
An Introduction to LIFE —Programming with
Logic, Inheritance, Functions, and Equations

Hassan Aı̈t-Kaci
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92500 Rueil-Malmaison, France
hak@prl.dec.com

Abstract

LIFE (Logic, Inheritance, Functions, Equations) is a programming language with
a powerful facility for structured type inheritance. LIFE reconciles styles from
functional programming and logic programming by implicitly delegating control
to an automatic suspension mechanism. This allows interleaving interpretation of
relational and functional expressions that specify abstract structural dependencies
on objects. Together, these features provide a convenient and versatile power of
abstraction for very high-level expression of constraineddata structures.

... l’élément ne préexiste pas à l’ensemble, il
n’est ni plus immédiat ni plus ancien, ce ne sont
pas les éléments qui déterminent l’ensemble, mais
l’ensemble qui détermine les éléments.

GEORGESPEREC La vie, mode d’emploi.1

1 Introduction

LIFE is a programming language originally conceived by Hassan A¨ıt-Kaci and his
colleagues at MCC, in Austin, Texas [5, 6]. It is a synthesis of three different
programming paradigms: logic programming, functional programming and object-
oriented programming.2 At first sight it closely resembles Prolog, from which it
partly derives its syntax and resolution method. However, the addition of functions,
approximation structures and inheritance greatly enriches the language and allows
one to formulate efficient programs more easily, more concisely, and—in our
opinion—more naturally [9].

Still LIFE [17] was the first prototype ofLIFE done at MCC by David Plummer
in Quintus Prolog. As a first experimental implementation,Still LIFE was not a
full embodiment of everything the designers had in mind. More problematically,
it was slow, and plagued with a few chronic bugs. No further work on it being
planned at MCC together with MCC’s policy of withholdingsoftware as proprietary
information have extinguished motivation to pursue its correction and completion.

1Life, a user manual.
2Or rather, a particular view of object-oriented programming dealing essentially with inheritance.

Wild LIFE is the successor ofStill LIFE. Its implementation was carried out
at Digital’s Paris Research Laboratory (PRL). It is an independent, complete re-
implementation, in C, of an interpreter forLIFE. In comparison withStill LIFE’s
Prolog implementation,Wild LIFE is much faster, even though, being just an
interpreter, it has not been designed with performance in mind and therefore runs
at interpreter’s speed. More importantly, it is quite more complete, and more
reliable, thanStill LIFE with respect to the specified language. The interpreter
represents roughly 28000 lines of highly portable code.3 It was initially written,
for its greatest part, by Richard Meyer for his Engineering Degree project under
the supervision, and following the specifications, of Hassan Aı̈t-Kaci. It was
later corrected, completed, and extended by Peter Van Roy, also following Hassan
Aı̈t-Kaci’s specifications. An interface to the X Window system was then added
by Jean-Claude Hervé. UsingWild LIFE as a bootstrapper, a compiler forLIFE
is currently being built at PRL by Peter Van Roy, Richard Meyer, and Bruno
Dumant based on recent optimization technology [20], and using new algorithms
for function coroutining [18] and sort unfolding [12].

This paper, extracted largely from [2], summarizes the essence of LIFE for
someone interested in using it for actual programming. Of course, this is far from
a complete tutorial onLIFE. However, it tries to give a faithful account of the
main constructs of the language usingWild LIFE as a concrete representative.
Therefore, in this paper, whenever we refer toLIFE as a concrete running language,
we shall meanWild LIFE.4

2 Generalities

LIFE is a generalization of Prolog. This is generally true to a point where
little indeed need be changed in a Prolog program to run underLIFE. In fact,
we shall tacitly assume that you, the reader, are familiar with Edinburgh-style
syntax [14, 16, 19]. Thus, unless specifically indicated to be different, the same
syntactic conventions will apply. In particular, variables are capitalized (or start
with) whereas all other identifiers start with a lower-case letter. The symbol
= is the unification predicate,:- defines a rule,! is the cut predicate,etc.
However, while most of what is known as Edinburgh-style syntax for Prolog has
been retained inLIFE, a few minor but important departures from it do require
some habit-breaking to the Prolog programmer.

When interacting withLIFE you may either make assertions, submit queries
to be solved or exit by typing the key sequence CTRL-D which closes the input
stream. The goalhalt, as in (Edinburgh) Prolog can also be used to terminate
LIFE.5

3Of which about 2000 lines are inLIFE.
4TheWild LIFE system is available as free public domain software distributed with source code.

