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What is this about?

This explores the lattice-theoretic properties of the fuzzy processing of data and knowledge

structures, such as First-Order Terms (FOT s) and Order-Sorted Feature (OSF ) graphs. These

objects are ordered with endomorphic structure subsumption which characterizes consistent in-

stantiation of subterms, and more generally inheritance of features from a sort to its subsorts.

Constraint systems consisting of declarative rules and axioms formalizing these operations as

syntax-driven constraint normalization also provide effective operational interpretations. Extend-

ing these notions to assimilate distinct but similar objects can then be done by loosening semantic

congruence among constructors. This is achieved by fuzzifying the constraint system. For exam-

ple, fuzzy FOT unification is used in Fuzzy Logic Programming (FLP), thus adding flexibility

and expressivity to operations on FOT s. This kind of fuzzification can be defined and used as

well for approximate data and knowledge representation and processing thanks to richer attributed

object and concept structures such as OSF graphs.

Why Lattice Theory?

Because it is the mathematics of consistent approximation. Indeed, when (fuzzy) approx-

imation of FOT terms or OSF graphs is defined as (fuzzy) structural subsumption, (fuzzy)

unification is the Greatest Lower Bound (glb) operation, and (fuzzy) generalization is the Least

Upper Bound (lub) operation. This provides a (fuzzy) glb operation overFOT s andOSF object

structures to act as, e.g., a kind of “(fuzzy) object join” to specify approximate retrieval patterns

over an object database. Dually, the lub operation is the computation of the most specific FOT
or OSF graph up to a fuzzy threshold that is their most specific approximate generalization for

that truth threshold. Such could be used, e.g., for fuzzy object schema inference or Machine

Learning by fuzzy inductive reasoning. Therefore, understanding the formal operational aspects

of (fuzzy) structure unification and its dual (fuzzy) structure generalization are invaluable pursuits

most suitably formalized using Lattice Theory.

Our objective?

It is to extend to fuzzy operations (to “fuzzify”) both lattice operations on FOT s and OSF
graphs. Calibrating such structures with fuzzy truth levels as approximation degrees can then

exploit more expressive lattice-theoretic operations (fuzzy unification, but also fuzzy generaliza-

tion). Our pragmatic motivation is that such fuzzy lattice operations on FOT s and OSF graphs

are very convenient in structured data and knowledge representation and processing, such as ap-

proximate Information Mining and Retrieval.

Still too fuzzy?

Be that as it may, we—the authors—hope that you—reading this—will be prompted to muse

further into this document’s contents to understand what the foregoing techno-gibberish actually

means. Who knows? You may just share the frizzy fuzzy fun we felt defrizzing tangled fuzz, and

perhaps even be enticed to use, or extend, our results.

Keywords: Approximate Information Processing; Lattices; First-Order Terms; Feature Terms; Fuzzy

Unification; Fuzzy Generalization; Fuzzy Pattern-directed Reasoning; Fuzzy Pattern Abduction; Fuzzy

Pattern Induction; Fuzzy Machine Learning.
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Preamble

Our model of the world is, at best, fuzzy. What we hold to be true or false, as far as reasoning is

concerned, is a partial approximation of ideal concepts and relations among such. Yet, far from

suffering from this seeming imperfection, we are actually quite clever at many tasks involving

reasoning (including recognition and learning) precisely because we can efficiently make sense

out of approximate knowledge. It is therefore natural to wish that all AI tools be given the

capability of approximate reasoning as a practical means to make efficient pragmatic sense out

of the abundance of knowledge fed by the current supernova-size explosion of data—whether

extracting knowledge learning from it or using what is learned to render intelligent services for

useful aims; or both.

The ideas reported in this document are some mathematical and computational reflections

on approximate reasoning with data and knowledge represented as algebraic trees and, more

generally, labeled rooted graphs (i.e., most models). For us, approximation is interpreted as a

partial order on object structures composed of symbols, where some symbols may denote more

or less similar concepts. The ideas we have undertaken to develop here came to be out of the visit

of the first author to Milan, Italy, in the Fall of 2016, at the invitation of the second author. It is

the consequence of a congruence of minds intrigued at fuzzifying the power of lattice theory for

data and knowledge processing. It is the result of our discussions trying to give simple answers

to simple questions. The initial question was simple indeed: “What happens to the Reynolds-

Plotkin lattice of FOT s with fuzzy unification and generalization?” But since this lattice is

itself only a special case of the lattice of rooted order-sorted feature graphs: “What happens then

when we fuzzify OSF lattice operations?” We were demanding, however, as we strove to give

intuitive, formal, and operational, answers to these questions. This has led, after some methodic

and laborious research and a few initial but unsatisfying answers, to this present collection of

technical thoughts. These constitute, in our opinion, just a start.

We wish to share this, should there be anyone interested in the same or related topics. We

hope that the reader will join us, even if only partially, in the satisfaction of seeing exposed a

comprehensive, but simple and coherent, family of algebraic structures for fuzzy deduction and

induction. It is our further wish that these ideas beget new ones in the reader’s mind since,

as we try to illustrate in closing, we believe that there is a high potential for further work and

applications.

We also took up the challenge of making this work destined to a wide audience, yet be self-

contained. All such notions that we use and/or build upon are recalled, the needed background

and vocabulary, summed-up in an appendix, where we cover all essential notions needed to un-

derstand the rest of this book. In a second appendix, we also elaborate a few detailed examples.

Although this work may first appear as just one more theoretical niche for idle mathematicians,

it has in fact a universal pragmatic purpose. A much longer but more accurate title should have
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perhaps been worded as, “ Lattice-Theoretic Operations for Fuzzy Inference by Deduction and

Induction over Similar Data and Knowledge Structures.” Indeed, it leads to a universal model

for efficiently implementing a powerful fuzzy reasoning algebra over approximate subsumption-

ordered object and concept structures.

Acknowledgments

Each author is indebted to the other for being foolish enough to discuss the issues in sufficient

detail as to be formally convincing. It became all the more intriguing when we realized that this
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Version of: January 8, 2019

1Like trying to parse, let alone make sense out of, this very sentence!
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Generalities

Authors’ comment: N.B.: Please note that several parts of this document are in a state

of draft which is of course not to be distributed. The parts that have been published are

indicated and duly referenced. The parts still in a draft state are essentially sets of notes

and are meant to evolve into finished form in the near future. Hence, much of their current

contents is likely to be modified, or could be synthesized more succintly, or may diseappear

altogether in a later update. Such parts are incomplete and/or possibly inconsistent in their

current form. New parts may appear later.

Our expected readership is assumed to be at ease with, or at least not averse to, advanced

senior-level or graduate-level Symbolic Logic and Algebra;1 more specifically, basic Lattice The-

ory.2 Although not required, familiarity with some software specification and/or programming

languages should be a plus. In particular, one should be comfortable with the syntax, data struc-

tures, and operations of Logic Programming (e.g., Prolog).3 Also, one should not mind our

making use of formal notation as we find it helpful in conveying accurately what we mean. How-

ever, we strive to keep this notation simple and intuitive, and also “easy to program.” Indeed, our

leit motiv is deriving implementable methods from declarative specifications.

What follows in this introduction explains our motivation, overviews the ideas we discuss,

and gives a snapshot of the rest of the document’s organization.

1.1 Motivation

In this work, we do not mean to deal with fuzzy concepts or fuzzy properties thereof. Such would

require to encode existing knowledge and data bases to be populated with fuzzy entities. This

would not only be a formidable task to undertake but also an unrealistic assumption. Rather,

we wish to take the world of knowledge and data as it exists with possibly some additional

information relating various concept or data constructor symbols. This information consists in a

fuzzy measure of approximation among the meaning of symbols. For example, in a knowledge

1https://www.encyclopediaofmath.org/index.php/Algebra of logic
2https://en.wikipedia.org/wiki/Lattice (order)
3https://en.wikipedia.org/wiki/Prolog

https://www.encyclopediaofmath.org/index.php/Algebra_of_logic
https://en.wikipedia.org/wiki/Lattice_(order)
https://en.wikipedia.org/wiki/Prolog
https://www.encyclopediaofmath.org/index.php/Algebra_of_logic
https://en.wikipedia.org/wiki/Lattice_(order)
https://en.wikipedia.org/wiki/Prolog
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base dealing with people, an approximate pattern for fuzzy pattern information retrieval could

tolerate considering that the symbols “person” and “individual” denote the same concepts with a

.9 approximation degree.4 As well, relating some attributes of so similar concepts could identify,

at a given approximation degree, which attributes of a concept correspond to what attributes of a

similar concept.

Authors’ comment:

We need some general comparative discussion about structurally vs. numerically assessed

approximation—viz., First-Order Term (FOT ) or Order-Sorted Feature (OSF) structure vs.

Fuzzy Set (FS)—lattice-theoretic calculi, and why it would be interesting to combine both.

[To be completed. . . ]

Other points to discuss/elaborate:

• Use fuzzy OSF generalization to aid, for example, in Machine Learning as a precious

initial focusing step prior to exploiting number-analytical techniques such as Bayesian

Nets or SVMs [111].

• While Propositional Logic (PL) is a Boolean lattice, Fuzzy Propositional Logic (FL)

is a Brouwer lattice (also referred to as a Heyting algebra) [93].5

OSF Logic is also a lattice algebra: it has an infimum operation (OSF unification)

and a supremum operation (OSF generalization). However, it is not a Boolean lattice.

It is not even distributive [3], [5]. Seeing an OSF term as a logical constraint, OSF
unification corresponds to Boolean conjunction, but OSF generalization is more ap-

proximate than Boolean disjunction. This is true as well for the lattice of first-order

terms ordered by subsumption,6 as was first shown by Reynolds [104] and, simulta-

neously and independently, by Plotkin [101]. The lattice of ψ-terms (i.e., OSF terms

in normal form) can be extended with a disjunction operation. So-extended ψ-terms,

called ǫ-terms in [3] and [5], form a distributive lattice. It is not Boolean as it does not

have complements. Further extending ǫ-terms with a restricted (constructive) form of

complementation can provide a structure of Brouwer lattice.7

• cite relevant references and give BibTEX format and with a public pdf link (see to enrich

existing file main.bib — see BibTEX templates in bibtex-templates.bib).

N.B.: Not all current citations in this file are to be used, nor appropriate. They will be

eventually reviewed and cleaned.

• potential applications (approximate information retrieval, ...)

1.2 Objective

We seek to explore the “fuzzification” of operations on FOT s and OSF constraints as used

in Logic Programming (e.g., [50, 83], and [15]). We proceed by conjugating the lattice-theoretic

4Degree 0 meaning distinct; degree 1.0 meaning identical.
5See Appendix Section A.3.1.
6That is, by FOT matching modulo variable renaming.
7See [5], Section 6.1, Page 336: “Negative information.”
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properties andFOT s andOSF -constraint graph algebras ordered by structure subsumption with

a fuzzy interpretation of equality. We start with the Reynolds-Plotkin original characterization

of first-order algebraic term subsumption as a lattice ordering, further extended into an OSF
constraint subsumption lattice, and further enhanced with fuzzy lattice operations.

We approach this study from the perspective of information approximation. In this context, we

focus essentially on fuzzifying lattice-theoretic operations onFOT s andOSF constraints. These

formal (strict) structures and the fuzzified lattice operations thereon may then be used in, e.g.,

approximate Data and Knowledge representation and processing. As it has been demonstrated

in all areas they have been applied to, Fuzzy Logic and Algebra offer greater flexibility and

expressivity for performing approximate deduction (inference) and induction (abstraction). Fuzzy

inference and abstraction operations over FOT s and OSF constraints are therefore bound to

offer an appreciated improvement of “smarts” in approximate pattern-based retrieval, mining, and

learning. In addition, these fuzzy operations are effective, efficient, and conservative extensions

of their crisp versions.

We shall always insist on formulating formal lattice-theoretic operations following declara-

tive, as opposed to procedural, specifications in the form of syntax-driven transformational rules

which can be applied in any order. Besides greatly simplifying proving their correctness by struc-

tural induction, this eliminates irrelevant control issues and side-effectable environments which

typically clutter procedural specifications.

We also review some literature we felt relevant to our pursuit (even if only as potential top-

ics for further research) dealing with related formal notions from general correspondances be-

tween arguments (positional or keyword) attributed structures based on syntactic terms, graph

data structures, finite-state automata, and their fuzzification. We also provide a few examples of

how these structures may be put to use for approximate Knowledge Representation as they offer

a more flexible means to perform fuzzy deduction and induction over abstract attributed objects

and concepts represented as order-sorted feature constraints.

1.3 Organization of contents

The rest of this document is organized as follows.

Chapter 2 focuses on first-order terms and fuzzifying their lattice operations. Section 2.1

covers the necessary background on FOT s and Section 2.2 on FOT substitutions. Section 2.3

overviews background on the lattice of first-order terms, and offers an original declarative ap-

proach to FOT generalization that will later ease for us the task of fuzzifying this operation.

Section 2.4 recalls the rules forFOT unification, while Section 2.5 develops an original approach

for declarative FOT generalization. In Section 2.6, we proceed to fuzzify the Reynolds-Plotkin

FOT subsumption lattice. We start with a specific formal fuzzification of FOT unification due

to Maria Sessa. We then show how to make it more expressive by extending it to tolerate arity

and/or argument-order mismatch in addition to just similar functors, and proceed to define their

respective dual fuzzy generalization operations.8 Finally, Section 2.7 recapitulates the contents

of this chapter.

8Parts of this section appeared in [16]; see presentation slides in [17].
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Chapter 3 focuses on order-sorted feature constraints and fuzzifying their lattice operations.

Section 3.1 presents basic vocabulary and properties of order-sorted feature terms describing data

and knowledge structures, and exposes theOSF term lattice operations. Section 3.2 pursues with

the fuzzification of the lattice operations on OSF terms.

Chapter 4 puts this work in context. We review extant work that has some potential relation to

the work presented here. Section 4.1 looks at other fuzzy unification work. Section 4.2 overviews

some related work: Section 4.2.1 looks at similarity measures among order-sorted feature graphs,

Section 4.2.2 discusses potential ties of our work with other topics, while Section 4.2.3 men-

tions even more general possible connections. Section 4.3 looks at implementations. Section 4.4

discusses pragmatic upshots illustrating some of these principles as proof-of-concept software

realizations. It also goes into some details regarding the implementation of a fuzzy partial order’s

lattice operations. Section 4.5 speculates about potential applications. Section 4.6 is a proposal

for a convincing use case in the area of intelligent information retrieval.

Chapter 5 concludes with some comments on the usefulness and future evolution of this work:

Section 5.1 recapitulates, Section 5.2 indicates further work.

We have also adjoined a substantial appendix to (1) recall quickly some background material

defining basic notions useful to understand more easily the notions exposed in this document, and

(2) detail examples for some of this material.

Copyright c© 2019 by the Authors All Rights Reserved
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First-Order Terms

The first-order term (FOT ) was introduced as a data structure in software programming by the

Prolog language.1 The FOT is Prolog’s universal data structure in exactly the same way as the

S-expression is that of LISP.2 In this chapter, we formalize the FOT data structure as it is used

in Logic Programming, then we expose in this formal setting its lattice-theoretic characterization

before studying fuzzy extensions thereof.3

2.1 First-Order Term

Using formal algebra notation, we write TΣ,V for the set of FOT s on an operator signature

Σ
def
=
⊎

n≥0Σn where Σn is a set of n-ary operator symbols.4 The set V is a countably infinite set

of variables. Also following Prolog’s tradition, we shall designate an element f in Σ as a functor,

with arity(f) denoting its number of arguments.5 This set TΣ,V can then be defined inductively

as:

TΣ,V
def
= V ∪ { f(t1, . . . , tn) | f ∈ Σn, n ≥ 0, and ti ∈ TΣ,V , 0 ≤ i ≤ n }.

Technically, an additional condition of well-foundedness requires that Σ0 6= ∅. We write c instead

of c() for a constant c ∈ Σ0. Also, when the set Σ of functor symbols and the set V of variables

are implicit from the context, we simply write T instead of TΣ,V .

The set var(t) of variables occurring in a FOT t ∈ T is defined as:6

var(t)
def
=

{

{X } if t = X ∈ V
⋃n

i=1 var(ti) if t = f(t1, . . . , tn).

1https://en.wikipedia.org/wiki/Prolog
2https://en.wikipedia.org/wiki/Lisp (programming language)
3Parts of this chapter have appeared in [16]. For presentation slides, see [17].
4We shall use the notation “

def
= ” to mean “is defined as.”

5When arity(f) = n, this is sometimes denoted by writing f/n.
6We shall use Prolog’s convention of writing variables with capitalized symbols.

https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Lisp_(programming_language)
http://www.hassan-ait-kaci.net/pdf/fuzfotlats-lopstr2017.pdf
http://www.hassan-ait-kaci.net/pdf/fuzfotlats-lopstr2017-slides.pdf
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A term t such that var(t) = ∅ is called a ground term. We call T∅ the subset of T of ground

terms. The depth of a FOT t is a value in N defined inductively as:

depth(t)
def
=

{

0 if t ∈ V ∪ Σ0;

1 + maxni=1 depth(ti) if t = f(t1, . . . , tn) with n > 0.

The var and depth notation is extended to a set of terms T ⊂ T as var(T )
def
=
⋃

t∈T var(t) and

depth(T )
def
= maxt∈T depth(t).

2.2 Substitution

In order to express the notion of instance of a term, the concept of variable substitution σ is

formalized as a functional mapping σ : V → T that is the identity function everywhere on V

except on a finite set of n variables, n ∈ N, written dom(σ)
def
= {Xk | Xk 6= σ(Xk) }

k=n
k=1 , and

called the domain of σ. The range of a substitution σ is the set of terms in T defined as ran(σ)
def
= { t ∈ T | ∃X ∈ dom(σ) s.t. σ(X) = t }.

Such a mapping σ from V to T is then extended homomorphically to a mapping σ̄ from T to

T as follows:

σ̄(t)
def
=

{

σ(X) if t = X ∈ V

f(σ̄(t1), . . . , σ̄(tn)) if t = f(t1, . . . , tn)
(2.1)

which, because it coincides with σ on V , will be written simply σ rather than σ̄ even when applied

to non-variable terms. In a similar fashion, substitutions may be applied to equations, as well as

to sets of terms or equations in the obvious manner.

We shall denote as SUBST
T

the set of functions in V → T that are substitutions. Because it

is non-identical only on a finite number of variables, we can express a substitution σ in SUBST
T

as a finite set of “term/variable” pairs of the form { σ(Xk)/Xk | Xk 6= σ(Xk), k = 1, . . . , n }
associating each of a finite set of n variables with a term not equal to it. When the number n of

variables is equal to 0, this set is empty, giving the identity on V, which we shall call the empty

substitution. Each pair t/X in a substitution’s set notation is read “term t is substituted for all

occurrences of variable X .”

By tradition, rather than the prefix parenthesized notation usually used for functional applica-

tion, substitution application to a term is written in postfix notation; viz., tσ instead of σ(t). Thus,

as defined by Expression (2.1), a substitution σ is a function in T → T mapping a term t into

another one noted tσ, called its (σ-)instance, obtained after replacing all occurrences in t (if any)

of variables in dom(σ), the domain of the substitution, by the term associated with this variable

by σ. If var(ran(σ)) = ∅, σ is called a ground substitution, and for any term t in T , tσ ∈ T′ and

is called a ground instance of t.

We define the composition of two substitutions σ ∈ SUBST
T

and θ ∈ SUBST
T

seen as finite

sets of non-identical term/variable pairs as the set of pairs written as σθ and defined in terms of σ

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 7 Version of January 8, 2019

and θ as:

σθ
def
=

(

{ tθ/X | t/X ∈ σ } \ {X/X | X ∈ dom(σ) }
)

∪
(

θ \ { u/Y | Y ∈ dom(σ) }
)

.

(2.2)

For terminology and proofs of formal properties of FOT substitutions as defined above and

used in the remainder of this chapter, please refer to A.4.

2.3 FOT Subsumption Lattice

The lattice-theoretic properties of FOT s as data structures were initially and independently stud-

ied by Reynolds (in [104]) and Plotkin (in [100] and [101]). They both noted that the set T is

preordered by term subsumption (denoted as ‘�’); viz., t � t′ (and we say: “t′ subsumes t”)

iff there exists a variable substitution σ ∈ SUBST
T

such that t′σ = t. Two FOT s t and t′ are

considered “equal up to variable renaming” (denoted as t ≃ t′) whenever both t � t′ and t′ � t.
Then, the quotient set of first-order terms modulo variable renaming augmented with a bottom

element T/≃ ∪ {⊥T } has a lattice structure for subsumption. It has a least element ⊥T that cor-

responds to no term in T , since there exists no term that is an instance of all terms. It has a top

element which is the set of all variables V , since V is the class of any variable modulo renaming.

Unification corresponds to the greatest lower bound (glb) operation. This is the case also

for failure of unification as in this case the glb operation results in ⊥T . Given two FOT s t1
and t2, unifying them is seeking to compute a most general substitution of their variables σ
such that: t1σ = t2σ.7 Such a substitution, when one exists, is not unique since any more

general substitution verifies the equation; indeed, then t1σθ = t2σθ for any θ ∈ SUBST
T

. We

want only the most general such substitution. That is, for any other substitution θ ∈ SUBST
T

such that t1θ = t2θ, then necessarily θ � σ. This is why it is called the Most General Unifier

(mgu) of t1 and t2 [105]. If no such substitution exists, unification fails and returns ⊥T as the

glb of t1 and t2, and no substitution. Formally, this is equivalent to instantiating the two terms

with a bottom substitution ⊥SUBST
T

that is added to SUBST
T

. This new substitution is a zero

element in the quotient monoid of substitutions with composition. Namely, for all σ ∈ SUBST
T

,

σ⊥SUBST
T
= ⊥SUBST

T
σ = ⊥SUBST

T
; which implies that ⊥SUBST

T
� σ for all σ ∈ SUBST

T
. From

this, it follows necessarily that, for all t ∈ T , t⊥SUBST
T

= ⊥T . Thus, when t1 and t2 are not

unifiable, mgu(t1, t2) = ⊥SUBST
T

.

The dual operation, generalization of two terms, yields a term that is their least upper bound

(lub) for subsumption. That is, it finds the most specific term t, and two most general substitutions

σ1 and σ2 such that ti = tσi for i = 1, 2. Importantly, unlike unification, generalization cannot

fail. This is because two term structures having different functors, or two unequal terms one

of which is a variable, are always generalizable into a new variable (which may be construed as

“anything”). Also, generalization yields two substitutions rather than just one like for unification.

Ths is because a variable in the generalizing term tmay correspond to two different instantiations

7See A.4, First-Order Term Substitutions.
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in t1 and t2. Unification, on the other hand, seeks the same instantiation for all the variables in t1
and t2 to compute their most general common instance.

This can be summarized as the lattice diagram shown in Figure 2.1. In this diagram, given a

pair of terms 〈t1, t2〉, the pair of substitutions 〈σ1, σ2〉 are their respective most general general-

izers, and the substitution σ is the pair’s most general unifier (mgu).

t = lub(t1, t2)

t1 = tσ1 t2 = tσ2

t =

{

t1σ = t2σ
tσ1σ = tσ2σ

}

= glb(t1, t2)

σ1 σ2

σ σ

Figure 2.1: Subsumption lattice operations

Example 2.1 FOT lattice operations — Consider the terms t1 and t2 defined as:

t1
def
= f(a, g(X1, b), Y1, g(a, Y1)),

t2
def
= f(X2, Y2, g(X2, g(X2, b)), g(X2, g(a, Z2))).

Their most general unifier mgu(t1, t2) is the substitution σ given by:

σ = { a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1 , g(a, b)/Z2 }

and so their greatest lower bound glb(t1, t2) = t is given by:

t = t1σ = t2σ = f(a, g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).

Dually, their least upper bound lub(t1, t2) = t is given by t = f(X,Y,Z, g(U, V )), with their most

general generalizers 〈σ1, σ2〉 such that:

t1 = tσ1 with σ1 = { a/X, g(X1, b)/Y, Y1/Z, a/U, Y1/V }

t2 = tσ2 with σ2 = {X2/X, Y2/Y, g(X2, g(X2, b))/Z,X2/U, g(a, Z2)/V }.

Next, we formalize these lattice operations on FOT s by specifiying them as declarative con-

straint normalization.

Copyright c© 2019 by the Authors All Rights Reserved
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t1
?
= t2

t1σ = t2σ

σ σ

Figure 2.2: FOT unification as a constraint

TERM DECOMPOSITION:

E ∪ { f(s1, . . . , sn)
.
= f(t1, . . . , tn) }

E ∪ { s1
.
= t1, . . . , sn

.
= tn }

[n ≥ 0]

VARIABLE ERASURE:

E ∪ {X
.
= X }

E

VARIABLE ELIMINATION:

E ∪ {X
.
= t }

E[X← t] ∪ {X
.
= t }

[

X 6∈ var(t)
X occurs in E

]

EQUATION ORIENTATION:

E ∪ { t
.
= X }

E ∪ {X
.
= t }

[t 6∈ V ]

Figure 2.3: Herbrand-Martelli-Montanari unification rules

2.4 FOT Unification Rules

Figure 2.2 illustrates FOT unification as a commutative diagram constraint. Solving such a con-

straint is done by a system of equation-normalization rules that we shall call Herbrand-Martelli-

Montanari [68], [92]. These rules are given in Figure 2.3. Each rule can be proven correct as

a solution-preserving transformation of a set of equations. In Rule VARIABLE ELIMINATION,

the notation E[X← t] denotes the set of equations E in which all occurrences of variable X have

been replaced with the term t.
Thus, we can use these rules to unify two FOT s t1 and t2, starting with the singleton set of

equations E
def
= { t1

.
= t2 }.

8 Then, we transform this set of equations using any applicable rule

in any order until none applies. This always terminates into a finite set of equations E ′. If all the

equations in E ′ are of the form X
.
= t with X occurring nowhere else in E ′, then this is a most

general unifying substitution (up to consistent variable renaming) σ
def
= { t/X | X

.
= t ∈ E ′ }

solving the original equation (i.e., t1σ = t2σ); otherwise, there is no solution.

In the rules of Figure 2.3, Rule VARIABLE ELIMINATION has the side conditionX 6∈ var(t)
to prevent cyclic terms (such as, e.g., X = f(X)) whose presence indicates no FOT solutions.

8In such equations, we use the notation t1
.
= t2 not to confuse it with the equality symbol “=” (at the meta-level).

Copyright c© 2019 by the Authors All Rights Reserved
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This condition could be omitted if wished, thus extending the set of FOT s and solutions of

equations to rational FOT s—also called “infinite trees” (see, e.g., [122], [78], [51]).

Example 2.2 FOT unification — Consider the equation set { t1
.
= t2 } for the terms t1 and t2 of

Example 2.1:

{ f(a, g(X1, b), Y1, g(a, Y1))
.
= f(X2, Y2, g(X2, g(X2, b)), g(X2 , g(a, Z2))) }

and let us apply the rules of Figure 2.3:

• Rule TERM DECOMPOSITION:

{ a
.
= X2, g(X1, b)

.
= Y2, Y1

.
= g(X2, g(X2, b)), g(a, Y1)

.
= g(X2, g(a, Z2)) } ;

• Rule EQUATION ORIENTATION to a
.
= X2:

{X2
.
= a, g(X1, b)

.
= Y2, Y1

.
= g(X2, g(X2, b)), g(a, Y1)

.
= g(X2, g(a, Z2)) } ;

• Rule VARIABLE ELIMINATION to X2
.
= a:

{X2
.
= a, g(X1, b)

.
= Y2, Y1

.
= g(a, g(a, b)), g(a, Y1)

.
= g(a, g(a, Z2)) } ;

• Rule EQUATION ORIENTATION to g(X1, b)
.
= Y2:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, Y1)

.
= g(a, g(a, Z2)) } ;

• Rule VARIABLE ELIMINATION to Y1
.
= g(a, g(a, b)):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, g(a, g(a, b)))

.
= g(a, g(a, Z2)) } ;

• Rule TERM DECOMPOSITION to g(a, g(a, g(a, b)))
.
= g(a, g(a, Z2)):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), a

.
= a, g(a, g(a, b))

.
= g(a, Z2) } ;

• Rule TERM DECOMPOSITION to a
.
= a:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, g(a, b))

.
= g(a, Z2) } ;

• Rule TERM DECOMPOSITION to g(a, g(a, b))
.
= g(a, Z2):

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), a

.
= a, g(a, b)

.
= Z2 } ;

• Rule TERM DECOMPOSITION to a
.
= a:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), g(a, b)

.
= Z2 } ;

• Rule EQUATION ORIENTATION to g(a, b)
.
= Z2:

{X2
.
= a, Y2

.
= g(X1, b), Y1

.
= g(a, g(a, b)), Z2

.
= g(a, b) } .

Copyright c© 2019 by the Authors All Rights Reserved
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This last equation set is in normal form defining the substitution

σ = { a/X2, g(X1, b)/Y2, g(a, g(a, b))/Y1 , g(a, b)/Z2 }

. So the greatest lower bound t
def
= glb(t1, t2) of:

t1
def
= f(a, g(X1, b), Y1, g(a, Y1))

and:

t2
def
= f(X2, Y2, g(X2, g(X2, b)), g(X2 , g(a, Z2)))

is given by:

t = t1σ = t2σ = f(a, g(X1, b), g(a, g(a, b)), g(a, g(a, g(a, b)))).

2.5 FOT Generalization Rules

Next, we present a set of constraint normalization rules for FOT generalization which are equiv-

alent to the procedural method of Reynolds and Plotkin. The advantage of specifying this oper-

ation in this manner rather than procedurally as done originally by Reynolds and Plotkin is that

each rule or axiom relates a pair of prior substitutions to a pair of posterior substitutions based

only on local syntactic-pattern properties of the terms to generalize, and this without resorting to

side-effects on global structures. In this way, the terms and substitutions involved are derived as

solutions of logical syntactic constraints. In addition, correctness of the so-specified operation is

made much easier to establish since we only need to prove each rule’s correctness independently

of that of the others. Finally, the rules also provide an effective means for the derivation of an op-

erational semantics for the so-specified operation by constraint solving, without need for control

specification as any applicable rule may be invoked in any order.9

DEFINITION 2.1 (GENERALIZATION JUDGMENT) A generalization judgment is an expression

of the form:

(

σ1
σ2

)

⊢

(

t1
t2

)

t

(

θ1
θ2

)

(2.3)

where σi ∈ SUBST
T

, θi ∈ SUBST
T

, ti ∈ T (i = 1, 2), and t ∈ T .

Informally, it reads: “given two prior substitutions σ1 and σ2, the term t is the least general-

ization of terms t1σ1 and t2σ2 with posterior substitutions θ1 and θ2.” How all the constituents

of such a generalization judgment must be related to constitute what we shall consider a valid

judgment, is defined next.

9Such as the Herbrand-Martelli-Montanari rules w.r.t. to Robinson’s procedural unification algorithm.
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DEFINITION 2.2 (GENERALIZATION JUDGMENT VALIDITY) AFOT generalization judgment

such as (2.3) is said to be valid whenever, for i = 1, 2:

1. tiσi = tθi; and,

2. ∃ δi ∈ SUBST
T

s.t. ti = tδi and θi = δiσi (i.e., ti � t and θi � σi).

Figure 2.4 illustrates the validity of a FOT generalization judgment as a commutative dia-

gram constraint.

t

t1 t2

t1σ1 t2σ2

= tδ1 tδ2 =

(

σ1
σ2

)

⊢

(

t1
t2

)

t

(

θ1
θ2

)

= tθ1 tθ2 =

δ1 δ2

σ1 σ2

δ 1
σ 1

=
θ 1

θ
2
=
δ
2 σ

2

Figure 2.4: FOT generalization judgment validity as a constraint

DEFINITION 2.3 (TRIVIAL FOT GENERALIZATION JUDGMENT) TheFOT generalization jud-

gment:

true
def
=

(

∅
∅

)

⊢

(

t
t

)

t

(

∅
∅

)

(2.4)

where t is an arbitrary term in T is called a “trivial FOT generalization judgment.”

LEMMA 2.1 (TRIVIAL FOT GENERALIZATION JUDGMENT VALIDITY) The trivial FOT
generalization judgment true is always valid.

PROOF This follows from Definition 2.2 since in this particular case the equations of the first

condition of Definition (2.2) becomes t = t, which is trivially true for any term t ∈ T . �

Contrary to unification normalization rules which are expressed as conditional rewrite rules

whereby a prior form (the “numerator”) is related to a posterior form (the “denominator”), these

normalization rules are more naturally rendered as (conditional) Horn clauses of judgments (i.e.,
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Prolog clauses of judgments). This is as convenient as rewrite rules since a Prolog-like operational

semantics can then readily provide an effective interpretation.10 Thus, a generalization rule is of

the form:

[φ]
J1 . . . Jn

J
(2.5)

where φ is an optional side meta-condition, and J, J1, . . . , Jn are judgments, and it reads, “when-

ever the side condition φ holds, if all the n antecedent judgments J1, . . . , Jn are valid, then the

consequent judgment J is also valid.” Such a generalization rule without a specified antecedent

(a “numerator”) is called a “generalization axiom.” Such an axiom is said to be valid iff its con-

sequent (the “denominator”) is valid whenever its optional side condition holds. It is equivalent

to a rule where the only antecedent is the trivial generalization judgment true.

DEFINITION 2.4 (GENERALIZATION RULE CORRECTNESS) A generalization rule such as Rule

(2.5) is correct iff Jk is a valid judgment for all k = 1, . . . , n implies that J is a valid judgment,

whenever the side condition φ holds.

Given t1 and t2 two FOT s, in order to find the most specific term t and most general substitu-

tions σi, i = 1, 2, such that tσi = ti, i = 1, 2, one needs to establish the generalization judgment:

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1
σ2

)

. (2.6)

In other words, this expresses the upper half of Figure 2.1 whereby t = lub(t1, t2), with most

general substitutions σ1 and σ2. We give a complete set of normalization axioms and rule for

generalization for all syntactic patterns in Figure 2.5.

Rule “EQUAL FUNCTORS” specifies a sequence of judgments constrained as a sequence.

It does so exactly as a so-called “Definite Clause Grammar” (or DCG) rule does with a Prolog

clause.11 This rule uses an “unapply” operation (‘↑’) on a pair of terms (t1, t2) given a pair

of substitutions (σ1, σ2). It may be conceived as (and in fact is) the result of simultaneously

“unapplying” σi from ti into a common variable X only if such X is bound to ti by σi, for

i = 1, 2. If there is no such a variable, it is the identity. This operation avoids the introduction of

10This operational semantics is also efficient because it does not need backtracking as long as the complete set of

conditions of a ruleset covers all but mutually exclusive syntactic patterns.
11A DCG rule (see https://www.metalevel.at/prolog/dcg) is a Horn rule expressing constraints on

a sequence of words constituting a sentence. The judgment sequencing in the rules we define uses exactly the same

kind of constraint: the posterior pair of substitutions of a judgment must match the prior pair of substitutions of the

judgment following it. However, contrary to a DCG rule that constrains an ordered sequence of constituents, the

order of constraints on the antecedent judgments on the arguments is arbitrary. We choose the same order as that of

the arguments as it is the most natural, but it could be any of its permutations as long as the sequence’s posterior/prior

constraints are consistent with the chosen argument ordering.
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EQUAL VARIABLES

(

σ1
σ2

)

⊢

(

X
X

)

X

(

σ1
σ2

)

VARIABLE-TERM

[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]
(

σ1
σ2

)

⊢

(

t1
t2

)

X

(

σ1{ t1/X }
σ2{ t2/X }

)

UNEQUAL FUNCTORS

[m ≥ 0, n ≥ 0; m 6= n or f 6= g; X is new]
(

σ1
σ2

)

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{ f(s1, . . . , sm)/X }
σ2{ g(t1, . . . , tn)/X }

)

EQUAL FUNCTORS

[n ≥ 0]

(

σ1
σ2

)

⊢

(

s1
t1

)

↑

(

σ1
σ2

)

u1

(

σ1
1

σ1
2

)

. . .

(

σn−1
1

σn−1
2

)

⊢

(

sn
tn

)

↑

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

(

σ1
σ2

)

⊢

(

f(s1, . . . , sn)
f(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

Figure 2.5: Generalization axioms and rule

a new variable when generalizing two already generalized terms. Formally, this is defined as:

(

t1
t2

)

↑

(

σ1
σ2

)

def
=























(

X
X

)

if ∃X ∈ V, ti = Xσi, for i = 1, 2;

(

t1
t2

)

otherwise.

(2.7)

Note also that Rule “EQUAL FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes the

following axiom for any constant c and any two substitutions σi, i = 1, 2:

(

σ1
σ2

)

⊢

(

c
c

)

c

(

σ1
σ2

)

. (2.8)

Referring to the axioms (seen as rules with no antecedent) and the rule of Figure 2.5, we first

establish the following fact.

LEMMA 2.2 In Rule EQUAL FUNCTORS of Figure 2.5, taking σ0
i

def
= σi, for i = 1, 2, the

substitutions σ0
i , . . . , σ

n
i are such that, for all k, 1 ≤ k ≤ n, σk

i � σk−1
i , for i = 1, 2.

PROOF We proceed by induction on the depth d of the terms; i.e., we consider only terms of depth

less than or equal to d.
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1. d = 0: This limits terms to constants and variables. The inequality between prior and posterior

substitutions is verified for the three first axioms: the posterior substitutions are all either

equal to the corresponding prior substitutions or of the form θ = σ{t/X} where X is a new

variable and σ is the corresponding prior substitution; that is, θ � σ. As well, when limited to

terms of 0 depth, Rule EQUAL FUNCTORS becomes the single judgment Axiom (2.8), which

preserves the substitutions.

2. d > 0: Let us assume that this is true for all terms of depth strictly less than d. We now

consider two terms at least one of which is of depth d. For Axiom EQUAL VARIABLES, the

same argument given above for the case d = 0 justifies concluding that θ � σ, since then

θ = σ . For Axiom VARIABLE-TERM and Axiom UNEQUAL FUNCTORS, this true for

terms t1 and t2 of any depth since the posterior substitutions are both less general then the

corresponding prior substitutions. As for Rule EQUAL FUNCTORS, there are two possible

cases for the generalized terms in its consequent (the “denominator”):

(a) n = 0: then, the conclusion follows true by Axiom (2.8).

