
TODAY’S SEMANTIC WEB
WHAT IT AMOUNTS TO; WHY IT IS ILL-CONCEIVED; HOW IT COULD BE FIXED

ICWR 2018 Keynote

Tehran, Iran

April 25, 2018

Hassan Aı̈t-Kaci

HAK Language Technologies

http://www.hassan-ait-kaci.net/
http://www.hak-language-technologies.com/
http://www.hak-language-technologies.com/

1

Preamble

• In this presentation, I will:

– review standard Semantic Web formalisms

– propose a constraint-based formalism to amend them

• It is meant for a technically mature audience—familiar with

elementary Logic Programming (Prolog), and common Web

technology and terminology (RDF , XML, . . .)

• Too technical/mathematical?—not to worry: focus on

the general ideas in my comments

• Technical contents only serve as examples to illustrate

the points made in my comments

• Please ask questions; feel free to propose discussions

https://www.w3.org/RDF/Metalog/docs/sw-easy
https://bernardopires.com/2013/10/try-logic-programming-a-gentle-introduction-to-prolog/

2

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮ OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/
http://hassan-ait-kaci.net/pdf/ilps93.pdf

3

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮ OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/

4

Semantic Web formalisms—RDF triples

The Resource Decription Framework (RDF) is a standard

notation for describing connected data and metadata using

(edge- and node-) labeled graphs.

◮ Basic building block: “triple” labeled by “resources”—i.e., data objects or

URI s and connections between resources.

◮ A triple consists of a resource (the subject), linked through a resource

(the predicate) to another resource (the object).

◮ A triple states that the subject has a property, denoted by the predicate,

whose value is the object:

subject object
predicate

◮ The information carried by a triple is called a “statement.”

https://www.w3.org/RDF/
https://www.w3.org/Addressing/

5

Semantic Web formalisms—RDF triples

◮ RDF statements can be reified and be denoted as resources—hence,

RDF ’s metalinguistic nature:

metasubject

subject object
predicate

metapredicate

◮ RDF uses the eXtensible Markup Language XML for its serialized

syntax.

◮ RDF enables the definition of vocabularies which can be shared over

the Web thanks to standard XML namespaces (e.g., Dublin Core).

◮ RDF Schema (RDFS) is a meta-description of RDF in RDF specified

as a meta-vocabulary for RDF ; other sharable knowledge data models

are expressible (e.g., Simple Knowledge Organization System SKOS).

https://www.w3.org/XML/
http://dublincore.org/about/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/2004/02/skos/specs

6

Semantic Web formalisms—RDF triples

RDF triples may be expressed using several syntaxes:

◮ a (normative) RDF XML syntax

◮ Notation 3 syntax (Tim Berners-Lee, Dan Conolly)

◮ Turtle syntax—TRTL: Terse RDF Triple Language (David

Beckett, Tim Berners-Lee)

◮ JSON —JavaScript Object Notation

◮ any other syntax you fancy as long as you can parse it into

the normative RDF XML syntax . . .

https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TeamSubmission/n3/
https://www.w3.org/TeamSubmission/turtle/
http://www.json.org/

7

JSON —object representation of RDF triples

JSON object

key/value map

term syntax

{ "menu" :

{ "id" : "file"

, "value" : "File"

, "popup" : { "menuitem":

{ "value" : "New"

, "onclick" : "CreateNewDoc()"

}
, "menuitem":

{ "value" : "Open"

, "onclick" : "OpenDoc()"

}
, "menuitem":

{ "value" : "Close"

, "onclick" : "CloseDoc()"

}
}

}
}

http://www.json.org/

8

Universal use of key/value objects in various notation

The same JSON object term expressed using XML syntax:

<menu id="file" value="File">

<popup>

<menuitem value="New" onclick="CreateNewDoc()" />

<menuitem value="Open" onclick="OpenDoc()" />

<menuitem value="Close" onclick="CloseDoc()" />

</popup>

</menu>

9

Semantic Web formalisms—RDF XML syntax

<rdf:RDF

xmlns:rdf

="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:ex="http://w3.hak.org/school-ns#">