For retrieval information, send electronic mail tolife-request@prl.dec.com. Use this same
address to inquire about theLIFE’s users mailing list.

5Whenever we refer to “Prolog” we mean a generic language of the family using “Edinburgh”
style syntax;e.g., DEC-10 Prolog, Quintus Prolog, SICStus Prolog,etc.

The following rule holds throughout:
� all program assertions are terminated by a period:.
� all queries (goals to be proved) are terminated by a questionmark: ?.
LIFE’s interaction with the user is similar to Prolog’s but it is in fact much

more flexible as it extends it to allow the user to build a queryin an incremental
manner. Indeed, once a query has been proved and answered, the user is offered
the possibility of extending itusing the resulting context. Query levels in the form
of increasingly indented and numbered prompts are thus printed to make one be
aware of the depth in the query. Hence, upon success,LIFE will then prompt for
further information and at this point you take either of the following actions:

� typehCRi to abandon the current query and go back to the previous level
� type; to force backtracking and look for another answer
� extend the query by typing a goal followed by?
� type. to pop up to the top-level prompt from any depth.

3 The basic data structure: -terms

Just as Prolog is based on (first-order) terms,LIFE is based on -terms [1]. If
you simply substitute Prolog terms withLIFE’s -terms the resulting language
is LOGIN [5]. In LIFE -terms have been used to represent all data structures,
including lists, clauses, functions and sorts.

3.1 Sorts

As a first approximation,LIFE’s -terms may be construed as record types. One
could say that they are to first-order terms what flexible records are to static arrays.
A -term has a (principal, or root)sort. Sorts denote sets, and are partially-ordered
with a subsort ordering denoting set inclusion. The partially ordered set of all
sorts may be viewed as a so-calledinheritance hierarchy. The subsorts of a sort
inherit all the properties of the parent sort. Sorts may share common subsorts, thus
allowing so-calledmultiple inheritance.

At the summit of the hierarchy of sorts, there is a greatest sort, denoted by
>, pronounced “top.” It approximates everything as it denotes the universe of all
objects inLIFE, and thus represents the union of all sorts. InLIFE, it is written as
@ (but still pronounced “top”).6 Likewise, at the base of this hierarchy we find the
sort?, pronounced “bottom”. This is the empty set and so any -term containing
? denotes the empty set. InLIFE the symbolfg is used to represent?. Because
of its collapsing effect on any structure that contains it,fg can appear explicitly
in any useful way only innon-strictexpressions like conditionals or so-declared
definitions.

6Because> is not a standard ASCII character, we need an ASCII symbol to stand for it. Besides
reminding a looped-arounda that could stand foranything, the symbol@ has a shape that is
reminiscent of an embryo—a perfect ideogram to denote the most primeval sort inLIFE!

In LIFE, there is no conceptual difference made between values and sorts.
Values are just singleton sorts. Thus, the value1 is equivalent to the singleton set
f1g and is a subsort ofint, the built-in sort of all integers. In formal notation,
we use the symbol/ to denote the assertion that one sort is a subsort of another.In
LIFE, this symbol is rendered as<| and used as a declaration.7

The built-in sorts available to the user are:
� All integers, real numbers,int, real with the declarationsn <| int

(for all integersn), r <| real (for all non integral real numberr), and
int <| real. For example,0, -5, and3.0 are subsorts ofint and
thus ofreal, but2.5 and26.77 are not subsorts ofint although they
are subsorts ofreal.

� list, whose subsorts are the empty listnil, also written[], and the
non-empty list constructorcons, also written[|]. Non-empty lists may
be written using all the flexibility of Prolog’s syntax;e.g.:8

[a,b,c] = [a,b|[c]] = [a,b,c|[]] = [a|[b|[c|[]]]].
� All strings s andstring, with the declarationss <| string; specific

strings appear within double quotes as in"this is a string".
� bool, true, false with the declarationtrue <| bool andfalse
<| bool.

3.1.1 Defining sorts

New sorts may be added by the user along with their relative position in the
hierarchy.

Let us say that “truck/ vehicle” in your intended model, which means that for
the purpose of your program“all trucks are vehicles, and any property pertaining
to vehicles also applies to trucks.”You specify this inLIFE by typing:

> truck <| vehicle.

*** Yes

and thenLIFE’s unification will take that information into account:

> mobile(vehicle).

