
D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Fuzzy Lattices of Order-Sorted Feature Graphs

Hassan Aı̈t-Kaci

HAK Language Technologies

hak@acm.org

Gabriella Pasi

Universitá de Milano-Bicocca

pasi@disco.unimib.it

March 1, 2020

Abstract

In this article, we provide a detailed formal study of the fuzzy interpretation of the two

most important operations used in Knowledge Representation and Automated Reason-

ing; namely, unification and generalization of data and knowledge structures expressed

as labeled graphs. The latter are composed of nodes and arrows between them. These

components bear information: a node is labeled with a sort and an arrow is labeled with

a feature. Formally, a sort denotes a set and a feature denotes a function. Semantically

consistent such graphs have to respect feature composition (i.e., all feature paths between

two nodes must denote the same function). These graphs can then be seen as set-theoretic

commutative diagrams of functions between sets. An “is a” partial order on sorts denot-

ing set inclusion extends formally in a natural way to one on rooted labeled graphs,a

whereby the features of a sort are inherited by any of its subsorts and respect sorts and

path equalities. For this reason, these are called Order-Sorted Feature (OSF) graphs.

Furthermore, a lattice on sorts extends to a lattice on OSF graphs with two operations:

unification is deriving the most general lower bound, and generalization is deriving the

most specific upper bound, of two OSF graphs. These lattice operations on OSF graph

structures — and variations thereof; such as, e.g., the weaker notion of First-Order Term

(FOT) — have been used with great success for the past few decades in symbolic AI

when made operational as constraint-solving systems. Recently, the authors developed

an extension to Fuzzy Algebra of the traditional lattice of FOTs when function symbols

and argument positions may be comparable with a fuzzy equivalence relation (a.k.a., sim-

ilarity). This present paper elaborates on that study to provide yet a further extension to

fuzzy lattice operations on OSF graph structures when the ordering on sorts may be

fuzzy. Then, similarity between sorts is derived as the symmetric closure of their fuzzy

sort ordering. This results in a generic formal and operational lattice calculus of fuzzy

commutative diagrams for approximate deduction and abstraction.

Keywords: Approximate Information Processing; Lattice Algebra; Order-Sorted

Feature Graphs; Fuzzy Knowledge Representation; Fuzzy Automated Reasoning;

Fuzzy Unification; Fuzzy Generalization; Fuzzy Pattern-directed Reasoning; Fuzzy

Pattern Induction; Fuzzy Machine Learning.

aA rooted labeled graph is any graph with a distinct node called its root, from which all other

nodes in the graph are reachable.

1

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 2 Draft of March 1, 2020

1 Introduction

A First-Order Term (FOT) is just syntax for a tree where node labels are functors except

possibly for some leaf nodes that are replaced with variables, and functor-labeled nodes have

position-numbered arrows pointing to the root of the subterm tree at each argument position.

It is so indeed. In fact, when the leaf nodes that have the same variable are joined, it is a

rooted directed acyclic graph (or “dag”).1 As such, it is a special case of a more general kind of

labeled rooted (possibly cyclic) graph — called a rooted order-sorted feature (OSF) graph. Sort

symbols are node labels. Sorts are partially ordered to reflect subsumption and form a lattice.

Feature symbols labeling arrows represent functional attributes. These graphs are so ordered

by endomorphic structure-preserving (sort, feature, and feature-path equations) subsumption.

Lattice-theoretic operations for these more general rooted graphs, labeled with partially-ordered

sorts and with features, can be shown to extend those on more restricted kinds of rooted graphs

such as FOT s, labeled with functors, positions, and variables.

In this paper, we extend the results we recently reported in [AKP20] fuzzifying lattice op-

erations on FOT s modulo constructor similarity to rooted OSF graphs modulo sort similarity.

In Section 2, we show how to fuzzify OSF graph subsumption and its lattice operations: in

Section 2.2 we explicate fuzzy OSF graph unification, and in Section 2.3 fuzzy OSF graph

generalization. In Section 3, we discuss issues related to the implementation of fuzzy OSF
lattice operations using sort encoding.

2 Fuzzifying OSF -Term Subsumption

As was done for First-Order Terms (FOT s) in [AKP20], we here turn to fuzzifying lattice

operations over OSF terms. We shall proceed as we did for FOT s, up to partially ordered sort

and unconstrained symbol feature arities. So let us start by making some important observations

regarding some advantages in our approach to fuzzifying FOT unification and generalization.

1. The term structure itself (its syntax) is not fuzzified. For unification, only a conjunctive set

E of equations (pairs of first-order terms — including substitutions) is given a similarity

degree α. This is denoted as the fuzzy-weighted set Eα. For generalization, only a pair

of tag substitutions in a judgment is given such a similarity degree α.

2. In unification rules the similarity degree of a conjunctive set of equations, and in gen-

eralization rule and axioms of a pair of tag mappings, can never increase from prior to

posterior forms.

3. There is a similarity relation ∼ on functors f and g (as a half-matrix of similarity degrees

in [0.0, 0.1]).2

4. For each pair of functors f/m and g/n with f 6= g and 0 ≤ m ≤ n, whenever f ∼α g
with α ∈ (0.0, 1.0] there is a one-to-one mapping p : {1, . . . ,m} → {1, . . . , n} asso-

ciating each argument position of f to a unique distinct argument position of g. This

mapping is the identity on {1, . . . ,m} by default; it is undefined for dissimilar functors.

