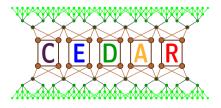


ANR Chair of Excellence

Université Claude Bernard Lyon 1

Constraint Event-Driven Automated Reasoning Project



Outline

- Constraint Logic Programming
- What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Outline

- Constraint Logic Programming
- ➤ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Constraint Logic Programming

In Prolog seen as a CLP language, a clause such as:

```
append([],L,L).

append([H|T],L,[H|R]) :- append(T,L,R).
```

is construed as:

Constraint Logic Programming Scheme

The \mathcal{CLP} scheme requires a set \mathcal{R} of relational symbols (or, predicate symbols) and a constraint language \mathcal{L} .

The constraint language \mathcal{L} needs very little —(not even syntax!):

- ightharpoonup a set \mathcal{V} of *variables* (denoted as capitalized X,Y,\ldots);
- ▶ a set Φ of *formulae* (denoted $\phi, \phi', ...$) called *constraints*;
- ▶ a function VAR: $\Phi \mapsto \mathcal{V}$, giving for every constraint ϕ the set VAR(ϕ) of *variables constrained by* ϕ ;
- ▶ a family of *interpretations* \mathcal{A} over some domain $D^{\mathcal{A}}$;
- ▶ a set VAL(A) of *valuations*—total functions $\alpha : V \mapsto D^A$.

Constraint Logic Programming Language

Given a set of relational symbols \mathcal{R} $(r, r_1, ...)$, a constraint language \mathcal{L} is extended into a language $\mathcal{R}(\mathcal{L})$ of *constrained relational clauses* with:

- ▶ the set $\mathcal{R}(\Phi)$ of formulae defined to include:
 - all formulae ϕ in Φ , *i.e.*, all \mathcal{L} -constraints;
 - all relational atoms $r(X_1, \ldots, X_n)$, where $X_1, \ldots, X_n \in \mathcal{V}$ are mutually distinct;
 - and closed under & (conjunction) and \rightarrow (implication);
- ightharpoonup extending an interpretation \mathcal{A} of \mathcal{L} by adding relations: $r^{\mathcal{A}} \subset D^{\mathcal{A}} \times \ldots \times D^{\mathcal{A}}$ for each $r \in \mathcal{R}$.

Constraint Logic Programming Clause

We define a CLP constrained *definite clause* in R(L) as:

$$r(\vec{X}) \leftarrow r_1(\vec{X}_1) \& \ldots \& r_m(\vec{X}_m) \ \ \phi,$$

where $(0 \le m)$ and:

- $ightharpoonup r(\vec{X}), r_1(\vec{X}_1), \ldots, r_m(\vec{X}_m)$ are relational atoms in $\mathcal{R}(\mathcal{L})$; and,
- $ightharpoonup \phi$ is a constraint formula in \mathcal{L} .

A constrained *resolvent* is a formula $\varrho \mid \phi$, where ϱ is a (possibly empty) conjunction of relational atoms $r(X_1,\ldots,X_n)$ —its *relational part*—and φ is a (possibly empty) conjunction of \mathcal{L} -constraints—its *constraint part*.

Constraint Logic Programming Resolution

Constrained *resolution* is a reduction rule on resolvents that gives a sound and complete interpreter for *programs* consisting of a set \mathcal{C} of constrained definite $\mathcal{R}(\mathcal{L})$ -clauses.

The reduction of a constrained *resolvent* of the form:

$$B_1 \& \ldots \& r(X_1,\ldots,X_n) \& \ldots B_k \mid \phi$$

by the (renamed) program clause:

$$r(X_1,\ldots,X_n) \leftarrow A_1 \& \ldots \& A_m \parallel \phi'$$

is the new constrained resolvent of the form:

$$B_1 \& \ldots \& A_1 \& \ldots \& A_m \& \ldots B_k \mid \phi \& \phi'.$$

Some important points:

- ► But... wait a minute: "Constraints are logical formulae—so why not use only logic?"
 - Indeed, constraints are logical formulae—and that is *good!*But such formulae as factors in a conjunction *commute* with other factors, thus freeing operational scheduling of resolvents.
- A constraint is a formula solvable by a specific solving algorithm rather than general-purpose logic-programming machinery.
- ▶ Better: constraint solving remembers proven facts (proof memoizing).

Such are key points exploited in CLP!

Constraint Solving—Constraint Normalization

Constraint solving is conveniently specified using *constraint normalization rules*, which are semantics-preserving syntax-driven rewrite (meta-)rules.

Plotkin's SOS notation:

A normalization rule is said to be *correct* iff the prior form's denotation is equal to the posterior form's whenever the side condition holds.

Constraint Normalization—Declarative Coroutining

Normalizing a constraint yields a **normal form**: a constraint formula that can't be transformed by any normalization rule.

Such may be either the inconsistent constraint \perp , or:

- ➤ a solved form—a normal form that can be immediately deemed consistent; or,
- ▶ a residuated form—a normal form but not a solved form.

A residuated constraint is a *suspended* computation; shared variables are inter-process communication channels: binding in one normalization process may trigger resumption of another residuated normalization process.

Constraint residuation enables automatic coroutining!