*** Yes
> useful(truck).

*** Yes
> mobile(X),useful(X)?

*** Yes
X = truck.

7This must not be confused with a predicate that wouldtestwhether to sorts are related.
8Note that the Prolog list notation is just syntactic sugaring. Internally, the sortsnil andcons

are used and can also be used in a program indifferently for[|] and[], respectively. For instance,
X = cons(2=>nil,1=>foo,3=>bar) is the same asX = [1](3=>bar), which is also the
same asX = cons(1,[],bar).

Besides their relative ordering, sorts may be specified to bear other information.
Namely, they may be given attributes, coreference constraints among attributes,
and more generally arbitrary relational and functional dependency constraints.
This will be explained in the next sections.

3.1.2 Greatest Lower Bound

The intersection of two sorts is called the Greatest Lower Bound (GLB) of these
sorts. It is their largest common subsort if it exists. However, in general such a
unique common subsort does not exist. In that case, the intersection is the union
of the maximal common subsorts. Such a union is seen as adisjunctionof sorts.
We writefa1 ; . . .; ang for the disjunction of the sortsa1; . . .; an.

Say we definetwo wheels andfour wheels as the classes of objects
having respectively 2 or 4 wheels, and the sortvehicle with the following
hierarchy:

bike <| two_wheels. bike <| vehicle.
truck <| four_wheels. truck <| vehicle.
car <| four_wheels. car <| vehicle.
toy_car <| four_wheels. rolls_royce <| car.

Then we can establish the following values for the GLB of two pairs:
� GLB(two wheels,vehicle) = bike
� GLB(four wheels,vehicle) = fcar;truckg
� GLB(two wheels,four wheels) = ?

� GLB(rolls royce,car) = rolls royce
� GLB(truck,@) = truck

3.2 Attributes

A -term represents a set of objects. All these objects may havecertain attributes
(or features). An attribute is a pair constituted by a label (or feature name) and an
associated -term. For example:

car(number_of_wheels => 4,
manufacturer => string,
maximum_speed => real).

An attribute label may be any unsigned natural number or any symbol, single-
quoted if containing non-alphanumeric characters other that underscore. One may
view a -term as a generalization of conventional Prolog terms in that subterm
positions are specified by explicit keywords rather then implicit numeric positions.
Thus, for compatibilitywith Prolog, and also for ease of use, implicit positions may
also be used inLIFE. More precisely,thing(a,b,c) is equivalent tothing(1
=> a, 2 => b, 3 => c). The order of attributes is completely irrelevant
and so this -term could also be entered as:thing(2 => b, 3 => c, 1
=> a).

Unlike Prolog terms, -terms do not have fixed arities. This is an important
deviation that causes a syntactic incompatibility with Prolog programs. Thus, in

Prolog, a functor is a pairf/n consisting of a symbol and its arity, such that
two functors are considered equal if and only if they have both same symbol and
same arity. Many Prolog programmers take advantage of this and use the same
symbol with different arities to name distinct predicates.Clearly, this practice is
no longer valid inLIFE.9 Indeed, two -terms with the same principal sort symbol
but different numbers of arguments, or with different subterm attributes altogether,
can very well unify. In fact, they may unify even with distinct root sorts, as long
as these have a non-bottom GLB, and a -term may acquire new attributes as a
problem is solved (more information is learned about the object).

3.3 Variables and Tags

Variables start with or an upper case letter, as in Prolog. Unlike Prolog, inLIFE
a variable is not restricted to appear only as the leaf of a term. Thus, variables can
be used as (reference)tagswithin a -term’s structure and then used as explicit
handles for referencing the part of -term they tag. These references may be
cyclic; i.e., a variable may occur within a -term tagged by it. As usual, variables
are local to the clause or query in which they appear. The syntax expressing the
tagging of a -term t by a variableX is of the formX:t. It does not matter
where a tagging occurs in a clause as it is global to the whole clause. In fact,
even if a variable occurs not as a -term’s tag but as a simple isolated variable, it
is implicitly considered to be tagging>, exactly as if it had been writtenX:@. If
the same variable needs to be constrained to be the conjunction of two terms, it is
written using the& operator, as inX:t1&t2. This is equivalent to writingX=t1,
X=t2.

3.4 Disjunctive terms

A disjunctive term is an expression of the formft1;. . .;tng, n � 0, where each
ti is either a -term or a disjunctive term. A disjunctive term denotes the union
of the various terms that compose it. Note that the empty disjunction isfg which
naturally means the empty set, and explains whyfg is used for? in LIFE. Note
also that a singleton disjunctive termftg is equivalent tot, in natural accordance
with the assimilation of a value to the singleton sort containing it.