1A rooted (directed) graph is one with a distinguished node, called its root, from which all other nodes can be

reached.
2Only one direction is needed; the other is equal by symmetry — see [AKP20].

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/332237109
https://www.researchgate.net/publication/332237109
https://www.researchgate.net/publication/332237109

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 3 Draft of March 1, 2020

In axioms and rules, when terms with similar functors with possible arity mismatch are

equated, this argument-position mapping realigns misaligned subterms; subterms in the

higher-arity term that are in excess are ignored.

Then, fuzzifying lattice operations for FOT s consisted in adapting their crisp normalization

rules to carry a similarity degree according to the above observations when normalizing a FOT
equation set or proving a FOT generalization judgment.

When considering OSF terms, we can proceed similarly to enforce constraint consistency

when subsumption is realized by endomorphic tag mappings, which are sets of variable/variable

equations — i.e., X
.
= Y — respecting sorts and feature application. These rules and axioms

operate taking into account the following observations.

1. The OSF term itself is not fuzzified. For OSF unification, only a conjunctive set φ of

atomic constraints (each of either of the forms X : s, X.f
.
= Y , and X

.
= Y) is given a

global similarity degree α as the fuzzy formula φα. For OSF generalization, only a pair

of tag substitutions in a judgment is given such a similarity degree α.

2. In unification rules the similarity degree of a conjunctive set of atomic OSF constraints,

and in generalization rule and axioms of a pair of OSF tag mappings, can never increase

from prior to posterior forms.

3. There is a similarity relating pairs of sorts s and s′ as a half-matrix of similarity degrees

in [0.0, 0.1].

So this looks pretty much the same as for FOT s, except for one important detail: in the

case of OSF terms, a similarity relation on a signature of partially ordered featured sorts must

be also consistent with the ordering � on sorts. This means that, for all sorts s, s′, t, t′ in S , the

following fuzzy sort-lattice consistency conditions must hold for lubs and glbs when they exist:

if s ∼α s
′ and t ∼β t

′ then (sf t) ∼α∧β (s′ f t′),

if s ∼α s
′ and t ∼β t

′ then (sg t) ∼α∧β (s′ g t′);

(1)

Note that the similarity degree in both foregoing fuzzy sort-lattice consistency conditions on

the lattice operations on sorts, uses fuzzy conjunction (∧) of approximation degrees. While this

may be expected for f, it could appear odd for g. However, it is correct to use ∧ in both cases

as we do because the homomorphic constraints expressed by Condition (1) apply to the logical

conjunction “and” in the statement combining their premisses. In fact, the following (incorrect)

constraint:

if s ∼α s
′ and t ∼β t

′ then (sg t) ∼α∨β (s′ g t′)

could make the fuzzy degree of an expression resulting from the fuzzy conjunction of two fuzzy

expressions be greater than the degree of each — which is, again, incoherent since conjoining

more fuzzy information can only decrease the resulting overall fuzzy degree.

In particular, a consequence of the fuzzy sort-lattice consistency conditions (1) is the fol-

lowing fuzzy sort-order consistency condition for any sorts s, t, s′, t′ ∈ S such that s � t and

s′ � t′:

if s ∼α s
′ and t ∼β t

′ then s ∼α∧β s
′. (2)

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 4 Draft of March 1, 2020

This is illustrated generically in Figure 1 with abstract sorts and similarity weights, and with

possible specific sorts and similarity weights defining an instance case pictured as Figure 2.

sg t

s t

sf t

s
′
g t

′

s
′

t
′

s
′
f t

′

∼α ∼β

∼α∧β∼α∧β

∼α∧β∼α∧β

Figure 1: Order-inconsistent sort similarity

For example, given a similarity on sorts such that:

employee ∼.8 assistant

student ∼.9 apprentice

and an ordering on sorts such that:

helper
def
= assistant g apprentice

intern
def
= assistant f apprentice

and

staff
def
= employee g student

working-student
def
= employee f student

then, necessarily for a consistent set of sorts, it must be that:

staff ∼.8 helper.

But then, since student is a subsort of staff and since apprentice is a subsort of

helper, order-consistency entails that the ∼.8 similarity is inherited by all their respective

subsorts. In particular, this implies student ∼.8∧.9 apprentice; namely, student ∼.8

apprentice. Similarly, order-consistency mandates that:

working-student ∼.8 intern.

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 5 Draft of March 1, 2020

staff

employee student

working-student

helper

assistant apprentice

intern

∼.8 ∼.9

∼.8∼.8

∼.8∼.8

Figure 2: Order-inconsistent sort similarity example

Therefore, in order to ensure that a sort similarity ∼ is always consistent with the subsort

ordering for all degree α ∈ DEGREES
∼, this necessitates that after declaring a few pairs of sorts

to be similar at a given approximation degree, all their respective subsorts must also undergo an

order-consistency closure. This closure consists in propagating similarities of all pairs of sorts

to their subsorts as mandated by Condition (2). This is made formally precise next, while related

considerations regarding how to compute and implement the fuzzy transitive closure of pairs of

sorts that are declared similar in a fuzzy taxonomy are discussed in Section 3.