Outline

- **►** Constraint Logic Programming
- What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

What is unification?—First-order terms

The set $\mathcal{T}_{\Sigma,\mathcal{V}}$ of *first-order terms* is defined given:

- ▶ V a countable set of variables;
- $ightharpoonup \Sigma_n$ sets of *constructors* of arity $n \ (n \ge 0)$;
- $ightharpoonup \Sigma = \bigcup_{n>0} \Sigma_n$ the constructor *signature*.

Then, a first-order term (FOT) is either:

- \triangleright a variable in \mathcal{V} ; or,
- ightharpoonup an element of Σ_0 ; or,
- ▶ an expression of the form $f(t_1, ..., t_n)$, where n > 0, $f \in \Sigma_n$, and t_i is a FOT, for all $i \ge 1$.

Examples of FOTs: X a f(g(X, a), Y, h(X)) (variables are capitalized as in Prolog).

What is unification?—Substitutions & instances

A variable substitution is a map $\sigma: \mathcal{V} \to \mathcal{T}_{\Sigma,\mathcal{V}}$ such that the set $\{X \in \mathcal{V} \mid \sigma(X) \neq X\}$ is finite.

Given a substitution σ and a FOT t, the σ -instance of t is the FOT:

$$t\sigma = \begin{cases} \sigma(X) & \text{if } t = X \in \mathcal{V}; \\ a & \text{if } t = a \in \Sigma_0; \\ f(t_1\sigma, \dots, t_n\sigma) & \text{if } t = f(t_1, \dots, t_n). \end{cases}$$

Unification is the process of solving an equation of the form:

$$t \doteq t'$$

What is unification?—FOT equation solving

A **solution**, if one exists, is any substitution σ such that:

$$t\sigma = t'\sigma$$

If solutions exist, there is always a **minimal** solution (<u>the</u> most general unifier): mgu(t, t').

where: " σ_1 is more general than σ_2 " iff $\exists \sigma$ s.t. $\sigma_2 = \sigma_1 \sigma$

Equation and solution example:

$$f(g(X,b),X,g(h(X),Y)) \doteq f(g(U,U),b,g(V,a))$$

$$X \doteq b,Y \doteq a,U \doteq b,V \doteq h(b)$$

What is unification?—Algorithms

FOT unification algorithms have been (re-)invented:

- ▶ J. Herbrand (PhD thesis—page 148, 1930)
- ► J.A. Robinson (JACM 1965)
- ► A. Martelli & U. Montanari (ACM TOPLAS 1982)

But, rather than a monolithic algorithm, FOT unification is simply expressible as a set of syntax-driven **commutative** and terminating constraint normalization rules!

What is unification?—Constraint normalization rules

(1) Substitute

$$\phi \& X \doteq t$$

$$\phi[X/t] \& X \doteq t$$

if X occurs in ϕ

(2) Decompose

$$\frac{\phi \& f(s_1,\ldots,s_n) \doteq f(t_1,\ldots,t_n)}{\phi \& s_1 \doteq t_1 \& \ldots \& s_n \doteq t_n} \quad \text{if} \quad f \in \Sigma_n, \ (n \geq 0)$$

(3) Fail

What is unification?—Constraint normalization rules

$$\begin{array}{c|cccc} \phi & \& & t \doteq X \\ \hline \phi & \& & X \doteq t \end{array} \quad \text{if} \quad X \in \mathcal{V} \\ \text{and} \quad t \not \in \mathcal{V} \end{array}$$

(5) Erase

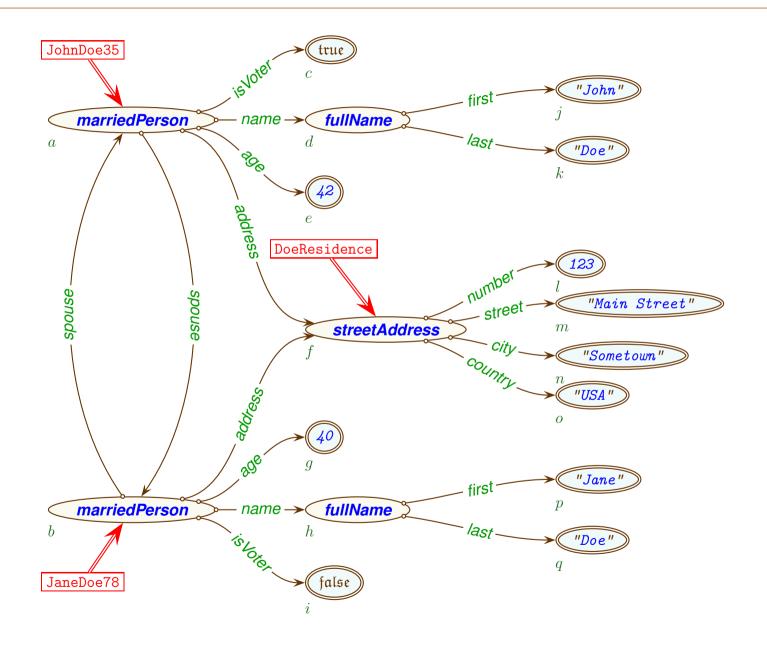
$$\frac{\phi \& t \doteq t}{\phi} \quad \text{if} \ t \in \Sigma_0 \cup \mathcal{V}$$

(6) Cycle

Outline

- **►** Constraint Logic Programming
- ➤ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Semantic Web objects—Objects are labelled graphs!

