , en〉

– NamedTuple 〈p1 := e1, . . . , pn := en〉

– TupleProjection e@p

11

Kernel Expressions (ctd.)

I objects

– NewObject new C or new C(T1, . . . , Tn)

I collections

– NewSet new {T} or set{e1, . . . , en}

– NewList new list{T} or list{e1, . . . , en}

– NewBag new bag{T} or bag{e1, . . . , en}

12

Kernel Expressions (ctd.)

I updates

– Definition def id = e or def id(v1, . . . , vn) = e

– Assignment l = e

– UnresolvedAssignment

– GlobalAssignment

– LocalAssignment

– ArraySlotUpdate e[e1] . . . [en] = e′

– TupleUpdate t@p = e

– FieldUpdate o.f = e

13

Kernel Expressions (ctd.)

I nonstandard constructs

– ExitWithValue return e

– UndecidedExpression e1 ? e2

– HideType e as T

– OpenType $e

I monoids

– Homomorphism

– Comprehension

– FilterHomomorphism

14

Functions

Γ[x1 : T1] · · · [xn : Tn] ` e : T

Γ ` function x1, . . . , xn · e : T1, . . . , Tn→ T

Γ ` e1 : T1, · · · , Γ ` en : Tn, Γ ` f : T1, . . . , Tn→ T

Γ ` f (e1, . . . , en) : T

Implicit currying:

S1 = T1, . . . , Sn = Tn, S = Tn+1, . . . , Tn+k → T

S1, . . . , Sn → S = T1, . . . , Tn, Tn+1, . . . , Tn+k → T

15

Let

Γ ` e1 : T1, · · · , Γ ` en : Tn, Γ[x1 : T1] · · · [xn : Tn] ` e : T

Γ ` let x1 = e1, . . . , xn = en in e : T

NB: this let is not polymorphic and amounts to:

let x1 = e1, . . . , xn = en in e

def

=

(

function x1, . . . , xn · e
)

(e1, . . . , en)

16

Control expressions

Γ ` e1 : T1, . . . , Γ ` en : Tn

Γ ` { e1; . . . ; en } : Tn

Γ ` c : Boolean, Γ ` e1 : T , Γ ` e2 : T

Γ ` if c then e1 else e2 : T

Γ ` e1 : Boolean, Γ ` e2 : Boolean

Γ ` e1 and/or e2 : Boolean

Γ ` c : Boolean, Γ ` e : T

Γ ` while c do e : Void

17

Monoid homomorphisms

Monoid: data type with associative binary operation and identity

Type Operation Identity
Int + 0
Int ∗ 1
Real + 0.0
Real ∗ 1.0
Int max −∞
Int min +∞

Boolean or false

Boolean and true

Set union {}
List append []

...

18

Monoid homomorphism

A monoid homomorphism expresses an declarative iteration.

Example (list):

hom11
?

(

f
)

([]) = 11

hom11
?

(

f
)

([H|T]) = f (H) ? hom11
?

(

f
)

(T)

Clearly, this scheme extends a function f to a homomorphism of
monoids, from the monoid of lists to the monoid defined by 〈?, 11〉.

19

Primitive homomorphisms

A primitive homomorphism computing a value of type T consists
of:

I a collection iterated over—of type coll(T ′);

I a function applied to each element—of type T ′ → T ;

I a monoid operation—of type T, T → T ;

I an identity—of type T .

20

Collection homomorphisms

A collection homomorphism expression constructing a collection
of type coll(T) consists of:

I a collection iterated over—of type coll′(T ′);

I a function applied to each element—of type T ′ → coll(T);

I an operation “adding” an element to a collection—of type
T, coll(T) → coll(T)

I an identity—of type coll(T).

21

Monoid comprehension

〈⊕, 11〉{e | q1, . . . , qn}

I 〈⊕, 11〉 is a monoid,

I e is an expression,

I q i is a qualifier:

– an expression e, or
– a pair x ← e, where x is a variable and e is an expression.

[+,set{}] { <x,y> | x <- 1..5, y <- x..6, (x+y)%2 == 0 };

{<1,1>,<1,3>,<1,5>,<2,2>,<2,4>,<2,6>,<3,3>,<3,5>,<4,4>,<4,6>,<5,5>} : {<int,int>}

22

Monoid comprehension

A monoid comprehension is defined in terms of homomorphisms:

[Fegaras-Maier: TODS-1996]

〈⊕, 11〉{e | }
def

= e⊕ 11

〈⊕, 11〉{e | x ← e′, Q}
def

= hom11
⊕

(

λx.〈⊕, 11〉 {e | Q}
)

(e′)

〈⊕, 11〉{e | c,Q}
def

= if c then 〈⊕, 11〉{e | Q} else 11

23

Monoid comprehensions

Monoid comprehensions (based on homomorphisms) allow to
express a complete formal Object Query Calculus [Fegaras-Maier:
TODS-1996].