In LIFE disjunctive terms are enumerated using a left-right depth-first back-
tracking strategy, exactly as Prolog’s (andLIFE’s!) predicate level resolution.
That is, a disjunctive term takes the value of its first disjunct, then on backtracking
successively takes the value of its second disjunct,etc.

� A=f1;2;3;4g? is equivalent toA=1;A=2;A=3;A=4? where; signifies
“or” in Edinburgh Prolog syntax.

� p(fa;b;cg). is equivalent to assertingp(a). p(b). p(c).

9This is not a very serious limitation of compatibility as this practice is generally considered a bad
one by serious Prolog programmers, and all Prolog programs where this is used can be systematically
transformed.

� write(vehicle&four wheels)? will first print car then on back-
tracking will printtruck.

4 Predicate Definitions

As in Prolog, a predicate definition consists in one or several (definite) clauses.
Definite clauses inLIFE are written in the same manner as they are in Prolog
and behave in the same way, only -terms replace terms. In many cases Prolog
programs can run unaltered inLIFE. Clauses are stored in the assertion base in the
same order as they are entered. This is not a tutorial on Prolog, so—for further
information—please consult your local library.

Just as Prolog represents every syntactic construct as a first-order term (includ-
ing definitions) so doesLIFE use -terms for the same purpose. This allows great
flexibility for meta-programming inLIFE with added power thanks to the use of
 -terms as opposed to simpler Prolog terms.

The general form of a clause isHead :- Body., where Head and Body are
two -terms. If the sort ofBody is a comma (,), the body is a conjunction: its
first argument is its left conjunct and its second is its rightconjunct. This form of
a clause is called arule and is read as “Headif Body”. Another form of a clause is
a fact, and is of the form:Head. A fact is really a special case of a rule as it is an
abbreviation ofHead :- succeed.10

A query (or resolvent) is a conjunction of atomic goals. An atomic goal in
LIFE is a -term whose root symbol is a predicate name. A query is provedusing
top-down/left-right SLD-resolution as in Prolog. As in Prolog the order in which
the rules are entered is important as they will be tried in that order. In LIFE,
attempting to prove a goal of an undefined predicate results in an error, unless this
predicate has been declareddynamic, in which case it simply fails.

5 Functions

The availability of reducible functions is one of the major features that distinguish
LIFE from Prolog [6]. They make programming much more flexible andmore
intuitive. In LIFE, functions of any functionality order may be used. They can be
curryed,i.e., called with missingarguments; and they can“residuate” (or suspend),
i.e., be called with insufficiently instantiated arguments. Thelatter feature allows
programming with coroutines and constraints [8, 10, 11, 13].

10Prolog usestrue rather thansucceed as the predicate that admits any proof (and thus requires
none), butfail instead offalse as the predicate that has no proof. Thanks to the dual (declarative
or procedural) interpretations of resolution, the confusion is mild. However,LIFE makes a more
consistent choice by usingsucceed/fail for these predicates, reservingtrue/false for the
boolean sorts returned as values of boolean functions.

5.1 Function Definitions

A function definition consists in one or several rules. Theserules have a very
simple syntax:Head -> Body., where Head and Body are two -terms. The
first -term is the head of the functions, the second is the resulting value. A
functional expression is any -term whose root symbol is a function symbol (i.e.,
a symbol appearing as the root of the head of at least one function rule in the
assertion base).11 For example, one can define and use factorial as:

> fact(0) -> 1.
> fact(N:int) -> N*fact(N-1).
> write(fact(5))?
120
*** Yes

Since the head of a rule defining a function is a -term, it is perfectly legal to
define and use functional expressions using numerical positionsas well as symbolic
attributes to specify arguments.

Function rules are stored in the assertion base in the order they appear specified.
As for clauses defining predicates, order of a function’s rules matters as explained
next.

As is the case with predicates, the rules defining a function are looked up
in the order they are entered, but the important difference is that functions are
deterministic. That is, there is no backtracking once a rule has fired, so thefirst
rule to fire hides all those following it. Another way of seeing this is that functional
evaluation does not allow argument guessing as would be non-deterministically
possible bynarrowing(i.e., using unification instead of matching).

A -termU matches a -termV if U / V. This means thatsort(U) / sort(V)
and that the -terms associated to the labels ofU, match the corresponding -terms
in V. There are two cases whereU andV do not match: the first is if GLB(U,V) =
?, in which case matching fails and the next rule is used; the second is whenU is
not included inV, in which case function evaluation is suspended: the function is
residuated.