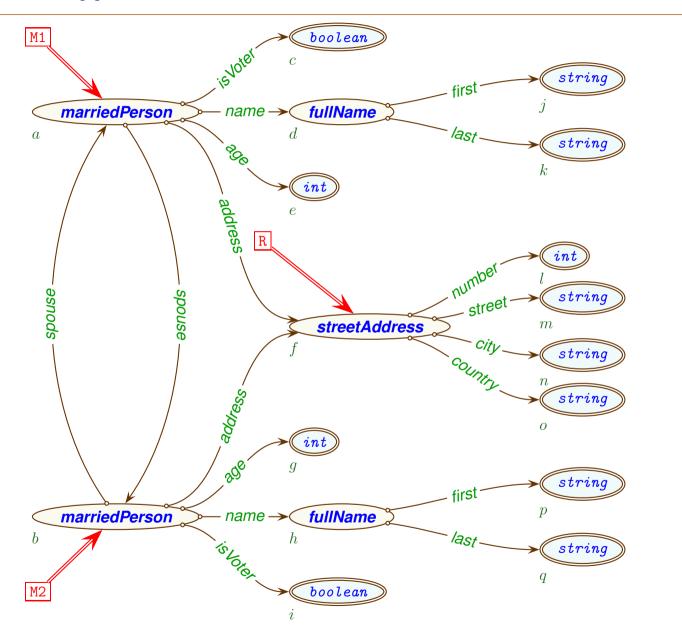


Semantic Web objects—Objects are labelled graphs!

Semantic Web objects—Objects are labelled graphs!

```
JaneDoe78: marriedPerson ( name => fullName
                                     ( first => "Jane"
                                     , last => "Doe" )
                         , age => 40
                         , address => DoeResidence
                         , spouse => JohnDoe35
                         , isVoter => false
DoeResidence : streetAddress ( number => 123
                              , street => "Main Street"
                              , city => "Sometown"
                              , country => "USA"
```

Semantic Web types—Types are labelled graphs!



Semantic Web types—*Types are labelled graphs!*

Semantic Web formalisms—Types are labelled graphs!

```
M2 : marriedPerson ( name => fullName
                                     ( first => string
                                     , last => string )
                    , age => int
                    , address \Rightarrow R
                    , spouse \Rightarrow M1
                    , isVoter => boolean
R : streetAddress ( number => int
                     , street => string
                     , city => string
                     , country => string
```

Outline

- **▶** Constraint Logic Programming
- ▶ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Original motivation: Formalize this?—ca. 1982

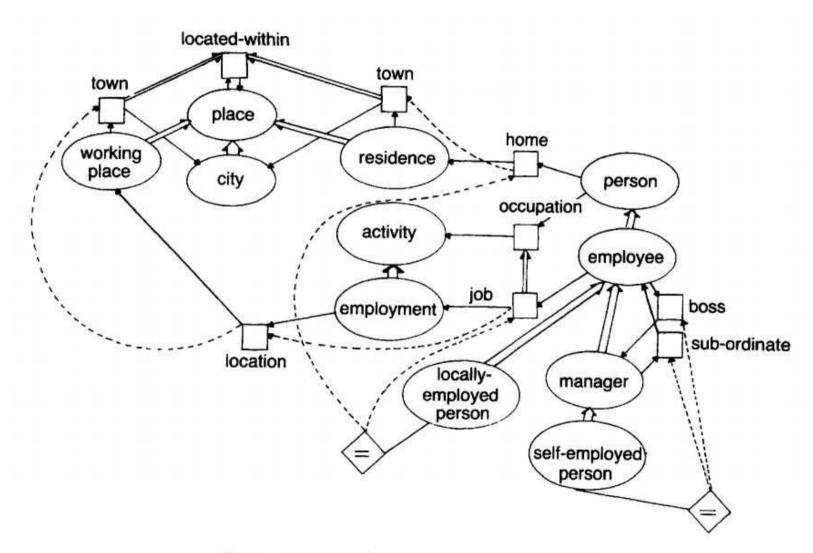


Fig. 1. Example of a KL-ONE semantic network.