(b) n ≥ 0: since the unapply operation (2.7) yields either a pair of terms having the same

depth as the corresponding terms it is applied to, or 0 (because it can only be a new

variable), we can say that all the terms of unapplied pairs of arguments in the judgments

of the rule’s antecedent (the “numerator”) are of depth at most d − 1. Therefore, all

the terms in the n antecedent judgments verify our inductive hypothesis; namely: σki �
σk−1
i , for all k = 1, . . . , n. Then, by transitivity of the “more general” ordering on

substitutions, the conclusion follows.

Hence, this establishes that, for both i = 1, 2, σki is monotonically refined from more general to less

as k increases from 1 to n. �

From this lemma, the following corollary follows by transitivity of the � preorder on substi-

tutions.

COROLLARY 2.1 In Rule EQUAL FUNCTORS, the substitutions σk
i are such that, for all k,

1 ≤ k ≤ n, σn
i � σn−1

i � . . . � σ1
i � σ0

i , for i = 1, 2.

It is also verified in the proof of the following theorem.

THEOREM 2.1 The axioms and the rule of Figure 2.5 are correct.

PROOF We must show that they verify the conditions of Definition 2.4. For each of the three axioms

of Figure 2.5 this means that they must be always valid as judgments, verifying the conditions of

Definition 2.2, which are:

– Condition 1: tiσi = tθi,

– Condition 2: ti � t and θi � σi

for i = 1, 2, for a generalization judgment such as (2.3) in Definition 2.1. These conditions for the

axioms and the rule of Figure 2.5 translate as the following.

Condition 1.

– EQUAL VARIABLES: it amounts to the two identities Xσi = Xσi, i = 1, 2;
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– VARIABLE-TERM: it amounts to the two identities tiσi = tiσi, i = 1, 2;

– UNEQUAL FUNCTORS: it amounts to the two equations:

f(s1, . . . , sn)σ1 = Xσ1{ f(s1, . . . , sn)/X },
g(t1, . . . , tn)σ2 = Xσ2{ g(t1, . . . , tn)/X },

which, because X is a new variable that does not occurs in either σ1 or σ2, can be simplified

to the identities:

f(s1, . . . , sn) = f(s1, . . . , sn),
g(t1, . . . , tn) = g(t1, . . . , tn).

Condition 2. All threes cases are tautologies:

– EQUAL VARIABLES: X � X and σi � σi, i = 1, 2;

– VARIABLE-TERM: ti � X and σi{ti/X} � σi, i = 1, 2;

– UNEQUAL FUNCTORS:

f(s1, . . . , sn) � X and σ1{ f(s1, . . . , sn)/X } � σ1,
g(s1, . . . , sn) � X and σ2{ g(s1, . . . , sn)/X } � σ2.

As for Rule EQUAL FUNCTORS, as required by Definition 2.4, we must show that if all the judg-

ments in the numerator are valid, then the judgment in the denominator must be valid too. Let us

proceed by induction on the argument-position number k, for k = 1, . . . , n.

For n = 0, this rule becomes Axiom (2.8), a judgment that is trivially valid since the conditions of

Definition 2.2 become the identity c = c, the term inequality c � c, and the substitution inequalities

σi � σi, for i = 1, 2.

For n > 0, a fuzzy judgment in the rule’s antecedent, for each argument-position k = 1, . . . , n, is

of the form:

(

σk−1
1

σk−1
2

)

⊢

(

sk
tk

)

↑

(

σk−1
1

σk−1
2

)

uk

(

σk1
σk2

)

that is, the form given by Definition 2.1, whose formal validity conditions are given by Defini-

tion 2.2, which in the above case is equivalent to:

(

vk1
vk2

)

def
=

(

sk
tk

)

↑

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

⊢

(

vk1
vk2

)

uk

(

σk1
σk2

)

.

Let us now assume that all the judgments in the rule’s antecedent are valid. That is, for k = 1, . . . , n,

for i = 1, 2 (taking σ0i
def
= σi):

– Condition 1 of Definition 2.2 holds:

ukσ
k
i = vki σ

k−1
i ; (2.9)

– Condition 2 of Definition 2.2 holds:

vki � uk and σki � σ
k−1
i . (2.10)
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Condition 1. By Equation (2.7), this means that for all k = 1, . . . , n:

(

vk1
vk2

)

=























(

X
X

)

if sk = Xσk−1
1 and tk = Xσk−1

2 for some variableX;

(

sk
tk

)

otherwise.

In other words, for each k = 1, . . . , n, there are two cases:

1. sk = Xσk−1
1 and tk = Xσk−1

2 for some variable X; then, by Axiom EQUAL VARIABLES,

we must have uk = X, and σki = σk−1
i for i = 1, 2; and therefore Equations (2.9) entail:

skσ
k−1
1 = Xσk−1

1 σk−1
1 = Xσk−1

1 = Xσk1 = ukσ
k
1

tkσ
k−1
2 = Xσk−1

2 σk−1
2 = Xσk−1

2 = Xσk2 = ukσ
k
2 .

2. There is no such variable X; in which case, Equations (2.9) also become:

skσ
k−1
1 = ukσ

k
1

tkσ
k−1
2 = ukσ

k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the

axioms, for any argument position k, 1 ≤ k ≤ n, we have:

σki = σ0i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . . Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in the validity

of the judgment corresponding to some argument preceding position k. Therefore, for any argument

position k, 1 ≤ k ≤ n:

skσ
0
1 = skσ

1
1 = . . .= skσ

k−1
1

tkσ
0
2 = tkσ

1
2 = . . .= tkσ

k−1
2

as well as:

ukσ
k
1 =ukσ

k+1
1 = . . .=ukσ

n
1

ukσ
k
2 =ukσ

k+1
2 = . . .=ukσ

n
2

because σki affects only new variables introduced in some axioms verifying the validity of a subterm

of argument at position k; and because the same variable in uk is always instantiated by the same

term, and thus as well all at higher argument positions.

This means that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 = ukσ

n
1 ,

tkσ
0
2 = ukσ

n
2 .
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Therefore, for k = n:

f(s1, . . . , sn)σ
0
1 = f(u1, . . . , un)σ

n
1 ,

f(t1, . . . , tn)σ
0
2 = f(u1, . . . , un)σ

n
2 .

This proves Condition 1.

Condition 2. By transitivity of the ≤ ordering on approximation degrees and that of the � preorder

on SUBST
T

, both parts of Condition 2 of our induction hypothesis (2.10) implies that f(s1, . . . , sn) �
f(u1, . . . , un), f(t1, . . . , tn) � f(u1, . . . , un) and σi � σni , for i = 1, 2, which completes the

proof. �

In particular, with empty prior substitutions, we obtain the following corollary.

COROLLARY 2.2 (FOT GENERALIZATION) Whenever the judgment

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1
σ2

)

is valid, then tσi = ti, for i = 1, 2.

Example 2.3 FOT generalization — Consider the terms f(a, a, a) and f(b, c, c).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = f(a, a, a) and tσ2 = f(b, c, c); that

is, let us try to solve the following constraint problem:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

t

(

σ1
σ2

)

• By Rule EQUAL FUNCTORS, we must have t = f(u1, u2, u3) since:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

f(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

a
b

)

↑

(

∅
∅

)

; that is, of a and b; and by Rule UNEQUAL FUNC-

TORS:
(

∅
∅

)

⊢

(

a
b

)

X

(

{ a/X }
{ b/X }

)

therefore u1 = X;

– u2 is the generalization of

(

a
c

)

↑

(

{ a/X }
{ b/X }

)

; that is, of a and c; and by Rule UNEQUAL

FUNCTORS:
(

{ a/X }
{ b/X }

)

⊢

(

a
c

)

Y

(

{ a/X, a/Y }
{ b/X, c/Y }

)

so u2 = Y ;
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– u3 is the generalization of

(

a
c

)

↑

(

{ a/X, a/Y }
{ b/X, c/Y }

)

; that is, of Y and Y ; and by Rule EQUAL

VARIABLES:

(

{ a/X, a/Y }
{ b/X, c/Y }

)

⊢

(

Y
Y

)

Y

(

{ a/X, a/Y }
{ b/X, c/Y }

)

so u3 = Y ;

• therefore, this yields:

(

∅
∅

)

⊢

(

f(a, a, a)
f(b, c, c)

)

f(X,Y, Y )

(

{ a/X, a/Y }
{ b/X, c/Y }

)

that is t = f(X,Y, Y ) with σ1 = { a/X, a/Y } such that tσ1 = f(a, a, a), and σ2 = { b/X, c/Y }
such that tσ2 = f(b, c, c).

Example 2.4 Generalization of ground FOT s — Let us now consider the terms f(a, g(b, a), b))
and f(b, g(a, b), a));

• let us find term t and substitutions σ1 and σ2 s.t. tσ1 = f(a, g(b, a), b)) and tσ2 = f(b, g(a, b), a);
i.e., let us try to solve the following constraint problem:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

t

(

σ1
σ2

)

• By Rule EQUAL FUNCTORS, we must have t = f(u1, u2, u3) since:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

f(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

a
b

)

↑

(

∅
∅

)

; that is of a and b; and by Rule UNEQUAL FUNC-

TORS:

(

∅
∅

)

⊢

(

a
b

)

X

(

{ a/X }
{ b/X }

)

and therefore u1 = X;

– u2 = g(v1, v2) is the generalization of

(

g(b, a)
g(a, b)

)

↑

(

{ a/X }
{ b/X }

)

; that is, of g(b,X) and

g(a,X); and by Rule EQUAL FUNCTORS:

∗ v1 is the generalization of

(

b
a

)

↑

(

{ a/X }
{ b/X }

)

; that is, of b and a; and by Rule UNEQUAL

FUNCTORS:

(

{ a/X }
{ b/X }

)

⊢

(

b
a

)

Y

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so v1 = Y ;
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∗ v2 is the generalization of

(

a
b

)

↑

(

{ a/X, b/Y }
{ b/X, a/Y }

)

; that is, of X and X; and by Rule

EQUAL VARIABLES:

(

{ a/X, b/Y }
{ b/X, a/Y }

)

⊢

(

X
X

)

X

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so v2 = X;

therefore:

(

{ a/X }
{ b/X }

)

⊢

(

g(b,X)
g(a,X)

)

g(Y,X)

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so u2 = g(Y,X);

– u3 is the generalization of

(

b
a

)

↑

(

{ a/X, b/Y }
{ b/X, a/Y }

)

; that is, of Y and Y ; and by Rule EQUAL

VARIABLES:

(

{ a/X, b/Y }
{ b/X, a/Y }

)

⊢

(

Y
Y

)

Y

(

{ a/X, b/Y }
{ b/X, a/Y }

)

so u3 = Y ;

• therefore, this yields:

(

∅
∅

)

⊢

(

f(a, g(b, a), b)
f(b, g(a, b), a)

)

f(X, g(Y,X), Y )

(

{ a/X, b/Y }
{ b/X, a/Y }

)

that is t = f(X, g(Y,X), Y ) with σ1 = { a/X, b/Y } such that tσ1 = f(a, g(b, a), b), and

σ2 = { b/X, a/Y } such that tσ2 = f(b, g(a, b), a).

Example 2.5 Generalization of non-ground FOT s — Let us apply the FOT generalization ax-

ioms and rules of Figure 2.5 to the following FOTs:

t1
def
= h(f(a,X1), g(X1, b), f(Y1, Y1)), and t2

def
= h(X2,X2, g(c, d)).

• Let us find term t and substitutions σ1 and σ2 such that tσ1 = h(f(a,X1), g(X1, b), f(Y1, Y1)) and

tσ2 = h(X2,X2, g(c, d)); that is, let us try to solve the constraint problem:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

t

(

σ1
σ2

)

.

• By Rule EQUAL FUNCTORS, we must have t = h(u1, u2, u3) since:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

h(u1, u2, u3)

(

σ1
σ2

)

where:

– u1 is the generalization of

(

f(a,X1)
X2

)

↑

(

∅
∅

)

; that is of f(a,X1) and X2; and by Rule

VARIABLE-TERM:

(

∅
∅

)

⊢

(

f(a,X1)
X2

)

X

(

{ f(a,X1)/X }
{X2/X }

)

so u1 = X;
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– u2 is the generalization of

(

g(X1, b)
X2

)

↑

(

{ f(a,X1)/X }
{X2/X }

)

; that is, of g(X1, b) and X2; and

by Rule VARIABLE-TERM:

(

{ f(a,X1)/X }
{X2/X }

)

⊢

(

g(X1, b)
X2

)

Y

(

{ . . . , g(X1, b)/Y }
{ . . . ,X2/Y }

)

so u2 = Y ;

– u3 is the generalization of

(

f(Y1, Y1)
g(c, d)

)

↑

(

{ f(a,X1)/X, g(X1, b)/Y }
{X2/X,X2/Y }

)

; that is, of f(Y1, Y1)

and g(c, d); and by Rule UNEQUAL FUNCTORS:

(

{ f(a,X1)/X, g(X1, b)/Y }
{X2/X,X2/Y }

)

⊢

(

f(Y1, Y1)
g(c, d)

)

Z

(

{ . . . , f(Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)

and so u3 = Z;

• therefore, this yields:

(

∅
∅

)

⊢

(

h(f(a,X1), g(X1, b), f(Y1, Y1))
h(X2,X2, g(c, d))

)

h(X,Y,Z)

(

{ . . . , f(Y1, Y1)/Z }
{ . . . , g(c, d)/Z }

)

that is, t = h(X,Y,Z) with σ1 = { f(a,X1)/X, g(X1, b)/Y, f(Y1, Y1)/Z } s.t. tσ1 = h(f(a,
X1), g(X1, b), f(Y1, Y1)), and: σ2 = {X2/X, X2/Y, g(c, d)/Z } s.t. tσ2 = h(X2, X2, g(c, d)).

2.6 Fuzzy Lattice Operations on FOT s

For the formal Fuzzy Algebra notation and terminology that we use in the remainder of this work,

see A.3.

2.6.1 Fuzzy FOT unification

Sessa’s weak unification

A fuzzy unification operation on FOT s, dubbed “weak unification,” was proposed by Maria

Sessa in [117] which consists in normalizing fuzzy equations between conventional FOT s mod-

ulo a similarity relation ∼ over functor symbols [56]. This similarity relation is then homomor-

phically extended to one over all FOT s.

Example 2.6 Functor similarity matrix — Given a similarity (i.e., a fuzzy equivalence) relation

∼ on a finite signature Σ = ∪nΣn, as explained in [56], this information is represented as a matrix in

Σ × Σ → [0, 1]. For example, if the signature Σ is the union of Σ0 = { a, b, c, d }, Σ2 = { f, g },
Σ3 = {h }, and Σn = ∅ otherwise (n = 1 or n ≥ 4), and with a similarity that is the reflexive, symmetric,
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and transitive closure of the pairs a ∼0.7 b, c ∼0.6 d, and f ∼0.9 g. This corresponds to the similarity

matrix whose rows and columns are indexed by elements of Σ:

∼
def
=

a b c d f g h

a 1 0.7 0 0 0 0 0
b 0.7 1 0 0 0 0 0
c 0 0 1 0.6 0 0 0
d 0 0 0.6 1 0 0 0
f 0 0 0 0 1 0.9 0
g 0 0 0 0 0.9 1 0
h 0 0 0 0 0 0 1

Following Maria Sessa’s formal setting [117], we assume given such a similarity relation

between functors of equal arity (i.e., which admit the same number of arguments). Upon this

basis, this similarity can be extended homomorphically from functors to FOT s as follows. Let

∼ be a similarity on functors of equal arity in a signature Σ.

DEFINITION 2.5 (SESSA’S FOT SIMILARITY) The fuzzy relation ∼T on TΣ,V is defined in-

ductively as follows:

1. ∀X ∈ V, X ∼T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. if f ∈ Σn and g ∈ Σn with f ∼α g, and if si ∈ T and ti ∈ T are such that si ∼
T
αi

ti for

i = 1, . . . , n, then:

f(s1, . . . , sn) ∼
T
α∧

∧n
i=1

αi
g(t1, . . . , tn). (2.11)

THEOREM 2.2 The relation ∼T defined by Definition 2.5 is a similarity relation on the set of

FOT s TΣ,V .

PROOF See proof of more general Theorem 2.3 below, as this is a particular case of that theorem

where every similar pairs of functors have same arity and every argument position mapping is the

identity. �

Since from the above definition of similarity∼T extends homomorphically a similarity∼ on

the functors to all FOT s in T , we shall also assimilate ∼T to ∼. This allows to define formally

fuzzy subsumption amongFOT s as the fuzzy relation� on T that can be verified to be a preorder

(modulo variable renaming) as a corollary of Theorem 2.2.

DEFINITION 2.6 (FUZZY FOT SUBSUMPTION) For all terms t1 ∈ T and t2 ∈ T , t1 is said to

be subsumed by t2 for some α in [0, 1] (and this is written t1 �α t2) if and only if there exists a

substitution σ ∈ SUBST
T

such that t1 ∼α t2σ.
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Note that, for the identity similarity on the signature and α = 1, this reduces to the classical

definition of term subsumption, as expected.

In Definition 2.6, the more specific term t1 is then called a fuzzy instance of term t2 realized

with subsititution σ at approximation degree α. It comes also that the “more general” relation on

FOT substitutions extends to a “fuzzy more general” fuzzy relation on substitutions, which can

also readily be verified to be a fuzzy preorder on SUBST
T

as a corollary of Theorem 2.2. It is

formally equivalent to the relation defined in [117].12

DEFINITION 2.7 (FUZZY “MORE GENERAL” ORDERING ON FOT SUBSTITUTIONS) If σ1
and σ2 are two substitutions in SUBST

T
and α in [0, 1], we say that σ1 is less general than σ2

at approximation degree α (and this is written σ1 �α σ2), if and only if for any term t ∈ T , it is

true that tσ1 �α tσ2 as terms.

Also as expected, note that for the identity similarity on the signature and α = 1, this reduces to

the classical “more general than” ordering on substitutions.

The following fuzzy relation defined on SUBST
T

can also be verified to be a similarity as a

corollary of Theorem 2.2.13

DEFINITION 2.8 (FOT SUBSTITUTION SIMILARITY) Given an approximation degree α in

[0, 1], two substitutions σ and θ in SUBST
T

are said to be α-similar (written σ ∼α θ) iff tσ ∼α tθ
for all FOT t in T .

Therefore, referring to Definition 2.6 of fuzzy FOT subsumption, it comes as a fact that:

LEMMA 2.3 For any two substitutions σ and θ in SUBST
T

and approximation degree α in [0, 1],
σ �α θ iff σ ∼α θδ for some substitution δ.

PROOF Stating that σ �α θ, by Definition 2.7, is equivalent to stating that tσ �α tθ, for any t ∈ T .

By Definition 2.6, this is equivalent to stating that for all term t, tσ ∼α tθδ, for some substitution

δ; namely, again by Definition 2.7, that σ ∼α θδ. �

The following two facts regarding the fuzzy term subsumption relation on terms and the fuzzy

“more general” relation on substitutions will be useful later in a proof arguments.

LEMMA 2.4 For any two approximation degrees α and β in [0, 1], for any terms t1, t2, and t3 in

T , if t1 �α t2 and t2 �β t3, then t1 �α∧β t3.

PROOF Let t1 �α t2 and t2 �β t3; this is, by definition, equivalent to t1 ∼α t2σ, for some

σ ∈ SUBST
T

, and t2 ∼β t3θ, for some θ ∈ SUBST
T

. However, for any set S, any pair 〈x, y〉 in

S × S, and any similarity ∼: S × S → [0, 1], if x ∼α y for some α in[0, 1], then x ∼β y for all

β ∈ [0, α].14 This, the fact that α∧β ≤ α and α∧β ≤ β, together with our assumption, entail then

that t1 ∼α∧β t2σ and t2 ∼α∧β t3σ; which, by transitivity of ∼α∧β , implies that t1 ∼α∧β t3σ; that

is, t1 �α∧β t3. �

12Op. cit., Page 410, Definition 6.2
13A equivalent definition is given in [75].
14See A.3.2.
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COROLLARY 2.3 For any two approximation degrees α and β in [0, 1], for any substitutions σ1,

σ2, and σ3 in SUBST
T

, if σ1 �α σ2 and σ2 �β σ3, then σ1 �α∧β σ3.

PROOF Let σ1 �α σ2 and σ2 �β σ3; this is, by definition, equivalent to stating that for any

term t ∈ T , tσ1 �α tσ2 and tσ2 �β tσ3. By Lemma 2.4, it follows that for any term t ∈ T ,

tσ1 �α∧β tσ3; that is, σ1 �α∧β σ3. �

Using the definition of similarity between terms in T extending one on functors of equal

arity, Sessa proposes to extend the FOT unification problem to the following fuzzy unification

problem: given two FOT s t1 and t2 in T , find the most general substitution σ ∈ SUBST
T

and

maximum approximation degree α in [0, 1] such that t1σ ∼α t2σ. Figure 2.6 expresses fuzzy

unification as a commutative diagram constraint.

t1
?
∼

α
t2

t1σ ∼α t2σ

α ∈ [0, 1]

σ σ

Figure 2.6: Fuzzy unification as a constraint

In Figure 2.7, we provide a set of declarative rewrite rules for fuzzy unfication equivalent

to Sessa’s case-based “weak unification algorithm” [117]. To simplify the presentation of these

rules while remaining faithful to Sessa’s weak unification algorithm, it is assumed for now that

functor symbols f/m and g/n of different arities m 6= n are never similar. This follows Sessa’s

assumption for weak unification, which fails on term structures of different arities. (See Case (2)

of the weak unification algorithm given in [117], Page 413.) Later, we will relax this and allow

functors of different arities to be similar.

The rules of Figure 2.7 transform Eα, a finite conjunctive set E of equations among FOT s

along with an associated approximation degree α in [0, 1], into E ′
α′ , another set of equations E ′

at approximation degree α′ in [0, α]. Given to solve a fuzzy unification equation s
.
= t between

two FOT s s and t, we start by forming the set { s
.
= t }1 (i.e., a singleton equation set at

approximation degree 1), then transform it using any applicable rules in Figure 2.7 until either

the approximation degree of the transformed set of equations is 0 (in which case there is no

solution to the original equation, not even a fuzzy one), or the final resulting set Eα is a solution

at approximation degree α in the form of a variable substitution σ
def
= { t/X | X

.
= t ∈ E } such

that sσ ∼α tσ.
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WEAK TERM DECOMPOSITION:

(E ∪ { f(s1, . . . , sn)
.
= g(t1, . . . , tn) })α

(E ∪ { s1
.
= t1, . . . , sn

.
= tn })α∧β

[

f ∼β g

n ≥ 0

]

VARIABLE ERASURE:

(E ∪ {X
.
= X })α

Eα

VARIABLE ELIMINATION:

(E ∪ {X
.
= t })α

(E[X ← t] ∪ {X
.
= t })α

[

X 6∈ var(t)
X occurs in E

]

EQUATION ORIENTATION:

(E ∪ { t
.
= X })α

(E ∪ {X
.
= t })α

[t 6∈ V ]

Figure 2.7: Normalization rules corresponding to Maria Sessa’s “weak unification”

In [117],15 a transformation rule of a set of equation at approximation degree is considered to

be correct when all the solutions of the posterior set are also solutions of the anterior set but with

a possibly lesser similarity degree, which is also our Definition 2.10.16

Example 2.7 FOT fuzzy unification — Taking the functor signature of Example 2.6, let us consider

the fuzzy equation set:

{h(f(a,X1), g(X1, b), f(Y1, Y1))
.
= h(X2,X2, g(c, d)) }1 (2.12)

and let us apply the rules of Figure 2.7:

• Rule WEAK TERM DECOMPOSITION with α = 1 and β = 1:

{ f(a,X1)
.
= X2, g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule EQUATION ORIENTATION to f(a,X1)
.
= X2 with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= X2, f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule VARIABLE ELIMINATION to X2
.
= f(a,X1) with α = 1:

{X2
.
= f(a,X1), g(X1, b)

.
= f(a,X1), f(Y1, Y1)

.
= g(c, d) }1 ;

• Rule WEAK TERM DECOMPOSITION to g(X1, b)
.
= f(a,X1) with α = 1 and β = .9:

{X2
.
= f(a,X1),X1

.
= a, b

.
= X1, f(Y1, Y1)

.
= g(c, d) }.9 ;

• Rule VARIABLE ELIMINATION to X1
.
= a with α = .9:

{X2
.
= f(a, a),X1

.
= a, b

.
= a, f(Y1, Y1)

.
= g(c, d) }.9 ;

15Op. cit., Page 410.
16Note that in [117], no explicit proof for of formal correctness of “weak unification algorithm” is given: it is

just mentioned that “it can be proven following the same line of the proof” for crisp unification in classible Logic

Programmingin [27].
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• Rule WEAK TERM DECOMPOSITION to b
.
= a with α = .9 and β = .7:

{X2
.
= f(a, a),X1

.
= a, f(Y1, Y1)

.
= g(c, d) }.7 ;

• Rule WEAK TERM DECOMPOSITION to f(Y1, Y1)
.
= g(c, d) with α = .7 and β = .9:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c, Y1

.
= d }.7 ;

• Rule VARIABLE ELIMINATION to Y1
.
= c with α = .7:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c, c

.
= d }.7 ;

• Rule WEAK TERM DECOMPOSITION to c
.
= d with α = .7 and β = .6:

{X2
.
= f(a, a),X1

.
= a, Y1

.
= c }.6 .

This last equation set is in normal form with similarity degree .6 and defines the substitution σ given by:

σ = { a/X1, c/Y1, f(a, a)/X2 } (2.13)

so that:

t1σ = h(f(a, a), g(a, b), f(c, c)) ∼.6 h(f(a, a), f(a, a), g(c, d)) = t2σ. (2.14)

Generic fuzzy FOT unification

From our perspective, a fuzzy unification operation ought to be able to fuzzify full FOT unifica-

tion: whether (1) functor symbol mistmatch, and/or (2) arity mismatch, and/or (3) in which order

subterms correspond. Sessa’s fuzzification of unification as weak unification misses on the last

two items. This is unfortunate as this can turn out to be quite useful. In real life, there is indeed

no such garantee that argument positions of different functors match similar information in data

and knowledge bases, hence the need for alignment [86].

Still, it has several qualities:

• It is simple—specified as a straightforward extension of crisp unification: only one rule

(Rule “FUZZY TERM DECOMPOSITION”) may alter the fuzziness of an equation set by

tolerating similar functors.

• It is conservative—neither FOT s nor FOT substitutions per se need be fuzzified; so con-

ventional crisp representations and operations can be used; if restricted to only 0 or 1 simi-

larity degrees, it is equivalent to crisp FOT unification.

We now give an extension of Sessa’s weak unification which can tolerate such similarity

among functors of different arities. We are given a similarity relation ≈ : Σ × Σ → [0, 1] on a

ranked signature Σ
def
=
⊎

n≥0Σn. Unlike M. Sessa’s equal-arity condition, we now allow similar

symbols with distinct arities, or equal arities but different argument orders.

Example 2.8 Similar functors with different arities — Consider person/3, a functor of arity 3,

and individual/4, a functor of arity 4 with:
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• person/3 ≈.9 individual/4; and,

• one-to-one position mapping p : { 1, 2, 3 } → { 1, 2, 3, 4 }:

from person/3 to individual/4 with p : { 1→ 1, 2→ 3, 3→ 4 }

so that:

person(Name, SSN,Address) ≈p
.9 individual(Name,DoB, SSN,Address)

where we write f ≈p
α g to denote a pair in the similarity relation ≈ consisting of a functor f and a functor

g, with similarity degree α and f -to-g argument-position mapping p; in our example, this is rendered as:

person ≈
{ 1→1,2→3,3→4 }
.9 individual.

With this kind of specification, we can tolerate not only fuzzy mismatching of terms with distinct func-

tors person and individual up to a realigning correspondence of argument positions from person

to individual specified as p, all with a similarity degree of .9.

We formalize this by requiring that the fuzzy equivalence relation ≈ on Σ be such that:

• for each pair of functors 〈f, g〉 ∈ Σm × Σn where 0 ≤ m ≤ n and f ≈ g, and any approx-

imation degree α, there exists a one-to-one (i.e., injective) mapping µα
fg : { 1, . . . , m } →

{ 1, . . . , n } associating each of them argument positions of f with a unique position among

the n arguments of g, which we shall express as f ≈µα
fg g;

• argument-position alignment mappings between similar functors must be consistent at any

approximation level; namely, they must verify the following four conditions:

– approximation consistency: for any functors f ∈ Σ and g ∈ Σ, and any approximation

degrees α ∈ [0, 1] and β ∈ [0, 1] :

α ≤ β =⇒ µα
fg ⊆ µβ

fg (as sets of pairs); (2.15)

– reflexive consistency: for any functor f/n and any degree α ∈ [0, 1]:

µα
ff = 11{1,...,n}; (2.16)

– symmetric consistency: for any two equal-arity functors f/n and g/n and any degree

α ∈ [0, 1]:

µα
fg ◦ µ

α
gf = 11{1,...,n}; (2.17)

– transitive consistency: for any three functors f/m, g/n, h/ℓ s.t. 0 ≤ m ≤ n ≤ ℓ and

any degree α ∈ [0, 1]:

µα
fh = µα

gh ◦ µ
α
fg. (2.18)
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f/n

≈µff= 11{1,...,n}

Figure 2.8: Identity consistency for FOT argument mapping

µfg : {1, . . . , n} → {1, . . . , n}

f/n g/n

µgf : {1, . . . , n} → {1, . . . , n}

≈µfg=≈µ−1

gf

≈µgf=≈µ−1

fg

Figure 2.9: Invertibility consistency for equal-arity FOT argument mapping

m ≤ n n ≤ ℓ

µfg : { 1, . . . ,m } → { 1, . . . , n } µgh : { 1, . . . , n } → { 1, . . . , ℓ }

f/m g/n h/ℓ

m ≤ ℓ

µfh = µgh ◦ µfg : { 1, . . . ,m } → { 1, . . . , ℓ }

≈µfg ≈µgh

≈µfh =≈µgh◦µfg

Figure 2.10: Compositional consistency for non-aligned FOT argument mapping

Figure 2.8 illustrates Condition (2.16), Figure 2.9 illustrates Condition (2.17), and Figure 2.10

illustrates Condition (2.18). Note that Condition (2.18) applies when 0 ≤ m ≤ n ≤ ℓ; so the

one-to-one argument-position mappings always go from a smaller set to a larger set. There is

no loss of generality with this assumption as this will be taken into account in the definition of

Copyright c© 2019 by the Authors All Rights Reserved
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non-aligned FOT similarity,17 and in the normalization rules.18 This amounts to systematically

taking a FOT with functor of least arity as similarity class representative. Finally, note also

that such a class representative is not unique because for similar functors of equal arity, it can

be either terms due to Condition (2.17). Indeed, then the set of positions are equal and there are

two injections from this set to itself in each direction which are mutually inverse bijections; i.e.,

inverse permutations in the order of arguments realigning one’s with the other’s in either direction.

The similarity degrees in both directions are always equal due to symmetry of similarity.

Fuzzy unification with similar functors and arity mismatch

As in the case of similarity restricted to functors of equal arities only, the similarity with argument

position alignment mapping on functors can be extended homomorphically to a similarity on

FOT s. Let ≈ be a similarity on functors of any arity in a signature Σ. To lighten notation, rather

than writing systematically f ≈µfg g for two functors f and g such that arity(f) ≤ arity(g),
we shall sometimes simply write f ≈p

α g, with p standing for the injective argument realignment

mapping µfg.

DEFINITION 2.9 The fuzzy relation ≈T on TΣ,V is defined inductively as:

1. ∀X ∈ V, X ≈T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. if s = f(s1, . . . , sm) and t = g(t1, . . . , tn) with n < m, then s ≈T t = t ≈T s;

4. if f ∈ Σm and g ∈ Σn with m ≤ n and f ≈p
α g, and if si ∈ T , i = 1, . . . , m, and tj ∈ T ,

j = 1, . . . , n, are such that si ≈
T
αi
tp(i) for all i ∈ { 1, . . . , m }, then:

f(s1, . . . , sm) ≈
T
α∧

∧m
i=1

αi
g(t1, . . . , tn). (2.19)

THEOREM 2.3 (NON-ALIGNED FOT SIMILARITY) The fuzzy relation ≈T on the set T of

FOT s specified in Definition 2.9 is a similarity.

PROOF We must establish that ≈T is reflexive, symmetric, and transitive.

Reflexivity: we must show that t ≈T
1 t, for all t ∈ T . We proceed by induction on the depth of

the term. Base case: either t = X ∈ V , in which case, by the first condition of Definition 2.9,

X ≈T
1 X; or, t = c ∈ Σ0, in which case the fourth condition of Definition 2.9 and the fact that

c ≈1 c implies that c ≈T
1 c, for all c ∈ Σ0. Inductive case: let us assume that ≈T is reflexive for

all terms of depth less than or equal to d, and consider the term t = f(t1, . . . , tn) of depth d + 1;

then, the fourth condition of Definition 2.9 implies also that t ≈T t since, by Condition (2.16) and

the fact that ≈ is a similarity, f ≈
11{1,...,n}

1 f for all f ∈ Σn, for any arity n > 0.

Symmetry: we must show that s ≈T t = t ≈T s for all s and t in T . When either of the

terms is a variable, this is so by the two first cases of Definition 2.9. When s = f(s1, . . . , sm)

17Cf., Definition 2.9 below.
18Cf., Figure 2.11 below, Rule FUZZY EQUATION ORIENTATION.
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and t = g(t1, . . . , tn), it is is always the case that ≈T is symmetric on such pairs since the third

condition of Definition 2.9, states precisely that in this case ≈T is symmetric.

Transitivity: we must show that (s ≈T t ∧ t ≈T u) ≤ s ≈T u for all terms s, t, u. There are eight

possibilities:

(1) s ∈ V and t ∈ V and u ∈ V;
(2) s ∈ V and t ∈ V and u 6∈ V;
(3) s ∈ V and t 6∈ V and u ∈ V;
(4) s ∈ V and t 6∈ V and u 6∈ V;

(5) s 6∈ V and t ∈ V and u ∈ V;
(6) s 6∈ V and t ∈ V and u 6∈ V;
(7) s 6∈ V and t 6∈ V and u ∈ V;
(8) s 6∈ V and t 6∈ V and u 6∈ V.

– Case (1) : s ∈ V, t ∈ V, u ∈ V . In this case, there are five possiblities. Using different

variable names to denote different variables, the corresponding similarity degrees for s ≈T t,
t ≈T u, and s ≈T u, for each possibility do indeed verify the inequality. Namely:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X Y Z 0 ∧ 0 ≤ 0
X Y Y 0 ∧ 1 ≤ 1
X Y X 0 ∧ 0 ≤ 1
X X Y 1 ∧ 0 ≤ 0
X X X 1 ∧ 1 ≤ 1

– Case (2) : s ∈ V, t ∈ V, u 6∈ V . There are two possibilities, each verifying the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X X u 1 ∧ 0 ≤ 0
X Y u 0 ∧ 0 ≤ 0

– Case (3) : s ∈ V, t 6∈ V, u ∈ V . There are two possibilities, and each verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X t X 0 ∧ 0 ≤ 1
X t Y 0 ∧ 0 ≤ 0

– Case (4) : s ∈ V, t 6∈ V, u 6∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies

the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

X t u 0 ∧ α ≤ 0

– Case (5) : s 6∈ V, t ∈ V, u ∈ V . There are two possibilities, and each verifies the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s X X 0 ∧ 1 ≤ 0
s X Y 0 ∧ 0 ≤ 0

– Case (6) : s 6∈ V, t ∈ V, u 6∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies

the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s X u 0 ∧ 0 ≤ α
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– Case (7) : s 6∈ V, t 6∈ V, u ∈ V . There is only one possibility, for any α ∈ [0, 1], which verifies

the inequality:

s t u s ≈T t ∧ t ≈T u ≤ s ≈T u

s t X α ∧ 0 ≤ 0

– Case (8) : s 6∈ V, t 6∈ V, u 6∈ V . In this case, we must have s = f(s1, . . . , sm), t =
g(t1, . . . , tn), and u = h(u1, . . . , uℓ). We detail this case below.

We must then show that:

f(s1, . . . , sm) ≈T g(t1, . . . , tn) ∧ g(t1, . . . , tn) ≈
T h(u1, . . . , uℓ)

≤

f(s1, . . . , sm) ≈T h(u1, . . . , uℓ).

By symmetry of ≈T , all cases are equivalent to when 0 ≤ m ≤ n ≤ ℓ, so we assume that this is so,

with f ≈
µfg
α g and g ≈

µgh

β h. By the fourth condition of Definition 2.9, the above inequality is the

same as the following one:

f ≈ g ∧
∧m

i=1 si ≈
T tµfg(i) ∧ g ≈ h ∧

∧n
j=1 tj ≈

T uµgh(j)

≤

f ≈ h ∧
∧m

i=1 si ≈
T uµfh(i).

Using commutativity of ∧, let us rearrange the different factors of the conjunction in the lefthand-

side of this inequality as:

f ≈ g ∧ g ≈ h ∧
(
∧m

i=1 si ≈
T tµfg(i) ∧ tµfg(i) ≈

T uµgh(µfg(i))

)

∧ ∆

≤

f ≈ h ∧
∧m

i=1 si ≈
T uµfh(i)

where ∆ stands for the remaining conjunction
∧j 6∈ran(µfg)

j∈{1,...,n} tj ≈
T uµgh(j). Let us now proceed by

induction on the depth of the terms to verify this inequality. For terms of depth 0, it is verified since

it reduces to the transitivity inequality of ≈ on Σ0. Let us assume that it holds for terms of depth

less than d, and that at least one of the terms s, t, or u, is of depth d. By transitivity of ≈ on Σ, we

have (f ≈ g) ∧ (g ≈ h) ≤ f ≈ h. Also, by the inductive hypothesis, the transitivity inequality

for ≈T holds for all similar subterms of depth less than or equal to d. Therefore, this assumption

entails that for all i ∈ {1, . . . ,m}:

si ≈
T tµfg(i) ∧ tµfg(i) ≈

T uµgh(µfg(i)) ≤ si ≈
T uµgh(µfg(i));

thus, since, by Condition (2.18), it is required that the mappings be consistent and verify µfh =
µgh ◦ µfg, and by isotonicity of ∧ w.r.t. ≤, this is equivalent to:

m
∧

i=1

(si ≈
T tµfg(i)) ∧ (tµfg(i) ≈

T uµfh(i)) ≤
m
∧

i=1

si ≈
T uµfh(i).