2.1 Fuzzy vs. subsort approximation

Before we proceed into further technicalities concerning fuzzy OSF term-lattice operations

as fuzzy-constraint solving, let us discuss important implications of what a fuzzy ordering on

sorts means. Then, using what we understand this to mean formally, let us make some specific

remarks that will be helpful in understanding and justifying the correctness of the constraint-

solving rules and axioms we shall propose.

A fuzzy ordering � on the set of sorts S means by definition that it is a fuzzy relation on

S that is reflexive, anti-symmetric, and transitive. This implicitly defines the following fuzzy

relations on S:

• a similarity ∼ on S defined, for any α ∈ [0.0, 0.1], as:

∼α
def
= �α ∧ �α (3)

where �α is the fuzzy relation on S defined as: �α
def
= �−1

α ;

• a fuzzy partial order � on S: a fuzzy set Π∼ def
= {Π∼

α | α ∈ DEGREES
∼ } of partitions

of S with partial orders �α on each partition Π∼

α of S generated by ∼ (i.e., Zadeh’s

“partition tree”), and defined at approximation degree α ∈ [0.0, 01] as:

[s]∼α �α [t]∼α iff ∃ s′ ∈ S, ∃ t′ ∈ S s.t. s ∼α s
′ and s′ �α t′ and t′ ∼α t. (4)

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 6 Draft of March 1, 2020

This last condition may look harder to read than what it actually means, and can be under-

stood more easily as the following color-highlighted diagram:

[s]∼α �α [t]∼α
def

iff ∃ s′ ∈ S, ∃ t′ ∈ S s.t. :

t′ ∼α t

�α

s ∼α s′

where a subsort is below its supersort and similar sorts are on the same level.

The two following lemmas are also a direct consequence of the above properties.

LEMMA 1 (SORT-SUBSUMPTION FUZZY SYMMETRY) For any sorts s and t in S , and any

approximation degrees α and β in [0.0, 1.0], if s �α t and t �β s , then s ∼α∧β t.

LEMMA 2 (SORT-SUBSUMPTION FUZZY TRANSITIVITY) For any sorts s, t, and u in S , and

any approximation degrees α and β in [0.0, 1.0], if s �α t and t �β u , then s ∼α∧β u.

An important consequence is that, when considering a similarity on a sort signature S that

is partially ordered by a defined sort subsumption, this must necessarily obey some consistency

conditions for the similarity and the sort ordering. In particular, as the approximation degree

α decreases from 1.0 to 0.0, the set of sorts [s]∼α (denoting the similarity class of a sort s at

approximation degree α) may only increase in size. Indeed, as α decreases, similarity classes of

sorts may only coalesce, forming coarser and coarser similarity partitions.3 It is not difficult to

establish that the following properties are always true for any order-consistent similarity ∼ on a

set of partially ordered sorts S,�.

PROPOSITION 1 (FUZZY SORT SUBSUMPTION CONTRAVARIANCE) For all sort s in S , and

all approximation degrees α and β in [0.0, 0.1]:

α ≤ β iff [s]∼β ⊆ [s]∼α . (5)

In words, the contravariance in Condition (5) of Proposition 1 states that the smaller the approx-

imation degree, the larger the similarity class.

As a consequence, Corollary 1 states that all sorts are indistinguishable at approximation

degree 0.0, since then all sort classes coalesce into a single similarity class equal to the whole

set of sorts — which is what Condition (6) expresses.

COROLLARY 1 (FULLY SIMILAR SORTS) For any sort s ∈ S:

[s]∼0.0 = S . (6)

Order-consistency between the fuzzy partial order on sorts � and inclusion ⊆ on sort-

similarity classes is established in the next proposition as a monotonic order isomorphism.

PROPOSITION 2 (SORT SUBSUMPTION MONOTONICITY) For all sorts s and t in S and all

approximation degree α in [0.0, 0.1] :

s �α t iff [s]∼α ⊆ [t]∼α . (7)

3This is the set of partitions Π∼
α , α ∈ DEGREES

∼ that Zadeh calls the similarity’s “partition tree” [Zad71]. See

also [DP80], Chapter II, Section 3 on Fuzzy Relations (Page 77).

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 7 Draft of March 1, 2020

On the other hand, as indicated by Condition (7) in Proposition 2, the approximation degree

is covariant with the subsort ordering. When in addition the partially ordered sort signature is

also a lattice S,�,f,g, this is equivalent to the validity of the following two propositions.

PROPOSITION 3 (FUZZY SORT-CONGRUENCE APPROXIMATION) For all sort s in S , and all

approximation degrees α and β in [0.0, 0.1]:

[s]∼α∨β = [s]∼α ∩ [s]∼β ,

[s]∼α∧β = [s]∼α ∪ [s]∼β .
(8)

Example 1 Fuzzy sort-congruence approximation — Let us take s
def
= person, α = .6, and

β = .4, with ∨
def
= max and ∧

def
= min. Then, fuzzy sort subsumption contravariance (Proposition 1) is

clearly satisfied since:

[person]∼.6 ∩ [person]∼.4 = [person]∼.6 ,

[person]∼.6 ∪ [person]∼.4 = [person]∼.4 .