Monoid comprehensions

I facilitate optimization through expression normalization

I complete naturally the λ-calculus

I enable efficient declarative iteration using RDB techniques

We adapted the comprehension calculus to work in a language
setting.

24

Types

I polymorphism

I overloading

I currying

I boxing/unboxing

I dynamic types

I classes

I type definitions

25

Polymorphism

ML-polymorphism (i.e., 2nd-order universal)—e.g.:

Type ::= SimpleType | TypeScheme

SimpleType ::= BasicType | FunctionType | TypeParameter

BasicType ::= Int | Real | Boolean | . . .

FunctionType ::= SimpleType→ SimpleType

TypeParameter ::= α | α′ | . . . | β | β′ | . . .

TypeScheme ::= ∀ TypeParameter . Type

26

The Type System

Type

Static Dynamic

Named Parameter Constructed Extensional Intensional

Constant Term Boxable Function Tuple Array Collection

CollectionConstant Class Defined NamedTuple Set Bag List

27

Class type

Declaring a class type and defining its implementation causes
the following:

I the name of the class is entered with a new type for it in the
type symbol table;

I each field of a distinct type is assigned an offset in an array of
slots (per sort);

I each method and field expression is name-resolved, type-
checked, after closing it into an abstraction taking this as first
argument;

28

Class type

I each method definition is compiled into a global definition, and
each field is compiled into a global function corresponding to
accessing its value from the appropriate offset;

I finally, each field’s initialization expression is compiled and
recorded to be used at object creation time.

An object may be created at run-time (using the new operator
followed by a class name).

29

Class type

class classname { interface } [{ implementation }]

The interface block specifies the type signatures of the members
(fields and methods) of the class and possibly initial values for
fields.

The implementation block is optional and gives the definition of
(some or all of) the methods.

30

Class type

class Counter{ val : Int = 1;
method set : Int → Counter;
}
{ set(val : Int) : Counter = (this.val = val);
}

def set(x : Counter, n : Int) : Counter = (x.val = n);

c = new Counter;

c.set(c.val + 2);
write(c.val);

set(c, val(c) + 2);
write(val(c));

31

The Type Checker

I Backtracking prover that establishes goal objects.

I e.g.: a TypingGoal consists of an expression and a type:

proving a TypingGoal amounts to unifying its expression com-
ponent’s type with its type component.

I Such goals are spawned in the typechecker by the type check-
ing method of expressions as per their type checking rules.

32

The Type Checker (ctd.)

I Some globally defined symbols may have multiple types:
keep choices and backtrack to alternative types upon failure.

I the typechecker maintains all the necessary structures for un-
doing:

– type variable binding,
– function type currying,
– application expression currying.

33

Some typing goals

I EmptyGoal

I TypingGoal

I UnifyGoal

I GlobalTypingGoal

I SubTypeGoal

I BaseTypeGoal

I ArrayIndexTypeGoal

I PruningGoal

I PushExitableGoal

I PopExitableGoal

I CheckExitableGoal

I ResiduatedGoal

I ShadowUnifyGoal

I UnifyBaseTypeGoal

I NoVoidTypeGoal

34

Boxing/Unboxing

Polymorphic code must work for either:

• primitive unboxed types (e.g., Int, Real, etc.)
• boxed types

Problem: how to compile a polymorphic function into code that
knows the actual runtime sorts of the function’s runtime argu-
ments and returned value, before the function type is actually
instantiated?

The problem was addressed by Xavier Leroy 11 years [POPL’92].

35

Boxing/Unboxing

Leroy’s method:

I type annotation enabling a source-to-source transformation;
I source transformation: generate of wrappers and unwrappers

for boxing and unboxing expressions whenever necessary;
I compile the transformed source as usual.

We adapt and improve the main idea from Leroy’s method:

I type annotation and rules are greatly simplified;
I no source-to-source transformation is needed;
I un/wrappers generation is done at code-generation time.

This saves a great amount of space and time.

36

Backend system

Intermediate code is executed in the context of Runtime.

A runtime state (encapsulated by an object in this class) is that of
a stack automaton supporting the computations of a higher-order
functional language with lexical closures.

This may be viewed as an optimized variant of Peter Landin’s
SECD machine in the same spirit as Luca Cardelli’s Functional
Abstract Machine (FAM).

The backend system also defines runtime objects for tuples, maps,
sets, etc., ...

37

Conclusion

This architecture offers a compromise between formal executable
specification systems and pragmatic language definition (a poor
man’s language kit?...).

It enables low-cost development of programming languages with
basic and advanced features.

Importantly, it is open and favors ease of extension and interop-
erability.

Much more remains to be done (e.g., namespaces, access man-
agement, rule-based programming, logic programming, type log-
ics, etc., ...)

38

Thank You Very Much !