In simpler terms: residuation occurs when the arguments of afunction are not
sufficiently instantiated to determine the value of the result. If this occurs, the
function value is given the temporary value>, and as soon as the arguments are
sufficiently instantiated the function is re-evaluated andthe result is unified with
the temporary result. In this way one can implement constraints.

Here is an example of residuation using the previously defined functionfact.
First, we impose the constraintA = B!.

> A=fact(B)?

*** Yes
A = @, B = @~.

11In LIFE, the sort name space, the predicate name space, and the function name space are mutually
exclusive. For instance, it is not possible for the same symbol to be used simultaneously, within the
scope of a same module, as a defined sortanda defined function. On the other hand, any (defined or
undefined) symbol and any natural number may be used as an attribute.

The expressionfact(B:@) residuated, yielding@ as a temporary result. The
tilde ~ after@ means that B is a residuation variable, that is a variable that, if its
sort is made more precise (more information is known), will cause the residuated
function to be re-evaluated. We say thatB is in the RV-set (set of residuation
variables) of this constraint.

--1> B=real?

*** Yes
A = @, B = real~.

The functionfact still residuates becauseint / real.

----2> B=5?

*** Yes

5 / int sofact(B:5) can be calculated.

A = 120, B = 5.

Let us now go back to the previous query level by typinghCRi:

------3>

*** No
A = @, B = real~.
----2> A=123?

*** Yes
A = 123, B = real~.
------3> B=6?

We now have strengthened the constraint to6! = 123, and of course this
constraint always fails.

*** No
A = 123, B = real~.
------3>

Functions are deterministic: there is no value guessing or backtracking
involved. This means that a function, when invoked, may not alter its actual
arguments to fit the definition. For example, if the definitionf(X,X) -> ...
is present, the callf(foo,bar) will skip it if foo andbar are non-unifiable,
and it will residuate otherwise. In the latter case, the onlyway the definition may
be eventually used is through explicit unification of both arguments.

To be precise, the scheme above concerns user-defined functions. This is
also the case of built-in functions, but there are some important exceptions. For
instance, all the binary arithmetic functions can infer onetheir arguments, if the
result and the other argument is known, since this is compatible with our view that
functions are deterministic. In fact, the built-in arithmetic functions perform all
locally determined inversions;e.g., the goal0=B-C causesB andC to be unified.

5.2 Currying

A functional expression is curryed if it has missing arguments. This is not the
same as residuation, because the result of currying is a function, not>. Currying
in LIFE is not defined in quite the usual way because functions do not really have
an arity. They have a list of required arguments, indexed by labels, not necessarily
by integers.

The usual way of defining currying would be to say:f (X;Y) = f (X)(Y). But
the definition imposed by labels inLIFE is:
f(a => X,b => Y) = f(a => X)&@(b => Y).

Because labels are not ordered as are integers it is not possible to consume
arguments by position, as in�-calculus. Indeed, one can also write:
f(a => X, b => Y) = f(b => Y)&@(a => X).
This definition can be extended to any number of labels, basically the idea is that
all the necessary argument positions have to be filled (orderis irrelevant).12

Let us define a function that returns the list of its three arguments, and let us
call it with only two arguments.

> f(X,Y,Z) -> [X,Y,Z].

*** Yes
> A=f(a,b)?

*** Yes
A = f(a,b).

The functionf didn’t find its third argument, so it returns in a curryed form.
We can provide it the missing third argument and make its evaluation possible.

--1> A=f(3 => c)?

*** Yes
A = [a,b,c].

Several rules making up the definition of a function need not necessarily
have their heads specify the same numbers or labels of arguments. Therefore, a
functional expression is curryed as long as it misses arguments specified in the
first eligible rule not yet dismissed, even if it already possesses all the arguments
specified in a following rule.

> foo(a=>int) -> 1.

*** Yes
> foo(b=>int) -> 2.

12It should be noted thatWild LIFE’s current handling of currying in the presence of explicit labels
and implicit numeric positions is ratherad hocand not quite satisfactory. This, like a few other things
in LIFE, was done as a matter of temporary, if imperfect, solution toa yet unsolved issue. Only
recently has a formal calculus been worked out that treats currying with label arguments correctly [3].

*** Yes
> X=foo(b=>0)?

*** Yes
X = foo(b => 0).
--1> X=foo(a => string)?

*** Yes
X = 2.
----2>

A rule defining a function may very well have a head without anyarguments.
This means necessarily that it will never residuate nor everbe curryed. It also
means that it does not make any sense to define any more rules for that function
following its first argumentless rule. This facility is in fact a nice way to define
global constants or catch-all clauses.