PROPOSITION 4 (FUZZY SORT-CONGRUENCE LATTICE) For all sorts s and t in S and all

approximation degree α in [0.0, 0.1]:

[sg t]∼α = [s]∼α ∪ [t]∼α ,

[sf t]∼α = [s]∼α ∩ [t]∼α .
(9)

Example 2 Fuzzy sort-congruence lattice — Referring to the sorts in Figure 2, let us take s
def
=

employee, t
def
= student in Proposition 4. It is then obvious that, as stated by Proposition 4, for any

α ∈ [0.0, 0.1]:

[staff]∼α = [employee]∼α ∪ [student]∼α ,

[working-student]∼α = [employee]∼α ∩ [student]∼α .

Figure 3 and Figure 4 illustrate graphically how fuzzy subset approximation varies for three

possible sorts a, b, and c as the approximation degree decreases from fully crisp (i.e., 1.0 —

when no distinct sorts in S are similar), to fully fuzzy (i.e., 0.0 — when all non-empty sorts in S
are similar). Figure 3, shows a typical possible example of fuzzy subsorting. Each row varies

from fully crisp (degree 1.0) at the top, to fully fuzzy (degree 0.0) at the bottom as indicated in

the leftmost column, while each of the other columns on the right indicates the fuzzy denotation

of (from left to right) the sort ⊤ (which denotes the whole set of sorts S) and sorts a, b, and

c. As the approximation degree varies from crisp 1.0 to lower values, first to β, then to fuzzier

α ≤ β, and ultimately to 0.0, each column shows a conceivable consistent variation of the

denotation any sort s ∈ S (e.g., in our example, s = a, s = b, and s = c):

0.0 ≤ α ≤ β ≤ 1.1 =⇒

⊤1.0 ⊆ ⊤β ⊆ ⊤α ⊆ ⊤0.0 ,

s1.0 ⊆ sβ ⊆ sα ⊆ s0.0 ,

⊥1.0 ⊆ ⊥β ⊆ ⊥α ⊆ ⊥0.0 .

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 8 Draft of March 1, 2020

degree ⊤ a b c

Figure 3: Fuzzy subset approximations

Since it is always true that [[⊤α]] = S at any approximation level α ∈ [0.0, 0.1], the column

of fuzzy top denotations on the left in Figure 3 is always the full set S . So are all the sort

denotations in the bottom row when all sorts are similar, since [[s0.0]] = S for any sort s ∈ S .

This means that whenever α ≤ β for some α ∈ [0.0, 1.0] and β ∈ [0.0, 1.0], then necessarily

sβ � sα (i.e., equivalently, [[sβ]] ⊆ [[sα]] by definition), for any sort s in S .

This combined consistent approximation effect of conjugating both fuzzy approximation

and subsort approximation on sort denotations, together with coalescing sort-similarity classes,

is illustrated in Figure 4, showing the sort-similarity lattice orderings of these classes for each

fuzzy level going from crisp at the top to fully fuzzy at the bottom. A good intuitive way to

construe this effect is as that of a zooming lens or a magnifying-glass: approximation level 0.0
is farthest and most myopic (i.e., “seeing the forest for the trees”), while level 1.0 is closest and

sharpest (i.e., “seeing the trees for the forest”).

2.2 Fuzzy OSF -term unification

We are, finally, ready to provide the constraint normalization rules for fuzzy OSF-term unifi-

cation and generalization. We first define formally what it means for two ψ-terms to be similar,

modulo a subsort ordering and an order-consistent similarity (fuzzy equivalence) relation on the

sorts.

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 9 Draft of March 1, 2020

degree subsets

sort

similarity

classes

sort

similarity

lattices

⊤

a b c

⊥

⊤

aβ bβ g cβ

⊥

⊤

aα g bα g cα

⊥

⊤

⊥

Figure 4: Fuzzy subset approximation lattice

§ SIMILARITY OF ψ-TERMS

Let two ψ-terms ψ and ψ′ defined as:

ψ
def
= X : s(f1 → ψ1, . . . , fn → ψn)

ψ′ def
= X ′ : s′(f ′

1
→ ψ′

1
, . . . , f ′n′ → ψ′

n′)

(n, n′ ≥ 0).

DEFINITION 1 For α ∈ [0.0, 0.1], and two ψ-terms ψ and ψ′ of the form above, we define

recursively the fuzzy binary relation ∼α on Ψ as ψ ∼α ψ
′ iff α

def
= β ∧

∧n
i=0

βi where:

s ∼β s
′ (10)

for some β ∈ (0.0, 1.0], and:

ψi ∼βi
ψ′

i′ [X/X
′] (11)

where βi ∈ (0.0, 1.0], for any i ∈ {1, . . . , n} such that fi ∈ {f
′

1
, . . . , f ′n′}.

The fuzzy OSF unification rules are shown in Figure 5.

THEOREM 1 (SIMILARITY OF ψ-TERMS) The fuzzy binary relation ∼α defined by Defini-

tion 1 is a similarity on the set of ψ-terms Ψ.

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 10 Draft of March 1, 2020

SIMILAR SORT INTERSECTION

[s ∼β t, 0 ≤ β ≤ 1]

(φ & X : s & X : t)α

(φ & X : sf t)α∧β

FEATURE FUNCTIONALITY

(φ & X.f
.
= X ′ & X.f

.
= X ′′)α

(φ & X.f
.
= X ′ & X ′ .= X ′′)α

INCONSISTENT SORT

(φ & X
.
= ⊥)α

false0

TAG ELIMINATION

[Y ∈ Tags(φ)]

(φ & X
.
= Y)α

(φ[X/Y] & X
.
= Y)α

NULL SIMILARITY DEGREE

φ0

false0

Figure 5: Constraint normalization rules for fuzzy OSF unification

Because of Theorem 1, we shall say that ψ and ψ′ are α-similar iff ψ ∼α ψ
′.