In summary, the inequality we seek to establish is of the form A ∧ B ∧∆ ≤ A′ ∧B′, and we have

shown that A ≤ A′ and B ≤ B′. From this, the inequality follows by isotonicity of ∧ w.r.t. ≤. �
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Since we have just formally defined a new notion of similarity ≈T on T extending Sessa’s

similarity ∼T to non-aligned functors, all the properties we covered for ∼T carry over to cor-

responding extensions for terms with non-aligned functors. Namely, Definitions 2.6–2.8 and

Lemmas 2.3–2.4, as well as Corollary 2.3, where the term similarity ∼T is replaced with any

similarity on T such as ≈T (or ∼∼∼T that we shall define later and prove also to be a similarity

on T extending ≈T ). Indeed, it is easy to see that all these notions are valid algebraically when

parameterized with any relation on FOT proven to be a similarity on T .

Weak unification with fuzzy functor/arity mismatch

Starting with the Herbrand-Martelli-Montanari ruleset of Figure 2.3, fuzziness is introduced in

Sessa’s weak unification by relaxing “TERM DECOMPOSITION” to make it also tolerate pos-

sible arity or argument-order mismatch in two structures being unified. It is the only rule that

does not preserve the equation set’s similarity degree. In the same manner, Rule FUZZY NON-

ALIGNED-ARGUMENT TERM DECOMPOSITION in Figure 2.11 is the only one that may possi-

bly alter (decrease) the equation sets’ similarity degree. Also, the given functor similarity relation

≈ on Σ is adjoined a position mapping from argument positions of a functor f to those of a func-

tor g when f ≈α g with f 6= g, for some α in (0, 1]. This is then taken into account in tolerating

a fuzzy mismatch between two term structures s
def
= f(s1, . . . , sm) and t

def
= g(t1, . . . , tn).

This may involve a mismatch between the terms’ functor symbols (f and g), their arities (m and

n), subterm ordering, or a combination. We first reorient all such equations by flipping sides so

that the left-hand side is the one wih lesser or equal arity. In this manner, assuming f ≈p
β g and

0 ≤ α, β ≤ 1, an equation set of the form:
{

. . . , f(s1, . . . , sm)
.
= g(t1, . . . , tn), . . .

}

α
for 0 ≤ m ≤ n acquires its new similarity degree α ∧ β due to functor and arity mismatch when

equated. Thus, a fully fuzzified term-decomposition rule should proceed by replacing a structure

equation by the conjunction of equations between their respective subterms at corresponding in-

dices given by the one-to-one argument mapping p : { 1, . . . , m } → { 1, . . . , n }, but (possibly)

decreasing the original equation set similarity degree by conjoining it with that of the decom-

posed terms’ functor pair; that is,
{

. . . , s1
.
= tp(1), . . . , sm

.
= tp(m), . . .

}

α∧β
. Note that all

the subterms in the right-hand side term that are arguments at indices which are not p-images are

ignored as they have no counterparts in the left-hand side. These terms are simply dropped as part

of the approximation. This generic rule is shown in Figure 2.11 along with another rule needed

to make it fully effective: a rule reorienting a term equation into one with a lesser-arity term on

the left.

DEFINITION 2.10 (FUZZY UNIFICATION RULE CORRECTNESS) A fuzzy unification rule that

transformsEα, a set of equations E at a prior approximation degree α, into E ′
β, a set of equations

E ′ at a posterior approximation degree β, is said to be correct iff β is the largest degree such that

β ≤ α and all the solutions of E ′ are also solutions of E at approximation degree β.

Note that this notion of correcteness, contrary to that of crisp unification, does not require that all

solutions of the posterior sets of equations be the same as those of of the prior set. It only states

that this be so as a possibly lesser posterior approximation degree.
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FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

(

E ∪ { s1
.
= tp(1), . . . , sm

.
= tp(m) }

)

α∧β
[

0 ≤ m ≤ n; f ≈p
β g
]

FUZZY EQUATION ORIENTATION

(E ∪ { g(t1, . . . , tn)
.
= f(s1, . . . , sm) })α

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

[0 ≤ m < n]

Figure 2.11: Fuzzy FOT unification’s non-aligned decomposition and orientation rules

THEOREM 2.4 The fuzzy unification rules of Figure 2.7 where Rule “ WEAK TERM DECOM-

POSITION” is replaced by the rules of Figure 2.11 are correct.

PROOF Rules VARIABLE ELIMINATION, VARIABLE ERASURE, and EQUATION ORIENTA-

TION are those, unchanged, of Maria Sessa’s weak unification. Their correctness follows from

those of the corresponding Herbrand-Martelli-Montanari rules since all three rules keep their sim-

ilarity degree α unchanged under the same side conditions as their crisp versions. As for Rule

FUZZY EQUATION ORIENTATION, it is also correct as it simply uses the symmetry of equality or

similarity denoted by the
.
= relation and it leaves the similarity degree unchanged.

The correctness of Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION follows

from the fact that it tolerates equations between two distinct but similar functors, f on the left and

g on the right, by “paying a toll” as the most general way this can be true is by reducing the prior

equation set’s similarity degree α to α ∧ β. It must do so whenever a prior equation set contains an

equation between two terms whose respective head functors f and g are β-similar with f having at

most as many arguments as g. It collects m corresponding subterm equations from the two terms’s

subterms using the specific one-to-one argument mapping p that associates with each position i
among f ’s m a unique specific position p(i) among g’s n, n ≥ m. Orienting all functorial term

equations to have the lesser number of arguments on the left guarantees completeness over all such

syntactic patterns. By structural induction, assuming that all si ≈α∧β tp(i) for all i ∈ { 1, . . . ,m },
then whenever f ≈p

β g, we must also have f(s1, . . . , sm) ≈α∧β g(t1, . . . , tn) (by definition, since

α ∧ β ≤ α) for whatever arguments of g at indices missed by p and these two terms are in the

same similarity class at approximation degree α ∧ β for arbitrary arguments in these positions (by

definition of f ≈p
β g and since α ∧ β ≤ β). The rest of the equations in E that were true at

approximation degree α must now be considered true only up to approximation degree α ∧ β in

order to account for f and g being functors of possibly fuzzier similarity β. Hence, all solutions of

the new set of equations are also solutions of the previous one, although only at the possibly lesser

approximation degree α ∧ β. This approximation degree is also the greatest such degree by virtue
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of the ∧ operation yielding the infimum of its operands.

Finally, when m = n this rule is correct in either direction since a consistent similarity on a sig-

nature requires by definition that equal-arity functors f and g have arguments in bijection (inverse

permutations of the set { 1, . . . , n }): f ≈p
α g and g ≈p−1

α f . In this case, the set of solutions of the

new equation set is also a solution of the previous one, with equal similarity degree.

As for termination, it follows (like that of the Herbrand-Martelli-Montanari rules) from (1) the finite

width and depth of FOTs, and (2) there being no rule that is indefinitely applicable. Regarding (1),

term decomposition always replaces a term equation with finitely many shallower term equations,

which is a well-known well-founded process guaranteed to terminate (multiset ordering [4]). Re-

garding (2), Rule FUZZY EQUATION ORIENTATION may not be reapplied to the same functors

thanks to the side condition m < n.

In other words, applying this modified ruleset to E1
def
= { s

.
= t }1, an equation set of similarity

degree 1 (in any order as long as a rule applies and its similarity degree is not zero) always termi-

nates. And when the final equation set is a substitution σ at approximation degree α, σ is the most

general substitution (up to a variable renaming) that is a solution at approximation degree α (i.e.,

sσ ≈α tσ), and α is the greatest approximation degree for which this is true. �

Example 2.9 FOT fuzzy unification with similar functors of different arities — Take a functor

signature such that: { a, b, c, d } ⊆ Σ0, { f, g, ℓ } ⊆ Σ2, {h } ⊆ Σ3; and let us further assume the functor

similarity that is the reflexive symmetric transitive closure of:19

a ≈.7 b, c ≈.6 d, f ≈
{ 1→2,2→1 }
.9 g, g ≈

{ 1→2,2→1 }
.9 f, and ℓ ≈

{ 1→2,2→3 }
.8 h.

Let us consider the fuzzy equation set { t1
.
= t2 }1:

{h(X, g(Y, b), f(Y, c))
.
= ℓ(f(a, Z), g(d, c)) }1 (2.20)

and let us apply the rules of Figure 2.7 where rule WEAK TERM DECOMPOSITION has been replaced

by the rules of Figure 2.11:

Rule FUZZY EQUATION ORIENTATION with α = 1 because arity(ℓ) < arity(h); new set: { ℓ(f(a, Z),
g(d, c))

.
= h(X, g(Y, b), f(Y, c)) }1;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION with α = 1 and β = .8 since

ℓ ≈
{ 1→2,2→3 }
.8 h; new set: { f(a, Z)

.
= g(Y, b), g(d, c)

.
= f(Y, c) }.8;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to f(a, Z)
.
= g(Y, b) with α = .8

and β = .9 since f ≈
{ 1→2,2→1 }
.9 g; new set: { a

.
= b, Z

.
= Y, g(d, c)

.
= f(Y, c) }.8;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to a
.
= b with α = .8 and β = .7

since a ≈.7 b; new set: {Z
.
= Y, g(d, c)

.
= f(Y, c) }.7;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to g(d, c)
.
= f (Y, c) with α = .7

and β = .9 since f ≈
{ 1→2,2→1 }
.9 g; new set: {Z

.
= Y, d

.
= c, c

.
= Y }.7;

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION to d
.
= c with α = .7 and β = .6

since d ≈.6 c; new set: {Z
.
= Y, c

.
= Y }.6;

Rule EQUATION ORIENTATION to c
.
= Y with α = .6; new set:: {Z

.
= Y, Y

.
= c }.6.

Rule VARIABLE ELIMINATION to Y
.
= c with α = .6; new set: {Z

.
= c, Y

.
= c }.6.

19Recall that the argument mapping is the identity by default.
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This last equation set at approximation degree .6 is in normal form and defines the substitution σ =

{ c/Z, c/Y } so that: t1σ = h(X, g(Y, b), f(Y, c))σ ≈.6 ℓ(f(a, Z), g(d, c))σ = t2σ; that is: t1σ =

h(X, g(c, b), f(c, c)) ≈.6 ℓ(f(a, c), g(d, c)) = t2σ.

Example 2.10 Example 2.9 with more expressive symbols — Example 2.9 uses abstract generic

symbols such as f , g, a, b, . . . , which have the advantage, being one-letter symbols, to make each nor-

malization step more compact to write. But one may be more content with a more illustrative choice of

identifiers as would be the case of a real-life data base.

So let us give such names to functors of Example 2.9 in the case of a gift-shop Prolog database which

describes various configurations for multi-item gift boxes containing such items as flowers, sweets, etc.,

which can be already joined as pairs or not joined as loose couples. In such a database are consigned

facts over objects identified by the following functors (each corresponding to the one indicated from Ex-

ample 2.9):

• a/0
def
= violet,

• b/0
def
= lilac,

• c/0
def
= chocolate,

• d/0
def
= candy,

• f/2
def
= pair,

• g/2
def
= couple,

• h/3
def
= small-gift-box,

with the closure under reflexivity, symmetry, and transitivity of the following similar pairs:

• violet ∼.7 lilac,

• chocolate ∼.6 candy,

• pair ∼.9 couple.

With these functors and their similarity degrees, Equation (2.12) now reads:

(t1)

small-gift-box ( pair(violet,X1)
, couple(X1,lilac)
, pair(Y1, Y1)
)

.
=

(t2)

small-gift-box ( X2

, X2

, couple(chocolate,candy)
)

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 36 Version of January 8, 2019

Substitution (2.13) obtained after normalization is now defined as follows, using the new functor sym-

bols:

σ
def
= {X1 = violet, Y1 = chocolate,X2 = pair(violet,violet)}

and yields the fuzzy solution:

(t1σ)

small-gift-box ( pair(violet,violet)
, couple(violet,lilac)
, pair(chocolate,chocolate)
)

∼.6

(t2σ)

small-gift-box ( pair(violet,violet)
, pair(violet,violet)
, couple(chocolate,candy)
)

with similarity degree .6 capturing the fuzzy degree to which σ solves the original equation.

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION is a very general rule

for normalizing fuzzy equations overFOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or order of

arguments;

2. when restricted to tolerating only similar equal-arity functors with matching argument po-

sitions, it reduces to Sessa’s weak unification’s WEAK TERM DECOMPOSITION rule;

3. when similarity degrees are further restricted to be in { 0, 1 }, it is the Herbrand-Martelli-

Montanari TERM DECOMPOSITION rule;

4. it requires no alteration of the standard notions ofFOT s andFOT substitutions: similarity

among FOT s is derived from that of signature symbols;

5. finally, and most importantly, it keeps fuzzy unification in the same complexity class as

crisp unification: that of Union-Find [127].20

As a result, it is more general than all other extant approaches we know which propose a fuzzy

FOT unification operation. The same will be established for the fuzzification of the dual opera-

tion: first a limited “functor-weak” FOT generalization corresponding to the dual operation of

Sessa’s “weak” unification, then to a more expressive “functor/arity-weak” FOT generalization

corresponding to our extension of Sessa’s unification to functor/arity weak unification.

20Quasi-linear; i.e., linear with a log . . . log coefficient [2].
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2.6.2 Fuzzy FOT generalization

While there has been relatively intense interest in devising a fuzzy FOT unification operation,

we know of no work regarding its dual operation, fuzzy FOT generalization. This comes as

no surprise since even in the crisp case only marginal attention has been paid to generalization

(a.k.a. anti-unification) as compared to unification.

The Reynolds-Plotkin characterization of FOT subsumption as a lattice ordering relies on

formalizing this ordering as FOT instantiation. Namely, t1 � t2 iff there exists a variable

substitution σ such that t1 = t2σ. Then, unification and generalization are respectively the glb

and lub operations for this ordering and are specified in terms of variable substitutions.

It is clear however, as overviewed in the previous section, that there are several ways one can

propose to fuzzify FOT unification. As a consequence of this, for each specific fuzzification

of FOT unification, and therefore of associated specific fuzzy subsumption ordering on FOT s,

there should also correspond a dual operation of fuzzy generalization of FOT s.

In what follows, we first elaborate some lattice-theoretic consequences for Maria Sessa’s

“weak unification” fuzzy operation on FOT s presented in [117]. In particular, we derive its

corresponding fuzzy dual lattice operation that we shall dub “weak FOT generalization.” We

then extend this lattice to signatures admitting similar functors with differing arity or argument

order.

Fuzzy functor-weak generalization

Let t1 and t2 be two FOT s in T to generalize. We shall use the following notation for a fuzzy

generalization judgment:

(

σ1
σ2

)

α

⊢

(

t1
t2

)

t

(

θ1
θ2

)

β

(2.21)

given:

• σi ∈ SUBST
T

(i = 1, 2): two prior substitutions with prior similarity degree α,

• ti (i = 1, 2): two prior FOT s,

• t: a posterior FOT ,

• θi ∈ SUBST
T

(i = 1, 2): two posterior substitutions with similarity degree β.

DEFINITION 2.11 (FUZZY FOT GENERALIZATION JUDGMENT VALIDITY) A fuzzyFOT gen-

eralization judgment such as (2.21) is valid whenever, for i = 1, 2:

1. β ∈ (0, α];

2. tiσi ≈β tθi;

3. ∃ δi ∈ SUBST
T

s.t. ti ≈α tδi and θi ≈β δiσi (i.e., ti �α tσi and θi �β σi).

Figure 2.12 shows an illustration of a valid fuzzy generalization judgment constraint as a

commutative diagram.
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t

t1 ≈α tδ1 tδ2 ≈α t2

tθ1 ≈β t1σ1 t2σ2 ≈β tθ2

(

σ1
σ2

)

α

⊢

(

t1
t2

)

t

(

θ1
θ2

)

β

β ∈ (0, α]

δ1 δ2

σ1 σ2

δ 1
σ 1
≈ β
θ 1

θ
2 ≈

β δ
2 σ

2

Figure 2.12: Fuzzy generalization judgment validity as a constraint

DEFINITION 2.12 (FUZZY GENERALIZATION RULE CORRECTNESS) A fuzzy generalization

rule is correct iff, whenever the side condition holds, if all the fuzzy generalization judgments

making up its antecedent are valid, then necessarily the fuzzy generalization judgment in its con-

sequent is valid.

In Figure 2.13, we give a fuzzy version of the generalization rules of Figure 2.5. As was the

case in Sessa’s weak unification, we assume as well for now that we are given a similarity relation

∼: Σ × Σ → [0, 1] on the signature Σ = ∪n≥0Σn such that for all m ≥ 0 and n ≥ 0, m 6= n
implies f 6∼ g. In other words, functors of different arities may not be similar.

Rule SIMILAR FUNCTORS uses a “fuzzy unapply” operation (‘↑
α
’) on a pair of terms (t1, t2)

given a pair of substitutions (σ1, σ2) and a similarity degree α. It is the result of “unapplying”

σi from ti, for i = 1, 2, into a common variable X , if any such exists such that the terms Xσi
are respectively similar to ti with similarity degrees αi. It returns a fuzzy pair of terms and a

similarity degree in (0, α] defined as:

(

t1
t2

)

↑
α

(

σ1
σ2

)

def
=























(

X
X

)

α∧α1∧α2

if ∃X ∈ V, ti ∼αi
Xσi

for some αi ∈ (0, 1], i = 1, 2;

(

t1
t2

)

α

otherwise.

(2.22)

The condition in Equation (2.22) is: “∃X ∈ V, ti ∼αi
Xσi, for some αi ∈ (0, 1] (i = 1, 2).”

But could there be two such variables? Namely, is it ever possible that:

∃X ∈ V, ∃Y ∈ V, X 6= Y, s.t. ti ∼αi
Xσi and ti ∼βi

Y σi (2.23)
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FUZZY EQUAL VARIABLES

(

σ1
σ2

)

α

⊢

(

X
X

)

X

(

σ1
σ2

)

α

FUZZY VARIABLE-TERM

[t1 ∈ V or t2 ∈ V ; t1 6= t2; X is new]
(

σ1
σ2

)

α

⊢

(

t1
t2

)

X

(

σ1{ t1/X }
σ2{ t2/X }

)

α

DISSIMILAR FUNCTORS

[f 6∼ g; m ≥ 0, n ≥ 0; X is new]
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{ f(s1, . . . , sm)/X }
σ2{ g(t1, . . . , tn)/X }

)

α

SIMILAR FUNCTORS

[

f ∼β g; β > 0; n ≥ 0; α0
def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

s1
t1

)

↑
α0

(

σ1
σ2

)

u1

(

σ1
1

σ1
2

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sn
tn

)

↑
αn−1

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

αn

(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sn)
g(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

αn

Figure 2.13: Functor-weak generalization axioms and rule

for some αi ∈ (0, 1] and βi ∈ (0, 1], i = 1, 2? Note that a new variable is introduced in the

generalizing pair of substitutions only in Axiom FUZZY VARIABLE-TERM and Axiom DIS-

SIMILAR FUNCTORS. Then, each axiom binds the new variable in the two substitutions to two

terms that are dissimilar at any similarity degree (as required by their side conditions). However,

by Lemma 2.4 on Page 23, Condition (2.23) would imply that:

ti ∼αi∧βi
Xσi ∼αi∧βi

Y σi

with αi ∧ βi ∈ (0, 1], for i = 1, 2. This would mean that X or Y would have been introduced

while the side condition of neither Axiom FUZZY VARIABLE-TERM nor Axiom DISSIMILAR

FUNCTORS was verified; which is impossible. Thus, there can be at most only one such variable.

As importantly, note also that fuzzy unapplication defined by Equation (2.22) returns a pair

of terms and a possibly lesser or equal approximation degree, unlike crisp unapplication defined

by Equation (2.7) which returns only a pair of terms. Because of this, when we write a fuzzy

judgment such as:

(

σ
σ′

)

α

⊢

(

t
t′

)

↑
α

(

σ
σ′

)

u

(

θ
θ′

)

β

(2.24)

as we do in the premiss of Rule SIMILAR FUNCTORS, this is shorthand to indicate that the

posterior similarity degree β is at most the one returned by the fuzzy unapplication

(

t
t′

)

↑
α

(

σ
σ′

)

.
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Formally, the notation of the fuzzy judgment (2.24) is equivalent to:

(

s
s′

)

β′

def
=

(

t
t′

)

↑
α

(

σ
σ′

)

and

(

σ
σ′

)

β′

⊢

(

s
s′

)

u

(

θ
θ′

)

β

(2.25)

for some β ′ such that β ≤ β ′ ≤ α. This is because a fuzzy unapplication invoked while proving

the validity of a fuzzy judgment may require, by Expression (2.22), lowering the prior approxi-

mation degree of the judgment.

Finally, note that Rule “SIMILAR FUNCTORS” is defined for n ≥ 0. For n = 0, it becomes

the following fuzzy judgment:

(

σ1
σ2

)

α

⊢

(

c
c

)

c

(

σ1
σ2

)

α

(2.26)

which can be verified to be an axiom since it is valid at any approximation degree α in [0, 1], for

any constant c in Σ0, and any substitutions σ1 and σ2 in SUBST
T

, thanks to the reflexivity of the

similarity∼α on T .

Referring to the axioms (seen as rules with no antecedent) and the rule of Figure 2.13, we

establish the following fact corresponding to Lemma 2.2 on Page 14 (taking σ0
i

def
= σi, for

i = 1, 2), where the fuzzy ordering on substitutions is defined in Definition 2.7 on Page 23.

LEMMA 2.5 In Rule SIMILAR FUNCTORS of Figure 2.13, taking σ0
i

def
= σi, for i = 1, 2, the

approximation degrees α0
i , . . . , α

n
i are such that αk

i ≤ αk−1
i , and the substitutions σ0

i , . . . , σ
n
i are

such that σk
i �αk

i
σk−1
i , for all k, 1 ≤ k ≤ n (i = 1, 2).

PROOF We proceed by induction on the depth d of the terms; i.e., we consider only terms of depth

less than or equal to d.

1. d = 0: This limits terms to constants and variables. The inequality between prior and poste-

rior substitutions is verified for the three first axioms of Figure 2.13: each preserves the prior

approximation degree and the posterior substitutions are all either equal to the correspond-

ing prior substitutions or of the form θ = σ{t/X} where X is a new variable and σ is the

corresponding prior substitution. As well, when limited to terms of 0 depth, Rule SIMILAR

FUNCTORS becomes the Axiom (2.26), which preserves both the approximation degree and

the substitutions.

2. d > 0: Let us assume now that this is true for all terms of depth less than d. That is, we

consider two terms to generalize, at least one of which is of depth d. The same argument given

above for when d = 0 for the three first axioms of Figure 2.5 justifies concluding that θ � σ,

since this is true in these cases for terms of any depth. As for Rule EQUAL FUNCTORS, there

are two possible cases for the two terms in its consequent (the “denominator”):

(a) n = 0: then, the conclusion follows true by Axiom (2.26);

(b) n ≥ 0: since the fuzzy unapply operation (2.22) yields either a pair of terms having

the same depth as the corresponding terms it is applied to, or 0 (because it can only be

a new variable), we can say that all the terms resulting from fuzzy-unapplied pairs of

arguments in the judgments of the rule’s antecedent (the “numerator”) are of depth at

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 41 Version of January 8, 2019

most d − 1. Therefore, this fact, together with our induction hypothesis being verified

for depths less than d and the expression of a fuzzy judgment (2.25) involving only terms

of such depths, we can conclude that all the judgments in the rule’s antecedent can only

reduce their prior approximation degree. Therefore, αk
i ≤ αk−1

i and σki �αk
i
σk−1
i , for

all k = 1, . . . , n. Then, by Corollary 2.3 and transitivity of the “more general” ordering

on substitutions �α at fixed α, the conclusion follows.

Hence, this establishes that, for both i = 1, 2, the approximation degree αk
i is monotonically de-

creasing and the substitution σki is monotonically refined from more general to less, as k increases

from 1 to n; which concludes our proof. �

And the corresponding corollary also follows.

COROLLARY 2.4 In Rule SIMILAR FUNCTORS of Figure 2.13, for all k, 1 ≤ k ≤ n:

• the approximation degrees αk
i are such that αn

i ≤ αn−1
i ≤ . . . α1

i ≤ α0
i , and

• the substitutions σk
i are such that σn

i �αn
i
σn−1
i �αn−1

i
. . . σ1

i �α1

i
σ0
i ,

for i = 1, 2.

THEOREM 2.5 (FUNCTOR-WEAK GENERALIZATION CORRECTNESS) The fuzzy generaliza-

tion rules of Figure 2.13 are correct.

PROOF We must show that they verify the conditions of Definition 2.12 on page 38. For each of

the three axioms of Figure 2.13, this means that they must be valid as fuzzy judgments, verifying

the three conditions of Definition 2.11, which are:

– Condition 1: β ∈ (0, α],

– Condition 2: tiσi ∼β tθi,

– Condition 3: ti �α t and θi �β σi,

for i = 1, 2, for a fuzzy FOT generalization judgment such as (2.21). These conditions for the

axioms and the rule of Figure 2.13 translate as the following.

Condition 1. All three axioms verify this condition because they preserve the approximation degree.

Condition 2. This condition becomes the following for each of the three axioms (for i = 1, 2):

– FUZZY EQUAL VARIABLES: Condition 2 becomes the similarity Xσi ∼α Xσi, which is

true by reflexivity of ∼α for all X, σi, and α;

– FUZZY VARIABLE-TERM: it becomes the similarity tiσi ∼α tiσi, which is true also by

reflexivity of ∼α, for all ti, σi, and α;

– DISSIMILAR FUNCTORS: Condition 2 becomes:

f(s1, . . . , sm)σ1∼αXσ1{ f(s1, . . . , sm)/X }
g(t1, . . . , tn)σ2∼αXσ2{ g(t1, . . . , tn)/X }
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which, because X is a new variable that does not occurs in either σ1 or σ2, simplify respec-

tively to the similarities:

f(s1, . . . , sm) ∼α f(s1, . . . , sm)
g(t1, . . . , tn) ∼α g(t1, . . . , tn)

which hold by reflexivity of ∼α at any approximation degree α.

Condition 3. The three axioms verify the following at all approximation degrees α and β (for i =
1, 2):

– FUZZY EQUAL VARIABLES: X �α X and σi �β σi;

– FUZZY VARIABLE-TERM: ti �α X and σi{ti/X} �β σi;

– DISSIMILAR FUNCTORS:

f(s1, . . . , sm) �α X and σ1{ f(s1, . . . , sm)/X } �β σ1,
g(t1, . . . , tn) �α X and σ2{ g(t1, . . . , tn)/X } �β σ2.

As for Rule SIMILAR FUNCTORS, as required by Definition 2.12, we must show that if all the

fuzzy judgments in the numerator are valid, then the fuzzy judgment in the denominator is valid

too. For all three conditions, let us proceed by induction on the arity n:

Condition 1. For n = 0, the conclusion follows also because Axiom (2.26) applies and it also

preserves the approximation degree; for n > 0, if we assume that 0 ≤ αk ≤ αk−1 ≤ 1 for all

k = 1, . . . , n, by transitivity of ≤ on [0, 1], it follows that 0 ≤ αn ≤ α0 ≤ 1, which verifies the

definition.

Condition 2. For n = 0, this rule becomes Axiom (2.26). Since it preserves the approximation

degree, Condition 1 is verified. Also, this fuzzy judgment is trivially valid at all approximation

degrees: the conditions of Definition 2.11 become the reflexive similarity c ∼α c, and the conjunc-

tion of reflexive fuzzy inequality c �α c and reflexive substitution fuzzy inequalities σi �α σi, for

i = 1, 2. Thus, this verifies both Condition 2 and Condition 3 for n = 0.

For n > 0, for each argument-position k = 1, . . . , n, a fuzzy judgment in the rule’s antecedent is of

the form:
(

σk−1
1

σk−1
2

)

αk−1

⊢

(

sk
tk

)

↑αk−1

(

σk−1
1

σk−1
2

)

uk

(

σk1
σk2

)

αk

;

that is, the form of Expression (2.24), whose formal meaning is given as Expression (2.25), which

in the above case is equivalent to:

(

vk1
vk2

)

βk

def
=

(

sk
tk

)

↑αk−1

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

βk

⊢

(

vk1
vk2

)

uk

(

σk1
σk2

)

αk

for some βk s.t. αk−1 ≤ βk ≤ αk. Let us now assume that all the fuzzy judgment in the rule’s

antecedent are valid. That is, for k = 1, . . . , n (defining α0
def
= α ∧ β), for i = 1, 2:

ukσ
k
i ∼αk

vki σ
k−1
i (2.27)

and (defining σ0i
def
= σi):

vki �α uk and σki �β σ
k−1
i . (2.28)

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 43 Version of January 8, 2019

By Equation (2.22), this means:

(

vk1
vk2

)

αk

def
=



























(

X
X

)

αk−1∧β
k
1
∧βk

2

if ∃X ∈ V s.t. sk ∼βk
1

Xσk−1
1 and tk ∼βk

2

Xσk−1
2 ;

(

sk
tk

)

αk−1

otherwise.

for some βk1 and βk2 in (0, 1]. In other words, for each k = 1, . . . , n, there are two cases:

1. sk ∼βk
1

Xσk−1
1 and tk ∼βk

2

Xσk−1
2 for some variable X; then, by Axiom FUZZY EQUAL

VARIABLES, we must have αk = αk−1 ∧ β
k
1 ∧ β

k
2 , uk = X, and σki = σk−1

i for i = 1, 2;

thus, αk ≤ αk−1 and Similarity (2.27) becomes ukσ
k
i ∼αk

Xσk−1
i So that:

skσ
k−1
1 ∼αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk1 ∼αk

ukσ
k
1 ,

tkσ
k−1
2 ∼αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk2 ∼αk

ukσ
k
2 .

2. There is no such variable X; in which case, αk = αk−1 and Similarity (2.27) becomes:

skσ
k−1
1 ∼αk

ukσ
k
1 ,

tkσ
k−1
2 ∼αk

ukσ
k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the

axioms, for any argument position k, 1 ≤ k ≤ n, we have:

σki ∼αk
σ0i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . . Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in proving the

validity of the fuzzy judgment corresponding to some argument position k. Therefore, since for any

argument position k, 1 ≤ k ≤ n:

1. σki affects only a new variable introduced in one of the axioms verifying the validity of the

subterm at argument position k; and,

2. such a newly introduced variable now occurring in uk is always instantiated by the same term;

it comes that, at approximation degree αk:

skσ
0
1 ∼αk

skσ
1
1 ∼αk

. . .∼αk
skσ

k−1
1

tkσ
0
2 ∼αk

tkσ
1
2 ∼αk

. . .∼αk
tkσ

k−1
2

as well as, at approximation degree αn:

ukσ
k
1 ∼αn ukσ

k+1
1 ∼αn . . .∼αn ukσ

n
1

ukσ
k
2 ∼αn ukσ

k+1
2 ∼αn . . .∼αn ukσ

n
2

which shows that in both cases we have, for all k = 1, . . . , n:

skσ
0
1 ∼αk

ukσ
n
1

tkσ
0
2 ∼αk

ukσ
n
2 .
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Therefore, for k = n:

f(s1, . . . , sn)σ
0
1 ∼αn f(u1, . . . , un)σ

n
1

f(t1, . . . , tn)σ
0
2 ∼αn f(u1, . . . , un)σ

n
2

which completes the proof of Condition 2.

Condition 3. This condition becomes, for all k = 1, . . . , n:

f(s1, . . . , sn) �αk−1
f(u1, . . . , un) and σk1 �αk

σk−1
1

g(t1, . . . , tn) �αk−1
g(u1, . . . , un) and σk2 �αk

σk−1
2

from which, since αk ≤ αk−1 for all k = 1, . . . , n, it follows that:

f(s1, . . . , sn) �αn f(u1, . . . , un) and σn1 �αn σ
0
1

g(t1, . . . , tn) �αn g(u1, . . . , un) and σn2 �αn σ
0
2

or indifferently, using the same similarity class representative in both cases since f ∼αn g (because

f ∼β g and αn ≤ β):

g(t1, . . . , tn) �αn f(u1, . . . , un) and σn2 �αn σ
0
2

which completes the proof of Condition 3, and the proof of Theorem 2.5. �

Example 2.11 Fuzzy generalization with similar functors of same arities — Consider the

signature Σ containing Σ0 = {a, b, c, d}, and Σ2 = {f, g}, and the closure ∼ of the similar pairs a ∼.7 b,
c ∼.6 d, and f ∼.8 g. Let us apply the functor-weak generalization axioms and rule Figure 2.13 to

t1
def
= g(c, d), and t2

def
= f(a, b); that is, let us find term t, substitutions σi ∈ SUBST

T
(i = 1, 2),

and similarity degree α in [0, 1] such that tσ1 ∼α g(c, d) and tσ2 ∼α f(a, b). This is expressed as the

following fuzzy judgment:
(

∅
∅

)

1

⊢

(

g(c, d)
f(a, b)

)

t

(

σ1
σ2

)

α

.

By Rule SIMILARITY FUNCTORS, we infer that t = g(u1, u2):
21

(

∅
∅

)

1

⊢

(

g(c, d)
f(a, b)

)

g(u1, u2)

(

σ1
σ2

)

α

which, replaced by the antecedents of Rule SIMILARITY FUNCTORS, becomes (since g ∼.8 f ):
(

∅
∅

)

.8

⊢

(

c
a

)

↑
.8

(

∅
∅

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

d
b

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

Since the prior substitutions of the first judgment are empty, evaluating its fuzzy unapplication (using

Expression (2.25) in which β′ = α) yields the sequence:
(

∅
∅

)

.8

⊢

(

c
a

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

d
b

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

21This is a non-deterministic choice of a functor’s similarity-class representative. We shall always take the left (or

upper, in this notation) term’s functor. This, of course, will also result in a non-deterministic choice of representative

for any term elaborated in generalization modulo functor similarity. The lower the approximation degree, the larger

the similarity class.
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By Axiom DISSIMILAR FUNCTORS, it comes that u1 = X1, a new variable, and the sequence becomes:

(

∅
∅

)

.8

⊢

(

c
a

)

X1

(

{ c/X1 }
{ a/X1 }

)

.8

,

(

{ c/X1 }
{ a/X1 }

)

.8

⊢

(

d
b

)

↑
.8

(

{ c/X1 }
{ a/X1 }

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining fuzzy judg-

ment evaluating its fuzzy unapplication using Equation (2.22). Since X1 is such that d ∼.6 X1{c/X1} = c
and a ∼.7 X1{b/X1} = b, it verifies the first of the conditions of Equation (2.22). Therefore, the new

approximation degree of the judgment is .8 ∧ .6 ∧ .7 = .6, and u2 = X1 so that the judgment becomes:

(

{ c/X1 }
{ a/X1 }

)

.6

⊢

(

d
b

)

↑
.6

(

{ c/X1 }
{ a/X1 }

)

X1

(

{ c/X1 }
{ a/X1 }

)

.6

.

This validates the last judgment completing the fuzzy generalization whereby t = g(X1,X1) is the least

fuzzy generalizer of t1 = g(c, d), and t2 = f(a, b) at approximation degree .6 with σ1 = { c/X1 } so that

tσ1 = g(c, c) ∼.6 t1; and, σ2 = { a/X1 } so that tσ2 = g(a, a) ∼.6 t2.

Fuzzy functor/arity-weak generalization

In Figure 2.14, we give a fuzzy version of the generalization rules taking into account mismatches

not only in functors, but also in arities; i.e., number and/or order of arguments. We now assume

that we are not only given a similarity relation ∼: Σ× Σ→ [0, 1] on the signature Σ = ∪n≥0Σn,

but also that functors of different arities may be similar with some non-zero similarity degree as

specified by a one-to-one argument-position mapping for each pair of so-similar functors asso-

ciating each argument position of the functor of least arity with a distinct argument position of

the functor of larger arity. The only rule among those of Figure 2.13 that differs is the last one

(SIMILAR FUNCTORS) which is now a pair of rules called FUNCTOR/ARITY SIMILARITY

LEFT and FUNCTOR/ARITY SIMILARITY RIGHT as they account for non-identical corre-

spondence among similar functors’s argument positions whether in the left or in the right of the

pair of terms to generalize, depending on which side has less arguments. If the arities are the

same, the two rules are equivalent (each and all the arguments of the two terms are paired in

bijection by a position permutation).

THEOREM 2.6 (FUNCTOR/ARITY-WEAK GENERALIZATION CORRECTNESS) The fuzzy gen-

eralization rules of Figure 2.13 where Rule “ SIMILAR FUNCTORS” is replaced with the rules in

Figure 2.14 are correct.

PROOF The argument in this proof has exactly the same structure as the argument for the proof of

Rule SIMILAR FUNCTORS of Figure 2.13. The only difference is that structural induction on a pair

of terms with similar functors to generalize is always limited to the largest possible set of pairs of

corresponding argument positions as specified by a one-to-one argument map from all the argument

positions of the functor of lesser arity to those of the functor of larger arity, rather than the identity

on equal cardinality sets of argument positions. Thus, in the following, parts of the proof that

are omitted are identical to their corresponding parts in the proof of Rule SIMILAR FUNCTORS.

Also, for reason of obvious symmetry, we need only provide the detailed proof of correctness of

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 46 Version of January 8, 2019

FUNCTOR/ARITY SIMILARITY LEFT

[

f ≈p
β g; β > 0; 0 ≤ m ≤ n; α0

def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

s1
tp(1)

)

↑α0

(

σ1
σ2

)

u1

(

σ11
σ12

)

α1

. . .

(

σm−1
1

σm−1
2

)

αm−1

⊢

(

sm
tp(m)

)

↑αm−1

(

σm−1
1

σm−1
2

)

um

(

σm1
σm2

)

αm
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

f(u1, . . . , um)

(

σm1
σm2

)

αm

FUNCTOR/ARITY SIMILARITY RIGHT

[

g ≈p
β f ; β > 0; 0 ≤ n ≤ m; α0

def
= α ∧ β

]

(

σ1
σ2

)

α0

⊢

(

sp(1)
t1

)

↑α0

(

σ1
σ2

)

u1

(

σ11
σ12

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sp(n)
tn

)

↑αn−1

(

σn−1
1

σn−1
2

)

un

(

σn1
σn2

)

αn
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

g(u1, . . . , un)

(

σn1
σn2

)

αn

Figure 2.14: Functor/arity-weak generalization rules

Rule FUNCTOR/ARITY SIMILARITY LEFT. The proof of correctness of Rule FUNCTOR/ARITY

SIMILARITY RIGHT is the pointwise similar dual argument in the other direction.