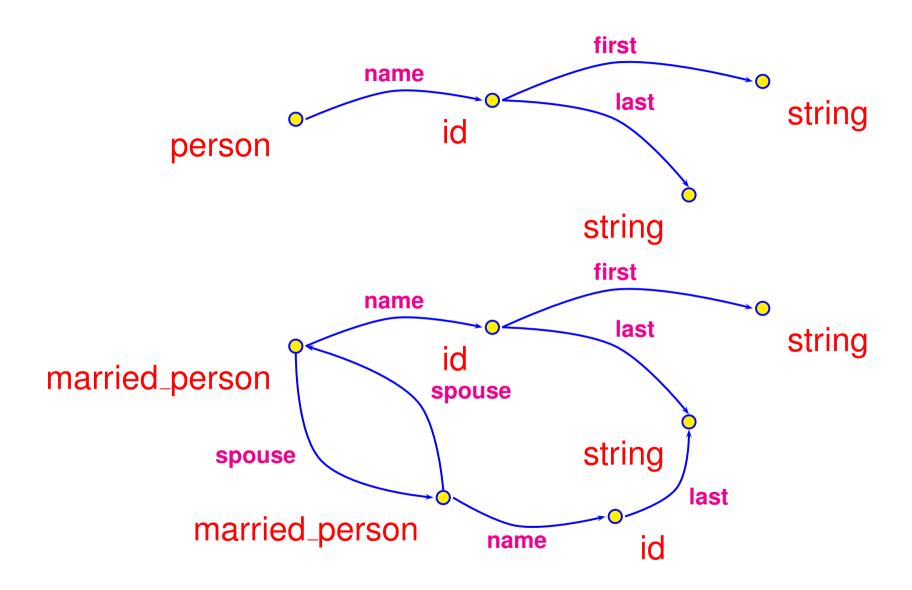
- ➤ What: a formalism for representing objects that is: intuitive (objects as labelled graphs), expressive ("real-life" data models), formal (logical semantics), operational (executable), & efficient (constraint-solving)
- ► Why? viz., ubiquitous use of labelled graphs to structure information naturally as in:
 - object-orientation, knowledge representation,
 - databases, semi-structured data,
 - natural language processing, graphical interfaces,
 - concurrency and communication,
 - XML, RDF, the "Semantic Web," etc., ...

Graphs as constraints—*History*

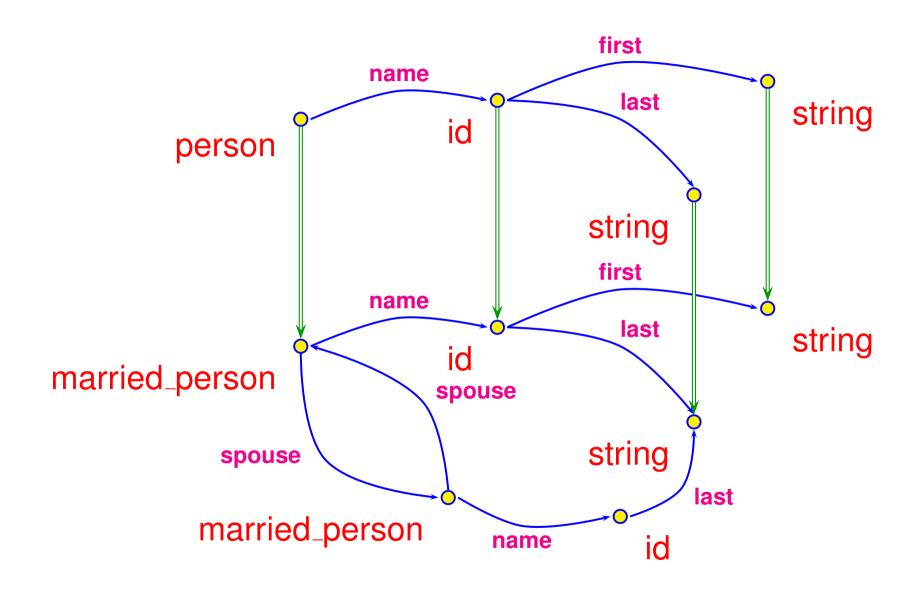
Viewing graphs as *constraints* stems from the work of:

- ► Hassan Aït-Kaci (since 1983)
- ► Gert Smolka (since 1986)
- ► Andreas Podelski (since 1989)
- ► Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele, Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred Schmidt-Schauß, Remi Zajac, ...

Graphs as constraints—Inheritance as graph endomorphism



Graphs as constraints—Inheritance as graph endomorphism



Graphs as constraints—OSF term syntax

Let \mathcal{V} be a countable set of variables, and \mathcal{S} a lattice of sorts.

An OSF term is an expression of the form:

$$X: s(\ell_1 \Rightarrow t_1, \dots, \ell_n \Rightarrow t_n)$$

where:

- $X \in \mathcal{V}$ is the root variable
- $\gt s \in \mathcal{S}$ is the root sort
- $\blacktriangleright \{\ell_1, \ldots, \ell_n\} \subseteq \mathcal{F}$ are features
- $ightharpoonup t_1, \ldots, t_n$ are \mathcal{OSF} terms

Graphs as constraints—OSF *term syntax example*

```
 \begin{split} X: person(name \Rightarrow N: \top (first \Rightarrow F: string), \\ name \Rightarrow M: id(last \Rightarrow S: string), \\ spouse \Rightarrow P: person(name \Rightarrow I: id(last \Rightarrow S: \top), \\ spouse \Rightarrow X: \top). \end{split}
```

Lighter notation (showing only shared variables):

```
\begin{array}{l} X: person(name \Rightarrow \top(first \Rightarrow string), \\ name \Rightarrow id(last \Rightarrow S: string), \\ spouse \Rightarrow person(name \Rightarrow id(last \Rightarrow S), \\ spouse \Rightarrow X)). \end{array}
```

Graphs as constraints— \mathcal{OSF} clause syntax

An OSF constraint is one of:

$$X : s$$

$$X \cdot \ell \doteq X'$$

$$X = X'$$

where X(X') is a variable (*i.e.*, a node), s is a sort (*i.e.*, a node's type), and ℓ is a feature (*i.e.*, an arc).