THEOREM 2 (CORRECTNESS OF FUZZY OSF UNIFICATION) Given a fuzzyOSF constraint

φα with α ∈ [0.0, 0.1], the process of non-deterministically applying to it any applicable rule

shown in Figure 5 as long as one applies, always terminates in a fuzzy OSF constraint φ′α′

such that either φ′ = false and α′ = 0; or, 0 < α′ ≤ α and φ ∼α′ φ′.

2.3 Fuzzy OSF -term generalization

Axiom FUZZY EQUAL TAGS in Figure 6 states that generalizing a pair made of the same ψ-term

results in this ψ-term and the posterior tag maps and approximation degree are the same as the

prior ones.

Note that, Rule FUZZY UNEQUAL TAGS in Figure 6 uses a “fuzzy unapply” operation ‘↑ α’

that takes a pair of ψ-terms with unequal root tags and an approximation degree α and returns a

pair of (possibly identical) ψ-terms and a possibly lesser approximation degree. It is defined as

follows:

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

def
=

(

X : . . .
X : . . .

)

α∧α1∧α2

if ∃X s.t. ROOT(ψi) = γi(X) for i = 1, 2;

(

ψ1

ψ2

)

α

otherwise.

(12)

Copyright c© 2020 by the Authors All Rights Reserved

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 11 Draft of March 1, 2020

FUZZY EQUAL TAGS

(

γ1
γ2

)

α

⊢

(

ψ
ψ

)

ψ

(

γ1
γ2

)

α

FUZZY UNEQUAL TAGS

X 6= Y ; s ∼β t; α0

def
= α ∧ β;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {g1, . . . , gn}

s.t. hk
def
= fk = gk for all k = 1, . . . , p ;

γ0

1

def
= γ1 ◦ {X/Z} and γ0

2

def
= γ2 ◦ {Y/Z} , where Z is a new tag name

(

γ0

1

γ0

2

)

α0

⊢

(

ψ1

ξ1

)

↑
α0

(

γ0

1

γ0

2

)

χ1

(

γ1

1

γ1

2

)

α1

. . .

(

γp−1

1

γp−1

2

)

αp−1

⊢

(

ψp

ξp

)

↑
αp−1

(

γp−1

1

γp−1

2

)

χp

(

γp
1

γp
2

)

αp
(

γ1
γ2

)

α

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp
1

γp
2

)

αp

Figure 6: Fuzzy OSF generalization axiom and rule

This has the same purpose as the fuzzy unapplication operation used in fuzzy FOT generaliza-

tion judgments: identify in the prior pair of tag maps (γ1, γ2) whether or not they already map

a common tag (X) to the roots of the pair of ψ-terms to be generalized (ψ1, ψ2) each at, respec-

tively, approximation α1 and α2. If so, the result of the unapplication is the pair made of the

same ψ-term rooted in X (X : . . .) at a posterior approximation degree equal to the conjoined

value of the prior approximation degree α and those; i.e., α ∧ α1 ∧ α2; if not, it is the original

pair of ψ-terms (ψ1, ψ2) at the unchanged prior approximation degree.

This rule basically states that generalizing two ψ-terms ψ1

def
= X : s (fi → ψi)

m
i=0

and ψ2

def
= Y : t (gj → ξj)

n
j=0

results in the ψ-term ψ1 ∨ ψ2

def
= Z : s∨t (hk → χk)

p
k=0

, where the

set of features of the resulting ψ-term is the intersection of the corresponding sets of features of

ψ1 and ψ2 (i.e., the corresponding features they have in common), and Z is a new tag name.

As was the case for FOT s, note that fuzzy OSF unapplication defined by Equation (12)

returns a pair of terms and a (possibly lesser) approximation degree, unlike crisp unapplication

defined in [AKP20] that returns only a pair of terms. Because of this, when we write a fuzzy

OSF generalization judgment such as:

(

γ1
γ2

)

α

⊢

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

ψ

(

γ′
1

γ′
2

)

β

(13)

as we do in Rule FUZZY UNEQUAL TAGS, this is shorthand to indicate that the posterior simi-

larity degree β is at most the one returned by the fuzzy OSF unapplication

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

.

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/332237109

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 12 Draft of March 1, 2020

Formally, the notation of the fuzzy OSF generalization judgment (13) is equivalent to:

(

ψ′

1

ψ′

2

)

β′

def
=

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

and

(

γ1
γ2

)

β′

⊢

(

ψ′

1

ψ′

2

)

ψ

(

γ′
1

γ′
2

)

β

(14)

for some β′ such that β ≤ β′ ≤ α. This is because a fuzzy OSF term unapplication invoked

while proving the validity of a fuzzy OSF generalization judgment may require, by Expres-

sion (12), lowering the prior approximation degree of the judgment. This is therefore applicable

to pairs of subterms having some features in common. It consists in generalizing each of the

corresponding pairs of subterms under all common features. Note that this can be done in any

order, as long as each subterm judgment is validated with its pair of prior tag maps equal to its

pair of posterior tag maps.