Functional variables are allowed. That is, a functional expression may have a
variable where a root symbol is expected.

map(F,[]) -> [].
map(F,[H|T]) -> [F(H)|map(F,T)].

> L=M(F,[1,2,3,4])?

*** Yes
F = @, L = @, M = @~.
--1> M=map?

*** Yes
F = @~~~~, L = [@,@,@,@], M = map.
----2> F= +(2=>1)?

*** Yes
F = +(2 => 1), L = [2,3,4,5], M = map.
------3>

This next example shows how residuation, currying, and functional variables
can be combined together: a constraint is generated that binds the variable R to the
result of applying F to A, where at that point both F and A are unknown, that is:
>. Later the argument A is chosen by the predicatepick arg and the function
F by the predicatepick function. Note thatquadruple is a function that
returns a curryed function:*(2 => 4) that multiplies its first argument by 4.

So let us define, in addition tofact seen before, the following:

quadruple -> *(2=>4). % Here multiply is curryed

pick_arg({5;3;7}).

pick_func({quadruple;fact}).

test :- R=F(A), % R results from applying a yet unknown
% function to a yet unknown argument.

pick_arg(A), % Here we pick an argument,
pick_func(F), % and here a function.
write("function ",F,

" applied to argument ",A,
" is ",R),

nl,
fail. % This forces backtracking.

and let us try it:

> test?
function *(2 => 4) applied to argument 5 is 20
function fact applied to argument 5 is 120
function *(2 => 4) applied to argument 3 is 12
function fact applied to argument 3 is 6
function *(2 => 4) applied to argument 7 is 28
function fact applied to argument 7 is 5040

*** No

6 Sort definitions

We saw how to define a simple sort hierarchy. In practice,LIFE has more to offer:
it is possible to attach properties (attributes or arbitrary constraints) to sorts. These
properties will be verified during execution, and also inherited by subsorts.

6.1 Attributes

It is possible to attach attributes to sorts, using the following syntax:

:: sort(label => -term, . . ., label => -term).

For example, to express that“vehicles have a make that is a string, and a number
of wheels that is an integer”we may write:

:: vehicle(make => string, number_of_wheels => int).

And to say that“cars are vehicles that have 4 wheels”, we write:

car <| vehicle.
:: car(number_of_wheels => 4).

Obviously if the relationcar <| vehicle is asserted then any properties
attached tocar must be compatible with those attached tovehicle, otherwise
typecar would be?.

It is also possible to use functions in attribute definitions, for example:

:: square(side => S:real,surface => S*S).

6.2 Constrained Sorts

One can also demand that certain constraints always hold about a sort. The syntax
for this is:

:: sort(attributes) | constraint.

whereconstraint has the same form as that of a definite clause’s body. The
operator| is pronounced“such that.” For example:

:: code(key => S:string) | pretty_complicated(S).

attaches a constraint to any object of sortcode wherepretty complicated
is a predicate expressing some property on strings. You might find it helpful to read
this as“all codes have a key that is a string, S, such that S is pretty complicated.”

Because the form of successive definitions:

sort_1 <| sort_2.
:: sort_1(attributes) | constraint.

is so frequent,LIFE allows a more convenient form with a little syntactic sugar.
The alternative form is:

sort_1 := sort_2(attributes) | constraint.

which you can read as“ sort 1 is a sort 2 that hasattributes such that
constraint holds.”

This facility renders rather nicely the intuitive mathematical notation defining
a set in terms of another one, of the formA = fx 2 B j . . .P(. . .; x; . . .) . . .g.

In fact, the “such that” operator| may be used arbitrary terms in any
expressions, even outside of sort definition. For example, the term conjunction
operator& is defined as the following (infix) function:

X & Y -> X | X = Y.

6.3 Checking sort definitions

Sort definitions can specify arbitrarily constrained objects. This can cause a
some overhead forLIFE, so checking definitions is done incrementally. Attribute
inheritance can also be done lazily so that an attribute constrained in a sort definition
is taken into consideration only if the corresponding attribute appears explicitly in
a resolvent. A complete and consistent algorithm algorithmto do that exists and
has been devised [12]. Such an algorithm is essentially a lazy unfolding of sort
definitions and has as a specific advantage to prevent infiniteloops in presence of
recursive sort definitions like:
:: person(best friend => P:person) | really nice(P).