<rdf:Description rdf:about="ID-6541">

<ex:name>John Doe</ex:name>

<ex:title>Assistant Professor</ex:title>

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</rdf:Description>

10

Semantic Web formalisms—RDF XML syntax

<rdf:Description rdf:about="CS-100">

<ex:courseName>

Introduction to Computer Programming

</ex:courseName>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Wheston Hall 230</ex:coursePlace>

</rdf:Description>

<rdf:Description rdf:about="CS-200">

<ex:courseName>Operating Systems</ex:courseName>

<ex:courseTime>TTh/11:00-13:00</ex:courseTime>

<ex:coursePlace>Dietrich Hall 34</ex:coursePlace>

</rdf:Description>

11

Semantic Web formalisms—RDF XML syntax

<rdf:Description rdf:about="CS-345">

<ex:courseName>

Introduction to Compiler Design

</ex:courseName>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Chetham Hall 130</ex:coursePlace>

<ex:prerequisites>

<rdf:bag>

<rdf: 1 rdf:resource="#CS-100">

<rdf: 2 rdf:resource="#CS-220">

</rdf:bag>

</ex:prerequisites>

</rdf:Description>

</rdf:RDF>

12

Semantic Web formalisms—RDF XML syntax

Adding types to RDF nodes:

<rdf:Description rdf:about="CS-100">

<rdf:type rdf:resource="ex:course"/>

<ex:courseName>

Introduction to Computer Programming

</ex:courseName>

<ex:courseInstructor rdf:resource="#ID-6541"/>

<ex:courseTime>MTW/9:00-10:30</ex:courseTime>

<ex:coursePlace>Wheston Hall 230</ex:coursePlace>

</rdf:Description>

13

Semantic Web formalisms—RDF XML syntax

Adding types to RDF nodes:

<rdf:Description rdf:about="ID-6541">

<rdf:type rdf:resource="ex:instructor"/>

<ex:name>John Doe</ex:name>

<ex:title>Assistant Professor</ex:title>

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</rdf:Description>

14

Semantic Web formalisms—RDF XML syntax

Simplified XML notation for RDF nodes:

1. Replace rdf:Description tag with the value of its rdf:type

attribute if present

2. Replace a single leaf node by an attribute named as the

node’s tag with string value equal to the node’s contents

<ex:instructor rdf:about="ID-6541"

ex:name="John Doe"

ex:title="Assistant Professor">

<ex:age rdf:datatype="&xsd:integer">35</ex:age>

<ex:teaches rdf:resource="#CS-100"/>

<ex:teaches rdf:resource="#CS-345"/>

</ex:instructor>

15

The Web Ontology Language OWL

◮ OWL is the W3C official standard formalism to use for the

Semantic Web’s knowledge representation and ontological

reasoning

◮ Everyone talks about OWL dialects!

The whole World-Wide Web is abuzz with OWL-this and

OWL-that , . . . (knOWL edge representation?)

◮ However, a lesser number understands them;

SHIN , CIQ , SHIQ , SHOQ(D) , SHOIN , SHOIQ ,

SRIQ , SROIQ , . . . , are not alien species’ tongues but

dialects devised for OWL (W3C’s Web Ontology Language)

by some of the most prolific and influential SW’s researchers

https://www.slideshare.net/SergeLinckels/semantic-web-owl
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://www.w3.org/OWL/
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/1999/090385.pdf
https://www.aaai.org/Papers/Workshops/1996/WS-96-05/WS96-05-004.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2000/CADE17.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2001/ijcai01.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2006/GlHS06b.pdf
http://www.cs.man.ac.uk/~ezolin/dl/bib/Irresistible_SRIQ_(TR_2005).pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2006/HoKS06a.pdf

16

Semantic Web formalisms—OWL speaks

What language(s) do OWL’s speak? — a confusing growing

crowd of strange-sounding languages and logics:

• OWL species: OWL Lite , OWL DL , OWL Full

• which are varieties of Description Logics (DL , DLR , . . .)

• themselves categories of Attributive Logics (ALC , ALCN ,

ALCNR , . . .)