THEOREM 3 (CORRECTNESS OF FUZZY OSF GENERALIZATION) The process of using any

applicable constrained Horn clause shown in Figure 6 as long as one applies starting with the

fuzzy OSF judgment to establish:

(

∅
∅

)

1.0

⊢

(

ψ1

ψ2

)

ψ

(

γ1
γ2

)

α

to prove this judgment’s validity always terminates with ψ = ψ1 ∧α ψ2, together with γ1 :
Tags(ψ)→ Tags(ψ1) and γ2 : Tags(ψ)→ Tags(ψ2) such that ψ1 = γ1(ψ) and ψ2 = γ2(ψ).

3 Implementation

AnOSF constraint φ in solved form is always satisfiable in a canonical interpretation structure;

viz., theOSF graph algebra Ψ [AKP93]. As a consequence, theOSF constraint normalization

rules yield a decision procedure for the satisfiability of OSF constraints. This decision pro-

cedure is also operationally efficient [AKdC93]. One important reason for its efficiency is that

computing sort intersection as specified by Rule SORT INTERSECTION can be done in constant

time by encoding sorts as binary vectors as shown in [AKBLN89]. This results in tremen-

dous speed performance when compared to encoding a class taxonomy’s partial order using

First-Order Logic monadic implication, even when resorting to proof “memoing” as done, for

example, in [KLW95], since this requires dynamically memorizing arbitrary proofs, thereby

facing a hefty overhead price both in space and time. Indeed, resorting to bitvector-encoded

ordered sorts rather than monadic implications is the key providing immediate deductive re-

sponse thanks to static transitive closure on the “is-a” ordering and static consistent typing

propagation of features to subtypes (see [AKA15] and [AAK16]).

However, isn’t this valuable implementation trick lost with fuzzy, rather than binary, truth

values? Some is, clearly, though not totally as we discuss next; and the gain fortunately out-

weighs the loss.

§ CLOSURE OF DECLARED FUZZY TAXONOMIES

In the crisp case, declaring an ordering on sorts defines a set of pairs. The complete or-

dering itself is then generated as the reflexive-transitive closure of this declared set of pairs

(“s1� s2”) when these are consistent (e.g., when there is no cycle) or cycles are detected and

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/301656244
https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/281375833

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 13 Draft of March 1, 2020

reported [AKA15]. This is taken to great advantage to compile it statically for the efficient com-

putation of Boolean lattice operations on sorts when each sort is represented as a bit vector of as

many bits as there are sorts, and carries a bit for each index of a sort it subsumes. Thus, the time

and space complexity of all three Boolean lattice operations is quasi-constant on the size of the

taxonomy, since this amounts to compiling each sort into a native binary word of size equal to

the total number of sorts [AKBLN89].

For a fuzzy subsumption ordering on sorts, the same kind of reflexive-transitive closure may

be statically computed. However, the information carried by each pair of the fuzzy relation is

no longer {0, 1}-valued but [0.0, 1.0]-valued (the value of the similarity degree α in declaring

“s1�αs2”), and may no longer be represented as a bit. Now, instead of a bit vector, it is a fuzzy-

bit vector; i.e., a vector of real values in the closed interval [0.0, 1.0] representing the fuzzy set

{α/s | α ∈ [0.0, 1.0] for all s ∈ S }. The bitwise Boolean operations on bit-vectors are

now fuzzified into ∧, ∨, and α → (1.0 − α) on fuzzy set elements’ fuzzy weights.4 Each of

these operations works on fuzzy sets to yield the fuzzy set of sorts obtained from applying the

operation to the corresponding truth values of each sort. Namely:

X ∧ Y
def
= { (α ∧ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (15)

X ∨ Y
def
= { (α ∨ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (16)

X
def
= { (1.0 − α)/s | α/s ∈ X, for all s ∈ S } (17)

for all X and Y fuzzy sets over a reference set of sorts S . This is also the case with a similarity

degree α and a fuzzy set X over S:

α ∧X
def
= { (α ∧ β)/s | β/s ∈ X, for all s ∈ S } (18)

and:

α ∨X
def
= { (α ∨ β)/s | β/s ∈ X, for all s ∈ S }. (19)

Note that we seldom need to represent explicitly a 0.0-similarity degree fuzzy element (i.e.,

of the form 0.0/s) and neither do we need to store it explicitly in a fuzzy set representation. In

particular, in all the foregoing definitions given as Equation (15)–Equation (19), by “ for all s ∈
S” it is assumed that whenever /s 6∈ X, for some sort s ∈ S and fuzzy set X on S , this is

formally equivalent to 0.0/s ∈ X.

It will always be assumed that a top sort (“⊤”) and a bottom sort (“⊥”) are implicitly de-

clared such that:

s �1.0 ⊤ (20)

and,

s 6= ⊤ ⇒ ⊤ �0.0 s (21)

4We use the notation “x→ e” to denote a nameless function associating the expression e to the argument x; i.e.,

what the adepts of Functional Programming write as λx.e (here, λα.(1.0 − α)) and call a functional abstraction or

λ-expression.

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/220404292

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 14 Draft of March 1, 2020

as well as:

⊥ �1.0 s (22)

and,

s 6= ⊥ ⇒ s �0.0 ⊥ (23)

for all sorts s ∈ S , in order to express respectively that there is no fuzziness in the sort ordering

of ⊤ as the greatest (and all-encompassing) sort, and ⊥ as the least (and all-excluding sort).