Considering Rule FUNCTOR/ARITY SIMILARITY LEFT, as required by Definition 2.12, we must

show that if all the fuzzy judgments in the numerator are valid, then the fuzzy judgment in the

denominator is valid too. Since the proofs of Condition 1 and Condition 3 are the same for equal-

arity functor similarity, we need only provide a proof of Condition 2 of Definition 2.12. Let us

proceed by induction on the argument-position number k, for k = 1, . . . ,m, where m is the arity

of f (the first of the two terms’ functor, with the same or a smaller arity as required by the side

condition).

For m = 0, this rule becomes Axiom (2.26). This fuzzy judgment is trivially valid at all approxima-

tion degrees: Condition 2 of Definition 2.11 becomes the reflexive similarity c ≈α c and Condition 3

becomes the conjunction c �α c and σi �α σi, for i = 1, 2. Thus, this verifies both Condition 2

and Condition 3 for m = 0.

For m > 0, for each argument-position k = 1, . . . ,m, a fuzzy judgment in the rule’s antecedent is

of the form:

(

σk−1
1

σk−1
2

)

αk−1

⊢

(

sk
tp(k)

)

↑αk−1

(

σk−1
1

σk−1
2

)

uk

(

σk1
σk2

)

αk

;

that is, the form of Expression (2.24), whose formal meaning is given as Expression (2.25), which
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in the above case is equivalent to:

(

vk1
vk2

)

βk

def
=

(

sk
tp(k)

)

↑αk−1

(

σk−1
1

σk−1
2

)

and

(

σk−1
1

σk−1
2

)

βk

⊢

(

vk1
vk2

)

uk

(

σk1
σk2

)

αk

for some βk s.t. αk−1 ≤ βk ≤ αk. Let us now assume that all the fuzzy judgment in the rule’s

antecedent are valid. That is, for k = 1, . . . ,m (defining α0
def
= α ∧ β), for i = 1, 2:

ukσ
k
i ≈αk

vki σ
k−1
i (2.29)

and (defining σ0i
def
= σi):

vki �α uk and σki �β σ
k−1
i . (2.30)

By Equation (2.22), this means that for all k = 1, . . . ,m, vk1 , vk2 , and αk are defined by:

(

vk1
vk2

)

αk

def
=



























(

X
X

)

αk−1∧β
k
1
∧βk

2

if ∃X ∈ V s.t.

(

sk ≈βk
1

Xσk−1
1

tp(k) ≈βk
2

Xσk−1
2

)

;

(

sk
tp(k)

)

αk−1

otherwise.

for some βk1 and βk2 in (0, 1]. In other words, for each k = 1, . . . ,m, there are two cases:

1. sk ≈βk
1

Xσk−1
1 and tp(k) ≈βk

2

Xσk−1
2 for some variable X; then, by Axiom FUZZY EQUAL

VARIABLES, we must have αk = αk−1 ∧ β
k
1 ∧ β

k
2 , uk = X, and σki = σk−1

i for i = 1, 2;

thus, αk ≤ αk−1 and Similarity (2.29) becomes ukσ
k
i ≈αk

Xσk−1
i So that:

skσ
k−1
1 ≈αk

Xσk−1
1 σk−1

1 = Xσk−1
1 = Xσk1 ≈αk

ukσ
k
1 ,

tp(k)σ
k−1
2 ≈αk

Xσk−1
2 σk−1

2 = Xσk−1
2 = Xσk2 ≈αk

ukσ
k
2 .

2. There is no such variable X; in which case, αk = αk−1 and Similarity (2.29) becomes:

skσ
k−1
1 ≈αk

ukσ
k
1 ,

tp(k)σ
k−1
2 ≈αk

ukσ
k
2 .

Thus, by the only non-identical transformation relating prior and posteriors substitutions in the

axioms, for any argument position k, 1 ≤ k ≤ m, we have:

σki ≈αk
σ0i { τ1/X1 } . . . { τℓ/Xℓ }

where each of the variables X1 . . . Xℓ, with 0 ≤ ℓ, is a variable possibly introduced in proving the

validity of the fuzzy judgment corresponding to some argument position preceding k. Therefore,

since for any argument position k, 1 ≤ k ≤ m:

1. σki affects only a new variable introduced in one of the axioms verifying the validity of the

subterm at argument position k; and,

2. such a newly introduced variable now occurring in uk is always instantiated by the same term;
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it comes that, at approximation degree αk:

skσ
0
1 ≈αk

skσ
1
1 ≈αk

. . .≈αk
skσ

k−1
1

tp(k)σ
0
2 ≈αk

tp(k)σ
1
2 ≈αk

. . .≈αk
tp(k)σ

k−1
2

as well as, at approximation degree αm:

ukσ
k
1 ≈αm ukσ

k+1
1 ≈αm . . .≈αm ukσ

m
1

ukσ
k
2 ≈αm ukσ

k+1
2 ≈αm . . .≈αm ukσ

m
2

This means that in both cases we have, for all k = 1, . . . ,m:

skσ
0
1 ≈αm ukσ

m
1

tp(k)σ
0
2 ≈αm ukσ

m
2 .

Therefore, for k = m:

f(s1, . . . , sm)σ01 ≈αm f(u1, . . . , um)σm1

f(tp(1), . . . , tp(m))σ
0
2 ≈αm f(u1, . . . , um)σm2

which completes the proof of Condition 2 of Theorem 2.6, and that of the theorem because of the

facts stated at the outset regarding all other cases each of whose proof is identical to when arities

are equal. �

Example 2.12 Fuzzy generalization with similar functors of different arities — Let us take

again the functor signature of Example 2.9 where { a, b, c, d } ⊆ Σ0, { f, g, ℓ } ⊆ Σ2, and {h } ⊆ Σ3,

with similarity defined as the reflexive symmetric transitive closure of the following pairs, along with their

argument alignment maps: a ≈.7 b, c ≈.6 d, f ≈
{ 17→2,27→1 }
.9 g and g ≈

{ 17→2,27→1 }
.9 f , and ℓ ≈

{ 17→2,27→3 }
.8 h

(and equal similarity degree for symmetric entries). With this signature and similarity, let us try to find the

fuzzy generalization of t1
def
= h(X, g(Y, b), f(Y, c)), and t2

def
= ℓ(f(a, Z), g(d, c)).

Thus we need to us find the most general term t ∈ T along with two most general substitutions σi :∈
SUBST

T
(i = 1, 2), and the maximal similarity degree α ∈ [0, 1], such that tσ1 ≈

T
α h(X, g(Y, b), f(Y, c))

and tσ2 ≈
T
α ℓ(f(a, Z), g(d, c)); that is, solve the following fuzzy generalization constraint problem:

(

∅
∅

)

1

⊢

(

h(X, g(Y, b), f(Y, c))
ℓ(f(a, Z), g(d, c))

)

t

(

σ1
σ2

)

α

.

Rule FUNCTOR/ARITY SIMILARITY RIGHT entails t = ℓ(u1, u2), and because ℓ ≈
{ 17→2,27→3 }
.8 h:

• u1 is the fuzzy generalization of

(

g(Y, b)
g(d, c)

)

↑
.8

(

∅
∅

)

; that is, of g(Y, b) and g(d, c), such that:

(

∅
∅

)

.8

⊢

(

g(Y, b)
g(d, c)

)

u1

(

σ11
σ12

)

α1

;
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i.e., u1 = g(v1, v2) by Rule FUNCTOR/ARITY SIMILARITY LEFT with g ≈
{ 17→1,27→2 }
1 g, s.t.:22

– v1 = U since by Rule FUZZY VARIABLE-TERM:

(

∅
∅

)

.8

⊢

(

Y
d

)

U

(

{Y/U }
{ d/U }

)

.8

;

– v2 = V since with b 6≈ c and by DISSIMILAR FUNCTORS:

(

{Y/U }
{ d/U }

)

.8

⊢

(

b
c

)

V

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

;

and so σ11 = {Y/U, b/V }, σ12 = { d/U, c/V }, and α1 = .8; that is:

(

∅
∅

)

.8

⊢

(

g(Y, b)
g(d, c)

)

g(U, V )

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

;

• u2 is the fuzzy generalization of

(

f(Y, c)
f(a, Z)

)

↑
.8

(

{Y/U, b/V }
{ d/U, c/V }

)

; that is, of f(Y, c) and f(a, Z),

s.t. u2 = f(w1, w2) by Rule FUNCTOR/ARITY SIMILARITY LEFT with f ≈
{ 17→1,27→2 }
1 f (or

Rule FUNCTOR/ARITY SIMILARITY RIGHT):

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

⊢

(

f(Y, c)
f(a, Z)

)

f(w1, w2)

(

σ21
σ22

)

α2

;

where:

– by Rule FUZZY VARIABLE-TERM:

(

{Y/U, b/V }
{ d/U, c/V }

)

.8

⊢

(

Y
a

)

W

(

{Y/U, b/V, Y/W }
{ d/U, c/V, a/W }

)

.8

;

so w1 =W ; and,

– by Rule FUZZY VARIABLE-TERM:

(

{Y/U, b/V, Y/W }
{ d/U, c/V, a/W }

)

.8

⊢

(

c
Z

)

C

(

{Y/U, b/V, Y/W, c/C }
{ d/U, c/V, a/W,Z/C }

)

.8

;

so w2 = C;

thus σ21 = {Y/U, b/V, Y/W, c/C }, σ22 = { d/U, c/V, a/W,Z/C }, and α2 = .8.

22Note that, for two terms of equal arity, using either FUNCTOR/ARITY SIMILARITY LEFT or FUNC-

TOR/ARITY SIMILARITY RIGHT is always equivalent. As explained in Figure 2.9, similar functors of equal

arity have a pair of mutually inverse bijections map corresponding argument positions in each term with the other’s.

Therefore, choosing any of the two functors for the generalized term yields a term in the same similarity class. This

is true a fortiori when the two functors are equal, as in this case, when the similarity degree is 1 and the argument

map is the identity.
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Therefore,

(

∅
∅

)

1

⊢

(

h(X, g(Y, b), f(Y, c))
ℓ(f(a, Z), g(d, c))

)

ℓ(f(W,C), g(U, V ))

(

{Y/U, b/V, Y/W, c/C }
{ d/U, c/V, a/W,Z/C }

)

.8

;

that is, t = ℓ(f(W,C), g(U, V )), with:

σ1 = {Y/U, b/V, Y/W, c/C } and σ2 = { d/U, c/V, a/W,Z/C }

and α = .8, since:

t1 = tσ1 = ℓ(f(Y, c), g(Y, b)) ≈T
.8 h(X, g(Y, b), f(Y, c)) and t2 = tσ2 = ℓ(f(a, Z), g(d, c)).

Example 2.13 Example 2.12 with more expressive symbols — Let us again, as we did in Exam-

ple 2.10 (gift-shop Prolog database), give more expressive names to functors of Example 2.12:

• a/0
def
= violet, b/0

def
= lilac, c/0

def
= chocolate, d/0

def
= candy,

• f/2
def
= pair, g/2

def
= couple,

• ℓ/2
def
= small-gift-bag, h/3

def
= small-gift-box,

with the following similarity degrees and argument maps,:

• violet ≈.7 lilac,

• chocolate ≈.6 candy,

• pair ≈
{ 17→2,27→1 }
.9 couple and couple ≈

{ 17→2,27→1 }
.9 pair,

• small-gift-bag≈
{ 17→2,27→3 }
.8 small-gift-box.

With these functors symbols, the generalization problem of Example 2.9 appears now with the terms:

t1
def
= small-gift-box ( X

, couple(Y,lilac)
, pair(Y,chocolate)
)

t2
def
= small-gift-bag ( pair(violet, Z)

, couple(candy,chocolate)
)

which are the results of applying the substitutions:

σ1 = { Y/U,lilac/V, Y/W,chocolate/C }

and

σ2 = { candy/U,chocolate/V,violet/W,Z/C }

to the least fuzzy generalization:
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t
def
= small-gift-bag ( pair(W,C)

, couple(U, V )
)

obtained after normalization with a similarity degree .8.

Example 2.14 Fuzzy generalization with similar functors of different arities—2nd example

— Consider the signature Σ containing Σ0 = {a, b, c, d}, Σ2 = {f, g, l}, and Σ3 = {h}, and the closure

∼ of the similar pairs a ∼.7, c ∼.6 d, f ∼.8 g, and l ∼.9 h. Let us take all argument-position mappings

as the default (identity on least-arity set). Let us apply the fuzzy generalization axioms of Figure 2.13

and the rule of Figure 2.14 to t1
def
= h(g(b, Y ), f(Y, c), V ), and t2

def
= l(f(a, Z), g(c, d)); that is,

let us find term t, substitutions σi ∈ SUBST
T

(i = 1, 2), and similarity degree α in [0, 1], such that

tσ1 ∼α h(g(b, Y ), f(Y, c), V ) and tσ2 ∼α l(f(a, Z), g(c, d)). This is expressed as the following fuzzy

judgment:

(

∅
∅

)

1

⊢

(

h(g(b, Y ), f(Y, c), V )
l(f(a, Z), g(c, d))

)

t

(

σ1
σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY RIGHT, we can infer that t = l(u1, u2):
(

∅
∅

)

1

⊢

(

h(g(b, Y ), f(Y, c), V )
l(f(a, Z), g(c, d))

)

l(u1, u2)

(

σ1
σ2

)

α

which, when replaced by the rule’s antecedents, since h ∼.9 l and 1 ∧ .9 = .9, becomes the sequence:

(

∅
∅

)

.9

⊢

(

g(b, Y )
f(a, Z)

)

↑.9

(

∅
∅

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By evaluating the fuzzy unapplication in its first judgment, this sequence becomes:

(

∅
∅

)

.9

⊢

(

g(b, Y )
f(a, Z)

)

u1

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY LEFT,23 it comes that u1 = g(u3, u4) and, since g ∼.8 f and

.9 ∧ .8 = .8, the sequence becomes:

(

∅
∅

)

.8

⊢

(

b
a

)

↑
.8

(

∅
∅

)

u3

(

σ′′1
σ′′2

)

α′′

,

(

σ′′1
σ′′2

)

α′′

⊢

(

Y
Z

)

↑
α′′

(

σ′′1
σ′′2

)

u4

(

σ′1
σ′2

)

α′

,

(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By evaluating the fuzzy unapplication in the first judgment, and using Rule FUNCTOR/ARITY SIMILAR-

ITY LEFT in the 0-arity case as Axiom (2.26), since b ∼.7 a and .8 ∧ .7 = .7, we have u3 = b, and the

sequence becomes:

(

∅
∅

)

.7

⊢

(

b
a

)

b

(

∅
∅

)

.7

,

(

∅
∅

)

.7

⊢

(

Y
Z

)

↑
.7

(

∅
∅

)

u4

(

σ′1
σ′2

)

α′

,

23Since f and g have equal arities, we could also use Rule FUNCTOR/ARITY SIMILARITY RIGHT. This would

end in an equivalent final result, modulo functor similarities at the final approximation degree. In the remainder of

this example, we shall omit making this remark, and choose the left rule over the right for equal-arity functors.
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(

σ′1
σ′2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑
α′

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining sequence

of fuzzy judgments evaluating the fuzzy unapplication in the first of its judgments, which sets α′ = .7:

(

∅
∅

)

.7

⊢

(

Y
Z

)

u4

(

σ′1
σ′2

)

.7

,

(

σ′1
σ′2

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑
.7

(

σ′1
σ′2

)

u2

(

σ1
σ2

)

α

.

By Axiom FUZZY VARIABLE-TERM, we infer from this that u4 = X1, a new variable, and the judgments

become:
(

∅
∅

)

.7

⊢

(

Y
Z

)

X1

(

{ Y/X1 }
{ Z/X1 }

)

.7

,

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑
.7

(

{ Y/X1 }
{ Z/X1 }

)

u2

(

σ1
σ2

)

α

.

The validity of the first fuzzy judgment of the above sequence is thereby established. We proceed with the

remainder evaluating the fuzzy unapplication in the first of its judgments, which returns the same pair of

terms with the similarity degree kept at .7:

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

u2

(

σ1
σ2

)

α

.

and by Rule FUNCTOR/ARITY SIMILARITY LEFT with u2 = f(u5, u6), this becomes:

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

↑
.7

(

{ Y/X1 }
{ Z/X1 }

)

u5

(

θ1
θ2

)

β

,

(

θ1
θ2

)

β

⊢

(

c
d

)

↑
β

(

θ1
θ2

)

u6

(

σ1
σ2

)

α

.

Evaluating the fuzzy unapplication gives β = .7:

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

u5

(

θ1
θ2

)

.7

,

(

θ1
θ2

)

.7

⊢

(

c
d

)

↑
.7

(

θ1
θ2

)

u6

(

σ1
σ2

)

α

.

and by Axiom FUZZY VARIABLE-TERM, we infer from this that u5 = X2, a new variable, which yields:

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

X2

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

,

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

⊢

(

c
d

)

↑
.7

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

u6

(

σ1
σ2

)

α

,

and establishes the penultimate judgment. The last remaining judgment, after evaluating its fuzzy unappli-

cation, since c ∼.6 d and .7 ∧ .6 = .6, is:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

u6

(

σ1
σ2

)

α

,

for which Axiom FUZZY VARIABLE-TERM allows us to infer that u6 = c and α = .6:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

c

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

.
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This validates the last judgment and completes the fuzzy generalization whereby t = l(g(b,X1), f(X2, c))
is the least fuzzy generalizer of t1 = h(g(b, Y ), f(Y, c), V ) and t2 = l(f(a, Z), g(c, d)) at approximation

degree .6, with:

• σ1 = { Y/X1, Y/X2 } so that tσ1 = l(g(b, Y ), f(Y, c)) ∼.6 t1; and,

• σ2 = { Z/X1, c/X2 } so that tσ2 = l(g(b, Z), f(c, c)) ∼.6 t2.

2.6.3 Partial maps

In the foregoing sections, we gave declarative presentations for three lattice structures overFOT s

(one crisp and two fuzzy) in the form of axioms and rules. These axioms and rules specify the six

corresponding dual lattice operations as constraints in these algebraic structures. An executable

semantics for each operation is thus obtained for free as constraint solving. The latter may be

summarized as follows, for each of the three FOT lattice structures:24

1. for conventional signatures (no operator similarity besides identity):

— we presented the declarative FOT unification rules due to Herbrand and to Martelli

& Montanari;

✓ we provided a declarative constraint-based version of generalization equivalent to the

original procedural methods due to Reynolds and Plotkin;

2. for signatures with “weak” similarity (all pairs of similar operators have the same number

and order of arguments):

— we presented “weak” fuzzy unification as constraint normalization using declarative

rules due to Maria Sessa;

✓ we provided a “weak” fuzzy generalization as a constraint solving using a declarative

specification for the dual operation of Sessa’s “weak” unification;

3. for signatures with possibly misaligned similarity (similar operators possibly with dif-

ferent number or order of arguments):

✓ we extended the above constraint-driven declarative “weak” fuzzy unification toFOT s

with possible different/mixed arities;

✓ we extended the above constraint-driven declarative “weak” fuzzy generalization of

FOT s with possible different/mixed arities.

This last pair of lattice operations on FOT modulo a similarity involving operators with mis-

aligned or unordered arguments extends the previous pair of “weak” operations given argument

maps specified for similar operators. That is, a similar pair of functors has a similarity degree as

24We use the “✓” check symbol to indicate what items are contribution of this work.
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well as an injective argument-realigning map for each pair of operators in the signature. If unspec-

ified, this map is the identity from the term with less arguments to the one with more arguments.

In effect, this third lattice of FOT s is closer to permit Fuzzy-Logic Programming querying with

misaligned databases, or more generally Information Retrieval (using fuzzy unification) and Ap-

proximate Knowledge Acquisition (using fuzzy generalization) over heterogeneous but similar

data models. In the remainder of this section, we will develop yet another lattice of FOT s which

is even closer to such models in that it allows an even more expressive similarity between functors

than the ones we presented above, all of which are again special cases of this more generic FOT
similarity.

The third FOT lattice above, being the most expressive of the three, tolerates similarity pairs

of functors with different arities and assumes given a similarity matrix ≈ indexed by the functor

signature Σ and for each pair of functors f/m and g/n such that 0 ≤ m ≤ n, an injective map

µfg : {1, . . . , m} → {1, . . . , n} verifying consistency conditions (2.16), (2.17), and (2.18) on

page 27. However, this lattice, although less constraining than the former, still requires that µfg

be a total function map associating to each argument position in {1, . . . , m} a unique argument

position in {1, . . . , n}. This constraint, as we see next, may be relaxed to accommodate similar

functors with partial argument alignments.

Example 2.15 Partial-map non-aligned similar functors — Consider two functors foo ∈ Σ5

and bar ∈ Σ4, and a non-zero approximation degree α ∈ (0, 1], where this similarity may be homomor-

phically extended from these functors to terms they construct only when, at this approximation degree α,

foo’s 3rd argument is similar to bar’s 4th argument, and when foo’s 4th argument is similar to bar’s

2nd argument. This means that there are two mutually inverse partial bijective maps between the argu-

ment positions of functors foo and bar specifying which argument position of one corresponds to which

unique argument position of the other; viz., µαfoo,bar : {3, 4} → {1, 2, 3, 4} = {3 7→ 4, 4 7→ 2} and

µαbar,foo : {2, 4} → {1, 2, 3, 4, 5} = {2 7→ 4, 4 7→ 3}. We shall denote such a partial non-aligned functor

similarity with the symmetric pairs foo∼∼∼
µα
foo,bar

α bar and bar∼∼∼
µα
bar,foo

α foo as in the FOT similarity

Expression (2.31).

foo ( s1, s2, s3, s4, s5) ∼∼∼T
α bar ( t1, t2, t3, t4 )

µfoo,bar /µbar,foo

µfoo,bar /µbar,foo

(2.31)

The formalism we have developed in the previous sections cannot apply for such non-aligned

similar functors with only partial argument-position maps because the assumptions we made for

the unification rules of Figure 2.11 to be correct do not hold. Indeed, these rules work because

whenever an equation between two constructed terms has a term of lesser arity on the right, Rule

FUZZY EQUATION ORIENTATION swaps its sides into an equation with the lesser-arity term

on the left. And, for a such an equation as the latter, Rule FUZZY NON-ALIGNED-ARGUMENT

TERM DECOMPOSITION replaces this equation only by equations between subterms at cor-

responding positions, taking all arguments of the lesser-arity from position 1, and all the way

up to its full arity. This is no longer possible with partial maps between two similar functors’

non-aligned argument positions. Indeed, a lesser arity functor’s partial argument maps may not
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be defined for argument position 1, nor for consecutive positions, nor up to the functor’s arity.

For the same reason, the fuzzy generalization rules of Figure 2.14 will not apply either. In-

deed, both Rule FUNCTOR/ARITY SIMILARITY LEFT and FUNCTOR/ARITY SIMILARITY

RIGHT specify the least generalizer to be constructed using the least-arity functor and the gen-

eralizers of all its arguments; this, clearly, is no longer possible with partial argument-position

maps between the substerms of non-aligned similar functors.

However, in some specific situations, it may be possible to come back to the previously stud-

ied FOT lattice—which requires that in any equation between two constructed terms one of

the two terms always be a lesser-arity functor’s with a total injective map from the set of all

its argument positions to a subset of the larger-arity functor’s term’s set of argument positions.

Indeed, the justification for the need of reorienting some equations using Rule FUZZY EQUA-

TION ORIENTATION of Figure 2.11 is that Rule FUZZY NON-ALIGNED-ARGUMENT TERM

DECOMPOSITION may then easily choose a term’s functor’s similarity class representative as

the one of least arity; viz., the one on the left-hand side. However, these assumptions do not

hold in general in our new situation. Indeed, this is possible only if each functor similarity class

at approximation degree α happens to have a least-arity functor term representative with total

argument-position maps to all other members of the similarity class at this approximation degree.

Example 2.16 Composing partial non-aligned argument-position map for similar functors

— Let us elaborate on Example 2.15: in addition to the similar functors “foo/5” and “bar/4” at a given

approximation degree α ∈ (0, 1] with partial argument maps µαfoo,bar : { 3, 4 } → { 2, 4 } = { 3 7→
4, 4 7→ 2 } and µαbar,foo : { 2, 4 } 7→ { 3, 4 } = { 2 7→ 4, 4 7→ 3 } so that µαfoo,bar = (µα

,bar,foo)
−1,

and µαbar,foo = (µαfoo,bar)
−1), there also exists a functor “fuz/2” that is similar at this approximation

degree α to both foo/5 and bar/4 with total argument maps µαfuz,foo : {1, 2} → {1, 2, 3, 4, 5} = { 1 7→
3, 2 7→ 4 } and µαfuz,bar : {1, 2} → {1, 2, 3, 4} = { 1 7→ 4, 2 7→ 2 }, in such a way that µαfuz,foo =
µαbar,foo ◦ µ

α
fuz,bar and µαfuz,bar = µαfoo,bar ◦ µ

α
fuz,foo. This, of course, requires that ran(µαfuz,foo) =

dom(µαfoo,bar) and also that ran(µαfuz,bar) = dom(µαbar,foo), as well as ran(µαfuz,foo) = ran(µαbar,foo)
and ran(µαfuz,bar) = ran(µαfoo,bar), as in the term similarity Expressions (2.32).

foo ( s1, s2, s3, s4, s5 ) ∼∼∼T
α bar ( t1, t2, t3, t4 )

∼∼∼T
α

∼∼∼T
α

fuz ( u1, u2 )

µfoo,bar /µbar,foo

µ
fuz,foo µfuz

,ba
r

(2.32)

We show next how this can be accommodated in our formalization. In the following, the set

denoted as {1, . . . , n} with n = 0 is always equal to the empty set ∅. In other words, for any

n ∈ N, {1, . . . , n} = ∅ if and only if n = 0.
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DEFINITION 2.13 (PARTIAL-MAP NON-ALIGNED SIMILAR FUNCTORS) Let m ≥ 0, n ≥ 0;

two functors f ∈ Σm and g ∈ Σn are said to be partial-map non-aligned similar functors at

approximation degree α ∈ [0, 1] whenever:

1. there is a set Dα
fg ⊆ {1, . . . , m} of argument positions of f and a set Dα

gf ⊆ {1, . . . , n} of

argument positions of g such that |Dα
fg| = |D

α
gf|; and,

2. there exist a pair of mutually inverse bijections µα
fg : Dα

fg → {1, . . . , n} and µα
gf : D

α
gf →

{1, . . . , m} such that ran(µα
fg) = D

α
gf = dom(µα

gf) and ran(µα
gf) = D

α
fg = dom(µα

fg).

Note that it is possible in the above definition that dom(µα
fg) = ∅ or ran(µα

fg) = ∅. The former

means that no argument of f need be similar to any argument of g, and the latter means that no

argument of g need be similar to any argument of f . That is, in both cases, the similarity of terms

they construct reduces to that of the functors, regardless of any subterms.

We shall always require, for any approximation degree α ∈ [0, 1] and any functor f , that

Dα
ff = {1, . . . , arity(f)}, |Dα

ff | = arity(f), and µα
ff = 11{1, ..., arity(f)}. This means that pairs of the

form 〈f, f〉 (i.e., the diagonal) always have as argument-position map the total identity on all the

argument positions of f at any approximation degree.

The case where at least one of any two similar functors has a total injective map of its argu-

ment positions into the other functor’s is a special case of this. When this is so, argument-position

maps are composable because all the positions in the range of a map are always in the domain of

any map from this functor to another (of greater arity). With partial maps however, this may no

longer be possible.

Example 2.17 Non-composable inconsistent partial-map non-aligned functors — In addition

to the functors foo/5 and bar/4 of Example 2.16 where µαfoo,bar = { 3 7→ 4, 4 7→ 2 } (and µαbar,foo =
{ 2 7→ 4, 4 7→ 3 }), consider the functor biz/4 and the map µαbar,biz : {1 7→, 2, 3 7→ 4}. These maps

will not be composable simply because ran(µαfoo,bar) = {2, 4} and dom(µαbar,biz) = {1, 3} have no

elements in common. That is, ran(µαfoo,bar) ∩ dom(µαbar,biz) = ∅.
And even if they had compatible domain and range, say if µαbar,biz : { 1 7→ 2, 2 7→ 4 }, but µαfoo,biz :

{ 3 7→ 3, 4 7→ 4 }, this would mean that the composition µαbar,biz ◦ µ
α
foo,bar and the map µαfoo,biz also

disagree as we have, on one hand:

µαfoo,biz = { 3 7→ 3, 4 7→ 4}

and on the other hand:

µαbar,biz ◦ µ
α
foo,bar = { 3 7→ µαbar,biz(µ

α
foo,bar(3)), 4 7→ µαbar,biz(µ

α
foo,bar(4)) }

= { 3 7→ µαbar,biz(4), 4 7→ µαbar,biz(2) }

= { 3 7→?, 4 7→ 4 }

which is compositionally inconsistent, and thus µαbar,biz ◦ µ
α
foo,bar 6= µαfoo,biz.

And this is inconsistent also in the other direction as well, since µαbar,foo = { 2 7→ 4, 4 7→ 3 },
µαbar,biz : { 1 7→ 2, 2 7→ 4 }, and µαfoo,biz : { 3 7→ 3, 4 7→ 4 }, entail that the composition µαfoo,biz ◦
µαbar,foo and the map µαbar,biz would also disagree. We have, on one hand:

µαbar,biz = { 1 7→ 2, 2 7→ 4}
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and on the other hand:

µαfoo,biz ◦ µ
α
bar,foo = { 2 7→ µαfoo,biz(µ

α
bar,foo(2)), 4 7→ µαfoo,biz(µ

α
bar,foo(4)) }

= { 2 7→ µαfoo,biz(4), 4 7→ µαfoo,biz(3) }

= { 1 7→?, 2 7→ 4, 4 7→ 3 }

which, again, entails µαfoo,biz ◦ µ
α
bar,foo 6= µαbar,biz, and thus is compositionally inconsistent as well.

We next define formally the conditions for similar functor partial-alignment consistency of

a signature to make argument-position maps always be composable at any given approximation

degree.

DEFINITION 2.14 (CONSISTENT PARTIAL SIMILARITY OF NON-ALIGNED SIGNATURE) Let

Σ
def
= ∪k≥0Σk be a functor signature, and let ∼∼∼ : Σ × Σ → [0, 1] be a similarity on Σ. It is said

that signature Σ is non-aligned admitting ∼∼∼ as a consistent partial similarity whenever all the

following statements hold:

1. all argument-position mappings conditions (2.15)–(2.18) are verified;

2. all pairs 〈f, g〉 ∈ Σm × Σn of similar functors—i.e., when f∼∼∼αg with α ∈ [0, 1]—are

partial-map non-aligned similar functors at approximation degree α as specified by Defini-

tion 2.13;

3. for any functors f ∈ Σ and g ∈ Σ, and approximation degrees α ∈ [0, 1] and β ∈ [0, 1] :

α ≤ β =⇒ Dα
fg ⊆ D

β
fg ; (2.33)

4. for all f ∈ Σm, g ∈ Σn, h ∈ Σℓ, m ≥ 0, n ≥ 0, and ℓ ≥ 0 :







ran(µα
fg) = dom(µα

gh) (= Dα
gh)

ran(µα
fh) = ran(µα

gh) ;
(2.34)

and:







µα
hf = µα

gf ◦ µ
α
hg

µα
hg = µα

fg ◦ µ
α
hf .

(2.35)

These conditions are concisely summarized as the commutative functional diagram of Figure 2.15.

COROLLARY 2.5 (COMPOSABILITY OF ARGUMENT-POSITION MAPS) A non-aligned signa-

ture Σ with a consistent partial similarity ∼∼∼ verifying all the conditions of Definition 2.14 are

always consistently composable at any given approximation degree α ∈ [0, 1].
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{1, . . . , m}

Dβ
fg

Dα
fg 0 < α ≤ β ≤ 1

{1, . . . , n}

Dβ
gf

Dα
gf

Dβ
hf = D

β
hg

Dα
hf = D

α
hg

µα
fg = (µα

gf)
−1

µα
gf = (µα

fg)
−1

µ α
hf µ

α
hg

µβ
fg = (µβ

gf)
−1

µβ
gf = (µβ

fg)
−1

µ β
hf µ

β
hg

Figure 2.15: Partial-map non-aligned similar functors argument-map consistency diagram

PROOF We need to verify that, for any functors f , g, h and any α ∈ [0, 1]:

ran(µαfg) ⊆ dom(µαgh)

and,

dom(µαfh) = dom(µαfg) and ran(µαfh) = ran(µαgh)

and that, for all positions i ∈ dom(µαfg):

µαfh(i) = µαgh(µ
α
fg(i)).

All three properties can be verified to be immediate consequences of the conditions of Defini-

tion 2.14. �

The following is also a corollary of Definition 2.14 and Definition 2.13.

COROLLARY 2.6 (STABILITY OF PARTIAL SIMILARITY DOMAINS AND CLASSES) Given any

two functors f and g such that f∼∼∼αg at approximation degree α ∈ [0, 1], the size |Dα
fg| of the set

Dα
fg is constant for fixed α; that is, |[f ]α∼∼∼| = |D

α
fg| = |D

α
gf| = |[g]

α
∼∼∼|.

PROOF This follows since, at any fixed approximation degree, all maps between functors in a

similarity class are bijective and the fact that they all verify the properties specified in Definition 2.14

and Definition 2.13. �
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PARTIAL NON-ALIGNED SIMILAR TERM DECOMPOSITION

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) } )α

(E ∪ { sd1
.
= tµα∧β

fg
(d1)

, . . . , sdp
.
= tµα∧β

fg
(dm) } )α∧β

[

f ∼∼∼
µβ

fg

β g; 0 ≤ |Dα∧β
fg | = p, p ≤ min(m,n); Dα∧β

fg = {d1, . . . dp}

]

Figure 2.16: Partial non-aligned similar FOT similar term decomposition rule

DEFINITION 2.15 The fuzzy relation ∼∼∼T on TΣ,V is defined inductively as:

1. ∀X ∈ V, X ∼∼∼T
1 X;

2. ∀X ∈ V, ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X;

3. for m ∈ N, n ∈ N, f∼∼∼αg with µα
fg : D

α
fg → D

α
gf and si∼∼∼

T
αi
tµα

fg
(i) for all i ∈ Dα

fg, then:

f(s1, . . . , sm) ∼∼∼
T
(α∧

∧

i∈Dα
fg
αi)

g(t1, . . . , tn). (2.36)

With this definition and the following theorem, we shall now have all the necessary formal

tools to proceed as we did for the two previous FOT lattice structure constructions in the case

where non-aligned Σ admits ∼∼∼ as a consistent partial similarity.

THEOREM 2.7 The relation ∼∼∼T defined by Definition 2.15 is a similarity relation on T the set

of FOT s.

From this, in the same manner as we did before, we shall derive a weaker subsumption pre-

order onFOT s as well as adapt our previous sets of rules to specify the corresponding unification

and generalization lattice operations for this preorder. This is what we present next.

The rules for unification of similar partial-map non-alignedFOT s are those of Maria Sessa’s

weak unification (see Figure 2.7) where Rule WEAK TERM DECOMPOSITION is replaced with

Rule PARTIAL NON-ALIGNED TERM DECOMPOSITION given in Figure 2.16. N.B.: there is

no need to re-orient a term equation as for total maps (see Figure 2.11). Why?

The rules for generalization of partial-map non-aligned similar FOT s are those given in

Figure 2.13 where Rule SIMILAR FUNCTORS is replaced with Rule PARTIAL NON-ALIGNED

FUNCTOR SIMILARITY given in Figure 2.17, where, for i = 1, . . . , p:
(

s′i
t′i

)

βi

def
=

(

sµαi−1

hf
(i)

tµαi−1

hg
(i)

)

↑
αi−1

(

σi−1
1

σi−1
2

)

and

(

σi−1
1

σi−1
2

)

βi

⊢

(

s′i
t′i

)

ui

(

σi
1

σi
2

)

αi

.

N.B.: there is no differentiating left/right rules as for total maps (see Figure 2.14); only a

single rule is needed. Why?
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PARTIAL NON-ALIGNED FUNCTOR SIMILARITY

[

f/m∼∼∼β g/n; α0
def
= α ∧ β; h/p ∈ [f/m, g/n]α0

; |Dα0

hf | = |D
α0

hg | = p
]

(

σ1
σ2

)

α0

⊢

(

s′1
t′1

)

u1

(

σ11
σ12

)

α1

. . .

(

σp−1
1

σp−1
2

)

αp−1

⊢

(

s′p
t′p

)

up

(

σp1
σp2

)

αp
(

σ1
σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

h(u1, . . . , up)

(

σp1
σp2

)

αp

Figure 2.17: Partial non-aligned similar FOT generalization rule

Automated signature completion Note that the unification and generalization rules above will

work with non-aligned similar functors with partial argument-position maps as long as the con-

ditions on the signature, the functor similarity, as well as all the corresponding partial argument

alignment, verify the signature consistency conditions given in Definition 2.14 and illustrated in

Figure 2.15. These conditions are necessary to ensure composability of all partial argument maps

at any approximation level α ∈ [0, 1]. Indeed, it is composability of similar functor argument

maps that ensures consistent transitivity of the functor similarity.

However, one may object to requiring signatures and their similarities to possess complete

consistent partial maps as rather demanding. We now see how the process of verifying this to be

true for a given signature and similarity can be automated. In fact, there are two questions that

must be addressed:

1. Can a given signature with specified similarity and partial alignment maps automatically

be either verified to meet these requirements, or proven inconsistent?

2. Can a consistent but incomplete signature be completed to a minimal consistent one con-

taining it while respecting all its similaririties and argument alignment maps?

The good news is that the answer to both questions is “yes.”

1. There is a finite procedure to verify that for all pairs of transitive pairs of functors 〈f, g〉 and

〈g, h〉, all specified argument maps abide by necessary consistency conditions or to point

out where this is violated, and why.

2. Should a signature be detected to be incomplete at a given approximation level α ∈ [0, 1]
in the sense that some functor similarity class does not possess a least-arity representative

with complete and consistent argument maps to all other functors in its class at level α, then

either the signature can be completed with a new functor with this property with appropriate

least (in terms of inclusion of sets of pairs) argument maps to all functors in its class, or an

explicit counter-example can be given that shows why there is no consistent signature can

complete this signature while respecting all argument maps.