Unfortunately, this algorithm was not available at the timeof Richard Meyer’s
original implementation ofLIFE. Moreover, the data structure management and
internal setting of the interpreter were not amenable to a simple adaptation of the
interpreter to incorporate the lazy unfolding algorithm. Hence, what the current
implementation uses is an incomplete (indeed, sometimes diverging) algorithm

that consists in bringing in all the constrained attributesfrom a definition, whether
or not they are explicitly used in a resolvent, and execute all constraints specified
in the definition.

Therefore, in the current implementation, a recursive sortdefinition such as
that ofperson above would systematically loop because of ever-expandingthe
definition ofperson. This is too bad (especially since we know how to handle
it with the new algorithm alluded to before) and can currently be dealt with only
thanks to anad hocmeans. Namely, in order to cope with such definitions,LIFE
uses the following declaration to delay checking the attributes and constraints
specified by the definition of a sort. For example, the foregoingperson definition
would also need the pragma declaration:

delay_check(person)?

This preventsLIFE from expanding its definition unless the sort in the resolvent
has an attribute attached to it. This explains the followingbehavior:

> delay_check(person)?

*** Yes
> :: person(best_friend => P:person) | really_nice(P).

*** Yes
> cleopatra <| person.

*** Yes
> really_nice(cleopatra).

*** Yes
> A=person?

*** Yes
A = person.

Note that, at this point, the definition has not been checked because there were
no attributes. Let us now continue and attach the attributenose => pretty.

--1> A=@(nose => pretty)?

*** Yes
A = person(best_friend => cleopatra,nose => pretty).

We see that the definition was checked, the attributes where retrieved and the
goalreally nice(P) proved. Butcleopatra who is also aperson has
not been checked for the same reason.

Unfortunately, thedelay check trick is not sufficient to guarantee com-
pleteness and convergence in all cases. There are, however,easy guidelines for a
general safe style of programming around these current limitations. Needless to
say, all this hackery will have disappeared in the next release ofLIFE for a clean,
complete, and consistent handling of recursive sorts.

6.4 Constraints as daemons

Dynamic constraints that are attached to sort definitions are checked at run-time
during unification. This is truly a novel programming feature offered byLIFE as
they can be used very effectively as daemons—that is, code whose execution is
triggered upon access to an object.

An interesting use of constraints as daemons is that one can use them to help
debugging, for example by printing all -terms of a given sort each time they have
their constraints checked.

> :: I:int | write(I," ").
*** Warning: extending definition of sort ’int’.

*** Yes
> A=5*7?
5 7 35
*** Yes
A = 35.
--1> B=fact(5)?
5 1 4 1 3 1 2 1 1 1 0 1 1 2 6 24 120
*** Yes
A = 35, B = 120.
----2>

LIFE tries to be clever in dynamically checking constraints attached to sorts in
that it remembers which constraints have already been solved. Hence, definitions
are only retrieved the first time it becomes necessary, and not rechecked uselessly.
In effect, one can bind arbitrary complicated proofs to a variable inLIFE.

7 Conclusion

We have overviewed the salient features ofLIFE from a pragmatic standpoint. We
have not covered all the programming conveniences offered by the systems that
would not be relevant in a summary. Some of these omissionsare standard facilities
(e.g., the module system, the graphical interface, the grammar preprocessor), while
others are experimental, albeit quite useful, innovations(e.g., global variables,
persistent structures). The reader is referred to [2] for a more complete account.

LIFE is still under development, both conceptually and practically. Its
main attraction is the convenience it offers with function and its more direct
adequacy with recent formalisms for natural language processing [4] and database
models [15]. It is bound to evolve in several respects so thatsome of the contents of
this article may become out of date, or irrelevant, as some issues improve as ideas
on whichLIFE rests become better conceived and more efficiently implemented.
Also, like Prolog, it may become a prisoner of its original aspect. However,
its essential core will preserve a genetic stamp so that programming in LIFE
will somehow always mean programming with Logic, Inheritance, Functions, and
Equations.

Acknowledgements

The author wishes to express his thanks and debt to the earlyLIFEers of his MCC
days, Patrick Lincoln, Roger Nasr, and David Plummer, as well as the latter ones,
all the members of the Paradise project at PRL, permanent andtransient, for their
contribution, big or small, to makingLIFE a reality: Abder Aggoun, Christophe
Bonnet, Bruno Dumant, Gerard Ellis, Jacques Garrigue, SethGoldstein, Dinesh
Katiyar, Richard Meyer, Aı̈ssam Mezhoud, Kathleen Milsted, Andreas Podelski,
Fadila Setbel, and Peter Van Roy.