• which gave rise to a proliferation of SW languages (SHIN ,

CIQ , SHIQ , SHOQ(D) , SHOIN , SHOIQ , SRIQ ,

SROIQ , . . .)

Naming conventions depending on whether the system allows:

• concepts, roles (inversion, composition, inclusion, . . .)

• individuals, datatypes, cardinality constraints

• various combination thereof

https://www.w3.org/TR/2004/REC-owl-features-20040210/#s3
https://www.w3.org/TR/2004/REC-owl-guide-20040210/#OwlVarieties
https://www.w3.org/TR/owl-ref/#Sublanguages
http://dl.kr.org/
https://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks_Ian_pt1.pdf
https://www.dis.uniroma1.it/~degiacom/papers/2008/calv-degi-lenz-TOCL-2008.pdf
https://pdfs.semanticscholar.org/e7ec/95519b20736b820c0e88b8b9857bc8256a3a.pdf
https://pdfs.semanticscholar.org/f1d7/ce2b9284930578f71a6164c2c30803467c1d.pdf
http://www.cs.man.ac.uk/~ezolin/dl/bib/Decidable_reasoning_in_terminological_knowledge_representation_systems_(JAIR_1993).pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/1999/090385.pdf
https://www.aaai.org/Papers/Workshops/1996/WS-96-05/WS96-05-004.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2000/CADE17.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2001/ijcai01.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2007/BaHS07a.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2006/GlHS06b.pdf
http://www.cs.man.ac.uk/~ezolin/dl/bib/Irresistible_SRIQ_(TR_2005).pdf
http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/2006/HoKS06a.pdf
https://en.wikipedia.org/wiki/Description_logic#Naming_convention

17

Semantic Web formalisms—DL dialects

For better or worse, the W3C has married its efforts to DL-

based reasoning systems

◮ All the proposed DL knowledge base formalisms in the OWL
family use tableaux-based methods for reasoning

◮ Tableaux methods work by building models explicitly using

formula expansion rules

◮ This limits DL reasoning to finite (i.e., decidable) models

◮ Worse, tableaux methods only work for small ontologies:

they fail to scale up to large ontologies — we verified !

https://lat.inf.tu-dresden.de/~baader/Talks/Tableaux2000.pdf
http://www.cs.ox.ac.uk/DL2009/proceedings/invited/Srinivas.pdf
https://cedar.liris.cnrs.fr/papers/amir-ait-kaci-jiis-2016.pdf

18

Semantic Web formalisms—DL dialects

Tableaux style DL reasoning (ALCNR)

(DL⊓) CONJUNCTIVE CONCEPT:
[

if x : (C1 ⊓ C2) ∈ S

and {x : C1, x : C2} 6⊆ S

] S

S ∪ {x : C1, x : C2}

(DL⊔) DISJUNCTIVE CONCEPT:
[

if x : (C1 ⊔ C2) ∈ S

and x : Ci 6∈ S (i = 1, 2)

] S

S ∪ {x : Ci}

(DL∀) UNIVERSAL ROLE:

if x : (∀R.C) ∈ S

and y ∈ RS[x]

and y : C 6∈ S

S

S ∪ {y : C}

http://www.cs.man.ac.uk/~ezolin/dl/bib/Decidable_reasoning_in_terminological_knowledge_representation_systems_(JAIR_1993).pdf

19

Semantic Web formalisms—Tableaux style DL reasoning: ALCNR - ctd.

(DL∃) EXISTENTIAL ROLE:

if x : (∃R.C) ∈ S s.t. R
DEF

== (
dm

i=1
Ri)

and z : C ∈ S ⇒ z 6∈ RS[x]

and y is new

S

S ∪ {xRiy}mi=1
∪ {y : C}

(DL≥) MIN CARDINALITY:

if x : (≥ n.R) ∈ S s.t. R
DEF

== (
dm

i=1
Ri)

and |RS[x]| 6= n

and yi is new (0 ≤ i ≤ n)