This procedure may be performed at all levels α ∈ DEGREES
∼∼∼. Pseudocode specifying this

completion procedure is given in Figure 2.18. It automatically completes an incomplete signature

and a specified base set of similar functor pairs, together with some partial argument-position
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maps using a completion procedure on the signature and the similarity so that the signature may

either be proven inconsistent, or completed with a similarity such that each similarity class at

any approximation degree α ∈ DEGREES
∼∼∼ contains at least one representative functor with

consistently aligned total argument-position maps to all members of the class.

forall α ∈ DEGREES
∼∼∼ and similarity class c ∈ Π∼∼∼α do

if ∄ a least-arity similarity class representative in c with total
argument-position maps to all members of c

then • add a new functor h/m to signature Σm such that:

m = min{|Dα
fg| | f ∈ c, g ∈ c},

with least total consistent injective maps:

µα
hf : {1, . . . , m} → {1, . . . , n}

for all f/n ∈ c; if not possible, Σ is inconsistent;

• add functor h/m to similarity class c;

Figure 2.18: Automated completion of partial-maps for non-aligned signature similarity

Example 2.18 Non-aligned signature partial similarity completion — Consider a signature Σ in

which the only pair of non-identical similar functors at a given similarity degree α are f/4 and g/3 such that

f ∼∼∼
µα

fg
α g and g∼∼∼

µα
gf

α f with mutually inverse injective partial argument-position maps µαfg = {〈2, 1〉, 〈4, 3〉}

and µαgf = {〈1, 2〉, 〈3, 4〉}, so that Dα
fg

def
= {2, 4} and Dα

fg

def
= {1, 3}.

The similarity class c = {f, g} does not have a least-arity functor class representative with total

argument-position maps to all members of c. So, since {|Dα
fg| | f ∈ c, g ∈ c} = 2, the mini-

mum value in this set is 2. So we add a new functor h/2 to Σ2 with the total argument maps: µαhf =
{〈1, µαgf(1)〉, 〈2, µ

α
gf(3)〉} and µαhg = {〈1, µαfg(2)〉, 〈2, µ

α
fg(4)〉}; that is, µαhf = {〈1, 2〉, 〈2, 4〉} and µαhg =

{〈1, 1〉, 〈2, 3〉}.

And this is consistent by construction since µαhg = µαfg ◦ µ
α
hf and µαhf = µαgf ◦ µ

α
hg (as can be easily

verified). So h/2 can be added to class c.

2.7 Recapitulation

In this chapter, we have developed a formal derivation of fuzzy lattice operations for the data

structure known as first-order term. This is achieved by means of syntax-driven constraint nor-

malization rules for both unification and generalization. These operations are then extended to

enable arbitrary mismatch between similar terms whether functor-based, arity-based (number

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 62 Version of January 8, 2019

and order), or combinations, and then yet to consistent partial mappings of argument positions

between similar functors.

This last lattice of FOT s permits Fuzzy Logic Programming over arbitrary misaligned-data

bases, or more generally Approximate Information Retrieval (using fuzzy unification) and Ap-

proximate Knowledge Acquisition (using fuzzy generalization) over heterogeneous but similar

data models, whereby approximating modulo constructor similarity is consistently conjugated

with approximating with less structure details.

As for implementation, the prospects are many and discussed in Chapter 4.25 The most imme-

diate concerns implementation of such operations in the form of public libraries to complement

extant tools for first-order terms and substitutions [73].

As for what perspectives this work may open, there are several avenues to explore. There are

several other disciplines where this technology has potential for fuzzifying applications wherever

FOT s are used for their lattice-theoretic properties such as linguistics and learning. Finally,

most promising is using this work’s approach to more generic and more expressive knowledge

structures for applications such as Information Retrieval (e.g., in the line of [38]), or Data and

Knowledge Base Management, Ontology Alignment, etc., . . .

2.8 Relation to Other Works

There have been other works dealing with the larger issue of integrating general equational theo-

ries into logical reasoning, not just the specific theory of fuzzy equivalence among terms. Among

the most formally and operationally complete approach, pioneered by Goguen et al. in the seven-

ties, is the set of works based on initial algebras [64].26 Recall that an operator algebra is initial

iff there exists a homomorphism from it to all other algebras that are semantic models of first-

order terms freely built with these operators and variables [62]. Namely, initiality is the property

that guarantees that the formal meaning of syntactic terms defined for FOT s modulo congruence

classes defined by equations is preserved for all interpretations. This result was later extended

from equational systems to implicational systems by Mahr and Makowsky [89]. In this latter

paper, it was also shown that Horn Logic (i.e., an implicational system consitituting the formal

basis of the Prolog language), is the largest class of logic that admits an initial algebra semantics.

While the initial algebra approach has shown its general applicability for term unification and

generalization, including more recently with the work of Alpuente et al. over order-sorted signa-

tures [24] and with equational theories [25], its specific application to fuzzy congruences has yet

to be done. While it could conceivably be specified by instantiating the general scheme of initial

semantics, this must be at the expense of both formal and operational simplicity when compared

with our approach which can be expressed as a direct extension of conventional operations of

unification and generalization of first-order terms. This is because it is specifically adapted to a

fuzzy equivalence of terms rather than general-purpose reasoning modulo equational theories. In

the latter more general approach, equations can be used as terminating rewrite rules and unifica-

25Section 4.4.
26An initial algebra is also called free algebra, or syntactic algebra, or tree algebra, or term algebra—because its

elements are the syntactic term structures one can define recursively by nesting terms as arguments of other terms

(i.e., the model taking as interpretation homomorphism the identity function on terms).
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tion modulo this theory is made operational using the general equation-solving technique known

as “narrowing” [58], [57]. However, for this to work, one must have a terminating and conflu-

ent set of rewrite rules. Such may be derived in some cases based on undecidable procedures

such as Knuth-Bendix completion [82], or unterminating term rewriting [55]. Rather, we limit

ourselves to the obviously decidable theory generated homomorphically on FOT s from a fuzzy

equivalence relation (a similarity) on a finite signature. This follows the intuition behind Maria

Sessa’s formal work on fuzzy FOT unification as well [117]. Also, we support arity and argu-

ment position mismatch for similar operators.27 Be that as it may, one could envisage studying

how E-unification for common equational theories such as associativity or commutativity could

be extended to unification of terms with similar functors. However, this is another issue and we

do not do so in this document’s setting.

There have been also works in logic-based databases such as using a similarity degree while

comparing syntactically unequal terms; for example, Francesca Arcelli et al.’s LIKELOG database

logic programming language [30], [28]. These works, however, concern only ground terms (i.e.,

with no variables), not first-order terms (i.e., possibly having variables). Arcelli et al.’s notion of

similarity distance between terms was later extended from ground terms to first-order terms by

Shroeder and Gilbert in the fuzzy logic programming language FURY [61], [115], [116]. They

use the same concept as Arcelli et al.’s fuzzy equivalence but derived from dynamically eval-

uating so-called “edit distance” between strings on ground terms as well as first-order terms.28

Thus, their objective is to derive dynamically an estimate of an “edit distance” between terms.

The same comments also apply to work by Kutsia et al. [84], [85], where the objective is to check

all the possibilities of dynamically matching FOT s with equal function symbols having unspec-

ified number of arguments (i.e., the same sort of search objective pursued in FURY, where this is

done for unequal symbols as well). This objective is not ours in that we are not trying to infer

dynamically distances between terms. Rather, we assume given a matrix of similarity degrees for

such a static similarity relation on term constructors and use this information exactly in the same

manner as done by Maria Sessa in [117]. In Sessa’s context (and ours), this information is given

statically, not inferred dynamically. Finally, the main advantage of working from a given static

matrix of similarity degrees rather than estimating syntactic edit distances (whether dynamically

or statically) is that similarity may be semantic among syntactically unrelated but semantically

close strings. The context of dynamic syntactic distance estimation is typically for applications of

purely lexical variants such as estimating gene similarity in biology [61]. Ours concerns deriving

approximate solutions to fuzzy equations given similarity among term constructors.

Our last reference to other work related to unification and generalization of graph data and

type structures, is the set of work due to Aı̈t-Kaci et al. (i.e., [18] and [21]). In this context, nodes

denote sorts (that are organized in a lattice) and arrows denote features (functional attributes

between sort nodes); variables denote equations among (possibly cyclic) feature paths. Just as

such subsumption and its lattice operations on FOT s can be fuzzified, so can indeed the lattice

of Order-Sorted Feature terms. We address this topic in Chapter 3.

27See Section 2.6.1.
28See [114] this email discussion on the issue.
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Order-Sorted Feature Terms

In the previous chapter, it may have come many times to the reader’s mind that a FOT is just

syntax for a tree where node labels are functors except possibly for some leaf nodes that are

replaced with variables, and functor-labeled nodes have position-numbered arrows pointing to

the root of the subterm tree at each argument position. It is so indeed. In fact, when the leaf

nodes that have the same variable are joined, it is a rooted directed acyclic graph (or “dag”).1 As

such, it is a special case of a more general kind of labeled rooted (possibly cyclic) graph—called

a rooted order-sorted feature (OSF ) graph. Sort symbols are node labels. Sorts are partially

ordered to reflect subsumption and form a lattice. Feature symbols labeling arrows represent

functional attributes. These graphs are so ordered by endomorphic structure-preserving (sort,

feature, and feature path equations) subsumption. Lattice-theoretic operations for these more

general rooted graphs, labeled with partially-orderd sorts and with features, can be shown to

extend those on more restricted kind of rooted graphs such as FOT s, labeled with functors,

positions, and variables.2

In this chapter, we elaborate on these notions. In Section 3.1, we start with an informal

introduction to the OSF formalism (Section 3.1.1), then continue with a formal presentation

(Section 3.1.2), leading to expressing OSF graph lattice operations declaratively as constraint

normalization. In Section 3.1.3, we characterize these operations in terms of solving constraints

where solutions are functional mappings between reference tags. These mappings generalize to

OSF graphs the notion of FOT substitution.3 In Section 3.2, we turn to fuzzifying OSF -

graph subsumption and its lattice operations: in Section 3.2.1 we explicate fuzzy OSF graph

unification, and in Section 3.2.2 fuzzy OSF graph generalization.

3.1 OSF Formalism

The OSF formalism extends to typed attributed data structures the representation, syntax, and

operations enjoyed by FOT s as used in Logic Programming. It was developed to express rigor-

1A rooted (directed) graph is one with a distinguished node, called its root, from which all other nodes can be

reached.
2See Appendix Section B.3.
3For implementation issues, see [9], and [13].
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ously the meaning and properties of graph structures used in the experimental language LIFE
to represent data and knowledge as, respectively, elements and types [7], [14].

A formal semantics for OSF structures can be precisely expressed using each of these three

mathematical frameworks—(1) algebraic (as terms), (2) logical (as clauses), and (3) operational

(as graphs). In [18], the mathematical equivalence of these three formal semantics was estab-

lished with explicit cross-interpretations. In this part, we shall rely on this result by (1) defining

lattice-theoretic operations on the algebra of OSF terms, (2) defining corresponding constraint

normalization rules for these operations (on the logic of OSF clauses), and (3) deriving an im-

plicit operational semantics from these declarative rules (on OSF graph structures).

Next, we start with a brief informal description of the kind of labeled graphs OSF structures

are, and how they may be expressed syntactically in a manner that naturally extends the syntax

of algebraic FOT s. This term syntax is further transformed into a clausal language upon which

unification can be rendered as constraint normalization. We then delve into more details defining

this syntax formally as well as OSF term subsumption, unification, and generalization.

3.1.1 Informal background

Let us take an example (taken from [9]). Let us assume that we wish to describe a 30-year-old

person with an id consisting of a name, itself made of two parts: a first name and a last name, both

represented as strings. Let us also say that we wish to indicate that such a person has a spouse

that is a person sharing his or her id’s last name, and such that this latter person’s spouse is the

first person in question. We propose to represent this information as the graph in Figure 3.1.

P string

name

person S

30 string

person name

id

a
g
es
p
o
u
s
e

fi
rs
t

l
a
s
t

s
p
o
u
s
e

id

l
a
s
t

Figure 3.1: Example of OSF graph

This graph consists of a set of nodes and arcs between some nodes. This graph, however, is

a labeled graph. There are two kinds of label symbols: one kind is for the nodes (e.g., person,
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name, etc.), and the other is for the arcs. We call the symbols labeling nodes “sorts,” and the

symbols labeling arcs “features” (e.g., spouse, age, etc.). Intuitively, sort symbols denote

sets, and feature symbols denote functions between these sets. We will identify value-denoting

symbols such as 30 as sorts as well since they can be thought of as singleton sets—i.e., in this

case the set {30} containing the single integer 30. We will also assume that sort symbols are

partially ordered with a “subsort” relation “is-a” denoting set inclusion on the sets denoted by

the sorts. This justifies calling such a graph an “order-sorted feature” graph; or, OSF graph for

short.

In fact, an OSF graph can be defined as a rooted sorted commutative diagram of function

compositions of the same nature as those used in mathematics. In other words, all feature-

composition paths between two sort nodes commute.

The other labels such as P and S in the graph of Figure 3.1 are used as reference pointers to

designate specific nodes—in this case the root node (e.g., P)—or indicate an equational constraint

among feature paths (e.g., P and S). we shall call them reference tags. Formally, these will be

assimilated to logical variables, i.e., lexical references that could be consistently renamed in their

context, without altering the meaning of the OSF graphs, terms, and constraints, in which they

appear.

The above informal description of an OSF graph should make intuitive sense to anyone

familiar with the kind of data structure used in object-oriented programming to represent typed

object records. This is indeed a good way to think about it. It is this pragmatic understanding that

we wish the reader to keep in mind. Our intention, however, is to go beyond merely representing

and using structured types and objects: we not only want these to be convenient for computing,

we also want them to be convenient for reasoning—while never losing this simple intuition. Thus,

we follow a simple syntax to represent these graphs that will enable us to do so. For example, we

represent the graph shown in Figure 3.1 using the syntax shown in Figure 3.2.

P : person(id → name(first → string,
last → S : string),

age → 30,
spouse → person(id → name(last → S),

spouse → P)).

Figure 3.2: OSF term syntax for the OSF graph of Figure 3.1

The reader with some knowledge of Logic Programming will have noted that this syntax

generalizes that of Prolog terms—i.e., of FOT s. Indeed, a Prolog term can be seen as a restricted

kind of OSF term, where sort symbols are data constructors; feature symbols are (implicit)

subterm positions; and, reference tags are so-called “logical variables,” and can only occur as

leaves.4 It is to stress this fact that we call an expression such as that in Figure 3.2 an “OSF
term.” Note that, unlike a Prolog term where subterms are written following an implicit position

order, an OSF term may be written up to permutation of its subterms since explicit feature

labels allow specifying subterms in any order while still representing the same OSF graph. For

4See Appendix Section B.3.
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example, theOSF term in Figure 3.3 could as well be used to represent the sameOSF graph in

Figure 3.1.

P : person(age → 30,
spouse → person(spouse → P,

id → name(last → S : string)),
id → name(last → S,

first → string)).

Figure 3.3: EquivalentOSF term syntax for the OSF graph of Figure 3.1

3.1.2 Formal background

In this section, we give a brief formal account of the notions illustrated in the foregoing informal

description. The reader is referred to [18], [19], and [20] for all technical details such as mathe-

matical proofs, and to [9] and [13] for more operational details such as implementation, as well

as all further relevant references in them.

§ OSF SIGNATURE

An OSF signature is a quadruplet 〈S,�,f,F〉 where:

• S is a set of sorts containing at least the two distinguished sorts ⊤ and ⊥;

• � is a decidable partial order on S for which ⊥ is unique least element and ⊤ is unique

greatest element;

• 〈S,�,f〉 is a lower semi-lattice (sf s′ is called the greatest common subsort of s and s′);

• F is a set of feature symbols.

Referring to the ψ-term example in Figure 3.2, the set of sorts S contains set-denoting sym-

bols such as person, name, and string. The set of features F contains function-denoting

symbols (on the left of→), such as id, age, spouse, first, last, etc., . . . The ordering on

the sorts S denotes set inclusion and the infimum operation f denotes set intersection. Therefore,

⊤ denotes the all-inclusive sort (the set of all things), and⊥ denotes the all-exclusive sort (the set

of no things). This is formalized next.

§ OSF ALGEBRAS

Given anOSF signature 〈S,�,f,F〉, anOSF algebraA is a mathematical structure consisting

of a triplet:

A
def
= 〈DA, (sA)s∈S , (f

A)f∈F 〉 (3.1)

where:
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• DA is a non-empty set, called the domain of A;

• for each sort symbol s in S, sA is a subset of the domain; in particular, ⊤A = DA and

⊥A = ∅;

• (s1 f s2)
A = sA1 ∩ s

A
2 for two sorts s1 and s2 in S;

• for each feature f in F , fA is a total unary function from the domain into the domain; i.e.,

fA : DA 7→ DA.5

§ OSF HOMOMORPHISMS

In algebra, a homomorphism between two algebraic structures is a structure-preserving mapping.

The essence of a structure-preserving mapping between OSF algebras is that it should preserve

sort inclusion and feature application. Thus, an OSF homomorphism γ : A 7→ B between two

OSF algebras A and B is a function γ : DA 7→ DB such that:

• γ(sA) ⊆ sB; and,

• γ(fA(d)) = fB(γ(d)) for all d ∈ DA.

§ OSF ENDOMORPHISMS

The notion of interest for inheritance is that of OSF endomorphism. That is, when an OSF
homomorphism γ is internal to anOSF algebra (i.e.,A = B), it is called anOSF endomorphism

ofA. This means:

• ∀s ∈ S, γ(sA) ⊆ sA; and,

• ∀f ∈ F , ∀d ∈ DA, γ(fA(d)) = fA(γ(d)).

Such an endomorphism defines a natural pre-order� on the domainDA of anyOSF algebra

A whereby t1 � t2 iff ∃γ : DA → DA such that t1 = γ(t2). This is as pictured in Figure 3.4. As

can be seen in this figure, this definition captures formally and precisely inheritance of attributes

as used, e.g., in object-oriented classes, semantic networks, and formal ontological logics defining

concept hierarchies. Namely, a concept C1 (the subconcept) inherits from a concept C2 (its

superconcept) if and only if there exists an OSF endormorphism (γ) taking the set denoted by

the superconcept C2 (= s) to the set denoted by the subconcept C1 (= γ(s)). Being an OSF
endomorphism means therefore that C1.f = γ(C2.f) = γ(f(s)) = f(γ(s)). In other words,

feature application and sort refinement commute—doing the former then the latter or vice versa

yields the same result.

§ SYNTAX OF OSF TERMS

DEFINITION 3.1 (OSF TERM SYNTAX) An OSF term t is an expression taking one of the

three possible syntactic forms:

1. an unsorted variable X; or,

5See Appendix Section B.2 for partial features, and other extensions.
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C2 = s C2.f = f(s)

C1 = γ(s) C1.f = γ(f(s)) = f(γ(s))

γ γ

f

f

Figure 3.4: Property inheritance as OSF endomorphism

2. a sorted variable X : s; or,

3. an attributed sorted variable X : s(f1 → t1, . . . , fn → tn);

where X is an element in a countably infinite set of variables V , s is a sort in S and, f1, . . . , fn
are features in F and t1, . . . , tn are OSF terms, for any n ≥ 1.

In such a term t, the variable X is called its root variable, and is referred to as ROOT(t). The

set of all variables occurring in t is defined as TagSet(t)
def
= { ROOT(t) } ∪

⋃n
i=1 TagSet(ti). In

what follows, we consider “variable” and “tag” to be synonymous: a logical variable points to

the root of an OSF term as does a reference to a data structure. As justified by the following

semantics given to this syntax, we shall consider the first form for an unsorted variable X that

occurs nowhere else in its context as a sorted variable, as a shorthand for X : ⊤.

§ SEMANTICS OF OSF TERMS

For a term t such as above, an OSF algebra A, and a specific A-valuation υ : V 7→ DA, the

denotation [[t]]A,υ of t is given by:

[[t]]A,υ def
= { υ(X) } ∩ sA ∩

⋂

1≤i≤n

(fA
i )−1([[ti]]

A,υ). (3.2)

Hence, for a fixedA-valuation υ, [[t]]A,υ is either the empty set or the singleton set { υ(ROOT(t)) }.
In fact, it is not the empty set if and only if the value υ(ROOT(t)) lies in the denotation of the sort

s, as well as every inverse image by (fA
i )−1 (the reciprocal of the denotation fA

i of each feature

fi) of the denotation of the corresponding subterm [[ti]]
A,υ under the same A-valuation υ. Thus,

the denotation of an OSF term t for all possible valuations of the variables is given by the set:

[[t]]A
def
=

⋃

υ:V7→DA

[[t]]A,υ. (3.3)
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§ OSF TERM SUBSUMPTION

Let t and t′ be two OSF terms. Since we have both a formal syntax and its formal semantics,

there are two ways we can define OSF term subsumption.

DEFINITION 3.2 (SYNTACTIC OSF TERM SUBSUMPTION) We say that “ t is syntactically sub-

sumed by t′ ” (written: t � t′) if and only if, there exists an OSF endomorphism γ such that

t = γ(t′).

DEFINITION 3.3 (SEMANTIC OSF TERM SUBSUMPTION) We say that “ t is semantically sub-

sumed by t′ ” (written: t[[�]]t′) if and only if, for all OSF algebras A, [[t]]A ⊆ [[t′]]A.

The following theorem was established in [18] and states that the two definitions coincide.

THEOREM 3.1 (OSF TERM SUBSUMPTION) For any OSF terms t and t′,

t � t′ ⇐⇒ t[[�]]t′.

§ OSF TERM NORMAL FORM

An OSF term t = X : s(f1 → t1, . . . , fn → tn) is said to be “in normal form” whenever all

the following properties hold:

• s is a non-bottom sort in S;

• f1, . . . , fn are pairwise distinct features in F , for all n ≥ 1;

• t1, . . . , tn are all OSF terms in normal form, for all n ≥ 1; and,

• every variable in TagSet(t) is sorted at most once.6

With these criteria, we note hence that all the examples of OSF terms shown in the previous

section are, formally speaking, in normal form. Such a normal form ensures that it is devoid

of actual or potential inconsistencies. We shall call an OSF term in normal form a “ψ-term,”

and designate as Ψ the set of all ψ-terms.7 How to normalize an OSF term into a semantically

equivalent ψ-term is explained next.

§ FROM OSF TERMS TO OSF CONSTRAINTS

A logical reading of an OSF term is immediate as its information content can be characterized

by a simple formula. For this purpose, we need a simple clausal language as follows.

An atomic OSF constraint is one of (1) X : s, (2) X
.
= X ′, or (3) X.f

.
= X ′, where X and

X ′ are variables in V , s is a sort in S, and f is a feature in F . A (conjunctive)OSF constraint is

a conjunction (i.e., a set) of atomicOSF constraints φ1 & . . . & φn. Given an OSF algebraA,

6That is, if X ∈ TagSet(t) occurs in t both as X : s and X : s′, then s = ⊤ or s′ = ⊤.
7The expression “ψ-term” was introduced originally by the first author in his PhD thesis [3] as a shorthand for

“Property Structure Inheritance Term,” as a formalization of some parts of Ron Brachman’s “Structured Inheritance

Networks” (or “SI-Nets”) defined informally in his PhD thesis [43].
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we say that an OSF constraint φ is satisfiable in A with a valuation υ : V 7→ DA (and we write

this as “ A, υ |= φ”) whenever:

A, υ |= X : s iff υ(X) ∈ sA;

A, υ |= X
.
= Y iff υ(X) = υ(Y );

A, υ |= X.f
.
= Y iff fA(υ(X)) = υ(Y )

A, υ |= φ & φ′ iff A, υ |= φ and A, υ |= φ′.

(3.4)

We can always associate with an OSF term t = X : s(f1 → t1, . . . , fn → tn) a corre-

spondingOSF constraint ϕ(t) as follows:

ϕ(t)
def
= X : s & X.f1

.
= X1 & . . . & X.fn

.
= Xn

& ϕ(t1) & . . . & ϕ(tn)
(3.5)

where X1, . . . , Xn are the roots of t1, . . . , tn, respectively. We say that ϕ(t) is obtained from

dissolving the OSF term t. The following theorem, also established in [18], states that the

algebraic denotation of an OSF term as a set and the logical semantics of its dissolved form

coincide exactly.

THEOREM 3.2 (COINCIDING ALGEBRAIC AND LOGICAL SEMANTICS OF OSF TERMS)

[[t]]A = { υ(ROOT(t)) | υ ∈ VALUATIONS(A) and A, υ |= ϕ(t) }.

3.1.3 OSF Lattice Structure

As seen in the two previous sections, the FOT as a data structure can be extended and made

more expressive as a knowledge structure into a rooted OSF graph written as an OSF term. It

is more expressive because it can be used to represent specific data as well as generic conceptual

structures. Formally, it is a more generic formal scheme than FOT s and their lattice-theoretic

properties exposed by Reynolds and Plotkin. These are just a special case ofOSF terms and their

lattice operations.8 The operations of unification and generalization can be extended from FOT s

to OSF terms, obtaining improved expressivity while keeping the same complexity, to provide

a simple and intuitive semantics for knowledge and data structures of partial descriptions. In [3]

and [5], it was formally established that the Reynolds-Plotkin FOT lattice-theoretic algebra ex-

tends naturally to OSF structures, which express order-sorted functional commutative diagrams

among sets as used in mathematics to express equational constraints among feature compositions.

The subsumption ordering defined on ψ-terms is an extension of the subsumption ordering

on FOT s. Specifically, for an OSF term t to subsume an OSF term t′ (i.e., t′ � t), there

must be a mapping γ from the tags of t to the tags of t′—i.e., γ : TagSet(t) 7→ TagSet(t′)—that

respects sorting and preserves feature applications. Such a mapping is called a sort-consistent

feature-preserving endomorphic mapping and is the formal notion extending the concept ofFOT
substitution to ψ-terms. To emphasize the existence of this mapping γ whenever t′ � t, we shall

also write t′ = γ(t).

8See Appendix Section B.3.
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t = lub(t1, t2)

t1 = γ1(t) t2 = γ2(t)

t =

{

γ(t1) = γ(t2)
γ(γ1(t)) = γ(γ2(t))

}

= glb(t1, t2)

γ1 γ2

γ γ

Figure 3.5: OSF subsumption lattice operations

Formally, such a mapping γ associates each tag symbol of a ψ-term t to a tag symbol of

ψ-term t′ = γ(t) in such as way that, whenever:

{X : d,X.f
.
= Y, Y : r } ⊆ ϕ(t),

then necessarily, for some sorts d′ and r′ s.t. d′ � d and r′ � r:

{ γ(X) : d′, γ(X).f
.
= γ(Y ), γ(Y ) : r′ } ⊆ ϕ(t′) = ϕ(γ(t)).

This, as pictured in the diagram in Figure 3.4, captures formally attribute inheritance as used in

object-oriented programming and knowledge representation, with the added bonus of providing

a means to perform deduction (unification) and induction (generalization) on such structures.

As shown in Figure 3.5, endomorphic mappings define lattice operations on ψ-terms whose

sets of tags have been consistently renamed apart in exactly the same way as “renaming substitu-

tions” do for FOT s.9 Just like FOT s with substitutions, whenever two ψ-terms t and t′ are such

that ∃γ s.t. t′ = γ(t) and ∃γ′ s.t. t = γ′(t′), they are said to be identical “up to tag renaming.”

This is because necessarily γ′ = γ−1 and γ = γ′−1 make up a pair of mutually inverse “one-

to-one onto” tag mappings (bijections). How to compute these endomorphic mappings by OSF
constraint normalization is shown next.

§ OSF UNIFICATION: DEDUCTION BY CONSTRAINT NORMALIZATION

DEFINITION 3.4 (SOLVED OSF CONSTRAINT) An OSF constraint φ is said to be in solved

form if for every variable X , φ contains:

9See Figure 2.1 in Section 2.3.
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SORT INTERSECTION:

φ & X : s & X : s′

φ & X : sfs′

FEATURE FUNCTIONALITY:

φ & X.f
.
= Y & X.f

.
= Y ′

φ & X.f
.
= Y & Y

.
= Y ′

INCONSISTENT SORT:

φ & X : ⊥

false

TAG ELIMINATION:

φ & X
.
= Y

φ[X/Y ] & X
.
= Y

[Y ∈ TagSet(φ)]

Figure 3.6: Constraint normalization rules for OSF unification

• at most one sort constraint X : s and s 6= ⊥;

• at most one feature constraint X.f
.
= Y for any X.f that occurs in φ;

and whenever X
.
= Y ∈ φ, then X does not appear anywhere else in φ.

Given an OSF constraint φ, non-deterministically applying any applicable rule among the

rules shown in Figure 3.6 until none applies always terminates either in the inconsistent constraint

false or in a solved OSF constraint. The notation φ[X/Y ] in Rule TAG ELIMINATION stands

for the constraint φ in which all occurrences of the tag Y have been replaced with the tag X . As

a result of applying this rule, the tag being eliminated (Y ) will occur nowhere else in the normal

form except as the right-hand side of constraint X
.
= Y .

In [18], it is shown that the rules in Figure 3.6 are:

1. solution-preserving—for each rule, the set of solutions of the posterior constraint is equal

to the set of solutions of the prior constraint;

2. finite terminating—they always terminate after a finite number of formula transformations;

3. confluent—they always end up with the same constraint up to consistent tag renaming.

Furthermore, they always result in a normal form that is either the inconsistent constraint false or

a consistentOSF constraint in solved form. These rules are all we need to perform the unification

of two ψ-terms. Namely, two ψ-terms t1 and t2 are unifiable if and only if the normal form of the

OSF constraint ROOT(t1)
.
= ROOT(t2) & ϕ(t1) & ϕ(t2) is not false. For a detailed example of

how applying these rules corresponds to computing the glb of two ψ-terms, see Example B.2 in

Appendix B.1.

An OSF constraint φ in solved form is always satisfiable in a canonical interpretation struc-

ture; viz., the OSF graph algebra Ψ [18]. As a consequence, the OSF -constraint normalization

rules yield a decision procedure for the satisfiability of OSF constraints. This decision proce-

dure is also operationally efficient [13]. One important reason for its efficiency is that computing

sort intersection as specified by Rule SORT INTERSECTION can be done in constant time by

encoding sorts as binary vectors as shown in [12]. This results in tremendous speed performance
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when compared to encoding a class hierarchy’s partial order using First-Order Logic implication,

even when resorting to proof memoization (and thus paying a hefty space and time overhead, as

done in for example in [81]).

§ OSF GENERALIZATION: INDUCTION BY CONSTRAINT NORMALIZATION

Just like FOT s, ψ-terms also possess an operation of generalization that is dual to unification

([3], [21]). The operation is very similar, with the additional taking into account of common

symbolic features rather then all contiguous positions, as well as partially ordered sorts denoting

sets and the sort ordering denoting set inclusion.

What follows is a formal specification of theOSF generalization operation. This formulation

is different than the one used in [21].10 It is equivalent to it, however, expressed with this now

familiar notation we used for FOT generalization in Section 2.5, extended to OSF terms; that

is,

(

γ1
γ2

)

⊢

(

ψ1

ψ2

)

ψ

(

γ′1
γ′2

)

where, ψ is the ψ-term generalizing the ψ-terms ψi, for i = 1, 2, and γi and γ′i are, respectively,

the judgement’s pairs of prior and posterior tag maps.11 In order to do this, all the generaliza-

tion constraint normalization rules must be reformulated into syntax-directed judgment axioms

and rules directly on the syntactic form of ψ-terms (i.e., OSF terms in normal form) defined in

Equation (3.1), rather than on dissolved OSF constraints as done in [21]. The dissolved form is

more convenient for unification while traditional term syntax is more convenient for our formu-

lation of generalization, as for that of FOT s, (and the fuzzification of the corresponding lattice

operation).

Since our definition of the generalizing operation’s definition will assume that its arguments

are ψ-terms (i.e., OSF terms in normal form), each tag symbol occurring in either term will

always be the root tag of a unique ψ-term. This property is easily verified to be preserved by the

axiom and the rule of Figure 3.7. Thus, a sortless occurrence of a tag always refers to (i.e., is the

root tag of) this unique ψ-term. If none of a tag symbol’s occurrences is sorted, then this tag is

the root of a common occurrence of the most general sort: ⊤ (i.e., “anything”).

Axiom EQUAL TAGS in Figure 3.7 simply states that generalizing a pair made of the same

ψ-term results in this ψ-term and the posterior tag maps are the same as the prior ones.

Rule UNEQUAL TAGS in Figure 3.7 uses an “unapply” operation ‘↑’ which is defined as

follows:

(

ψ1

ψ2

)

↑

(

γ1
γ2

)

def
=























(

X : . . .
X : . . .

)

if ∃X s.t. γi(X) = ROOT(ψi), for i = 1, 2;

(

ψ1

ψ2

)

otherwise.

(3.6)

10See Appendix A.6
11A tag map is a tag-to-tag substitution.
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EQUAL TAGS

(

γ1
γ2

)

⊢

(

ψ
ψ

)

ψ

(

γ1
γ2

)

UNEQUAL TAGS







X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {g1, . . . , gn} s.t. hk

def
= fk = gk for all k = 1, . . . , p ;

γ0i
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new variable







(

γ01
γ02

)

⊢

(

ψ1

ξ1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψp

ξp

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 3.7: Judgment-based OSF generalization axiom and rule

This has the same purpose as the unapply operation used in FOT generalization judgments:

identify in the prior pair of tag maps (γ1, γ2) whether or not they already map a common variable

(X) to the roots of the pair of ψ-terms to be generalized (ψ1, ψ2). If so, the result of the unappli-

cation is the pair made of the same ψ-term rooted in X (X : . . .); if not, it is the original pair of

ψ-terms (ψ1, ψ2).

Rule OSF UNEQUAL TAGS of Figure 3.7 states that generalizing two ψ-terms ψ1
def
= X : s

(fi → ψi)
m
i=0 and ψ2

def
= Y : t (gj → ξj)

n
j=0 results in the ψ-term ψ1 ∨ ψ2

def
= Z : s∨t

(hk → χk)
p
k=0, where the set of features of the resulting ψ-term is the intersection of the sets

of features of ψ1 and ψ2 (i.e., the features they have in common), and Z is a new variable, when

each subterm corresponds to generalizing each of the corresponding pairs of subterms under all

common features. Note that this can be done in any order, as long as each subterm judgment is

validated with its pair of prior tag maps equal to the preceding judgment’s pair of posterior tag

maps.

Example 3.1 OSF term generalization — Let us consider the sort signature:

⊤

u

s t

⊥

and the two ψ-terms:
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ψ1
def
= X : s(a → X′ : s, b → X′, c → X′, d → D)

and:

ψ2
def
= Y : t(a → Y′ : t, b → Y′′ : t, c → Y′′, e → E)

corresponding to the following two OSF graphs:

X : s Y : t

X′ : s D : ⊤ Y′ : t Y′′ : t E : ⊤

a

b c

d
a

b

c

e

Let us now consider the following OSF generalization judgment constraint to resolve:
(

∅
∅

)

⊢

(

ψ1

ψ2

)

ψ1 ∨ ψ2

(

γ1
γ2

)

in which the ψ-term ψ1∨ψ2 and the tag maps γ1 and γ2 are to be determined by normalizing this judgment

according to the axiom and rule of Figure 3.7.

We start with the judgment:
(

∅
∅

)

⊢

(

X : s(a → X′ : s, b → X′, c → X′, d → D)
Y : t(a → Y′ : t, b → Y′′ : t, c → Y′′, e → E)

)

ψ1 ∨ ψ2

(

γ1
γ2

)

.

Applying Rule UNEQUAL TAGS, since s ∨ t = u, keeping only common features and introducing a new

tag Z, this yields ψ1 ∨ ψ2 = Z : u(a → ψ′, b → ψ′′, c → ψ′′′) and this judgment becomes the

following sequence of three judgments:
(

{X/Z }
{Y/Z }

)

⊢

(

X′ : s
Y′ : t

)

↑

(

{X/Z }
{Y/Z }

)

ψ′
(

γ′1
γ′2

)

,

(

γ′1
γ′2

)

⊢

(

X′ : s
Y′′ : t

)

↑

(

γ′1
γ′2

)

ψ′′
(

γ′′1
γ′′2

)

,

(

γ′′1
γ′′2

)

⊢

(

X′ : s
Y′′ : t

)

↑

(

γ′′1
γ′′2

)

ψ′′′
(

γ1
γ2

)

.

Evaluating the unapplication in the first of these judgments, it becomes:
(

{X/Z }
{Y/Z }

)

⊢

(

X′ : s
Y′ : t

)

ψ′
(

γ′1
γ′2

)

,

to which we can apply again Rule UNEQUAL TAGS, since s ∨ t = u, introducing a new tag Z′, this first

judgment becomes:
(

{X/Z }
{Y/Z }

)

⊢

(

X′ : s
Y′ : t

)

Z′ : u

(

{X/Z,X′/Z′ }
{Y/Z,Y′/Z′ }

)

.
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This, in turn, makes the second judgment in the sequence become:

(

{X/Z,X′/Z′ }
{Y/Z,Y′/Z′ }

)

⊢

(

X′ : s
Y′′ : t

)

↑

(

{X/Z,X′/Z′ }
{Y/Z,Y′/Z′ }

)

ψ′′
(

γ′′1
γ′′2

)

,

and after evaluating the unapplication, it becomes:

(

{X/Z,X′/Z′ }
{Y/Z,Y′/Z′ }

)

⊢

(

X′ : s
Y′′ : t

)

ψ′′
(

γ′′1
γ′′2

)

,

to which we can apply again Rule UNEQUAL TAGS, since s ∨ t = u, introducing a new tag Z′′, this

second judgment becomes:

(

{X/Z,X′/Z′ }
{Y/Z,Y′/Z′ }

)

⊢

(

X′ : s
Y′′ : t

)

Z′′ : u

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

.

This then makes the third judgment in the initial sequence become:

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

⊢

(

X′ : s
Y′′ : t

)

↑

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

ψ′′′
(

γ1
γ2

)

.

But now, because both X′/Z′′ and Y′′/Z′′ are in the two respective prior tag maps, the unapplication in this

judgment comes to:

(

X′ : s
Y′′ : t

)

↑

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

=

(

Z′′ : u
Z′′ : u

)

which makes the third judgment become:

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

⊢

(

Z′′ : u
Z′′ : u

)

ψ′′′
(

γ1
γ2

)

;

and using Axiom EQUAL TAGS, this third judgment becomes:

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

⊢

(

Z′′ : u
Z′′ : u

)

Z′′ : u

(

{X/Z,X′/Z′,X′/Z′′ }
{Y/Z,Y′/Z′,Y′′/Z′′ }

)

.

and terminates the proof.