References

1. Hassan Aı̈t-Kaci. An algebraic semantics approach to theeffective resolution
of type equations.Theoretical Computer Science, 45:293–351 (1986).

2. Hassan Aı̈t-Kaci, Bruno Dumant, Richard Meyer, and PeterVan Roy.
Wild LIFE, a user manual. PRL Research Report (forthcoming), Digital
Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison, France
(1993).

3. Hassan Aı̈t-Kaci and Jacques Garrigue. Label-selective�-calculus. PRL Re-
search Report 31, Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison (May 1993).

4. Hassan Aı̈t-Kaci and Patrick Lincoln. LIFE—A natural language for natural
language.T. A. Informations, revue internationale du traitement automatique
du langage, 30(1–2):37–67 (1989).

5. Hassan Aı̈t-Kaci and Roger Nasr. LOGIN: A logic programming language
with built-in inheritance.Journal of Logic Programming, 3:185–215 (1986).

6. Hassan Aı̈t-Kaci and Roger Nasr. Integrating logic and functional program-
ming. Lisp and Symbolic Computation, 2:51–89 (1989).

7. Hassan Aı̈t-Kaci, Roger Nasr, and Patrick Lincoln. Le Fun: Logic, equations,
and Functions. InProceedings of the Symposium on Logic Programming
(San Francisco, CA), pages 17–23, Washington, DC (1987). IEEE, Computer
Society Press.

8. Hassan Aı̈t-Kaci and Andreas Podelski. Functions as passive constraints in
LIFE. PRL Research Report 13, Digital Equipment Corporation, Paris Re-
search Laboratory, Rueil-Malmaison, France (June 1991). (Revised, Novem-
ber 1992).

9. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaningof LIFE. In Jan
Maluszyński and Martin Wirsing, editors,Proceedings of the 3rd International

Symposium on Programming Language Implementation and Logic Program-
ming (Passau, Germany), pages 255–274. Springer-Verlag, LNCS 528 (August
1991). (Full paper to appear in theJournal of Logic Programming).

10. Hassan Aı̈t-Kaci and Andreas Podelski. Entailment and Disentailment of
Order-Sorted Feature Constraints. In Andrei Voronkov, editor, Proceedings of
the Fourth International Conference on Logic Programming and Automated
Reasoning (St. Petersburg, Russia). Springer-Verlag, LNCS (1993).

11. Hassan Aı̈t-Kaci and Andreas Podelski. Logic Programming with Functions
over Order-Sorted Feature Terms. In E. Lamma and P. Mello, editors,Proceed-
ings of the 3rd International Workshop on Extensions of Logic Programming
(Bologna, Italy). Springer-Verlag, LNAI 660 (1992).

12. Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted
feature theory unification. PRL Research Report 32, DigitalEquipment Cor-
poration, Paris Research Laboratory, Rueil-Malmaison, France (June 1993).
(See also these proceedings.)

13. Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based
constraint system for logic programming with entailment. In Proceedings
of the 5th International Conference on Fifth Generation Computer Systems,
pages 1012–1022, Tokyo, Japan (June 1992). ICOT. (Full paper to appear in
Theoretical Computer Science).

14. William F. Clocksin and Christopher S. Mellish.Programming in Prolog.
Springer-Verlag, Berlin, Germany, 2nd edition (1984).

15. Marcel Holsheimer, Rolf A. de By, and Hassan Aı̈t-Kaci. ADatabase
Interface for Complex Objects. PRL Research Report 31, Digital Equipment
Corporation, Paris Research Laboratory, Rueil-Malmaison, France (March
1993).

16. Richard O’Keefe.The Craft of Prolog. MIT Press, Cambridge, MA (1990).

17. David Plummer. LIFE’s rich tapestry. MCC Technical Report ACA-ST-409-
88(P), Microelectronics and Computer Technology Corporation, Austin, Texas
(1988).

18. Andreas Podelski and Peter Van Roy. The Beauty and the Beast Algorithm:
Testing Entailment and Disentailment Incrementally. PRL Research Report
(forthcoming), Digital Equipment Corporation, Paris Research Laboratory,
Rueil-Malmaison, France (1993).

19. Leon Sterling and Ehud Shapiro.The Art of Prolog. Series in Logic
Programming. MIT Press, Cambridge, MA (1986).

20. Peter Van Roy and Alvin M. Despain. High-performance logic programming
with the Aquarius Prolog compiler. InIEEE Computer25 (1), pages 54-68,
Jan. 1992.