S

S ∪ {xRiyj}
m,n
i,j=1,1

∪ {yi 6
.
= yj}1≤i<j≤n

(DL≤) MAX CARDINALITY:

if x : (≤ n.R) ∈ S

and |RS[x]| > n and y, z ∈ RS[x]

and y 6
.
= z 6∈ S

S

S ∪ S[y/z]

http://www.cs.man.ac.uk/~ezolin/dl/bib/Decidable_reasoning_in_terminological_knowledge_representation_systems_(JAIR_1993).pdf

20

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮ OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/

21

Graphs as constraints—Motivation

◮ Proposal: a formalism for representing structured objects

that is: intuitive (objects as labeled graphs), expressive (“real-life”

data models), formal (rigorous semantics), operational (executable),

& efficient (constraint-solving)

◮ Why? viz., ubiquitous use of labeled graphs to structure

information naturally as in:

– object-orientation, knowledge representation,

– databases, semi-structured data,

– natural language processing, graphical interfaces,

– concurrency and communication,

– XML, RDF , the “Semantic Web,” etc., ...

22

Elementary observation—Web objects are key/value structures

JohnDoe35 : married person

(name ⇒ fullName

(first ⇒ "John"

, last ⇒ "Doe"

)

, age ⇒ 42

, address ⇒ DoeResidence

, spouse ⇒ JaneDoe78

, isVoter ⇒ true

)

DoeResidence : streetAddress

(number ⇒ 123

, street ⇒ "Main Street"

, city ⇒ "Sometown"

, country ⇒ "USA"

)

23

Elementary observation—Key/value structures are labeled graphs

JaneDoe78 : married person

(name ⇒ fullName

(first ⇒ "Jane"

, last ⇒ "Doe"

)

, age ⇒ 40

, address ⇒ DoeResidence

, spouse ⇒ JohnDoe35

, isVoter ⇒ false

)

Elementary deduction—Web objects are labeled graphs!

24

JohnDoe35 true

"John"

married person fullName

"Doe"

42

DoeResidence
123

"Main Street"

streetAddress

"Sometown"

"USA"

40

"Jane"

married person fullName

"Doe"

JaneDoe78 false

is
Vo
te
r

name

age

a
d
d
r
e
s
s

s
p
o
u
s
e

first

last

nu
mb
er

stree
t

city
country

s
p
o
u
s
e

a
d
d
r
e
s
s

ag
e

name

isVoter

first

last

25

Labeled graphs as constraints—History

Viewing labeled graphs as constraints stems from the work

of:

◮ Hassan Aı̈t-Kaci (since 1983)

◮ Gert Smolka (since 1986)

◮ Andreas Podelski (since 1989)

◮ Franz Baader, Rolf Backhofen, Jochen Dörre, Martin Emele,

Bernhard Nebel, Joachim Niehren, Ralf Treinen, Manfred

Schmidt-Schauß, Remi Zajac, . . .

26

Graphs as constraints—Inheritance as graph endomorphism

string

id

person string

string

id

married person string

married person

id

na
me

fir
st

last

na
me

fir
st

last

spouse

spouse

name

la
st

27

Graphs as constraints—Inheritance as graph endomorphism

string

id

person string

string

id

married person string

married person

id

na
me

fir
st

last

na
me

fir
st

last

spouse

spouse

name

la
st

28

Graphs as constraints—OSF term syntax

Let V be a countably infinite set of variables and S a set of

sorts.

An OSF term is an expression of the form:

X : s(f1 ⇒ t1, . . . , fn ⇒ tn)

where:

◮ X ∈ V is the root variable

◮ s ∈ S is the root sort

◮ {f1, . . . , fn} ⊆ F are features

◮ t1, . . . , tn are OSF terms

◮ n ≥ 0 — if n = 0, we simply write X : s

29

Graphs as constraints—OSF term syntax example

X : person(name ⇒ N : ⊤(first ⇒ F : string)

,name ⇒ M : id(last ⇒ S : string)

,spouse ⇒ P : person(name ⇒ I : id(last ⇒ S : ⊤)

, spouse ⇒ X : ⊤))

Lighter notation for the same term by erasing single tags:

X : person(name ⇒ ⊤(first ⇒ string)

,name ⇒ id(last ⇒ S : string)

,spouse ⇒ person(name ⇒ id(last ⇒ S : ⊤)

, spouse ⇒ X : ⊤))

30

Graphs as constraints—OSF clause syntax

An atomic OSF constraint φ is one of:

◮ X : s

◮ X.f
.
= X′

◮ X
.
= X′

where X (X′) is a variable (i.e., a node), s is a sort (i.e., a node’s

type), and f is a feature (i.e., an arc).