An OSF clause is a conjunction of OSF constraints—*i.e.*, a set of OSF constraints

Graphs as constraints—From OSF terms to OSF clauses

An \mathcal{OSF} term $t = X : s(\ell_1 \Rightarrow t_1, \dots, \ell_n \Rightarrow t_n)$ is dissolved into an \mathcal{OSF} clause $\phi(t)$ as follows:

$$\varphi(t) \stackrel{\text{\tiny def}}{=\!\!\!=\!\!\!=} X: s \quad \& \quad X.\ell_1 \doteq X_1 \quad \& \quad \dots \quad \& \quad X.\ell_n \doteq X_n$$

$$\& \quad \varphi(t_1) \qquad \& \quad \dots \quad \& \quad \varphi(t_n)$$

where X_1, \ldots, X_n are the root variables of t_1, \ldots, t_n .

Graphs as constraints—Example of OSF term dissolution

```
t = X : person(name \Rightarrow N : \top(first \Rightarrow F : string),
                  name \Rightarrow M : id(last \Rightarrow S : string),
                  spouse \Rightarrow P: person(name \Rightarrow I: id(last \Rightarrow S: \top),
                                          spouse \Rightarrow X : \top)
\varphi(t) = X : person \& X. name \doteq N \& N: \top
                      & X. name \doteq M & M: id
                      & X. spouse = P & P: person
                      & N. first \doteq F \& F: string
                      & M. last \doteq S & S: string
                      & P.name \doteq I & I:id
                      & I.last \doteq S & S: \top
                      & P.spouse = X & X: \top
```

Graphs as constraints—Basic OSF term normalization

$$\phi \& X : s \& X : s' \qquad \phi \& X \stackrel{.}{=} X'$$

$$\phi \& X : s \wedge s'$$

(1) Sort Intersection (3) Variable Elimination

(2) Inconsistent Sort

$$\phi \& X : \bot$$

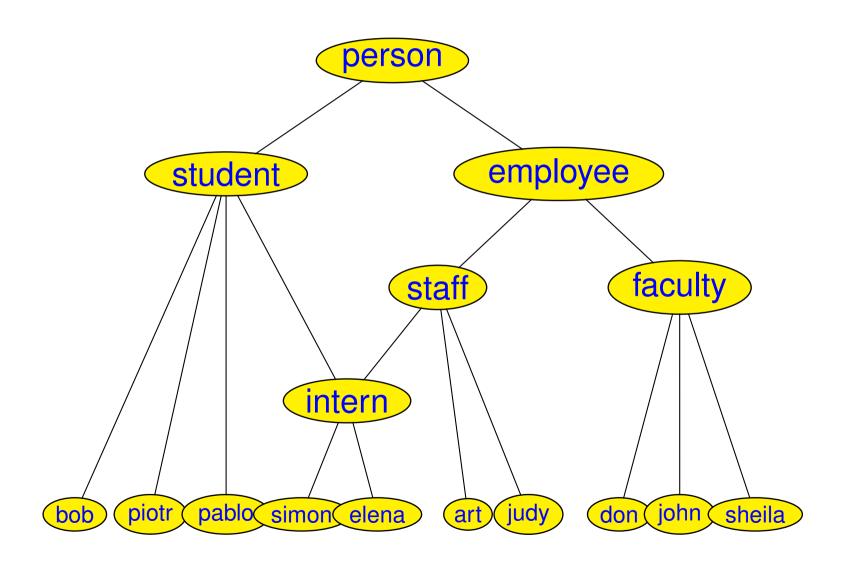
$$X:\bot$$

(4) Feature Functionality

$$\phi \& X.\ell \doteq X' \& X.\ell \doteq X''$$

$$\phi \& X.\ell \doteq X' \& X' \doteq X''$$

Graphs as constraints— \mathcal{OSF} unification as \mathcal{OSF} constraint normalization



Graphs as constraints—OSF unification as OSF constraint normalization

```
X : student
      (roommate => person(rep => E : employee),
       advisor => don(secretary => E))
&
  Y : employee
      (advisor => don(assistant => A),
       roommate => S : student(rep => S),
       helper => simon(spouse => A))
&
```

X = Y

Graphs as constraints—OSF unification as OSF constraint normalization

```
X : intern
    (roommate => S : intern(rep => S),
     advisor => don(assistant => A,
                    secretary => S),
     helper => simon(spouse => A))
X = Y
E = S
```

&

&

Graphs as constraints—*Extended* OSF *terms*

Basic OSF terms may be extended to express:

- Non-lattice sort signatures
- Disjunction
- Negation
- Partial features
- Extensional sorts (i.e., denoting elements)
- ► Relational features (a.k.a., "roles")
- Aggregates (à la monoid comprehensions)
- Regular-expression feature paths
- ▶ Sort definitions (a.k.a., "OSF theories"—"ontologies")

Order-sorted featured graph constraints—(Summary)