In [AKBLN89] and [AKA15], the encoding of crisp-ordered sorts as bit vectors is given in

pseudo-code as a reflexive-transitive closure of the set of pairs of sort declarations of the form

“si � sj .” As expected, the process of propagating the similarity degrees declared in the fuzzy

partial order of sorts is also a reflexive-transitive closure procedure. One will easily see that it

is a direct homomorphic adaptation of the bit-vector procedure reviewed in [AKA15] obtained

by transforming the Boolean bit-vector representation and operations into their homomorphic

fuzzy-set generalizations. It is given as the pseudocode procedure CLOSEFUZZYTAXONOMY

expressed as Algorithm 1.

1 procedure CLOSEFUZZYTAXONOMY ()

2 Set〈Sort〉 layer ← ⊥.parents;
3 while layer 6= ∅ do

4 foreach Sort s ∈ layer do

5 s.fuzzyset ← { 1.0/s} ∨
∨

α/u∈ s.children

(

α ∧ u.fuzzyset
)

;

6 s.closed ← true;

7 end

8 layer ←
⋃

s∈ layer
s.parents;

9 foreach s ∈ layer do

10 if ∃ /u ∈ s.children such that ¬u.closed then

11 layer.remove(s);

12 end

13 end

14 end

15 end

Algorithm 1: Encoding of a fuzzy sort taxonomy as fuzzy-set codes

The class Sort is the type representing partially-ordered symbols making up a concept

taxonomy. We will also assume that known sorts are stored in a global (static) hash table,

called taxonomy, associating strings (sort names) to Sort objects. A global (static) method

getSort (String) will return a sort given its name.

The class Sort has a field called “children” of type Set〈Sort,double〉 containing,

for any sort, the sets of sorts that are its immediate children in the taxonomy, each paired with a

non-zero similarity degree. Thus, for every sort object, this set is filled with sorts by processing

fuzzy “�” expressions of the form s1 �α s2 used to declare that sort s1 is subsumed by (or is

a subsort of) sort s2 with similarity degree α ∈ (0.0, 1.0]; namely, (s1, α) ∈ s2.children.

The class Sort has another field called “parents” of type Set〈Sort〉 containing, for any

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/220404292

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 15 Draft of March 1, 2020

sort, the sets of sorts that are its immediate parents in the taxonomy. There is no need to record

the similarity degrees as well in the parents sets because the similarity degrees will only be

accessed through the children sets while closing a fuzzy taxonomy.

In addition, the class Sort has:

• an integer field called “index” that is a sort’s unique characteristic rank in the array

taxonomy containing all the sorts;

• a field called “fuzzyset” of type Set〈Sort,double〉 initialized to the empty fuzzy

set (i.e., equivalent to all pairs of distinct declared sorts having 0.0 similarity degree); this

represents the fuzzy set computed by reflexive-transitive closure. Upon completion of

the closure, it ends up containing, for each sort si ∈ taxonomy, the similarity degree

αij ∈ (0.0, 1.0] of its � relationship with all sort sj ∈ taxonomy (i.e., such that

si �αij
sj);

• a Boolean field called “closed” indicating whether this sort has been closed or not

(so it is initially set to false).

§ OPTIMIZING CLOSURE AND LATTICE OPERATIONS

There is an immediate issue that we should keep in mind with using the foregoing “sort-as-

fuzzy-set” representation and the closing procedure on these fuzzy sets. Namely, while Al-

gorithm 1 is clearly formally correct as a lattice-homomorphic image of the crisp case, the

motivation for casting sorts into the Boolean lattice of bit-vector codes seems compromised in

the new representation of sorts as fuzzy sets exposed in [AKBLN89], and used in [AKA15] and

in [AK14]. After closing it, a sort’s bit-vector represents the set of its lower bounds. Indeed,

this enabled optimizing set-lattice operations on ordered set-denoting sorts (very fast operations

on bit vectors), with a minimal sort representation (a bit vector being essentially a non-negative

integer), which can be further compacted using a given declared is-a ordering’s specific topol-

ogy [AKBLN89]. With a fuzzy partial-order, however, a sort is no longer identified with a bit

vector but with a (0.0, 1.0]-fuzzy set. Therefore, a compact fuzzy-set representation upon which

an efficient intersection operation may be computed must be provided in order to minimize

impairing the efficient-implementation motivation.

We discuss here a sensible data-structure representation for the fuzzy set encoding a fuzzy-

ordered sort in a finite set of a declared fuzzy taxonomy, supporting a better-than-naı̈ve imple-

mentation of its lattice operations.

We shall call “reference base” the set of minimal upper bounds of⊥; namely, the set of sorts

in ⊥.parents, the first layer in Algorithm 1. We may also refer to the reference base as the

set of instances (i.e., each instance identifies a singleton-denoting sort).

Note that in Algorithm 1, the class Sort’s field fuzzyset is actually a fuzzy set where

the fuzzy elements are pairs α/s where s may be any sort in taxonomy, not just a sort in the

reference base. However, each sort formally denotes a fuzzy distribution on this reference base.