This results in the ψ-term that is the generalization of ψ1 and ψ2:

ψ1 ∨ ψ2 = Z : u(a → Z′ : u, b → Z′′ : u, c → Z′′)

with the corresponding tag maps:

γ1 = {X/Z, X′/Z′, X′/Z′′ }

and:

γ2 = {Y/Z, Y′/Z′, Y′′/Z′′ }

as pictured in Figure 3.8.
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Z : u

Z′ : u Z′′ : u

X : s Y : t

X′ : s D : ⊤ Y′ : t Y′′ : t E : ⊤

a

b

c

a

b c

d
a

b

c

e

γ1

γ1

γ1

γ2

γ2 γ2

Figure 3.8: Example of OSF graph endomorphisms realized by OSF generalization
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§MISALIGNED FEATURES

We will assume that each sort s ∈ S has a “feature arity” arity(s) : S → 2
F which associates to

the sort s a finite set of features consistent with the ordering on sorts. This is expressed formally

as the following lattice homomorphism:

arity(sf t) = arity(s) ∪ arity(t) (3.7)

arity(sg t) = arity(s) ∩ arity(t) (3.8)

for all sorts s and t in S. Note that the anti-monotocity of sort subsumption and feature set

inheritance, since Equation (3.7) and Equation (3.8) imply necessarily that:

s � t =⇒ arity(t) ⊆ arity(s); (3.9)

i.e., the more specific the sort, the larger its arity feature set.

Again, note that the arity of a sort symbol is not a natural number as is the case for a function

symbol where is counts their argument positions. The arity of a sort is a set of features which

are the admissible field names of structure components rooted in a node of this sort. It is a set

because order does not matter and it may also be empty. In this setting, for a function symbol

f/n ∈ Σn seen as a sort, arity(f/n)
def
= {1, . . . , n}, and the arity of a constant is the empty set.

Inspired by the possiblities demonstrated when comparing FOT s using similar functors with

misaligned argument positions, sorts may as well be made to tolerate feature sets that are one

another’s finite permutations. By default (and up to now), when comparing two sorts s and t,
every feature name is mapped to itself—i.e., feature mapping from one sort to another is always

the identity on F . But now, extending the same idea as for function symbols in FOT s, for any

pair of sorts s and t in S, we assume defined a feature mapping πst : F → F that verifies the

following properties.

• πst is injective (i.e., one-to-one); i.e., for any pair of sorts s and t in S:

f 6= f ′ → πst(f) 6= πst(f
′) (3.10)

for all features f and f ′ in F ;12

• πst is the identity almost everywhere on F except on a finite (possibly empty) subset of

features in arity(s) and the non-identical image of this set is a (possibly empty) subset of

features in arity(t);

• it is self-consistent; i.e.,

πss = 11F (3.11)

for all sorts s in S;

12Or, equivalently: πst(f) = πst(f
′)→ f = f ′.
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• it is inverse-consistent; i.e.,

πst = π−1
ts (3.12)

for all sorts s and t in S;

• it is composition-consistent; i.e.,

πtu ◦ πst = πsu (3.13)

for all sorts s, t, u in S—that is, πtu(πst(f)) = πsu(f), for all feature symbols f ∈ F ;

• it is order-consistent; i.e., if any sorts s, s′, t, and t′ in S are such that s � s′ and t � t′,
then this necessarily implies that,

π 6=
s′t′ ⊆ π 6=

st (3.14)

where π 6=
st

def
= {〈f, πst(f)〉 | πst(f) 6= f}. This ensures that the same feature is always

mapped to the same feature along a sort-order chain.

Authors’ comment: The algebraically-minded reader will probably flinch. In particular,

isn’t this π mapping the “missing link” (so to speak) needed in order to complete a formal

connection between our OSF formalism and Category Theory? We, the authors, agree that

this does look, feel, and taste like a classical so-called functor of categories. Namely, sorted

(or function-symbol) nodes can be seen as objects and their features (and/or positions) can

then be seen semantically as categorical arrows between objects. This is because they de-

note functions that are composable—the feature of a feature is a (semantically composed)

function—and all compositions out of a node that converge to a common node must com-

mute (sharing a tag). Then, the field- (and/or position-) alignment mappings π from one

sort to another (subject to the coherence constraints above) can quite be seen as a fuzzy cat-

egorical endofunctor for the (strict monoidal) category 〈S,2F 7→ 2
F 〉.13 For our present

purposes, we will specify next this feature mapping more operationally by substituting the

features yielding a sort t out of a tag X of sort s that occur in an OSF constraint set using

the fmapπst

X construct we define below as Expression (3.15).

§ OSF UNIFICATION MODULO FEATURE PERMUTATION

In Rule SORT INTERSECTION MODULO FEATURE PERMUTATION of Figure 3.9, the function

fmap is parameterized by (1) a variable X , and (2) a one-to-one feature mapping πst associating

to each feature f inF a unique feature πst(f) inF . When sort s is compared with sort t, it realigns

feature f for tag X of sort s with feature πst(f) of sort t. So parameterized, fmapπst

X transforms

a conjunctive OSF constraint φ into another conjunctive OSF constraint fmapπst

X (φ) obtained

13It might be worthwhile trying to make this connection formally more explicit in the style of [99] and [62],

for example. However, we shall abstain here for fear of losing some readership despite our best efforts. Still, the

interested reader is invited to correspond with the authors on this very subject. We may even be tempted to work out

some basic ideas and share them.
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SORT INTERSECTION MODULO FEATURE PERMUTATION:

φ & X : s & X : t

fmap
πst

X (φ) & X : sft

Figure 3.9: Sort intersection rule for OSF unification modulo feature permutation

from φ by replacing each constraint of the form X.f
.
= Y by the constraint X.πst(f)

.
= Y .

Formally,























fmap
πst

X

(

φ
)

def
= φ

[

if X.f
.
= Y is not part of φ

for any f ∈ F and any Y ∈ V

]

fmap
πst

X

(

φ & X.f
.
= Y

)

def
= fmap

πst

X

(

φ
)

& X.πst(f)
.
= Y [otherwise]

(3.15)

A feature map fmapπst

X that applies to an OSF constraint transforming it into another OSF
constraint is naturally extended to apply as well to a ψ-term to transform it into another ψ-term

as follows:

fmap
πst

X (ψ)
def
= ϕ−1(fmapπst

X (ϕ(ψ))); (3.16)

that is, it is defined as the ψ-term whose dissolved form is the result of applying that same feature

map to the dissolved form of the original ψ-term.14

When πst is the identity for a pair of sorts s and t, Rule SORT INTERSECTION MODULO

FEATURE PERMUTATION of Figure 3.9 becomes Rule SORT INTERSECTION of Figure 3.6.

In pratice, it should be more likely that this be the case for most pairs of sorts.

§ OSF GENERALIZATION MODULO FEATURE PERMUTATION

The same observation can be made forOSF generalization modulo feature permutation as shown

by Rule UNEQUAL TAGS MODULO FEATURE PERMUTATION of Figure 3.10. Note that this

rule identifies which feature to use for the left ψ-term’s subterm depending on the index of

the corresponding right ψ-term’s feature given by πst. This feature is identified as fi, and so

index(fi) = i for i = 1, . . . , m. But by (3.12), inverse-consistency of the feature map πst, this

means that fi = πts(gk), for some k ∈ {1, . . . , p}. From this, it comes that, for any index

k ∈ {1, . . . , p}, there is a unique index i ∈ {1, . . . , m} such that i = index(πts(gk)).

Note that this rule could equivalently be replaced by its symmetric form; namely, Rule SYM-

METRIC FUZZY UNEQUAL TAGS of Figure 3.11.

14See Equation 3.5 for the definition of ψ-term dissolution into an OSF constraint.
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UNEQUAL TAGS MODULO FEATURE PERMUTATION















X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {πst(f1), . . . , πst(fm)} ∩ {g1, . . . , gn}

s.t. hk
def
= πst(fk) = gk for all k = 1, . . . , p ;

ψ′

k

def
= ψindex(πts(gk)) for k = 1, . . . , p;

γ0i
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new variable















(

γ01
γ02

)

⊢

(

ψ′

1

ξ1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψ′

p

ξp

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 3.10: OSF generalization modulo feature permutation

SYMMETRIC UNEQUAL TAGS MODULO FEATURE PERMUTATION















X 6= Y ;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {πts(g1), . . . , πts(gn)}

s.t. hk
def
= fk = πts(gk) for all k = 1, . . . , p ;

ξ′k
def
= ξindex(πst(fk)) for k = 1, . . . , p;

γ0i
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new variable















(

γ01
γ02

)

⊢

(

ψ1

ξ′1

)

↑

(

γ01
γ02

)

χ1

(

γ11
γ12

)

. . .

(

γp−1
1

γp−1
2

)

⊢

(

ψp

ξ′p

)

↑

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

(

γ1
γ2

)

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

Figure 3.11: Equivalent symmetricOSF generalization modulo feature permutation
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3.2 Fuzzifying OSF Subsumption

We are now ready to develop the same scheme of fuzzy declensions on OSF terms that we

performed on the FOT s in the previous chapter’s Section 2.6, however dealing with (and taking

advantage of) the more general lattice-theoretic semantics we have attributed to ourOSF algebra

and its derived operational calculus. Thus, in this section, we turn to fuzzifying lattice operations

overOSF graphs. In so doing, sinceOSF graphs generalize FOT s, we shall proceed as we did

for FOT s. Fuzzy lattice operations on OSF terms are in fact very close to what was presented

in the previous chapter in Section 2.6.3 for lattice operations on FOT s with partial argument

maps. So let us start by making some important observations regarding the fuzzification of FOT
unification and generalization.

1. The term structure itself (its syntax) is not fuzzified; only a conjunctive set E of equations

(pairs of first-order terms—including substitutions) is given a global similarity degree α.

This is denoted as the fuzzy-weighted set Eα.15

2. In axioms and rules, the similarity degree of a conjunctive set of equations can never in-

crease from prior to posterior forms.

3. There is a similarity relation ∼ on functors f and and g (as a half-matrix of similarity

degrees in [0, 1]).16

4. For each pair of functors f/m and g/n with f 6= g and 0 ≤ m ≤ n, whenever f ∼α g
with α ∈ (0, 1] there is a one-to-one mapping p : {1, . . . , m} → {1, . . . , n} associating

each argument position of f to a unique distinct argument position of g; this mapping is

the identity on {1, . . . , m} by default; it is undefined for dissimilar functors; in axioms

and rules, when terms with similar functors with possible arity mismatch are equated, this

argument-position mapping realigns misaligned subterms; subterms in the higher-arity term

that are in excess are ignored.

Then, fuzzifying lattice operations for FOT s consisted in adapting their crisp normaliza-

tion rules to carry a similarity degree according to the above observations when transforming an

equation set.

When considering OSF terms, we can proceed similarly, but instead of FOT unification,

let us consider what this means for the ruleset of Figure 3.6, which enforces constraint consis-

tency when subsumption is realized by endomorphic tag mappings. The latter are sets of vari-

able/variable equations—i.e., X
.
= Y —respecting sorts and feature application.17 These rules

operate taking into account the following observations.

1. TheOSF terms themselves are not fuzzified; only a conjunctive set φ of atomic constraints

(each of either of the formsX : s,X.f
.
= Y , andX

.
= Y ) is given a global similarity degree

α as the fuzzy formula φα.

15Where E0 is equivalent to false for any set of equations E—see Appendix Section A.3.1.
16Only one direction is needed; the other is equal by symmetry—see Appendix Section A.3.2.
17See Figure B.2 in Appendix B.1.
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2. In axioms and rules, the similarity degree of a conjunctive set of atomic OSF constraints

can never increase from prior to posterior forms.

3. The similarity relating pairs of sorts s and s′ is a half-matrix of similarity degrees in [0, 1].
This similarity must be consistent with the ordering� on sorts; that is, for all sorts s, s′, t, t′

in S, the following conditions holds for lubs and glbs when they exist:

if s ∼α s
′ and t ∼β t

′ then (sf t) ∼α∧β (s′ f t′), (3.17)

if s ∼α s
′ and t ∼β t

′ then (sg t) ∼α∧β (s′ g t′); (3.18)

Note that the similarity degree for both foregoing lattice operations on sorts uses fuzzy

conjunction (∧) of approximation degrees, as also pictured in Figure 3.12. For example,

sg t

s t

sf t

s′ g t′

s′ t′

s′ f t′

∼α ∼β

∼α∧β∼α∧β

∼α∧β∼α∧β

Figure 3.12: Order-consistent sort similarity

given a similarity on sorts such that:

employee ∼.9 assistant

student ∼.8 apprentice

and an ordering on sorts such that:

helper
def
= apprentice g assistant

member
def
= student g employee

and

intern
def
= apprentice f assistant

working-student
def
= student f employee
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member

employee student

working-student

helper

assistant apprentice

intern

∼.8
∼.9

∼.8∼.8

∼.8∼.8

Figure 3.13: Order-consistent sort similarity example

then, necessarily for a consistent set of sorts, it must be that:

intern ∼.8 working-student

and

member ∼.8 helper

as illustrated in Figure 3.13.

4. The similarity relation ∼ is provided with a finitely non-identical feature permutation map

πst : F → F for each pair of sorts s and t for which s ∼α t with α ∈ (0, 1]. Thus, any

consistent feature permutation can easily be realigned from the feature set of s to that of t
with the assumed defined feature permutation πst. This map is the identity on F by default.

Authors’ comment: Note that thanks to its consistency properties, such a feature map

πst need only be specified as a finite half-matrix of bijective sets of pairs of non-identical

features in F × F .18 Such a mapping is the identity by default.

5. In axioms and rules, when a term of root sort s is compared to a term of root sort t, the

one-to-one feature mapping πst realigns any mismatched feature with its corresponding

feature in its similar sort; this is illustrated as we shall see next in fuzzy OSF unification

Rule SIMILAR SORT INTERSECTION, and in fuzzy OSF generalization Rule FUZZY

UNEQUAL TAGS, where the foregoing properties of a feature map ensure that the rule is

correct in both directions for similar pairs of sorts.

18That is, only one direction of finite permutations of the set F ×F −{〈f, f〉 | f ∈ F}—one direction because it

contains only one of either 〈f, f ′〉 or 〈f ′, f〉, for all features f and f ′ such that f 6= f ′. Such a matrix can easliy be

generated by proper closure from a declared finite set of pairs of sorts with a finite feature mapping. See Chapter 4,

Section 4.4.
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SIMILAR SORT INTERSECTION

(φ & X : s & X : t)α
(

fmap
πst

X (φ) & X : sf t
)

α∧β
[

s ∼πst

β t, 0 ≤ β ≤ 1
]

TAG ELIMINATION

(φ & X
.
= X ′)α

(φ[X ′/X] & X
.
= X ′)α

[X ′ ∈ TagSet(φ)]

INCONSISTENT SORT

(φ & X
.
= ⊥)α

false0

FEATURE FUNCTIONALITY

(φ & X.f
.
= X ′ & X.f

.
= X ′′)α

(φ & X.f
.
= X ′ & X ′ .= X ′′)α

NULL SIMILARITY DEGREE

φ0

false0

Figure 3.14: Constraint normalization rules for fuzzy OSF unification

3.2.1 Fuzzy OSF unification

With the above remarks, we may therefore proceed to fuzzifying the crispOSF unification rules

of Figure 3.6 into those of Figure 3.14.

In Rule SIMILAR SORT INTERSECTION of Figure 3.14, the function fmap is the same

defined by Expression (3.15) in the crisp case to realign permuted features when comparing two

sorts modulo a consitent feature permutation.

§ SIMILARITY OF ψ-TERMS

Let two ψ-terms ψ and ψ′ defined as:

ψ
def
= X : s(f1 → ψ1, . . . , fn → ψn)

ψ′ def
= X ′ : s′(f ′

1 → ψ′
1, . . . , f

′
n′ → ψ′

n′)

(n, n′ ≥ 0).

DEFINITION 3.5 For α ∈ [0, 1], and two ψ-terms ψ and ψ′ of the form above, we define recur-

sively the fuzzy binary relation ∼α on Ψ as ψ ∼α ψ
′ iff α

def
= β ∧

∧n
i=0 βi where:

s ∼
πss′

β s′ (3.19)

for some β ∈ (0, 1], and:

ψi ∼βi
fmap

πss′

X (ψ′
i′ [X/X

′]) (3.20)
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where βi ∈ (0, 1], for any i ∈ {1, . . . , n} for which there a feature fi′ , i
′ ∈ {1, . . . , n′}, such that

fi′ = πss′(fi) for some feature fi.

THEOREM 3.3 (SIMILARITY OF ψ-TERMS) The fuzzy binary relation ∼α defined by Defin-

ion 3.5 is a similarity on the set of ψ-terms Ψ.

PROOF Reflexivity: This follows because for any sort s, s ∼πss

1 s, since πss = 11F , by self-

consistency of π (3.11), and because ψi ∼1 fmap
πss

X (ψi[X/X]) reduces to the tautology ψi ∼1 ψi,

for any fi in F (since fi = πss(fi)), and any X ∈ V , and thus also in particular for all i = 1, . . . , n
for any n ≥ 0.

Symmetry: by inverse-consistency (3.12) and order-consistency (3.14) of πst.

Transitivity: by composition-consistency (3.13) and order-consistency (3.14) of πst.

Details?

[To be completed. . . ]

�

Because of Theorem 3.3, we shall say that ψ and ψ′ are α-similar iff ψ ∼α ψ
′.

THEOREM 3.4 (CORRECTNESS OF FUZZY OSF UNIFICATION) Given a fuzzyOSF constraint

φα with α ∈ [0, 1], the process of non-deterministically applying to it any applicable rule shown

in Figure 3.14 as long as one applies, always terminates in a fuzzy OSF constraint φ′
α′ such that

either φ′ = false and α′ = 0; or, 0 < α′ ≤ α and φ ∼α′ φ′.

PROOF Axiom FUZZY EQUAL TAGS is correct by reflexivity.

Correctness of Rule FUZZY UNEQUAL TAGS is established inductively. That is, we must prove

that if we assume that all the prior fuzzy judgments of this rule are valid under all the rule’s side

conditions, then its posterior fuzzy judgment is valid.

[To be completed. . . ] �

3.2.2 Fuzzy OSF generalization

Axiom FUZZY EQUAL TAGS in Figure 3.15 states that generalizing a pair made of the same

ψ-term results in this ψ-term and the posterior tag maps and approximation degree are the same

as the prior ones.

Note that, just like Rule UNEQUAL TAGS MODULO FEATURE PERMUTATION of Fig-

ure 3.10, Rule FUZZY UNEQUAL TAGS in Figure 3.15 identifies which feature f to use for the

left ψ-term’s subterm using its index index(f).

Also, Rule FUZZY UNEQUAL TAGS in Figure 3.15 uses a “fuzzy unapply” operation ‘↑ α’

which takes a pair of ψ-terms with unequal root tags and an approximation degree α and returns

Copyright c© 2019 by the Authors All Rights Reserved
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FUZZY EQUAL TAGS

(

γ1
γ2

)

α

⊢

(

ψ
ψ

)

ψ

(

γ1
γ2

)

α

FUZZY UNEQUAL TAGS

















X 6= Y ; s ∼β t; α0
def
= α ∧ β;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {πst(f1), . . . , πst(fm)} ∩ {g1, . . . , gn}

s.t. hk
def
= πst(fk) = gk for all k = 1, . . . , p ;

ψ′

k

def
= ψindex(πts(gk)) for k = 1, . . . , p;

γ0i
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new variable

















(

γ01
γ02

)

α0

⊢

(

ψ′

1

ξ1

)

↑
α0

(

γ01
γ02

)

χ1

(

γ11
γ12

)

α1

. . .

(

γp−1
1

γp−1
2

)

αp−1

⊢

(

ψ′

p

ξp

)

↑
αp−1

(

γp−1
1

γp−1
2

)

χp

(

γp1
γp2

)

αp

(

γ1
γ2

)

α

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

αp

Figure 3.15: Fuzzy OSF generalization axiom and rule

a pair of (possibly identical) ψ-terms and a possibly lesser approximation degree. It is defined as

follows:

(

ψ1

ψ2

)

↑α

(

γ1
γ2

)

def
=























(

X : . . .
X : . . .

)

α∧α1∧α2

if ∃X s.t. ψi ∼αi
ψ′
i where:

ROOT(ψ′
i) = γi(X) for i = 1, 2;

(

ψ1

ψ2

)

α

otherwise.

(3.21)

This has the same purpose as the fuzzy unapplication operation used in fuzzy FOT generaliza-

tion judgments: identify in the prior pair of tag maps (γ1, γ2) whether or not they already map

a common variable (X) to the roots of the pair of ψ-terms to be generalized (ψ1, ψ2) each at,

respectively, approximation αi, i = 1, 2. If so, the result of the unapplication is the pair made of

the same ψ-term rooted in X (X : . . .) at a posterior approximation degree equal to the conjoined

value of the prior approximation degree α and those; i.e., α∧α1∧α2; if not, it is the original pair

of ψ-terms (ψ1, ψ2) at the unchanged prior approximation degree.

Rule FUZZY UNEQUAL TAGS of Figure 3.15 states that generalizing two ψ-terms ψ1
def
=

X : s (fi → ψi)
m
i=0 and ψ2

def
= Y : t (gj → ξj)

n
j=0 results in the ψ-term ψ1 ∨ ψ2

def
=

Z : s∨t (hk → χk)
p
k=0, where the set of features of the resulting ψ-term is the intersection of the

realigned sets of features of ψ1 and ψ2 (i.e., the realigned features they have in common), and Z
is a new variable,

As was the case for FOT s, note that fuzzy OSF unapplication defined by Equation (3.21)

returns a pair of terms and a (possibly lesser) approximation degree, unlike crisp unapplication

defined by Equation (3.6) which returns only a pair of terms. Because of this, when we write a
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fuzzy OSF generalization judgment such as:

(

γ1
γ2

)

α

⊢

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

ψ

(

γ′1
γ′2

)

β

(3.22)

as we do in Rule FUZZY UNEQUAL TAGS, this is shorthand to indicate that the posterior sim-

ilarity degree β is at most the one returned by the fuzzy OSF unapplication

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

.

Formally, the notation of the fuzzy OSF generalization judgment (3.22) is equivalent to:

(

ψ′
1

ψ′
2

)

β′

def
=

(

ψ1

ψ2

)

↑
α

(

γ1
γ2

)

and

(

γ1
γ2

)

β′

⊢

(

ψ′
1

ψ′
2

)

ψ

(

γ′1
γ′2

)

β

(3.23)

for some β ′ such that β ≤ β ′ ≤ α. This is because a fuzzy OSF term unapplication invoked

while proving the validity of a fuzzy OSF generalization judgment may require, by Expres-

sion (3.21), lowering the prior approximation degree of the judgment. This is therefore applica-

ble to common-feature subterms corresponds to generalizing each of the corresponding pairs of

subterms under all common features. Note that this can be done in any order, as long as each

subterm judgment is validated with its pair of prior tag maps equal to its pair of posterior tag

maps.

As for the crisp case, note that Rule FUZZY UNEQUAL TAGS of Figure 3.15 could equiva-

lently be replaced by its symmetric form; namely, Rule SYMMETRIC FUZZY UNEQUAL TAGS

of Figure 3.16.

SYMMETRIC FUZZY UNEQUAL TAGS

















X 6= Y ; s ∼β t; α0
def
= α ∧ β;

m,n, p ≥ 0 and {h1, . . . , hp}
def
= {f1, . . . , fm} ∩ {πts(g1), . . . , πts(gn)}

s.t. hk
def
= fk = πts(gk) for all k = 1, . . . , p ;

ξ′k
def
= ξindex(πst(fk)) for k = 1, . . . , p;

γ0i
def
= γ1 ◦ {X/Z} and γ02

def
= γ2 ◦ {Y/Z} , where Z is a new variable
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γ01
γ02

)
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)

↑
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)
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)
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⊢
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ψp
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)

↑
αp−1

(
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1
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)

χp

(

γp1
γp2

)

αp

(

γ1
γ2

)

α

⊢

(

X : s (fi → ψi)
m
i=1

Y : t (gj → ξj)
n
j=1

)

Z : s∨t (hk → χk)
p
k=1

(

γp1
γp2

)

αp

Figure 3.16: Equivalent symmetric fuzzy OSF generalization rule
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Discussion

• Section 4.1 reviews other fuzzy unification work.

• Section 4.2 reviews related work:

– Subsection 4.2.1 reviews graph-similarity measures;

– Subsection 4.2.2 indicates some potential ties: we look at some known fuzzy data

models (such as fuzzy object-oriented) and subtyping; we discuss models of fuzzy

knowledge; we make a link with fuzzy automata for fuzzy string matching; we relate

our work to Fuzzy Quantum Logic;

• Section 4.3 reviews a few systems implementing some notion of fuzzy unification.

4.1 Other Fuzzy Unification Work

In the course of this work, we searched the literature for “fuzzy unification” and “fuzzy logic

programming,” and variations thereof. Our first observation in pursuing this interest has been that,

unlike existing Prolog languages (and other technology that relies on standardFOT unification),

not all the fuzzy LP languages that have been proposed and/or implemented (even if only as

prototypes) agree on the same fuzzy FOT unification operation. We have looked at some of

the most prominent among those existing in an attempt to characterize their fuzzy unification

operations. We next summarize some essential points that we understood of these variations on

fuzzy unification from our perspective. We will proceed succintly, as it would be presumptuous

of us to give an exhaustive recap of research in Fuzzy LP . Again, our perspective is not so

much Fuzzy LP as it is that of understanding its fuzzification of the lattice-theoretic operations

on FOT s such as FOT unification, which is an essential part on any LP system.

Before we focused on M. Sessa’s fuzzy FOT unification algorithm, which we present in

Chapter 2,1 we looked at other work which we recall here. We also discuss our reasons for our

choice to follow Sessa’s approach as opposed to fuzzy Datalog or edit-distance FOT matching

we describe next.

1Section 2.6.1.
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§ FUZZY DATALOG UNIFICATION

Among earlier frequently cited works related to fuzzy FOT unification is [30], where the title

leads one to expect a fuzzy term unification in a fuzzy LP language. It is not quite that, however,

as it restricts solving similarity equations over word symbols tolerating some imprecise matches

(i.e., a kind of fuzzy Datalog).2 Such mismatches could come from (possibly accidental) syntactic

proximity (e.g., typos, misspellings).3 The authors propose to accumulate mismatched symbols

into what they dub “clouds,” which represent in effect similarity classes of constant symbols

(nullary functors). These clouds are given a measure of “similarity” computed as the meet of

those of the components—which they propose to conceive as a “cost” of how much it deviates

from a perfect match (which itself has zero cost, since perfect).

Note that when the only non-variable terms defined are constants, the rules of Figure 2.3

accumulate all constant mismatches as unresolved equations. Thus, what constitutes Arcelli et

al.’s “clouds” are the sets of constants making up the equivalence classes of the reflexive-transitive

closure of the relation containing these equations.

While this could be useful as a particular fuzzy extension of Datalog, it does not address

issues concerning fuzzy database representation and evaluation issues such as expounded in [48]

for (crisp) Datalog. In fact, such fuzzy extensions of Datalog had already been proposed, with a

straightforward fix-point semantics extending that of classical Datalog (e.g., [1]). Since it limits

itself to fuzzification of a Datalog-like LP , the semantics of Arcelli et al.’s fuzzy LP language

only considers approximate equations between constant symbols, whose mutual fuzzy proximity

is specified as fuzzy “proximity matrices”. This early form of fuzzy unification was put to use in

the fuzzy LP language Likelog [28], [29], [31], [32].

§ EDIT-DISTANCE FUZZY UNIFICATION

Arcelli et al.’s fuzzy constant unification was later elaborated to work on full FOT s as first

exposed in [30] and used in [61], and then again in [115] and [116]. The authors use the same

kind of fuzzy unification on constants (i.e., names formalized as symbol strings), but instead of

names deemed similar (i.e., in a same “cloud” or similarity class), the more classical notion of

edit distance is used to evaluate the similarity degree of a fuzzy name match (normalized over

the symbol lengths). Edit distance between two strings is the minimal number of elementary edit

actions (deleting a character, inserting a character, or replacing a character for another), in either

or both strings necessary to obtain a perfect match [87].4 This fuzzy unification was put to use in

biological genetics analysis with the fuzzy LP language FURY [61], [116].

In what follows, we use our own formal notation to summarize the essence of FURY-style

fuzzy FOT unification [61], [115], [116]. We represent the empty string as ε, and a non-empty

string as a dot-separated sequence of characters ending with the empty string (e.g., "this" is

represented as t.h.i.s.ε). Given a non-empty string h.t, we shall call its first character h
its “head” and the substring t following it, its “tail.” The length of a string s is its number of

2It is only acknowledged in the very last sentence of the paper, that the authors were yet “aiming at extending

this algorithm to the full-fledged algebra of first-order terms” as future work.
3Or presumably, although they only mention it as a potential further work in their conclusion, from semantic

proximity (such as could be specified as fuzzy knowledge in the form of fuzzy similarity matrices).
4It is used most crucially in Internet search keyword matches and DNA sequence alignment and matching.

Copyright c© 2019 by the Authors All Rights Reserved

http://int.polytech.univ-smb.fr/fileadmin/polytech_autres_sites/sites/listic/busefal/Papers/70.zip/70_01.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.1118
http://people.inf.elte.hu/kiss/14abea/Achs_1995_ActaCybernetica.pdf
http://www.programmazionelogica.it/wp-content/uploads/1997/06/319_Fontana1.pdf
http://doi.acm.org/10.1145/298151.298348
https://pdfs.semanticscholar.org/0995/f2c03c9f6f19606777dafad313e3be0fa34a.pdf
http://www.dmi.unisa.it/people/gerla/www/Down/unification.pdf
https://pdfs.semanticscholar.org/ce6c/380e804ac52124fbf72dcf57338aa660c307.pdf
http://www.sciencedirect.com/science/article/pii/S1571066104805851
https://pdfs.semanticscholar.org/a623/f8302765ee433fae2f0291a6383f8a1818c5.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://pdfs.semanticscholar.org/ce6c/380e804ac52124fbf72dcf57338aa660c307.pdf
https://pdfs.semanticscholar.org/a623/f8302765ee433fae2f0291a6383f8a1818c5.pdf
https://pdfs.semanticscholar.org/ce6c/380e804ac52124fbf72dcf57338aa660c307.pdf
http://www.sciencedirect.com/science/article/pii/S1571066104805851
https://pdfs.semanticscholar.org/a623/f8302765ee433fae2f0291a6383f8a1818c5.pdf
http://www.cs.cmu.edu/~ckingsf/class/02713-s13/lectures/lec16-align.pdf
https://web.stanford.edu/class/cs124/lec/med.pdf


D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 92 Version of January 8, 2019

characters denoted |s|. That is, the monoid homomorphism:

|ε|
def
= 0

|h.t|
def
= 1 + |t|.

Thus, the edit distance δ(s1, s2) between two strings s1 and s2 is derived as:5

δ(ε, s)
def
= |s|

δ(s, ε)
def
= |s|

δ(h.t1, h.t2)
def
= δ(t1, t2)

δ(h1.t1, h2.t2)
def
= 1 + min{ δ(t1, h2.t2), δ(h1.t1, t2), δ(t1, t2) }, if h1 6= h2.



































(4.1)

These four defining equations express that the edit distance: (1) from any string to the empty

string is the length of this string; (2) between two strings with equal first character, it is the

distance between the remaining substrings; (3) otherwise, it is one plus the minimum of the three

edit distances between one of the strings and the other string’s rest, and between the two strings’

rests. The latter is known as the “Levenshtein distance” between two strings.6

Because edit distance will increase with the lengths of strings, it is convenient to calibrate it

over the size of the strings involved; hence the notion of “normalized edit distance” δN as in:

δN (s1, s2)
def
=

δ(s1, s2)

max(|s1|, |s2|)
. (4.2)

In [61], this notion of (normalized) edit distance between constant symbol strings (including

the empty string ε) is extended to an edit distance between FOT trees. It maps two terms t1 and

t2 to a non-negative number δ(t1, t2)
def
= mσ

n ∈ N, which denotes the minimal total number m of

mismatches (edit actions necessary to go from one to the other), along with two collateral pieces

of information:

• σ—a most general variable substitution that may be necessary to resolve matches upon

encountering variables in the process of computing this minimal edit distance between

the two terms when assimilated to strings which are sequences of the non-punctuation

characters that compose their their syntax; and,

• n—a normalization factor computed as the sum of the lengths of the longest of each of pair

of symbols from each term as they are matched.

5From which one can easily check that expected properties of a distance are verified by δ such as δ(s, s) = 0,

δ(s1, s2) = δ(s2, s1), and δ(s1, s2) ≤ δ(s1, s) + δ(s, s2), for any strings s, s1, and s2.
6The Levenshtein distance between two strings has the advantage to apply to strings of differring as well as of

equal lengths. This is unlike the Hamming distance which is restricted to strings of equal lengths, and defined as

the number of disagreeing character positions. This entails, in particular, that the Levenshtein distance between two

equal-length strings is always less than or equal to their Hamming distance.
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The normalization factor n is a function of the lengths of the terms when a term is seen as the

string concatenation in the order they appear of the non-variable and non-punctuation symbols in

it. In other words, parentheses, commas, variables, and ε are considered of length 0. Namely,

|t|
def
=

{

0 if t is a variable

|f |+ Σn
i=1|ti| if t = f(t1, . . . , tn), n ≥ 0.

Compounding two FOT edit distances mσ
n and pθq consists in adding them up while composing

their substitutions and adding their normalization factors:

mσ
n + pθq

def
= (m+ p)θσn+q. (4.3)

In other words, as it sums the numbers of symbol mismatches, it also composes their associated

variable substitutions and sums their normalization factors (which depend on the sizes of all

the involved symbols). Note that this operation, while commutative in its numerical arguments

(which are added), is not commutative in its substitution arguments (which are composed). It

could also be defined by composing the substitutions in the other order if wished; but this is

simpler.7

Given two FOT s s and t, the edit distance between them δ(s, t) is defined as follows. If the

first argument is the empty string, then:

δ(ε, t)
def
= |t|∅|t| (4.4)

meaning that the edit distance is the length of the second argument, which is also this distance’s

maximum known normalization factor. If the first argument is a variable, then:8

δ(X, t)
def
= 0

{t/X}
0 (4.5)

meaning that it is zero, while binding its first argument to its second argument, with a zero

normalization factor. If the second argument is a variable, then:

δ(t, X)
def
= δ(X, t) (4.6)

by symmetry, which then uses the previous case. Otherwise (neither argument is a variable), let

s = g(s1, . . . , sm) and t = f(t1, . . . , tn) for some m,n ≥ 0; then:

δ(s, t)
def
= δ(f, g)∅max(|f |,|g|)

+ min { δ(ε, s1) + δ(ε(s2, . . . , sm), ε(t1, . . . , tn))

, δ(ε, t1) + δ(ε(s1, . . . , sm), ε(t2, . . . , tn))

, δ(s1, t1) + δ(ε(s2, . . . , sm)σ,ε(t2, . . . , tn)σ) }

if δ(s1, t1) = pσq for some p, q ≥ 0 and substitution σ











































(4.7)

7The authors of [61] compose their substitutions the other way, which is why they need to write their recursive

‘et’ rule (the last one) with the first subterms as second arguments when collecting those of the subterms.
8Recall that we use Prolog’s convention of writing variables with capitalized symbols.
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which defines a Levenshtein distance extended from strings to terms. It is equal to the edit dis-

tance between the functors plus the minimum of the three possible ways of aligning the respective

sequences of subterms, composing substitutions and adding normalization factors, each set to the

maximum functor length, while incrementally instantiating subterms remaining in the tails with

the accumulated substitutions resulting from computing the heads’ edit distance at each recursive

calls.

Authors’ comment: The above rules given as Equations (4.4)–(4.7), with our own—and

simpler—notation, are adapted from Definition 5 of the Gilbert-Schroeder paper [61]. How-

ever, while they agree on the first three rules, they do not on the last one. On that last one, they

only agree on the first two cases of the three recursive patterns, they differ on the last: our own

rule—Equation (4.7)—propagates to the rest of the arguments the substitution resulting from

computing the edit distances between the first arguments of both terms. The two other cases

need not do so as either term’s first argument is only paired with the empty string ε, which

simply returns the identity substitution ∅—by Equation (4.4). Indeed, not propagating like

in their definition of the term edit distance ‘et’ (Definition 5) is incorrect. Take for instance

the two terms f(a, b) and g(X,X). According to that definition, their term edit distance is

1
{a/X}
3 . However, taking that substitution into account, it should be 2

{a/X}
3 (since there are

2 mismatches between f(a, b) and either g(a, a) or g(b, b): f 6= g and a 6= b). Indeed, the

definition given in [61] means that the two occurrences of X are seen as two independent

variables which then get independently bound (one time to a and the other time to b), then

composing the substitutions will keep only the first one ({a/X}) and not account for the

argument mismatch a 6= b. Whereas, propagating the substitution as done in Equation (4.7)

makes it possible to account for the mismatch (since a will be have been substituted for X),

therefore correctly returning 2
{a/X}
3 .

It could have been a typo or misprint in Definition 5 in [61], perhaps. But in other later

papers using this unification (such as [115] and [116]), the same definition is again given.

At any rate, to propagate substitutions from one matching argument to matching the rest is a

simple option. Not doing it, although not optimal, does not invalidate their approach when

the substitution propagation is done correctly (as done in Equation (4.7)); it just catches less

mismatches in general than ought to be reported (since it has for effect to ignore potential

mismatches that may come from any multiple-occurrence variable which are already bound

to different symbols).

In this manner, this accounts for the fact it may be necessary to perform variable substitu-

tions while establishing the normalized edit distance between two terms t1 and t2 such that the

following fuzzy equation holds whenever δ(t1, t2) = mσ
n:

t1σ ∼ t2σ
[

n−m
n

]

. (4.8)

Indeed, having m character mismatches over a maximum total length of n characters means that

the rate of mismatch is m
n
∈ [0, 1]; or, equivalently, that the rate of correctly matched characters

is 1 − m
n

; i.e., n−m
n

. It can then be used as a similarity degree fuzzifying the equation t1σ = t2σ.