We have overviewed a formalism of objects where:

- "real-life" objects are viewed as logical constraints
- objects may be approximated as set-denoting constructs
- object normalization rules provide an efficient operational semantics
- consistency extends unification (and thus matching)
- ▶ this enables rule-based computation (whether rewrite or logical rules) over general graph-based objects
- this yield a powerful means for effectively using ontologies

Reasoning and the Semantic Web

Outline

- **►** Constraint Logic Programming
- ▶ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Semantic Web formalisms— \mathcal{OWL} speaks

What language(s) do OWL's speak?—a confusing growing crowd of strange-sounding languages and logics:

- OWL, OWL Lite, OWL DL, OWL Full
- $\bullet \mathcal{DL}, \mathcal{DLR}, \dots$
- AL, ALC, ALCN, ALCNR, ...
- SHIF, SHIN, CIQ, SHIQ, SHOQ(D), SHOIQ, SRIQ, SROIQ, . . .

Depending on whether the system allows:

- concepts, roles (inversion, composition, inclusion, ...)
- individuals, datatypes, cardinality constraints
- various combination thereof

For better or worse, the W3C has married its efforts to \mathcal{DL} -based reasoning systems:

- All the proposed \mathcal{DL} Knowledge Base formalisms in the \mathcal{OWL} family use tableaux-based methods for reasoning
- Tableaux methods work by building models explicitly via formula expansion rules
- ▶ This limits \mathcal{DL} reasoning to finite (*i.e.*, decidable) models
- Worse, tableaux methods only work for small ontologies: they fail to scale up to large ontologies

Semantic Web formalisms—DL dialects

Tableaux style DL reasoning (ALCNR)

CONJUNCTIVE CONCEPT:

$$\frac{S}{S \cup \{x : C_1, x : C_2\}}$$

EXISTENTIAL ROLE:

$$\begin{array}{c} \text{if} \quad x: (C_1\sqcap C_2) \in S \\ \text{and} \quad \{x: C_1, x: C_2\} \not\subseteq S \end{array} \end{array} \right] \qquad \begin{array}{c} S \\ \hline S \cup \{x: C_1, x: C_2\} \end{array} \qquad \begin{bmatrix} \text{if} \quad x: (\exists R.C) \in S \text{ s.t. } R \stackrel{\texttt{def}}{=} (\sqcap_{i=1}^m R_i) \\ \text{and} \quad z: C \in S \Rightarrow z \not\in R_S[x] \end{bmatrix} \qquad \begin{array}{c} S \\ \hline S \cup \{xR_iy\}_{i=1}^m \cup \{y: C\} \end{array}$$

$$\frac{S}{S \cup \{xR_iy\}_{i=1}^m \cup \{y:C\}}$$

DISJUNCTIVE CONCEPT:

$$\left[\begin{array}{cc} \text{if} & x:(C_1\sqcup C_2)\,\in\,S\\ \text{and} & x:C_i\,\not\in\,S\ (i=1,2) \end{array}\right] \qquad \frac{S}{S\cup\left\{x:C_i\right\}}$$

$$\frac{S}{S \cup \{x : C_i\}}$$

MIN CARDINALITY:

$$\left[\begin{array}{ccc} \text{if} & x: (\geq n.R) \in S \text{ s.t. } R \stackrel{\texttt{DEF}}{=\!=\!=} \left(\bigcap_{i=1}^m R_i \right) \\ \text{and} & |R_S[x]| \neq n \\ \text{and} & y_i \text{ is new } (0 \leq i \leq n) \end{array} \right] \qquad \frac{S}{S \cup \left\{ x R_i y_j \right\}_{i,j=1,1}^{m,n} }$$

$$S = S$$

$$S \cup \{xR_iy_j\}_{i,j=1,1}^{m,n}$$

$$\cup \{y_i \neq y_j\}_{1 \leq i < j \leq n}$$

UNIVERSAL ROLE:

$$\begin{bmatrix} & \text{if} \quad x: (\forall R.C) \in S \\ & \text{and} \quad y \in R_S[x] \\ & \text{and} \quad y: C \not\in S \end{bmatrix}$$

$$\frac{S}{S \cup \{y : C\}}$$

MAX CARDINALITY:

$$\left[\begin{array}{cccc} \textbf{if} & x: (\leq n.R) \in S \\ \textbf{and} & |R_S[x]| > n \quad \textbf{and} \quad y, z \in R_S[x] \\ \textbf{and} & y \neq z \not \in S \end{array}\right] \qquad \frac{S}{S \cup S[y/z]}$$

Understanding \mathcal{OWL} amounts to reasoning with knowledge expressed as \mathcal{OWL} sentences. Its \mathcal{DL} semantics relies on explicitly building models using induction.

ergo:

Inductive techniques are *eager* and (thus) *wasteful*

Reasoning with knowledge expressed as constrained (\mathcal{OSF}) graphs relies on implicitly pruning inconsistent elements using coinduction.

ergo:

Coinductive techniques are *lazy* and (thus) *thrifty*

Reasoning and the Semantic Web

Outline

- **►** Constraint Logic Programming
- ▶ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