An OSF constraint clause is a conjunctive set of atomic OSF
constraints

φ1 & . . . & φn

31

Graphs as constraints—From OSF terms to OSF clauses

An OSF term:

t = X : s(f1 ⇒ t1, . . . , fn ⇒ tn)

is dissolved into an OSF clause ϕ(t) as follows:

ϕ(t)
DEF

== X : s & X.f1
.
= X1 & . . . & X.fn

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)

where X1, . . . , Xn are the root variables of t1, . . . , tn

32

Graphs as constraints—Example of OSF term dissolution

t = X : person(name ⇒ N : ⊤(first ⇒ F : string)

,name ⇒ M : id(last ⇒ S : string)

,spouse ⇒ P : person(name ⇒ I : id(last ⇒ S : ⊤)

, spouse ⇒ X : ⊤))

ϕ(t) = X : person & X. name
.
= N & N: ⊤

& X. name
.
= M & M: id

& X. spouse
.
= P & P: person

& N. first
.
= F & F: string

& M. last
.
= S & S: string

& P. name
.
= I & I: id

& P. spouse
.
= X & X: ⊤

& I. last
.
= S & S: ⊤

33

Graphs as constraints—Basic OSF constraint normalization

Sort Intersection

φ & X : s & X : s′

φ & X : s ∧ s′

Inconsistent Sort

φ & X : ⊥

X : ⊥

Variable Elimination

φ & X
.
= X′

φ[X′/X] & X
.
= X′

if X 6= X′

and X ∈ Var(φ)

Feature Functionality

φ & X.f
.
= X′ & X.f

.
= X′′

φ & X.f
.
= X′ & X′

.
= X′′

34

Partially-Ordered Sort Signature

person

student employee

staff faculty

intern

jayd elies nassim ali hanaan javier eta hassan hussein fatima

is a is a

is a is a

is a

is ais a is a is a

is a is a

is a is a is a is a is a

35

An OSF term and its OSF graph

t1 = student

(roommate ⇒ person (rep ⇒ E : employee)
, advisor ⇒ hassan (secretary ⇒ E))

student

person

E employee

hassan

roommate

advisor

rep

secret
ary

36

An OSF term and its OSF graph

t2 = employee

(advisor ⇒ hassan (assistant ⇒ A)
, roommate ⇒ S : student (rep ⇒ S)
, helper ⇒ ali (spouse ⇒ A))

employee

S student

hassan

ali person A

roommate
advisor

h
e
l
p
e
r

assistant

spouse

rep

37

The Greatest Lower Bound—OSF Unification: t = t1 ∧ t2

t = intern

(advisor ⇒ hassan (assistant ⇒ B,
secretary ⇒ I)

, helper ⇒ ali (spouse ⇒ B)
, roommate ⇒ I : intern (rep ⇒ I))

intern

I intern

hassan

ali person B

roommateadvisor

rep

secr
etar

yh
e
l
p
e
r

assistant

spouse

38

The Least Upper Bound—OSF Generalization: t = t1 ∨ t2

t = person

(roommate ⇒ person (rep ⇒ person)
, advisor ⇒ hassan)