Indeed, if all the characters are mismatched, then m = n and therefore the similarity degree of

this equation is zero; whereas, if no characters are mismatched, then m = 0, and the truth value

is one. As expected, the higher the number of mismatches, the fuzzier the solution.
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This is a very interesting trick: “stringifying” the syntax of a FOT and then using fuzzy

symbol matching while counting how many mismatches over how long symbols and substituting

terms for variables as needed to resolve discrepancies in term structure. Thus, calculating the

normalized edit distance between two terms with Equations (4.4)–(4.7) operates an implicit uni-

fication procedure (which we shall call Gilbert-Schroeder fuzzy unification). It has, in fact, the

same recursive pattern as Robinson’s procedural unification algorithm, relaxed to tolerate functor

and arity inequalities [105].9

There are some important observations to be made at this point regarding Gilbert-Schroeder

fuzzy FOT unification.

• It applies to conventional (crisp) Prolog terms: there is no need for “fuzzyFOT s” whatever

such may be (it is the unification that is fuzzy, not the terms).

• It is a purely lexical process: it relates strings as character sequences regardless of word

meaning and/or context.

• It can always derive a minimal edit distance between two terms, however unrelated they

may be—the more lexically unrelated, the larger this distance will be, although it will

always be finite as it is bounded by a function of the size of the terms,10 as well as the

lengths of the functor symbols in them and the number of variable re-occurrences at leaves.

Normalizing with respect to the length of concatenation of the longest of each pairs of

symbols appearing in corresponding subterms gives a bounded measure in [0, 1] of the

character mismatch rate, therefrom a fuzzy matching measure may be derived.

• When fuzzy-unifying two non-variable non-ε terms, their arities (number of subterms) may

differ as each subterm of one is unified with each subterm of the other, keeping only

the minimal total number of mismatches (and collateral substitution and normalization

factor)—which raises efficiency concerns. Such concerns have been addressed for tree edit

distances in more recent works such as, e.g., [54], although not for FOT s which are rooted

directed acyclic graphs (variables are shared nodes). Although the number of arguments

of two fuzzy matching terms may differ, it must be noted that in computing edit-distance

between two FOT s, the order of argument-position is always preserved.

• It is not difficult to understand from Equations (4.1) and (4.7), that the complexity of a

naı̈ve implementation of this recursive scheme becomes quickly prohibitive for pragmatics.

Thus, optimization methods, implementation techniques such as Dynamic Programming

including specific-domain heuristics, have been the center of attention [39], [125], [124].

• More worrisome is that computing this term edit distance is not only expensive, it is also

non-deterministic. Indeed, there may be equal minimal number of mismatches with dif-

ferent and incomparable variable substitutions. For example, the minimal term edit dis-

tance between f(X,X,a) and g(b,Y,Y) is 2 with either substitutions {b/X,b/Y} or

{a/X,a/Y}, which are both most general although mutually incomparable (i.e., they are

not alphabetical variants “up to variable renaming” of one another).

9Op. cit., Section 5.8, Page 32.
10The number of functor nodes.
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4.2 Related work

4.2.1 Feature Graph Similarity Measures

Work using our OSF formalism has also elaborated a general lattice-theoretic approach to mea-

suring similarity overOSF graphs [96]. We now review this work and discuss how our approach

and theirs are in fact quite compatible, the latter providing a way to derive from the structure of

OSF graphs a similarity distance which can be used as the fuzzy information presumed available

by the former.

4.2.2 Potential ties

Fuzzy data models

Fuzzy object-oriented data model [42].

Fuzzy subtyping: [44].

Fuzzy knowledge

Fuzzification of Description Logic (DL): earlier attempts such as [129]; more recently: [118, 119].

This fuzzifies DL by attaching a similarity degree to DL assertions and interpreting constraints

with fuzzy connectives: infimum (∧) is min, supremum (∨) is max, and complement (λφ.φ)

is λw.(1 − w). Specifying minimal and/or maximal values is used to disregard all assertions

and constraints with similarity degree outside a specified interval. In this regard (setting mini-

mal/maximal bounds), the latter is similar to such fuzzy logics as [26].

Fuzzy automata

It is easy to see that, by abstracting the algebraic operations is uses, Dijsktra’s shortest path

algorithm11 is only one instance of a larger family of algorithms in an inf/sup lattice known as

Warshall’s algorithm working on any such algebraic structures [126].12 This is of great benefit for

software development: it is sufficient to encode only one algorithm with abstract inf and sup

operations and vary the effect according any specific instantiations of these operations. Many

closing algorithms in dual algebras such as (semi-) rings, (semi-) lattices, etc., are of this type

(see, e.g., Algorithm 1).

Formalization of fuzzy NFAs:

• [46]

• [88]

General references and links on fuzzy regular expressions (to connect with OSF unification

extended to regular path expressions [35]):

11https://en.wikipedia.org/wiki/Dijkstra%27s algorithm
12http://www.cse.chalmers.se/ c̃oquand/AUTOMATA/over7.pdf
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• Fuzzy Regular Expressions

• Fuzzy Regular Expression Matching software

Approximate string matching: [80].

More readings on fuzzy automata:

• fuzzy automata [33]

• fuzzy and non-deterministic automata [95]

• Myhill-Nerode theory for fuzzy languages and automata [71]

• Lattice-ordered monoids and automata [120, 121]

Fuzzy Quantum Logic

Also to read the intriguing interesting connections of Fuzzy Logic with Quantum Logic. To cite

just a few: [41],13 [102], [103], [53], [113]. [65]. See also: this and this. In [65], a nice algebraic

summary is given as:

Logic
Property

Classical
Logic

Birkhoff – Von
Neumann Logic

Zadeh
Fuzzy Logic

Giles – Łucasiewicz
Fuzzy Logic

Binary yes yes no no

Commutative yes no yes yes

Distributive yes no yes no

Excluded Middle yes yes no yes

Non-Contradiction yes yes no yes

Attributed conceptual information is the space of observations (an infinite-dimensional (quasi-

Hilbert) space), and the phase space comprises functions of probable neighbor states of points in

the observation space according to the axioms of Quantum Logic QL, which is a weakening of

FL.

4.2.3 Other links

Dynamic programming

Bellman’s Dynamic Programming [39] (since related to Dijkstra’s shortest path algorithm).

Fuzzy FCA

See essentially Radim Bělohlávek’s work and references in there.

13This is generally credited to be the pioneering paper.
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Fuzzy GDL

Fuzzifying the Generalized Distributive Law (GDL) [22, 23] (i.e., lifting it to any fuzzy lattice

structure).

Authors’ comment: Need to read and comment the state of the art, and infuse whether this

can connect productiveley (in either directions) withOSF graphs seen as order-sorted FSAs

(or NFAs) on regular languages of feature composition words (see, e.g., [35]).

4.3 Fuzzy Implementations

A few fuzzy LP systems have been proposed and implemented using some of the fuzzy unifi-

cation operations defined by the state of the art that we overviewed in Section 2.6.1, or variants

thereof. The following are just some among the many one can look up, some of which may be

downloadeded and used.

• FRIL [37], [36]: a LISP-based fuzzy LP from U. of Bristol, UK, (ca., 1992), and its more

recent object-oriented extension FRIL++ [106, 45, 107].

• Likelog [28], [29], [31], [32]; all using Arcelli et al.’s “cloud” fuzzy unification.

• FURY (using Gilbert-Schroeder fuzzy FOT unification) was designed and experimented

with for applications in Biology [61], [116].

• Bousi∼Prolog14 (using Sessa’s “weak resolution” based on “weak unification”) [117].

Papers on Bousi∼Prolog:

– the main system [76];

– implementation of Sessa’s “weak unification” [74];

– in [73] a straightforward adaptation to handle “weak unification” and “weak resolu-

tion” in a fuzzyLP system of Prolog’s WAM implementation [6]; (viz., the “SWAM”).

Authors’ comment: But this implementation uses cubic-time Warshall-Strassen transitive-

closure of a fuzzy relation [72]. Couldn’t this be computed faster like what Algorithm 1

does in linear time?

• FASILL [77]: also uses Sessa’s (and Bousi∼Prolog’s) “weak unification” and “weak reso-

lution,” but the language has some added features. the most important being that of offering

several kinds of fuzzy operators,15

14http://dectau.uclm.es/bousi/
15Such as those in Appendix Section A.3, Equation (A.15) and the possibility to use them simultaneously (each

being a pair of a fuzzy implication and conjunction 〈→i,&i〉 for the ith kind of fuzzy operators), based on the

semantics of “multi-adjoint LP” (MALT; see also this).
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Authors’ comment: This is not technically speaking related to Bousi∼Prolog, although

they have a common designer/author—P. Julian-Iránzo, of Universidad de Castilla, La

Mancha— and belong to the “Spanish Fuzzy LP School” where the Bousi∼Prolog

SWAM implementer—Clemente Rubio Manzano—did his PhD under Julian-Iránzo’s

supervision and is now at Universidad del Bio-Bio.

• FLINT (“Fuzzy Logic INferencing Toolkit”): a fuzzy LP toolkit in LPA Prolog. What

fuzzy unification algorithm does it use? None, in fact: it is a meta-interpreter implemented

as an LPA Prolog library that processes Horn clause rules over fuzzy sets represented as

“fuzzy variables” over declared value domains along with associated fuzzy qualifiers, which

are membership functions over the domain of the fuzzy variable they qualify.16 Then, a

context called a “ frame” in the form of a record structure whose fields are fuzzy variables is

defined along with “actions” which are instructions side-effecting some of these variables,

and “daemons” which are conditional triggers of such actions depending on the current

properties of some the frame’s fuzzy fields. This enables applications known as “Mamdani-

type controllers,” after Ebrahim Mamdani’s original formulation ([91] and [90]) of this kind

of fuzzy state controller which adapted Zadeh’s earlier idea [133].

Such essentially amounts to generic operational tools easing the specification in LPA Pro-

log of a primitive fuzzy expert system shell using fuzzified “condition-action” rules à la

Business Rules. It is “primitive” in that regard since there have been several other systems

supporting efficient implementation of such condition-action rules over object structures

using fuzzy RETE matching (e.g., FuzzyShell [98] or LISP-based FuzzyCLIPS [97]).

Authors’ comment:

See also the following related (but only marginally) work:

• Tony Abou-assaleh et al.’s “Relaxed term unification” in Tony Abou-Assaleh, Nick

Cercone, and Vlado Kešelj, “An Overview of the Theory of Relaxed Unification.”

in Proceedings of the International Conference on Advances in the Internet, Processing,

Systems, Interdisciplinary Research, IPSI-2003, Sveti Stefan, Montenegro, 2003.

This is related but not strictly speaking fuzzy though, just one tolerating any mis-

matches (functor symbol and arity). It consists of mapping all terms into singleton

sets which may then get augmented with contending other terms whereby unification

accumulates without resolving and thus never fails. Formalizing is rather cumbersome

(instead of using familiar logical variables as in Prolog, they borrow from the notation

used in “Head-Phrase Structure Grammars” (HPSGs) for feature path sharing—viz.,

numbers in squares), and not very well researched (e.g., in this 2003 work, the authors

attribute earliest ever unification operation to Robinson in 1965, and their method is

definitely not declarative and based on a “recursive descent” algorithm). (They do not

even cite [92], nor of course Herbrand [68].)

• Hashim Habiballa’s “Fuzzy Predicate Logic” which is a generalized fuzzy resolution

deductive system on unskolemized sentences. Fuzzification is done at the quantifier

level and so guides unification of a variable depending on its quantifier and its fuzzy

16Such qualifiers are known as fuzzy “linguistic hedges” ([132], [49]).
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http://tony.abou-assaleh.net/papers/abou-assaleh_ipsi03-ru.pdf
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar#Sample_grammar
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
herbrand:translation:1971
http://irafm.osu.cz/f/SW/FPLGERDS.pdf
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weight. This is like postponing skolemization (whether resolution is fuzzy or not)

until a variable is accessed, the same occurrence of existentially quantified variables

corresponding to the same object (even though no skolem functor for it was actually

generated) and depending on all the previous universally quantified variables (all whose

unquantified occurrence have been renamed within its scope) in the order of nesting.

• Peter Vojtáš’s “Fuzzy logic programming” Fuzzy Sets and Systems 124 (2001) 361–

370. (Although it says so in the abstract, there is nothing on fuzzy unification per se:

section 5.3 “Similarities and the problem of fuzzy unification” is basically vacuous)

• Ekaterina Komendantskaya’s “Unification by Error-Correction,” (unification using Neu-

ral Nets) Proceedings of the Fourth International Workshop on Neural-Symbolic Learn-

ing and Reasoning Patras (NeSy’08), Greece, July 21, 2008. Edited by Artur D’Avila

Garcez and Pascal Hitzler. See also her PhD thesis at Cork, 2007.

For general fuzzy neural nets, see Robert Keller’s lecture.17

• Alsinet et al.’s “context-dependent fuzzy unification” in “Two formalisms of extended

possibilistic logic programming with context-dependent fuzzy unification: a compara-

tive description” Electronic Notes in Theoretical Computer Science 66(5) (2002).

Finally, in our searching for work purporting to rely on some kind of fuzzy FOT unification,

sinceFOT unification is an essential operation used in Logic Programming (LP) languages such

as Prolog, we naturally looked at contributions describing themselves as “Fuzzy Logic Program-

ming” (or “Fuzzy Prolog”), seeking to understand what entities they fuzzified and how these were

used. But LP as a programming model has now long been subsumed as a particular instance of

Constraint Logic Programming (CLP)—cf., [79], and [70]. The CLP scheme is formally elegant

and operationally simple means to accommodate any constraint system besides conventional Pro-

log’sFOT unification. In CLP , the concept ofFOT andFOT unification as used inLP , is just

a particular constraint system among many others, and consists in solving systems of syntactic

(FOT ) equations. One can therefore easily accommodate any other alternative, or even concomi-

tant, constraint systems (i.e., any formal data structure subject to “normalizable” constraints) in

parallel, using shared variables as a natural and efficient means of communication. There are

several implemented CLP systems—e.g., CIAO.18 This latter system, for example, provides one

such fuzzy LP language instantiation using a particular fuzzy constraint library [123]. This is

what “Fuzzy CLP” does: it fuzzifies logical rules and facts over constrained variables; it does

not fuzzify FOT unification per se—it does not need to. These languages provide fuzzy logical

connectives (fuzzy and, or and not), and fuzzy predicates at the Horn rule/fact level. This, then,

does not address our objective of fuzzifying unification and generalization as lattice operations

on the FOT data structure.

4.4 Proposed Proofs of Concept

The most important consequence of this work, it is hoped, is that it can provide several pragmatic

operational improvements on inference and learning methods from purely declarative structure-

17https://www.cs.hmc.edu/courses/2004/fall/cs152/slides/fuzzy.pdf
18https://ciao-lang.org/
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oriented constraint specifications. This is meant to ease efficient implementation and the provi-

sion of software tools. In what follows we discuss a minimal set of necessary software develop-

ment efforts needed to enable the expressive potential of fuzzy lattice operations on FOT s and

OSF graphs.

Interfaces (Java packages and libraries) for FOT s and OSF graphs.

We have started an implementation in Java of the operational semantics derived from the

axioms and rules that we presented and proved correct in this article which has allowed us to

confirm our results on concrete examples [10].19 This was eased by the fact that the fuzzy lattice

operations do no require altering these conventional first-order structures.

§ CLOSING DECLARED FUZZY TAXONOMIES

In the crisp case, declaring an ordering on sorts defines a set of pairs. The complete ordering

itself is then generated as the reflexive-transitive closure of this declared set of pairs (“s1� s2”).

This is taken to great advantage to compile it statically for the efficient computation of Boolean

lattice operations on sorts when each sort is represented as a bit vector of as many bits as there are

sorts, and carries a bit for each index of a sort it subsumes. Thus, the time and space complexity

of all three Boolean lattice operations is quasi-constant on the size of the taxonomy, since this

amounts to compiling each sort into a native binary word of size equal to the total number of sorts

(see [12] and [11]).

For a fuzzy subsumption ordering on sorts, the same kind of reflexive-transitive closure may

be statically computed. However, the information carried by each pair of the fuzzy relation is no

longer {0, 1}-valued but [0, 1]-valued (the value of the similarity degree α in declaring “s1�αs2”),

and may no longer be represented as a bit. Now, instead of a bit-vector, it is a fuzzy set of the form

{α/s | α ∈ (0, 1] and s ∈ S }. The bitwise Boolean operations on bit-vectors are now fuzzified

into ∧, ∨, and λα.(1−α) on fuzzy set elements. Each of these operations works on fuzzy sets to

yield the fuzzy set of sorts obtained from applying the operation to the corresponding truth values

of each sort. Namely:

X ∧ Y
def
= { (α ∧ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (4.9)

X ∨ Y
def
= { (α ∨ β)/s | α/s ∈ X and β/s ∈ Y, for all s ∈ S } (4.10)

X
def
= { (1− α)/s | α/s ∈ X, for all s ∈ S } (4.11)

for all X and Y fuzzy sets over a reference set of sorts S.

Similarly with composition with a similarity degree α and fuzzy set X over S:

α ∧X
def
= { (α ∧ β)/s | β/s ∈ X, for all s ∈ S } (4.12)

and:

α ∨X
def
= { (α ∨ β)/s | β/s ∈ X, for all s ∈ S }. (4.13)

19See also [52], a recent extension of the Bousi-Prolog system based on our similarity-based unification tolerating

functors of differing arities.
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Since, by definition, we never represent explicitly a 0 similarity degree fuzzy element (i.e.,

of the form 0/s), we never store it explicitly either in a fuzzy set representation. Hence, in all

the foregoing defining Equation (4.9)–Equation (4.13), by “ for all s ∈ S” it is assumed that

whenever /s 6∈ X , for some sort s ∈ S and fuzzy set X on S, this is formally equivalent to

0/s ∈ X .

It will always be assumed that a top sort (“⊤”) and a bottom sort (“⊥”) are implicitly declared

such that, for all sorts s:

s �1 ⊤ (4.14)

and,

s 6= ⊤ =⇒ ⊤ �0 s (4.15)

as well as:

⊥ �1 s (4.16)

and,

s 6= ⊥ =⇒ s �0 ⊥ (4.17)

to express that there is no fuzziness in the sort ordering of⊤ as the greatest all-encompassing sort

and ⊥ as the least all-excluding sort.

In [12] and [11], the encoding of crisp-ordered sorts as bit vectors is given in pseudo-code

as a transitive-reflexive closure of the set of pairs of sort declarations of the form “si � sj .”
As expected, the process of propagating the similarity degrees declared in the fuzzy partial or-

der of sorts is also a reflexive-transitive closure procedure. One will easily see that it is a direct

homomorphic adaptation of the bit-vector procedure recalled in [11] obtained by transforming

the Boolean bit-vector representation and operations into their homomorphic fuzzy-set general-

izations. It is given as the pseudocode procedure CLOSEFUZZYTAXONOMY expressed as Algo-

rithm 1.

The class Sort is the type representing partially-ordered symbols making up a concept

taxonomy. We will also assume that known sorts are stored in a global (static) hash table,

called taxonomy, associating strings (sort names) to Sort objects. A global (static) method

getSort (String) will return a sort given its name.

The class Sort has a field called “children” of type Set〈Sort,double〉 containing,

for any sort, the sets of sorts that are its immediate children in the taxonomy, each paired with a

non-zero similarity degree. Thus, for every sort object, this set is filled with sorts by processing

fuzzy “�” expressions of the form s1 �α s2 used to declare that sort s1 is subsumed (or is a

subsort of) sort s2 with similarity degree α ∈ (0, 1]; namely, (s1, α) ∈ s2.children. The class

Sort has another field called “parents” of type Set〈Sort〉 containing, for any sort, the sets

of sorts that are its immediate parents in the taxonomy. There is no need to record the similarity

degrees as well in the parents sets because the similarity degrees will only be accessed through

the sets children while closing a fuzzy taxonomy.

In addition, the class Sort has:

Copyright c© 2019 by the Authors All Rights Reserved
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1 procedure CLOSEFUZZYTAXONOMY ()

2 Set〈Sort〉 layer ← ⊥.parents;
3 while layer 6= ∅ do

4 foreach Sort s ∈ layer do

5 s.fuzzyset ← { (s, 1) } ∨
∨

(u,α)∈ s.children

(

α ∧ u.fuzzyset
)

;

6 s.closed ← true;

7 end

8 layer ←
⋃

s∈layers.parents;

9 foreach s ∈ layer do

10 if ∃ (u, ) ∈ s.children such that ¬u.closed then

11 layer.remove(s);

12 end

13 end

14 end

15 end

Algorithm 1: Encoding of a fuzzy sort taxonomy as fuzzy-set codes

• an integer field called “index” that is a sort’s unique characteristic rank in the array

taxonomy containing all the sorts;

• a field called “fuzzyset” of type Set〈Sort,double〉 initialized to the empty fuzzy

set (i.e., equivalent to all pairs of distinct declared sorts having 0.0 similarity degree); this

represents the fuzzy set computed by reflexive-transitive closure. Upon completion of the

closure, it ends up containing, for each sort si ∈ taxonomy, the similarity degree αij ∈
(0, 1] of its � relationship with all sort sj ∈ taxonomy (i.e., such that si �αij

sj);

• a Boolean field called “closed” indicating whether this sort has been closed or not (so

it is initially set to false).

Authors’ comment: Give an example ...

[To be completed. . . ]

§ OPTIMIZING CLOSING AND LATTICE OPERATIONS

There is an immediate issue that the reader should have in mind with using the foregoing “sort-

as-fuzzy-set” representation and the closing procedure on these fuzzy sets. Namely, while Al-

gorithm 1 is clearly formally correct as a lattice-homomorphic image of the crisp case, the mo-

tivation for casting sorts into the Boolean lattice of bit-vector codes seems compromised in the

new representation of sorts as fuzzy sets exposed in [12], and used in [11] and in [9]. After
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closing it, a sort’s bit-vector represents the set of its lower bounds. Indeed, recall that this en-

abled optimizing set lattice operations on ordered set-denoting sorts (very fast on bit vectors),

with a minimal sort representation (a bit vector being essentially a non-negative integer), which

can be further compacted using a given declared is-a ordering’s specific topology [12]. With a

fuzzy partial-order, however, a sort is no longer identified with a bit vector but with a (0, 1]-fuzzy

set. Therefore, a compact fuzzy-set representation upon which an efficient intersection operation

may be computed must be provided in order to minimize impairing the efficient-implementation

motivation.

We discuss here a sensible data-structure representation for the fuzzy set encoding a fuzzy-

ordered sort in a finite set of a declared fuzzy taxonomy, supporting a better-than-naı̈ve imple-

mentation of its lattice operations.

We shall call “reference base” the set of minimal upper bounds of ⊥; namely, the set of sorts

in ⊥.parents, the first layer in Algorithm 1. We may also refer to the reference base as the

set of instances (i.e., each instance identifies a singleton-denoting sort).

Note that in Algorithm 1, the class Sort’s field fuzzyset is actually a fuzzy set where

the fuzzy elements are pairs α/s where s may be any sort in taxonomy, not just a sort in the

reference base. However, each sort formally denotes a fuzzy distribution on this reference base.

So we may also find it useful to identify the reference base as a global array called base of

N non-negative integers. This number N is the number of elements in the reference base; viz.,

N
def
= |⊥.parents|. Each value base[i], i = 1, . . . , N is the index of a sort in the

static hash table taxonomy that is minimal (i.e., in ⊥.parents). Hence, rather than a field

fuzzyset, the class Sort is given a field called fuzzybase to represent this fuzzy set as

an array of N ≤ taxonomy.size() of [0, 1]-values for each index in base. In other words,

for a sort s, s.fuzzybase is an array of N similarity degrees and s.fuzzybase[i] is the

similarity degree of base[i].

For any sort s, the array s.fuzzybase is approximated by the binary vector we shall define

as a new field of type BitCode for the class Sort called crispvalue, a bit vector such that:20

s.crispvalue[i]
def
=

{

1 if s.fuzzybase[i] > 0;
0 otherwise.

This information is therefore immediate to derive from any closed fuzzy sort taxonomy and can be

used in the abstract interpretation of the three fuzzy Boolean lattice operations on sorts to restrict

enumeration of a fuzzy set’s elements only to non-zero indices using the bit-vector operations

defined in [12] and [11].

4.5 Applications

Example of applications and use in knowledge and data processing (deduction and learning),

linguistics (fuzzy order-sorted HPSGs).

Authors’ comment: Take a look later at applications:

20For example, a Java class such as hlt.osf.util.BitCode, which extends the standard Java class

java.util.BitSet.
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• Zadeh’s fuzzy interpretation of linguistic hedges [132]

• Common Fuzzy Distributions for linguistic hedges [49]

• Other sorts of application (fuzzy control in particular) [134].

4.6 Use Case

Approximate Information Retrieval.

Copyright c© 2019 by the Authors All Rights Reserved
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Version of January 8, 2019

Conclusion

5.1 Recapitulation

We overviewed several ways to fuzzify OSF constraint logic. We hope to have provided enough

evidence that what we describe in this document is to benefit Information Retrieval as well as Ma-

chine Learning when fuzzy-OSF can provide a precious initial focusing step prior to exploiting

number-analytical techniques used in Inductive Logic Programming [108] or Bayesian Nets [67].

Authors’ comment: This last point should perhaps be detailed somewhat talking about Yu-

taka Sasaki’s work: [111], [109], [108], [110], [21]. (Or perhaps just mention and cite his

work here, and then elaborate in a separate paper on fuzzy OSF learning with him as co-

author?)

In this context, we focused on the lattice-theoretic properties of fuzzy OSF graphs. Such

fuzzy structures may be put to use in approximate Knowledge Representation to offer a more

flexible means to perform deduction and induction over abstract attributed objects and concepts

represented as fuzzy order-sorted feature graphs.

We also discussed several fuzzy versions of related topics, from (Lattice) Algebra,to Au-

tomata Theory to (Description) Logics, to Data Structures.

5.2 Further work

The most immediate avenue of research that the issues discussed in this paper open up is the

design (specification and implementation) of a CLP language that would be the “least upper

bound” of L≀G〉\ [15] (and later LIFE [7, 14]) with a fuzzy Logic Programming language such

as FASILL [77]. Such a language, with access to distributed databases, would facilitate efficient

approximate reasoning for query resolution as well as learning by approximate knowledge ac-

quisition as fuzzy order-sorted feature structures. All the applications enabled by Fuzzy Logic

Programming on one side and OSF Logic Programming on the other could then each benefit as

each would thereby gain even more expressivity and flexibility for the processing of approximate

https://www.researchgate.net/publication/220814962_RHB_A_type-oriented_ILP_system_learning_from_positive_data
https://pdfs.semanticscholar.org/ec8e/e66e6a1125b48a580d01ce0d7719eca180f6.pdf
http://www.hassan-ait-kaci.net/pdf/ecml01.pdf
http://www.hassan-ait-kaci.net/pdf/login-popl-86.pdf
http://hassan-ait-kaci.net/pdf/life.pdf
https://arxiv.org/abs/1501.02034
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structured knowledge on massive data. While fuzzy OSF unification (the conjunctive connec-

tive) is the key to deduction (as used in logical or function rule invocation), fuzzy OSF general-

ization (the disjunctive connective) is the key to induction (as used in learning by extrapolating

knowledge from data).

The next, of course, is the development of applications: from Information Retrieval, to Natural

Language, to Knowledge Processing. The potential is immense.

Concomittantly are all the pragmatic issues: efficient implementation (preprocessing, abstract

machine compiling, interfacing to constraint-solving and fuzzy-set libraries, etc.).

Clearly, the possibilities are legion.

Copyright c© 2019 by the Authors All Rights Reserved
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Version of January 8, 2019

Background Material

In this appendix, we provide a succint summary of formal material, terminology, and notation

constituting background for the issues developed in this work.

• Appendix A.1 reviews basic lattice-theoretic notions and notation. Section A.1.1 gives the

essentials. Section A.1.2 explains modularity and distributivity.

• Appendix A.2 gives the basic formal set-theoretic characterization properties of relations

as sets of pairs.

• Appendix A.3 extends these to their corresponding fuzzy notions: Section A.3.1 to fuzzy

relations; Section A.3.2 to fuzzy equivalence relations (called similarities); and, Section

A.3.3 to fuzzy partial orders.

• Appendix A.4 recalls basic definitions and properties of FOT substitutions represented,

as we do in this work, as finitely non-indentical variable-to-terms mappings.

• Appendix A.5 contains the procedural FOT generalization algorithms as formulated in

1970, one by John Reynolds and the other by Gordon Plotkin.

• Appendix A.6 presents the clause-drivenOSF -generalization rules given in [21].

• Appendix A.7 discusses what “up to tag renaming” can allow in the process ofOSF clause

normalization.

A.1 Basic Lattice Theory

We recall here basic background from Lattice Theory that we rely on in this work. We restrict

ourselves to notions that are relevant to our presentation with the aim to make it as self-contained

as possible. For a comprehensive treatise on the subject, the definitive reference is Birkhoff’s

book [40].

http://www.hassan-ait-kaci.net/pdf/ecml01.pdf
http://documents.mx/documents/lattice-theory-3ed-1967-birkhoffpdf.html


D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 109 Version of January 8, 2019

A.1.1 Essentials

Let L,≤ be a poset.

If all pairs of elements x and y in L admit a unique greatest lower bound (glb) in L, noted

x ∧ y, then L,≤,∧ is called a (lower) semi-lattice. Dually, if all pairs of elements x and y in

L admit a unique least upper bound (lub) in L, noted x ∨ y, then L,≤,∨ is called an (upper)

semi-lattice.

DEFINITION A.1 (LATTICE) A lattice L,≤,∧,∨ is a poset such that L,≤,∧ is a lower semi-

lattice and L,≤,∨ is an upper semi-lattice.

A lower semi-lattice L,≤,∧ is called complete if all (i.e., even non-finite) subsets X ⊆ L
admit a glb in L. Dually, an upper semi-lattice L,≤,∨ is called a complete, if all subsets X ⊆ L
admit a lub in L.

A lattice L,≤,∧,∨ is lower-complete iff L,≤,∧ is a complete lower semi-lattice. Dually,

it is upper-complete iff L,≤,∨ is a complete upper semi-lattice. A lattice in complete if it both

lower-complete and upper-complete.

When L has a greatest element, we call it “top” and write it “⊤.” Note that by definition

⊤
def
=
∨

L. Dually, when L has a least element, we call it “bottom” and write it “⊥.” Also note

that by definition ⊥
def
=
∧

L.

DEFINITION A.2 (MODULAR INEQUALITY) In any lattice L,≤,∧,∨, the following holds:

if x ≤ y then x ∨ (z ∧ y) ≤ (x ∨ z) ∧ y (A.1)

for all x, y, z in L.

DEFINITION A.3 (DISTRIBUTIVE INEQUALITIES) In any lattice L,≤,∧,∨, the following two

inequalities hold:

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ y), (A.2)

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ y) (A.3)

for all x, y in L.

DEFINITION A.4 (COMPLEMENTED LATTICE) A complemented lattice is a lattice L,≤,∧,∨
with top ⊤ and bottom ⊥ in which for any element x ∈ L, there is a unique complement x ∈ L
verifying:

x ∨ x = ⊤ (A.4)

and:

x ∧ x = ⊥ (A.5)

DEFINITION A.5 A Boolean Lattice is a distributive complemented lattice.

Copyright c© 2019 by the Authors All Rights Reserved
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A.1.2 Modularity, Distributivity

Intuitively, when thinking of an ordering as comparing information contents, submodularity—i.e.,

Inequality (A.1)—and subdistributivity—i.e., Inequality (A.2) or Inequality (A.3)—express the

fact that there may be non-uniform distribution of information either horizontally (modularity)

or vertically (distributivity). When equalities rather than inequalities are required to hold always,

this restricts the class of lattices to fully modular and fully distributive lattices.

DEFINITION A.6 (MODULAR LATTICE) A modular lattice L,≤,∧,∨ is a lattice in which the

modular inequality (A.1) becomes an equality everywhere; viz.,

if x ≤ y then x ∨ (z ∧ y) = (x ∨ z) ∧ y (A.6)

for all x, y, z in L.

A useful way to visualize what makes a lattice be modular is that, for all pair of elements

x and y, the interval between x and x ∨ y (= lub(x, y)) is order-isomorphic with the interval

between x ∧ y (= glb(x, y)) and y. In other words, in a modular lattice, information contents

varies isomorphically along edges of diamond-shaped order diagrams. This is why modularity is

often referred to as the “diamond isomorphism” property.1 Formally, this means that for any pair

x and y, the two functions λu.
(

u ∨ x
)

and λv.
(

v ∧ y
)

are mutually inverse order isomorphisms.

The following result provides a simple test of modularity.

THEOREM A.1 (MODULARITY CONDITION) Any lattice that admits a sublattice isomorphic

to the 5-element lattice on the left side of Figure A.1 is not modular.

©

© © ©

©

©

©

©

©

©

Non-modular lattice diagram Non-distributive lattice diagram

Figure A.1: Non-modular and non-distributive lattice diagrams

DEFINITION A.7 (DISTRIBUTIVE LATTICE) A distributive latticeL,≤,∧,∨ is a lattice in which

the inequality in condition (A.2)—or, equivalently the inequality in condition (A.3)—is strength-

ened into an equality everywhere.

1https://en.wikipedia.org/wiki/Modular lattice#Diamond isomorphism theorem

Copyright c© 2019 by the Authors All Rights Reserved
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Note that:

THEOREM A.2 Every distributive lattice is also modular.

A way to visualize whether a lattice is distributive is when all paths between two related

elements have equal lengths; namely, information contents varies uniformly vertically. This is

captured by the following properties.

The following result provides a simple test of distributivity.

THEOREM A.3 (DISTRIBUTIVITY CONDITION) Any lattice that admits a sublattice isomor-

phic to the 5-element lattice on the right side of Figure A.1 is not distributive.

A.2 Crisp Relations

In (crisp) Set Theory, a binary relation r on a set S is a subset of S × S. We say that r is:

• reflexive iff:

11S×S ⊆ r (A.7)

where 11S is the identity relation on S defined as: 11S×S
def
= { 〈x, x〉 | x ∈ S };

• symmetric iff:

r = r−1 (A.8)

where r−1 is the inverse relation of r defined as: r−1 def
= { 〈y, x〉 ∈ S × S | 〈x, y〉 ∈ r };

• antisymmetric iff:

r ∩ r−1 ⊆ 11S×S (A.9)

where r ∩ r′ is the intersection of r and r′; viz., the relation on S defined as: r ∩ r′
def
=

{ 〈x, y〉 ∈ S × S | 〈x, y〉 ∈ r and 〈x, y〉 ∈ r′ };

• transitive iff:

r ◦ r ⊆ r (A.10)

where r ◦ r′ is the composition of r and r′; viz., the relation on S defined as: r ◦ r′
def
=

{ 〈x, y〉 ∈ S × S | 〈x, z〉 ∈ r and 〈z, y〉 ∈ r′ for some z ∈ S }.

DEFINITION A.8 (PREORDER) A relation r on a set S is a preorder on S iff it is reflexive and

transitive; i.e., iff r verifies conditions (A.7) and (A.10).

DEFINITION A.9 (EQUIVALENCE) A symmetric preorder r on a set S is called an equivalence

on S; that is, r verifies conditions (A.7), (A.8), and (A.10).

Copyright c© 2019 by the Authors All Rights Reserved
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Such an equivalence relation ≡ on a set S defines a partition of this set; namely, a collection

of non-empty subsets Si, 1 ≤ i ≤ I≡ ∈ N, of S (the equivalence classes) such that:

1 ≤ i 6= j ≤ I≡ =⇒ Si ∩ Sj = ∅ (A.11)

and:

S =
⋃

i ≤ I≡

Si (A.12)

where I≡, the index of ≡, is the number of equivalence classes of ≡ forming the partition of S.

The equivalence class of an element of x ∈ S is denoted [x]≡ and is defined as:

[x]≡
def
= { y ∈ S | x ≡ y }. (A.13)

DEFINITION A.10 (PARTIAL ORDER) A relation r on a set S is a partial order on S iff it is an

antisymmetric preorder on S; i.e., iff r verifies conditions (A.7), (A.9), and (A.10).

A.3 Fuzzy Set Algebra

In this section, we recall some essential terminology and notation on Fuzzy Set algebra used in

this document. The fuzzy operator symbol on [0, 1]2 we shall use for fuzzy conjunction, also

called T-norm,2 is ∧ (resp., ∨ for its fuzzy dual operation). This is generally interpreted as min

(resp., max); e.g., in Zadeh’s seminal paper [130]. But other fuzzy operation interpretations can

be considered depending on the desired effect.

Thus, all the issues considered in this document are generic in the choice of fuzzy operators.

Indeed, in fuzzifying OSF terms, or anything for that matter, it is important to realize that many

kinds of fuzziness may be obtained depending on the choice of these operators. In this section,

we make some general points regarding the interpretations of fuzzy operators over the continuous

interval [0, 1] other than the classical min and max.

A conventional set S of elements of a universe U is identified to its Boolean-valued char-

acteristic function 1S : U → { false, true } so that for all x in U , x ∈ S iff 1S(x) = true.

This defines a Boolean algebra isomorphism between the set of subsets of elements of U and

{ false, true }-valued functions on U . When identifying a set to its Boolean characteristic func-

tion, set operations become logical operations: intersection becomes conjunction [1S∩S′(x)
def
=

1S(x) and 1S′(x)], union becomes disjunction [1S∪S′(x)
def
= 1S(x) or 1S′(x)], and com-

plementation becomes negation [1S(x)
def
= not 1S(x)]. Another equivalent Boolean algebra

isomorphism is the one identifying the logical constants false and true to the numerical values 0
an 1, respectively, and the logical operations and, or, and not, to the numerical operations min,

max, and λx.(1 − x), respectively. This is because these numerical operations on the numbers

0 and 1 stay isomorphically internal to {0, 1} ⊂ [0, 1] with 0 < 1. Formally, this amounts to

plunging the discrete 2-valued poset ({0, 1},≤) homomorphically into the continuous unit inter-

val ([0, 1],≤) with the identical numerical operations (min, max, and λx.(1 − x)). Hence, when

2See https://en.wikipedia.org/wiki/T-norm.
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seen as [0, 1]-valued functions, these latter operations are a homomorphic extension of conven-

tional Boolean algebra. This was the interpretation proposed originally by Zadeh in his seminal

article on Fuzzy Sets [130].