LIFE—Rules + constraints for Semantic Web reasoning

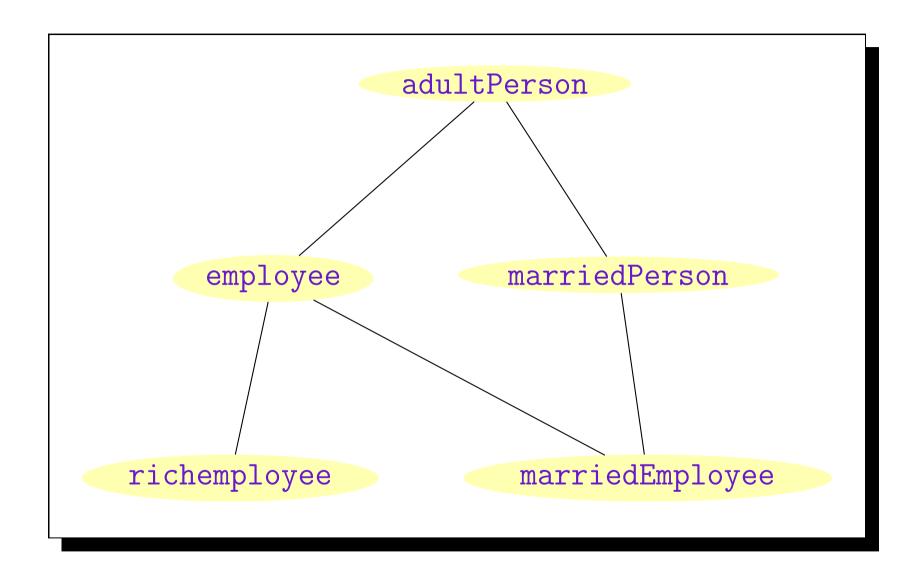
 \mathcal{LIFE} — \mathcal{L} ogic, \mathcal{I} nheritance, \mathcal{F} unctions, and \mathcal{E} quations

 $\mathcal{CLP}(\chi)$ — \mathcal{C} onstraint, \mathcal{L} ogic, \mathcal{P} rogramming, parameterized over is a constraint system χ

 \mathcal{LIFE} is a \mathcal{CLP} system over \mathcal{OSF} constraints and functions over them (rewrite rules); namely:

$$\mathcal{LIFE} = \mathcal{CLP}(\mathcal{OSF} + \mathcal{FP})$$

LIFE—Rules + constraints for Semantic Web reasoning



The same hierarchy in Java

```
interface adultPerson {
  name id;
  date dob;
  int age;
  String ssn;
interface employee extends adultPerson {
  title position;
  String institution;
  employee supervisor;
  int salary;
interface marriedPerson extends adultPerson {
  marriedPerson spouse;
interface marriedEmployee extends employee, marriedPerson {
interface richEmployee extends employee {
```

The same hierarchy in \mathcal{LIFE}

```
employee <: adultPerson.</pre>
marriedPerson <: adultPerson.
richEmployee <: employee.</pre>
marriedEmployee <: employee.</pre>
marriedEmployee <: marriedPerson.</pre>
:: adultPerson
                      (id \Rightarrow name)
                      , dob \Rightarrow date
                      , age \Rightarrow int
                      , ssn \Rightarrow string).
                      (position \Rightarrow title
:: employee
                      , institution \Rightarrow string
                      , supervisor \Rightarrow employee
                      , salary \Rightarrow int).
:: marriedPerson ( spouse \Rightarrow marriedPerson ).
```

A relationally and functionally constrained LIFE sort hierarchy

```
:: P : adultPerson (id <math>\Rightarrow name)
                        , dob \Rightarrow date
                        , age \Rightarrow A: int
                        , ssn \Rightarrow string)
   A = ageInYears(P), A \ge 18.
                       ( position \Rightarrow T: title
:: employee
                        , institution \Rightarrow string
                        , supervisor \Rightarrow E : employee
                        , salary \Rightarrow S: int )
    higherRank(E.position, T), E.salary \geq S.
```

A relationally and functionally constrained LIFE sort hierarchy

OSF constraints as syntactic variants of logical formulae:

Sorts are unary predicates: $X: s \iff [s]([X])$

Features are unary functions: $X.f \doteq Y \iff [\![f]\!]([\![X]\!]) = [\![Y]\!]$

Coreferences are equations: $X \doteq Y \iff [X] = [Y]$

So ...

Why not use (good old) logic proofs instead?

But:

model equivalence \(\neq \) proof equivalence!

- ► OSF-unification proves sort constraints by reducing them monotonically w.r.t. the sort ordering
- ▶ *ergo*, once X:s has been proven, the proof of s(X) is recorded as *the sort "s" itself!*
- ightharpoonup if further down a proof, it is again needed to prove X:s, it is remembered as X's binding
- ▶ Indeed, *OSF* constraint proof rules ensure that:

no type constraint is ever proved twice

OSF type constraints are incrementally "memoized" as they are verified:

sorts act as (instantaneous!) proof caches!