person

person

person

hassan

roommate

advisor

rep

39

OSF Inheritance Lattice

person

person

person

hassan

roommate

advisor

rep

student

person

E employee

hassan

roommate

advisor

rep

secret
ary

employee

S student

hassan

ali person A

roommate
advisor

h
e
l
p
e
r

assistant

spouse

rep

intern

I intern

hassan

ali person B

roommateadvisor

rep

secr
etar

yh
e
l
p
e
r

assistant

spouse

40

OSF Endomorphic Inheritance Lattice Diagram

person

person

person

hassan

roommate

advisor

rep

student

person

E employee

hassan

roommate

advisor

rep

secret
ary

employee

S student

hassan

ali person A

roommate
advisor

h
e
l
p
e
r

assistant

spouse

rep

intern

I intern

hassan

ali person B

roommateadvisor

rep

secr
etar

yh
e
l
p
e
r

assistant

spouse

γ
2

γ
2

γ
2

γ
2

γ 1

γ 1

γ 1

γ 1

γ

γ

γ

γ

γ

γ

γ

γγ

41

Graphs as constraints—Extended OSF terms

Basic OSF terms may be extended to express:

◮ Non-lattice sort signatures, disjunctive sorts, complemented

sorts (and actually gain in taxonomic reasoning efficiency !)

◮ Partial features and element-denoting sorts (see this article)

◮ Relational features (“roles;” i.e., set-valued features)

◮ Infinite feature-composition paths (regular expressions)

◮ Aggregates (à la monoid comprehensions)

◮ Sort definitions (a.k.a., “OSF theories”)

http://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
http://hassan-ait-kaci.net/pdf/cpl-article.pdf
https://cedar.liris.cnrs.fr/papers/ctr11.pdf
https://ac.els-cdn.com/S0747717184710285/1-s2.0-S0747717184710285-main.pdf?_tid=a67a8b91-4652-40b1-a57a-d5061cd5a5ee&acdnat=1524202370_87450632bf2d7fc08abb81bf6bffd812
http://hassan-ait-kaci.net/pdf/hak-opb.pdf
http://hassan-ait-kaci.net/pdf/osf-theory-unification.pdf

42

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/

43

OSF vs. DL—See DL Workshop 2007

Reasoning with knowledge expressed as OWL sentences is

based on its DL tableau-semantics explicitly building models

by inductive processing.

however:

Inductive techniques are eager and (thus) wasteful

An object systematically materializes all its components. . .

Much work is done even if not needed!

http://hassan-ait-kaci.net/pdf/dl07.pdf

44

OSF vs. DL—See this YouTube video presentation

Reasoning with knowledge expressed as constrained (OSF)

graphs relies on implicitly pruning inconsistent elements by

coinductive processing.

this is great, because:

Coinductive techniques are lazy and (thus) thrifty

An object materializes only components that are requested. . .

No work is done unless needed!

https://www.youtube.com/watch?v=8uOgG6CJ8iY

45

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮ OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/
http://hassan-ait-kaci.net/pdf/ilps93.pdf

46

LIFE = Logic Inheritance Functions Equations

Intuitively:

LIFE : logically and functionally constrained OSF graphs

Formally:

LIFE = {CLP ,FP}(OSF)

http://hassan-ait-kaci.net/pdf/ilps93.pdf
http://hassan-ait-kaci.net/pdf/ilps93.pdf
http://hassan-ait-kaci.net/pdf/ilps93.pdf

47

LIFE : logically and functionally constrained OSF graphs

adult person

employee married person

rich employee married employee

is a is a

is a is ais a

A multiple-inheritance hierarchy

http://hassan-ait-kaci.net/pdf/ilps93.pdf

48

The same hierarchy in Java

interface adult person {
name id;

date dob;

int age;

String ssn;

}
interface employee extends adult person {

Title position;

String company;

employee supervisor;

int salary;

}
interface married person extends adult person {

married person spouse;

}
interface married employee extends employee, married person {
}
interface rich employee extends employee {
}

49

The same hierarchy in LIFE

employee <: adult person.
married person <: adult person.
rich employee <: employee.
married employee <: employee.
married employee <: married person.

:: adult person (id ⇒ name

, dob ⇒ date

, age ⇒ int

, ssn ⇒ string).

:: employee (position ⇒ title

, company ⇒ string

, supervisor ⇒ employee

, salary ⇒ int).