So we may also find it useful to identify the reference base as a global array called base of

N non-negative integers. This number N is the number of elements in the reference base; viz.,

N
def
= |⊥.parents|. Each value base[i], i = 1, . . . , N is the index of a sort in the

static hash table taxonomy that is minimal (i.e., in ⊥.parents). Hence, rather than a field

fuzzyset, the class Sort is given a field called fuzzybase to represent this fuzzy set as

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/271714694
https://www.researchgate.net/publication/220404292

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 16 Draft of March 1, 2020

an array of N ≤ taxonomy.size() of [0.0, 1.0]-values for each index in base. In other

words, for a sort s, s.fuzzybase is an array of N similarity degrees and s.fuzzybase[i]
is the similarity degree of base[i].

For any sort s, the array s.fuzzybase is approximated by the binary vector we shall

define as a new field of type BitCode for the class Sort called crispvalue, a bit vector

such that:5

s.crispvalue[i]
def
=

{

1 if s.fuzzybase[i] > 0;
0 otherwise.

This information is therefore straightforward for any closed fuzzy sort taxonomy and can be

used in the abstract interpretation of the three fuzzy Boolean lattice operations on sorts to restrict

enumeration of a fuzzy set’s elements only to non-zero indices using the bit-vector operations

defined in [AKBLN89] and [AKA15].

4 Conclusion

We demonstrated in detail how the fact that an Order-Sorted Feature graph structure is but a

special case of a Prolog’s first-order terms allows a fuzzification of its lattice operations in a

similar way as demonstrated for FOT s in [AKP20]. The same crisp and fuzzy lattice-theoretic

operations for these more general rooted graphs can be shown to extend those on the more re-

stricted FOT s for constraint-based knowldege representation and automated reasoning — both

in expressivity and efficiency. We have summarized the essential of what this entails formally

and operationally as systems solving fuzzy constraints.

References

[AAK16] Samir Amir and Hassan Aı̈t-Kaci. An efficient and large-scale reasoning method for the

semantic web. Journal of Intelligent Information Systems, 47(3):1–22, December 2016.

[Available online].

[AK14] Hassan Aı̈t-Kaci. HO•O•T : a language for expressing and querying Hierarchical

Ontologies, Objects, and T ypes—a specification. Technical Report Number 16, CEDAR
Project, LIRIS, Département d’Informatique, Université Claude Bernard Lyon 1, Villeur-

banne, France, December 2014. [Available online].

[AKA15] Hassan Aı̈t-Kaci and Samir Amir. Classifying and querying very large taxonomies with

bit-vector encoding. Journal of Intelligent Information Systems, 45(2):1–25, October 2015.

[Available online].

[AKBLN89] Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementa-

tion of lattice operations. ACM Transactions on Programming Languages and Systems,

11(1):115–146, January 1989. [Available online].

[AKdC93] Hassan Aı̈t-Kaci and Roberto di Cosmo. Compiling order-sorted feature term unification.

Technical Note 7, Digital Paris Research Laboratory, Rueil-Malmaison, France, December

1993. [Available online].

5This is representable, for example, as a Java class such as hlt.osf.util.BitCode, which extends the

standard Java class java.util.BitSet.

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/281375833
https://hassan-ait-kaci.net/pdf/fuzfotlat-preprint.pdf
https://www.researchgate.net/publication/309348217
https://www.researchgate.net/publication/271714694
https://www.researchgate.net/publication/281375833
https://www.researchgate.net/publication/220404292
https://www.researchgate.net/publication/301656244
http://hassan-ait-kaci.net/hlt/doc/hlt/api/hlt/osf/util/BitCode.html
https://docs.oracle.com/javase/10/docs/api/java/util/BitSet.html

D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 17 Draft of March 1, 2020

[AKP93] Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE . Journal of Logic

Programming, 16(3-4):195–234, 1993. [Available online].

[AKP20] Hassan Aı̈t-Kaci and Gabriella Pasi. Fuzzy lattice operations on first-order terms over

signatures with similar constructors: A constraint-based approach. Fuzzy Sets & Systems,

2020. [Available online].

[DP80] Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Applications, vol-

ume 144 of Mathematics in Science and Engineering, Edited by William F. Ames, Georgia

Institute of Technology. Academic Press, 180. [Available online].

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object oriented and

frame based languages. Journal of the ACM, 42(4):741–843, 1995. [Available online].

[Zad71] Lotfi A. Zadeh. Similarity relations and fuzzy orderings. Information Sciences, 3:177–200,

1971. [Available online].

Copyright c© 2020 by the Authors All Rights Reserved

https://www.researchgate.net/publication/220118353
https://www.researchgate.net/publication/332237109
ftp://ftp.micronet-rostov.ru/linux-support/books/computer%20science/Fuzzy%20systems/Fuzzy%20Sets%20And%20Systems%20Theory%20And%20Applications%20-%20Didier%20Dubois%20,%20Henri%20Prade.pdf
ftp://ftp.cs.sunysb.edu/pub/TechReports/kifer/flogic.pdf
https://people.eecs.berkeley.edu/~zadeh/papers/Similarity%20Relations%20and%20Fuzzy%20Orderings-Information%20Sciences%201971.pdf

	Introduction
	Fuzzifying OSF-Term Subsumption
	Fuzzy vs. subsort approximation
	Fuzzy OSF-term unification
	Fuzzy OSF-term generalization

	Implementation
	Conclusion