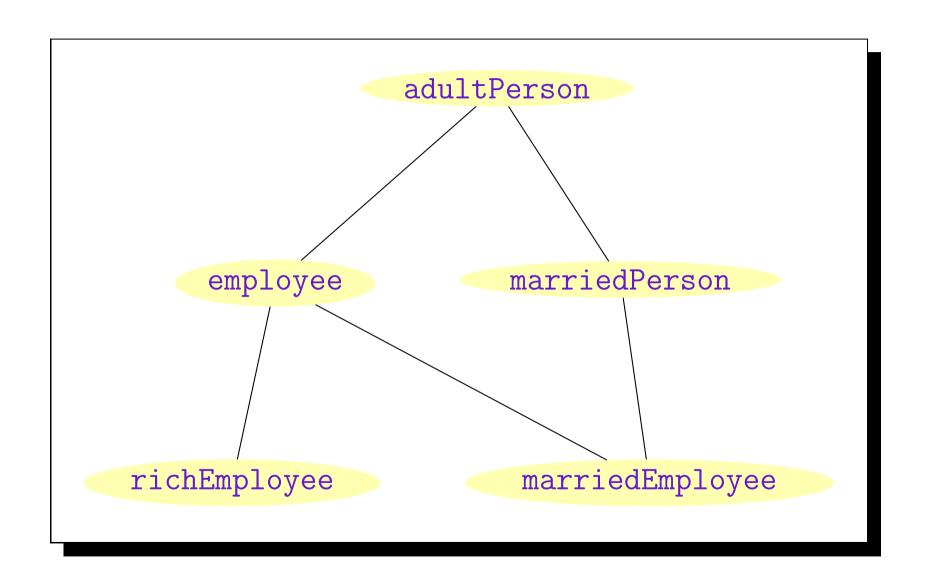
whereas in logic having proven s(X) is not "remembered" in any way (e.g., Prolog)

Example: consider the OSF constraint conjunction:

- X: adultPerson(age \Rightarrow 25),
- $\bullet X$: employee,
- $\bullet X : \mathtt{marriedPerson}(\mathtt{spouse} \Rightarrow Y).$

Notation: type#(condition) means "constraint condition attached to sort type"

Proof "memoizing"—Example hierarchy reminded



```
1. proving: X: adultPerson(age \Rightarrow 25)...
2. proving: adultPerson\#(X.age \ge 18) ...
3. proving: X: employee ...
4. proving: employee#(higherRank(E.position, P))...
5. proving: employee#(E.salary \geq S)...
6. proving: X: marriedPerson(spouse \Rightarrow Y)...
7. proving: X : marriedEmployee(spouse \Rightarrow Y) \dots
8. proving: marriedEmployee\#(Y.spouse = X) \dots
```

Therefore, all other inherited conditions coming from a sort greater than marriedEmployee (such as employee or adultPerson) can be safely ignored!

This "memoizing" property of OSF constraint-solving enables:

using rules over ontologies

as well as, conversely,

enhancing ontologies with rules

Indeed, with OSF:

- concept ontologies may be used as constraints by rules for inference and computation
- rule-based conditions in concept definitions may be used to magnify expressivity of ontologies thanks to the proof-memoizing property of ordered sorts

Reasoning and the Semantic Web

Outline

- **►** Constraint Logic Programming
- ▶ What is unification?
- Semantic Web objects
- Graphs as constraints
- $ightharpoonup \mathcal{OWL}$ and \mathcal{DL} -based reasoning
- Constraint-based Semantic Web reasoning
- Recapitulation

Recapitulation—what you must remember from this talk...

- Objects are graphs
- Graphs are constraints
- Constraints are good: they provide both formal theory and efficient processing
- ► Formal Logic is not all there is
- ▶ even so: model theory ≠ proof theory
- indeed, due to its youth, much of W3C technology is often naïve in conception and design
 - Ergo... it is condemned to reinventing [square!] wheels as long as it does not realize that such issues have been studied in depth for the past 50 years in theoretical CS!

Recapitulation—what you must remember from this talk...(ctd)

Pending issues re. "ontological programming"

- ► Syntax:
 - What's **essential**?
 - What's superfluous?

Confusing notation: XML-based cluttered verbosity *ok, not for human consumption—but still!*

- Semantics:
 - What's a *model* good for?
 - What's (efficiently) provable?
 - decidable ≠ efficient
 - undecidable ≠ inefficient
- ► Applications, maintenance, evolution, etc., ...
- ► *Many, many, publications*... but no (real) field testing as yet!

Proposal: take heed of the following facts:

- ► Linked data represents all information as interconnected sorted labelled RDF graphs—it has become a universal de facto knowledge model standard
- ▶ Differences between \mathcal{DL} and \mathcal{OSF} can come handy:
 - $-\mathcal{DL}$ is expansive—therefore, expensive—and can only describe finitely computable sets; whereas,
 - OSF is contractive—therefore, efficient—and can also describe recursively-enumerable sets
- $ightharpoonup \mathcal{CLP}$ -based graph unification reasoning = practical KR:
 - **structural**: objects, classes, inheritance
 - non-structural: path equations, relational constraints, type definitions

If I'd asked my customers what they wanted, they'd have said a faster horse!—Henry Ford

Thank You For Your Attention!

For more information:

hak@acm.org

http://cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf

http://cedar.liris.cnrs.fr