:: married person (spouse ⇒ married person).

http://hassan-ait-kaci.net/pdf/ilps93.pdf

50

A relationally and functionally constrained LIFE sort hierarchy

:: P : adult person (id ⇒ name

, dob ⇒ date

, age ⇒ A : int
, ssn ⇒ string)

| A = ageInYears(P), A ≥ 18.

:: employee (position ⇒ T : title
, company ⇒ string

, supervisor ⇒ E : employee
, salary ⇒ S : int)

| higherRank(E.position, T) , E.salary ≥ S.

http://hassan-ait-kaci.net/pdf/ilps93.pdf

51

A relationally and functionally constrained LIFE sort hierarchy

:: M : married person (spouse ⇒ P : married person)

| P.spouse = M.

:: R : rich employee (company ⇒ I

, salary ⇒ S)

| stockValue(I) = V , hasShares(R, I, N) , S + N ∗ V ≥ 200000.

http://hassan-ait-kaci.net/pdf/ilps93.pdf

52

LIFE = Logic Inheritance Functions Equations

Curious about LIFE? Please check out:

◮ the LIFE Tutorial lecture slides

◮ the WildLife 1.02 manual

Unfortunately, no LIFE implementation is available any longer

In any case, it should now be re-implemented with more mature

implementation techniques (such as this , this , and this)

http://hassan-ait-kaci.net/pdf/ilps93.pdf
http://www.hassan-ait-kaci.net/pdf/LifeTutorial.pdf
http://hassan-ait-kaci.net/pdf/WildLIFE-HANDBOOK.pdf
http://hassan-ait-kaci.net/pdf/PRL-TN-7.pdf
http://www.hassan-ait-kaci.net/pdf/osfucomp.pdf
https://cedar.liris.cnrs.fr/papers/ctr16.pdf

53

LIFE ’s lazy sort-constraint solving—OSF Proof “Memoizing”

model equivalence 6= proof equivalence!

◮ OSF-unification proves sort constraints by reducing them

monotonically w.r.t. the sort ordering

◮ ergo, once X : s has been proven, the proof of s(X) is recorded

as the sort “s” itself!

◮ if further down a proof, it is again needed to prove X : s, it is

remembered as X’s binding

◮ Indeed, OSF constraint proof rules ensure that:

no type constraint is ever proved twice

54

Proof “memoizing”

This “memoizing” property of OSF constraint-solving enables:

using rules to query ontologies

◮ concept ontologies may be used as constraints by rules

for efficient knowldege-based inference

as well as, conversely :

enhancing ontologies with rule-defined predicates

◮ rule-based conditions in concept definitions boost the

expressive power of ontologies with ordered concepts

acting as proof caches

55

TODAY’S SEMANTIC WEB —Outline

◮ Semantic Web formalisms

◮ Graphs as constraints

◮ OSF vs. DL

◮ LIFE : Logic Inheritance Functions Equations

◮ Recapitulation

https://www.w3.org/standards/semanticweb/

56

Recapitulation—what you must remember from this talk. . .

◮ Structured objects are OSF graphs

◮ OSF graphs are conjunctive sets of simple constraints

◮ Constraints are good: they provide both formal theory and

efficient processing (order is not important)

◮ Formal Logic is not all there is

(Lattice Theory, Relational Algebra, Constraint Solving, etc.)

◮ even so: model theory 6= proof theory

57

Recapitulation—what you must remember from this talk. . . (ctd)

Essential questions:

� syntax: What’s essential?

What’s superfluous?

URI’s cluttered verbosity makes confusing notation (ok,

not for human consumption—but still!)

� semantics: What’s a model good for?

What’s (efficiently) provable?

Decidable 6= efficient

Undecidable 6= inefficient

� . . .

58

Recapitulation—what you must remember from this talk. . .

It is exciting to see the prospects of the W3C. . .

however

. . . a truly semantic web has yet to be achieved. . .

although

. . . we have all the tools to enable it!

Thank You For Your Attention !

Hassan Aı̈t-Kaci

hak@acm.org

https://www.hassan-ait-kaci.net
https://fr.linkedin.com/in/hak2007
mailto:hak@acm.org?subject=ICWR%202018%20Keynote