However, there are many other ways in which conventional two-valued Boolean {0, 1}-Logic

may be fuzzified by being extended into a multiple-valued logic depending on whether it allows

multiple discrete or continuous similarity degrees in [0, 1] (or any suitable “L-structure” [63, 56]).

In essence, any Boolean Logic can be fuzzified by extending its basic Boolean connectives

(1) and, (2) or, and (3) not, on the {0, 1} similarity degrees of characteristic function (and thus

the set operations (1) intersection, (2) union, and (3) complementation), into generic Boolean

Lattice operations ∧, ∨, λx.x on [0, 1]-valued functions whereby:

• 1S∩S′(x)
def
= 1S(x) ∧ 1S′(x),

• 1S∪S′(x)
def
= 1S(x) ∨ 1S′(x),

• 1S(x)
def
= 1S(x).

This may look innocuous a precision, but it turns out that, as thoroughly explained and illustrated

in particular in Dubois and Prade’s comprehensive treatise on Fuzzy Sets and Systems [56], there

are many other possible choices for the lattice operations on [0, 1] for ∧, ∨, and λx.x besides min,

max. It is for this reason, and with no loss of generality, that we use the former three operations

rather than the latter in this document.

All we need are lattice operations ∧ and ∨ (and λx.x) on [0, 1], which can then be made to

apply to fuzzy sets defined as functions in [0, 1]U by pointwise extension. Namely:

∧ : [0, 1]U × [0, 1]U → [0, 1]U

∨ : [0, 1]U × [0, 1]U → [0, 1]U

λx.x : [0, 1]U → [0, 1]U

⊤
def
= λx.1

⊥
def
= λx.0

(A.14)

so that:

• [0, 1]U ,∧,⊤ is a commutative monoid,

• [0, 1]U ,∨,⊥ is a commutative monoid,

• ∧, ∨ are mutually distributive,

• ⊥ = ⊤,

• ⊤ = ⊥,

and, for all fuzzy sets φ, φ1, φ2:

• φ ∧ ⊥ = ⊥,

• φ ∨ ⊤ = ⊤,

Copyright c© 2019 by the Authors All Rights Reserved
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• φ1 ∧ φ2 = φ1 ∨ φ2,

• φ1 ∨ φ2 = φ1 ∧ φ2,

• φ = φ.

From this, a plethora of familiar algebraic and order-theoretic properties ensue [40]. In the lit-

erature, the “∧” operator is sometimes called “T-norm” (for “triangular norm”), while the “∨”

operator is sometimes called “T-conorm” or “S-norm.” They can be derived from one another by

duality using:

φ1 ∧ φ2 =
(

φ1 ∨ φ2

)

φ1 ∨ φ2 =
(

φ1 ∧ φ2

)

.

(A.15)

In particular, with φ
def
= 1− φ:

φ1 ∧ φ2 = 1−
(

(1− φ1) ∨ (1− φ2)
)

φ1 ∨ φ2 = 1−
(

(1− φ1) ∧ (1− φ2)
)

.
(A.16)

For example, here are three popular such ∧ and ∨ operations on [0, 1] used in practice [56],

[77]:

• “Gödel” fuzzy operators:
{

α1 ∧G
α2

def
= min(α1, α2)

α1 ∨G
α2

def
= max(α1, α2)

(A.17)

• “Product” (or “probabilistic”) fuzzy operators:
{

α1 ∧P
α2

def
= α1α2

α1 ∨P
α2

def
= α1 + α2 − α1α2

(A.18)

• “Łukasiewicz” fuzzy operators:
{

α1 ∧L
α2

def
= max(0, α1 + α2 − 1)

α1 ∨L
α2

def
= min(α1 + α2, 1)

(A.19)

Choosing any of these, or others, will determine how fuzzy inference is affected by each argu-

ment. For example, contrary to the “Gödel” fuzzy conjunction ∧G that imposes the value of one

over the other of two truth values, the “Product” version ∧P is less “drastic” and will take a more

balanced consideration of the values of both arguments. There are a few other fuzzy operators

that have been given specific denominations that correspond to particular situations.3 But one

may design their adequate ∧ operator (or ∨ operator since one can be derived from the other by

duality).4

However, in all the actual numerical examples provided in this document for illustration, we

use min (resp., max).

3See, e.g.: http://www.nicodubois.com/bois5.2.htm.
4Designing specific fuzzy norms can be done visually in 3D using publicly available tools such as, e.g.,

http://www.math.uri.edu/ b̃kaskosz/flashmo/graph3d2/.
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A.3.1 Fuzzy relation

Let us now fuzzify the conventional set theoretic definitions recalled in A.2. It is a straightfor-

ward homomorphic extension of the conventional view of (crisp) sets as {0, 1}-valued functions

to [0, 1]-valued functions. Indeed, the former are just a particular case of the more general (fuzzy)

sets seen as [0, 1]-valued characteristic functions.5 That is, all the fuzzy notions are obtained as

straightforward extensions of their crisp counterparts through a Boolean lattice homomorphism.

The advantage of the fuzzy extension over conventional sets is that, being structurally richer, it is

more expressive. It is a homomorphic extension insofar as all the formal algebraic properties of

fuzzy sets and fuzzy-set connectives reduce to their conventional crisp versions when unfuzzify-

ing the truth value φ(x) of every fuzzy element φ(x)/x of a fuzzy set φ into a crisp value in {0, 1}
for truth values which, when compared to a given value α in [0, 1], are either strictly less (assimi-

lated to 0), or greater or equal (assimilated to 1). Informally, this is the crisp set of elements with

“at least” α as fuzzy truth value. This is called a fuzzy set’s “α-cut” φα such that φα(x)
def
= 0

whenever φ(x) < α and φα(x)
def
= 1 whenever φ(x) ≥ α, for any truth threshold α in [0, 1].

DEFINITION A.11 (FUZZY RELATION) A fuzzy relation on a set S is a fuzzy set on S × S.

The following properties generalize those of crisp binary relations seen in A.2. Like in the

crisp case, we will look closer at essentially two kinds of fuzzy binary relations: fuzzy orders and

fuzzy equivalences.6

Recall that a fuzzy set φ on a set S is a function φ : S → [0, 1]. Let ρ : S × S → [0, 1] be a

fuzzy relation on S. We say that ρ is:

• reflexive iff:

11S×S ≤ ρ (A.20)

where 11S×S is the fuzzy identity relation on S defined as: 11S×S(x, y) = 1 if x = y
and 0 if x 6= y, for all x and y in S; and ≤ is fuzzy set inclusion defined as: ρ ≤ ρ′ iff

ρ(x, y) ≤ ρ′(x, y), for all x and y in S;

• symmetric iff:

ρ = ρ−1 (A.21)

where ρ−1 is the fuzzy inverse of ρ; viz., the fuzzy relation on S defined as: ρ−1(x, y)
def
=

ρ(y, x), for all x and y in S;

• antisymmetric iff:

ρ ∧ ρ−1 ≤ 11S×S (A.22)

where the fuzzy meet ρ ∧ ρ′ is the fuzzy relation on S defined as:
(

ρ ∧ ρ′
)

(x, y)
def
=

ρ(x, y) ∧ ρ′(x, y), for all x and y in S;

5Such a fuzzy characteristic function is called a “membership function” in the literature following Zadeh’s origi-

nal terminology [130].
6See [128] for even finer and more expressive kinds of useful fuzzy relations that can be defined algebraically.
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• transitive iff:

ρ ◦ ρ ≤ ρ (A.23)

where the fuzzy composition ρ ◦ ρ′ is the fuzzy relation on S defined as:
(

ρ ◦ ρ′
)

(x, y)
def
=

∨

z∈S

(

ρ(x, z) ∧ ρ′(z, y)
)

, for all x and y in S.

DEFINITION A.12 (FUZZY PREORDER) A fuzzy relation ρ on a set S is a fuzzy preorder on S
iff it is reflexive and transitive; i.e., iff r verifies conditions (A.20) and (A.23).

A.3.2 Similarity

DEFINITION A.13 (FUZZY EQUIVALENCE) A fuzzy equivalence ρ on a set S is a fuzzy rela-

tion on S which is a symmetric fuzzy preorder on S—that is, ρ verifies conditions (A.20), (A.21),

and (A.23).

A fuzzy equivalence relation is also called “similarity” relation in the literature [77]. For this

reason, we speak of “similarity degree” to denote the truth value of a pair so related.

A similarity relation∼ on a set S is a fuzzy equivalence relation on S; i.e., a fuzzy set of pairs

of S × S. When S is a finite discrete set, say indexed over {1, . . . , n}, since a similarity relation

∼ on S is a fuzzy subset of S × S, the three conditions of an equivalence can be visualized on a

square n× n matrix ∼∈ {1, . . . , n}2 → [0, 1] as follows. For all i, j, k = 1, . . . , n:

• reflexivity: i ∼ i = 1 (i.e., entries on the diagonal are equal to 1);

• symmetry: i ∼ j = j ∼ i (i.e., all symmetric entries on either side of the diagonal are

equal);

• transitivity: i ∼ k ∧ k ∼ j ≤ i ∼ j, for any k ∈ { 1, . . . , n} (i.e., going via an

intermediate element will always result in a smaller or equal similarity degree than going

directly).7

Given a similarity relation ∼ on a set S, the subset of [0, 1] denoted DEGREES
∼ and defined

as DEGREES
∼ def

= {α ∈ [0, 1] | x ∼α y, for somex, y ∈ S } is called the “similarity degree set”

of ∼. A similarity degree α ∈ DEGREES
∼ can thus be used as an approximation threshold, and

a similarity can be rendered a crisp equivalence on S by keeping only pairs in ∼ with similarity

degree greater than or equal to α (i.e., the α-cut of the similarity).

The similarity class [x]∼α of an element x ∈ S at an approximation threshold α in [0, 1] given

a similarity∼ on S is defined as:

[x]∼α
def
= { y ∈ S | x ∼β y, for some β ∈ [α, 1] }.

Thus, as the similarity degree α decreases from 1 down to 0, more similarities appear in ∼α

between pairs of distinct elements of S that were not related in α-cuts of ∼ at greater thresholds.

In other words, as α decreases, the equivalence classes of ∼α grow larger by coalescing classes

7Here and elsewhere in this article, we shall use ∧/∨ for fuzzy conjunction/disjunction in generic formulas.

We prefer using these more general symbols in our formalization since which specific fuzzy operations are used is

irrelevant. However, we shall use min/max in all the illustrative examples we give that use actual numbers.
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of lesser similarity degrees; that is, for any x ∈ S, if α ≤ β, then [x]∼β ⊆ [x]∼α . In particular, it

is always the case that [x]∼0.0 = S; indeed, then, all elements are indistinguishable. Note finally

that, for any pair 〈x, y〉 in S × S and similarity∼: S × S → [0, 1], if x ∼α y for some α in [0, 1],
then x ∼β y for all β ∈ [0, α]. For this reason, unless otherwise specified, whenever we use an

approximation degree as a subscript, we mean the greatest such degree.

A.3.3 Fuzzy partial order

DEFINITION A.14 (FUZZY PARTIAL ORDER) A fuzzy relation ρ on a set S is a fuzzy partial

order on S iff it is an antisymmetric fuzzy preorder; i.e., iff ρ verifies conditions (A.20), (A.22),

and (A.23).

For a fuzzy partial order, as in the case of a fuzzy equivalence relation, when S is a finite

discrete set {x1, . . . , xn}, the three conditions of the above definition can be visualized on a

square n× n matrix � in [0, 1]2 as follows:

• reflexivity and transitivity (just as for a similarity matrix);

• antisymmetry: the matrix must be triangular (up to reordering of columns and lines); this

is because �ij > 0 implies �ji = 0, for all i, j = 1, . . . , n (i.e., all symmetric entries on

either side of the diagonal may not be both non-zero).

For example, the fuzzy binary relation � on the 6-element set {x1, . . . , x6} defined as the

fuzzy min/max reflexive-transitive closure of the following weighted acyclic graph:8

x5 x6

x2 x3 x4

x1

≺.6 ≺.5 ≺.6 ≺.4

≺.8 ≺.2 ≺.6

corresponds to the following fuzzy matrix:

�
def
=

















1 0.8 0.2 0.6 0.6 0.4
0 1 0 0 0.6 0
0 0 1 0 0.5 0
0 0 0 1 0.6 0.4
0 0 0 0 1 0
0 0 0 0 0 1

















(A.24)

8This example is from [131].
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upon which these conditions can be verified—which means that the fuzzy relation � so defined

is a fuzzy partial order on the set {x1, x2, x3, x4, x5, x6}.
Note that, just as in the crisp case, any fuzzy preorder � on a set S (i.e., a fuzzy relation on S

that is reflexive and transitive) always implicitly defines the following fuzzy relations:

• a similarity∼ on S defined, for any α ∈ [0, 1], as:

∼α
def
= �α ∧ �α (A.25)

where �α is the fuzzy relation defined as: �α
def
= �−1

α ;

• a fuzzy partial order�, a fuzzy set of partial orders�α on each partition Π∼
α of S generated

by ∼ in the fuzzy partition Π∼ def
= {Π∼

θ | θ ∈ DEGREES
∼ }, such that:

[x]∼α �α [y]∼α iff x ∼α x′ and x′ �α y′ and y′ ∼α y (A.26)

for some x′ ∈ [x]∼α and some y′ ∈ [y]∼α .

A.4 First-Order Term Substitutions

This section gives basic terminology and properties ofFOT substitutions as defined in 2.2 where

the set-theoretic definition of substitutions as finitely non-identical variable-to-term mappings is

given as Expression (2.2).

LEMMA A.1 Given two substitutions σ and θ in SUBST
T

, the operation defined by Expres-

sion (2.2) always results in a substitution in SUBST
T

.

PROOF It must be verified that, given σ and θ two finitely non-identical mappings from V to T ,

the notation σθ defined in set-theoretic terms from the set structure of σ and θ by Expression (2.2)

always results in a finitely non-identical mapping from V to T . This is an elementary exercise from

the very set-theoretic definition of substitution composition given as Expression (2.2). �

LEMMA A.2 For any term t in T and any substitutions σ and θ in SUBST
T

, the expression σθ
defined by Expression (2.2) is a substitution that has the same effect as first applying σ to t, and

then applying θ to the result; that is, ∀ t ∈ T , ∀ σ ∈ SUBST
T
, ∀ θ ∈ SUBST

T
, ⊔(σθ) = (⊔σ)θ.

PROOF Expression (2.2) consists of two parts of a (disjoint) set union. The first part of this union

consists in the set of pairs t/X in σ transformed into the set of pairs tθ/X for each each pair t/X in

σ. This has for effect to “capture” any potential variables in var(tσ)∩ dom(θ) by mapping directly

to tσθ any variable mapped to t by σ. This corresponds to precomputing the necessary “shortcut”

of instantiating X directly into to tσθ for all such concerned variables in dom(θ). Note that since

this may possibly introduce identical pairs X/X, which must then be eliminated.

The second part of the union in Expression (2.2) simply completes the resulting substitution with

pairs t/Y in θ concerning those variables Y which are not affected by σ (i.e., all Y ∈ dom(θ) such
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that Y 6∈ dom(σ)). Indeed, these variables are taken care of in the first part in the terms mapping

the variables in dom(X) by further instantiating by θ as need be.

These two cases clearly cover the only possibilties for variable mapping by σ and θ, and by con-

struction in each case, this results in a finite set of term/variable pairs, thus completely specified by

Expression (2.2) on all V , when applied to any term t, has the same effect of first applying σ to t
and then applying θ to the result. �

COROLLARY A.1 Substitution composition as defined by Expression (2.2) is an associative

operation; i.e., for all σ, θ, and δ in SUBST
T

, σ(θδ) = (σθ)δ.

PROOF Let t be any term in T , and σ, θ, and δ be three substitutions in SUBST
T

. Applying

Lemma A.2 successively, we have t(σ(θδ)) = (tσ)(θδ) = ((tσ)θ)δ = (t(σθ))δ = t((σθ)δ). Since

both sides applied to any term are equal, this means that σ(θδ) = (σθ)δ. �

Note that, as a set of term/variable pairs, the substitution which is the identity everywhere on

V is the empty set of pairs—which is why it is called the empty substitution and denoted as the

empty set ∅. It is easy to verify that this empty substitution is also the unique identity element on

SUBST
T

. Namely, for all substitution σ ∈ SUBST
T

, σ∅ = ∅σ = σ and if σθ = θσ = σ for some

θ ∈ SUBST
T

, then θ = ∅. Therefore, SUBST
T

with composition and ∅ is a monoid. Note finally

that substitution composition is not commutative since in general σθ 6= θσ.9 Therefore, the set

SUBST
T

with substitution composition is a non-commutative monoid.

Like all monoids, the set SUBST
T

of substitutions inherits a relation � defined as follows.

DEFINITION A.15 σ � θ iff ∃ δ ∈ SUBST
T

s.t. σ = θδ.

The expression “σ � θ” is read “σ refines θ” or “θ is more general than σ.”

LEMMA A.3 The relation � is a preorder on the set of first-order term substitutions SUBST
T

.

PROOF We must show that � is reflexive and transitive. Reflexivity: For any σ ∈ SUBST
T

, there

exists δ = ∅ such that σ = σδ, which means by definition of � that σ � σ. Transitivity: Assume

σ1 � σ2 and σ2 � σ3; this means that there exist δ1 and δ2 such that σ1 = σ2δ1 and σ2 = σ3δ2.

Replacing σ2 by its value in the expression of σ1, it comes as a result that σ1 = σ3δ2δ1. And so,

there exists δ3 = δ2δ1 such that σ1 = σ3δ3; which means that σ1 � σ3. �

Note that � is not an order relation because it is not anti-symmetric. Indeed, if we have

both σ � θ and θ � σ, this does not necessarily imply that σ = θ. However, this defines an

equivalence relation on substitutions.

LEMMA A.4 The relation ≃
def
= � ∩ �−1 is an equivalence on the set of substitutions SUBST

T
.

9Take for example σ = { a/X } and θ = { b/X }, for which σθ = { a/X} and θσ = { b/X}.
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PROOF Let us verify that ≃ has three properties of an equivalence. Reflexivity: Clearly, for any

σ ∈ SUBST
T

, σ ≃ σ since this is equivalent to σ � σ and σ � σ, which is always true since �
is reflexive because it is a preorder. Symmetry: Also, for any σ ∈ SUBST

T
and θ ∈ SUBST

T
,

if σ ≃ θ, this is equivalent by definition to σ � θ and θ � σ; which is also equivalent to θ ≃ σ.

Therefore, ≃ is symmetric. Transitivity: Let us now assume that (1) σ ≃ θ and (2) θ ≃ δ. This

implies in particular, by definition of ≃ and ≃: (1) (σ � θ and θ � δ), which by transitivity of �
implies σ � δ; and (2) (δ � θ and θ � σ); which by transitivity of � implies δ � σ. Hence, we

have both σ � δ and δ � σ, which is equivalent to σ ≃ δ. Therefore, ≃ is transitive. �

DEFINITION A.16 A variable renaming ρ is a substitution in SUBST
T
∩ (V → V) that is injec-

tive. That is,

• ρ = {X ′
i/Xi}

n
i=1 with Xi ∈ V and X ′

i ∈ V; and,

• if Xi 6= Xj then X ′
i 6= X ′

j , for any i, j = 1, . . . , n such that i 6= j.

COROLLARY A.2 If both σ � θ and θ � σ, this entails that σ and θ are equal up to a renaming

of their variables. Namely, ∃ ρ : V → V bijective such that θ = ρσ and σ = ρ−1θ.

PROOF If σ � θ and θ � σ then, by definition, there exist two substitutions ρ and ρ′ such that

σ = θρ and θ = σρ′. In other words:

{

σ=σ ρ ρ′,
θ = θ ρ′ρ ;

which is equivalent to:

{

ρ ρ′= ∅,
ρ′ρ = ∅;

and therefore to:

{

ρ = ρ′−1,
ρ′ = ρ−1.

Note also that since ρ and ρ′ are mutual inverses on V , it must be that ρ and ρ′ are injective. This

follows from the axiom of functionality for ρ and ρ′, which states that for every pair of variables

X and X ′ in V , if X = X ′ then necessarily Xρ = X ′ρ and Xρ′ = X ′ρ′. But since ρ are mutual

inverses on V , this means that whenever Y ρ′ = Y ′ρ′ for any pair of variables Y and Y ′ in V , then

necessarily Y ρ′ρ = Y ′ρ′ρ; i.e., Y ∅ = Y ′∅, and thus Y = Y ′, which means that ρ′ must be injective.

The same reasoning in the other direction will entail that ρ must be injective as well. Note finally

that ρ is also surjective on V , since any variable X ∈ V is such that Xρ′ρ = X, therefore there

exists Y = Xρ′ such that Y ρ = X. The same applies to ρ′ in the other direction. Therefore, ρ and

ρ′ are bijective inverses. �

A.5 Reynolds-Plotkin FOT Generalization

The two essentially identical algorithms (up to notation) for the generalization of two FOT s

given by Reynolds [104] and Plotkin [101] in the same volume are reproduced verbatim in Fig-

ure A.2 and Figure A.3. As can be seen in these figures, each describes a procedural method

computing the most specific FOT subsuming two given FOT s in finitely many steps by com-

paring them simultaneously, and generating a pair of generalizing substitutions from a fresh vari-

able wherever they disagree being scanned from left to right, each time replacing the disagreeing

terms by the new variable everywhere they both occur in each term.
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Figure A.2: Reynolds’s FOT “anti-unification” algorithm ([104], pages 138–139)

Figure A.3: Plotkin’s FOT “least generalization” algorithm ([101], page 155)

A.6 Clause-drivenOSF-generalization

We will express this problem formally as one of deriving the most specific ψ-term t (up to variable

renaming) generalizing two ψ-terms t1 and t2, together with two tag mappings γi : var(t) 7→
Copyright c© 2019 by the Authors All Rights Reserved
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var(ti) such that γi(t) = ti, (i = 1, 2).

To view this as a constraint-solving problem, as before, a ψ-term t is first dissolved into its

rooted OSF constraint form ϕ(t). Thereupon, ψ-term generalization translates as deriving a

rooted OSF constraint φ generalizing two rooted OSF constraints φ1 and φ2, together with

two tag mappings γi : var(φ) 7→ var(φi) such that γi(φ) = φi, (i = 1, 2). This problem can

thus be expressed declaratively as that of solving effectively a particular OSF constraint using

appropriateOSF constraint normalization rules. We shall call such a rule anOSF generalization

rule; it obeys the following pattern:

(LABEL): RULE NAME

(Prior Left Tag Map) γ1, (Prior Right Tag Map) γ2 ⊢ (Prior Constraint) φ

(Posterior Left Tag Map) γ′1, (Posterior Right Tag Map) γ′2 ⊢ (Posterior Constraint) φ′

if (Optional Metacondition)

where a “tag map” γ is a set of pairs of OSF tags, each of the form Y = X , and denotes a

mapping of tags being inferred whereby γ(Y )
def
= X .10 These tag maps appearing in such

rules will be also referred to as “contexts.” Seen as a “fraction notation” (such as N
D

) each rule

transforms the antecedent (the “numerator;” i.e., N) into the consequent (the “denominator;” i.e.,

D), whenever the prior patterns match and the (optional) metacondition holds.

The constraint φ is of the form φ′
[

φ1 ‖ φ2

]

, where each of φ′ and φi, i = 1, 2, is a (possibly

empty) conjunction of basic OSF constraints in solved form; moreover, φ′ is rooted (i.e., it is a

dissolved ψ-term). The rules for performing OSF term generalization are given in Figure A.4.

These rules are explained informally as follows.

• Rule SORT INDUCTION — when both sides of the disjunction “ ‖ ” in the prior constraint

contain each an atomic constraint of the form Xi : si where tag X is bound to each tag Xi

in both prior contexts for i = 1, 2, the pattern X : s1 ∨ s2 may then be inferred as a

generalizing pattern and conjoined to φ. This may be safely done only if the constraint φ to

generalize does not already contain a constraint of the form X : s for the tag X and some

sort s, as specified by the side condition (otherwise, this rule would keep being applied on

the same pattern).

• Rule FEATURE INDUCTION — when both sides of the disjunction “ ‖ ” in the prior

constraint contain each an atomic constraint of the form Xi.f
.
= Yi for the same feature

symbol f where a same tag X is bound to each tag Xi in both prior contexts for i = 1, 2,

the pattern X.f
.
= Y may then be inferred as a generalizing pattern and conjoined to φ,

where Y is a new tag now bound to each tag Yi in each posterior contexts, for i = 1, 2. The

side condition also stipulates that, for this rule to be applicable, there should not already

exist any tag bound to Yi in either prior contexts, for i = 1, 2. For when such is the case,

this means that there is an “orphan” feature constraint for f out of either X1 or X2 in one

10Operationally, Y = X reads “tag Y is substituted for by tag X ,” or equivalently, when tags as seen as logical

variables: “X is bound to Y .” This amounts to replacingX with Y everywhereX occurs besides the lefthand side of

the equational constraint X
.
= Y . See, e.g., in Figure 3.5: viz., γ1 : TagSet(t) 7→ TagSet(t1) and γ2 : TagSet(t) 7→

TagSet(t2), where t = lub(t1, t2).
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(SI): SORT INDUCTION

{X1/X } ∪ γ1, {X2/X } ∪ γ2 ⊢ φ
[

(X1 : s1 & φ1) ‖ (X2 : s2 & φ2)
]

{X1/X } ∪ γ1, {X2/X } ∪ γ2 ⊢ φ & X : s1 ∨ s2
[

(X1 : s1 & φ1) ‖ (X2 : s2 & φ2)
]

if ¬∃ s s.t. X : s ∈ φ

(FI): FEATURE INDUCTION

{X1/X } ∪ γ1, {X2/X } ∪ γ2 ⊢ φ
[

(X1.f
.
= Y1 & φ1) ‖ (X2.f

.
= Y2 & φ2)

]

{X1/X, Y1/Y } ∪ γ1, {X2/X, Y2/Y } ∪ γ2 ⊢ φ & X.f
.
= Y

[

(X1.f
.
= Y1 & φ1) ‖ (X2.f

.
= Y2 & φ2)

]

if ¬∃Z s.t. Y1/Z ∈ {X1/X } ∪ γ1 and ¬∃Z s.t. Y2/Z ∈ {X2/X } ∪ γ2; and where Y is a new tag

(CI): COREFERENCE INDUCTION

{X1/X, Y1/Y } ∪ γ1, {X2/X, Y2/Y } ∪ γ2 ⊢ φ
[

(X1.f
.
= Y1 & φ1) ‖ (X2.f

.
= Y2 & φ2)

]

{X1/X, Y1/Y } ∪ γ1, {X2/X, Y2/Y } ∪ γ2 ⊢ φ & X.f
.
= Y

[

(X1.f
.
= Y1 & φ1) ‖ (X2.f

.
= Y2 & φ2)

]

Figure A.4: Constraint normalization rules for OSF generalization [21]

but not the other disjunct, which may not be generalized as a common property since not

present in both disjuncts.

• Rule COREFERENCE INDUCTION — this rule is almost identical to the previous one

except that it is precisely when its side condition does not hold because there is already

a tag Y simultaneously bound to Xi in each prior contexts for i = 1, 2. In this case, the

inference may be made to materialize X.f
.
= Y in the induced constraint from the fact that

the same feature exists in both sides of the disjunct between corresponding tags in both

prior contexts.

The initial constraint to be normalized in order to use these rules to infer the most specific

generalizer (i.e., the least upper bound) of two ψ-terms t1 and t2 whose tags have been renamed

apart is:

{ ROOT(t1)/X }, { ROOT(t2)/X } ⊢
[

ϕ(t1) ‖ ϕ(t2)
]

(A.27)

where X is a new tag symbol generated for ROOT(lub(t1, t2)); i.e.,

ROOT(lub(t1, t2))
def
= X. (A.28)

Then, starting with initial tag maps:

γi(X)
def
= ROOT(ti), for i = 1, 2, (A.29)

we proceed applying the rules of Figure A.4 to theOSF generalization constraint formula (A.27)

until none applies. This always terminates, resulting in an expression of the form: φ
[

φ1 ‖ φ2

]
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where φ and φi, (i = 1, 2), are (possibly empty) conjunctiveOSF clauses in solved form; more-

over φ is rooted (i.e., it is a dissolved ψ-term). Whatever remains, if anything, in the disjunction

(i.e.,
[

φ1 ‖ φ2

]

) is a pair of differential OSF constraints such that:

γ1(φ) & φ1 ≃ ϕ(t1) (A.30)

γ2(φ) & φ2 ≃ ϕ(t2) (A.31)

and:

φ ≃ ϕ(lub(t1, t2)) (A.32)

where “≃” means “equal up to a consistent tag renaming.”

For a detailed rule-application trace illustrating how this constraint normalization computes

the two endomorphic mappings realizing the lub of two OSF terms, see Appendix B.1, Exam-

ple B.3, Page 134.

A.7 OSF-term tag renamimg

Since unification of two ψ-terms is up to tag renaming, it actually computes a glb not in the set

of ψ-terms, but in the quotient lattice Ψ/∼= of sets of congruent ψ-terms, where two ψ-terms are

congruent whenever they are isomorphic. This means that ψ-terms are congruent when they are

two rooted sortedOSF graphs with a bijection between their respective sets of tags, each pair of

bijective tags bearing the same sort in their respective ψ-terms. Renaming the tags of a ψ-term

simply consists of defining such a sort-preserving bijection between the tag names of one term to

those of another, thus defining an OSF isomorphism. We are then free to replace all tags of a

ψ-term with the new ones given by the bijective tag mapping, the result will remain in the same

tag-renaming congruence class.

Therefore, in order to provide the new ψ-term resulting from the unification of two ψ-terms

its own independent set of variables, it is sufficient to replace OSF unification rule FEATURE

FUNCTIONALITY of Figure 3.6 with the rule TAG-RENAMING FEATURE FUNCTIONALITY

of Figure A.5. This rule systematically introduces a new tag for any feature that yields two

distinct tags and generates to new equations binding the new tag to each of the two tags in order

to eliminate these to be replaced with the new tag by the TAG ELIMINATION of Figure 3.6.

TAG-RENAMING FEATURE FUNCTIONALITY:

φ & X.f
.
= Y & X.f

.
= Y ′

φ & X.f
.
= Z & Z

.
= Y & Z

.
= Y ′

[Z new]

Figure A.5: Tag-renaming feature functionality for OSF unification by normalization

In this way, we can ensure that tags in the original ψ-terms being unified may only be bound

to newly introduced tags, thus allowing to define an endomorphic mapping γ as follows. If an

Copyright c© 2019 by the Authors All Rights Reserved



D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 125 Version of January 8, 2019

OSF constraint φ in solved form that is not false contains a tag equality constraint X
.
= Y , then

necessarily Y occurs nowhere else in φ, and we can define the mapping γ : V → V with:

γ(Y )
def
=

{

X if X
.
= Y ∈ φ;

Y otherwise.
(A.33)

This mapping is akin to “binding” a tag X to a tag γ(X).

THEOREM A.4 The mapping γ defined by Equation A.33 derived from an OSF constraint in

solved form φ which is the OSF normal form of theOSF constraint:

φ̂
def
= X

.
= ROOT(t1) & X

.
= ROOT(t2) & ϕ(t1) & ϕ(t2) (A.34)

where X is a new variable, is such that γ defines an OSF endormorphic mapping whereby

γ(φ̂) = φ.

PROOF The mapping γ defined by Equation A.33 is necessarily functional—i.e., X = X ′ →
γ(X) = γ(X ′)—because otherwise this would entail that there are two constraints X

.
= X ′ and

X
.
= X ′′ in φ, for some tags X ′ and X ′′ such that X ′ = X ′′. However, if this was the case,

then Rule TAG ELIMINATION would eliminate either X ′ for X ′′ or X ′ for X ′′ from anywhere else

besides one or the other of these two equality constraints, thereby contradicting the assumption that

φ is in normal form. Therefore γ must be functional. Moreover,

1. repeated applications of Rule SORT INTERSECTION can only decrease the sort of any tag so

that eventually X : s ∈ φ̂→ γ(X) : s′ ∈ φ with s′ � s;

2. repeated applications of Rule FEATURE FUNCTIONALITY enforce eventual equality in the

solved form φ of two image tags of a same feature out of any tag, always ending up eliminated

for the other by application of Rule TAG ELIMINATION—in other words:

X.f
.
= Y ∈ φ̂ → γ(X).f

.
= γ(Y ) ∈ φ.

By definition, these are the two properties required for γ to be an OSF endomorphism. �
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OSF Examples and Extensions

In this appendix, we provide examples and extensions of OSF constraints.

• Appendix B.1 gives detailed examples of OSF lattice operations.

• Appendix B.2 gives three useful additional decidable OSF constraints: partial features,

extensional (i.e., element-denoting) sort symbols, and aggregation. The first and second of

these constraints convey implicit additional axioms that FOT s verify as OSF terms.

• Appendix B.3 shows explicitly how a FOT is a special case of OSF term using partial

features and extensional sorts.

B.1 Examples of OSF Lattice Operations

In this chapter, we will give detailed examples illustrating (crisp) OSF unification and general-

ization using the sort taxonomy in Figure B.1, which corresponds to a possible description of a

partial school population with the following subconcept and instance declarations.

• set-denoting subconcepts:

– a student is a person

– an employee is a person

– a staff is an employee

– a faculty is an employee

– an intern is a student

– an intern is a staff

• individual-denoting subconcepts:

– nassim is a student
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– jayd is a student

– elies is a student

– ali is an intern

– hanaan is an intern

– javier is a staff

– eta is a staff

– hak is a faculty

– hussein is a faculty

– fatima is a faculty

Example B.1 OSF lattice operations — Consider for example the ψ-term t1:

t1 = X:student

( roommate → person(rep → E:employee)
, advisor → hak(secretary → E))

corresponding to the OSF-graph:1

X student

person Q1

employee E

D1 hak

roommate

a
d
v
i
s
o
r

rep

secr
etar

y

and the ψ-term t2:

t2 = Y:employee

( advisor → hak(assistant → A)
, roommate → S:student(rep → S)
, helper → ali(spouse → A))

1In this and all similar examples, we shall generate new tag names that do not occur in the ψ-terms equivalent to

OSF -graphs for root nodes of tagless subterms—e.g., Q1 and D1 in this example.
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person

student employee

staff faculty

intern

nassim jayd elies ali hanaan javier eta hak hussein fatima

is
a

i
s
a

i
s
a

i
s

a

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

i
s
a

i
s

a

i
s
a

i
s
a

i
s
a

i
s
a

Figure B.1: “School example” concept taxonomy
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corresponding to the OSF-graph:

Y employee

S student

D2 hak

H2 ali person A

roommate

a
d
v
i
s
o
r

h
e
l
p
e
r

assistant

spouse

r
e
p

in the context of the sort partial order (“concept taxonomy”) shown in Figure B.1.

Endomorphic mappings γ, γ1, and γ2, can be computed to exhibit the lattice structure of OSF terms.

Given the two terms t1 and t2 shown above, their greatest lower bound is the ψ-term t:

t = Z:intern

( advisor → hak(assistant → B,
secretary → I)

, helper → ali(spouse → B)
, roommate → I:intern(rep → I))

corresponding to the graph:

intern Z

I intern

D3 hak

H3 ali person B

roommate

advisor r
e
p

sec
ret

ary

h
e
l
p
e
r

assistant

spouse

given by their OSF unification realized by the endomorphic mapping γ such that:

γ(t1) = γ(t2) = t.
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It corresponds to the tag mapping:

γ(X) = Z,
γ(Q1) = I,
γ(E) = I,
γ(D1) = D3,

γ(Y) = Z,
γ(S) = I,
γ(D2) = D3,
γ(H2) = H3,
γ(A) = B.

Dually, their least upper bound is the ψ-term t:

t = P:person

( roommate → person(rep → person)
, advisor → hak)

corresponding to the OSF-graph:

P person

Q person

R person

D hak

roommate

a
d
v
i
s
o
r

rep

given by their OSF generalization realized by the two endomorphic mappings 〈γ1, γ2〉 whereby:

γ1(t) = t1,
γ2(t) = t2.

They correspond to the tag mappings γ1 and γ2 defined as:

γ1(P) = X,
γ1(Q) = Q1,
γ1(R) = E,
γ1(D) = D1;

γ2(P) = Y,
γ2(Q) = S,
γ2(R) = S,
γ2(D) = D2.

Starting with:

{P = ROOT(t1) }, {P = ROOT(t2) } ⊢
[

ϕ(t1) ‖ ϕ(t2)
]

where P is a new tag symbol for ROOT(lub(t1, t2)), we proceed applying the rules of Figure A.4 until

none applies.
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We next give the detailed rule application traces for both unification and generalization of

OSF terms.

Example B.2 OSF unification — Here is a step-by-step trace of constraint normalization computing

the unification glb(t1, t2) of the OSF terms t1 and t2 defined in Example B.1. The ψ-term t = glb(t1, t2)
together with the endomorphism γ : TagSet(t1)∪ TagSet(t1) 7→ TagSet(t) are computed using the OSF
unification rules of Figure 3.6 as follows.

We start by dissolving t1 and t2:

• ϕ(t1) = X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person &

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

• ϕ(t2) = Y : employee & Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
= H2

& S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali &

H2 . spouse
.
= A & A : person

Then, we keep applying any applicable OSF unification rule of Figure 3.6 in any order until none

applies to the following initial constraint:

Z
.
= X & Z

.
= Y & ϕ(t1) & ϕ(t2). (B.1)

where Z is a newly generated tag for ROOT(glb(t1, t2)). This normalization proceeds as follows:2

1. apply Rule TAG ELIMINATION (twice—once eliminating X replacing with Z, and the other elimi-

nating Y also replacing it with Z):3

•
{

Z
.
= X & Z

.
= Y

&

X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person &

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

&

Y : employee & Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
= H2 &

S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali &

H2 . spouse
.
= A & A : person

}

;

• endomorphic mapping: γ(X)
def
= Z, γ(Y)

def
= Z;

2. apply Rule SORT INTERSECTION:

•
{

Z : student & Z . roommate
.
= Q1 & Z . advisor

.
= D1 & Q1 : person &

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

&

Z : employee & Z . roommate
.
= S & Z . advisor

.
= D2 & Z . helper

.
= H2 &

S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali &

H2 . spouse
.
= A & A : person

}

;

2We shall underline the parts of a constraint matching a unification rule prior constraint pattern, which rule is

then applied next in the application trace—which is just one among all equivalent other possible non-deterministic

traces for what concerns any particular order of rule application.
3Also, since they are recorded alongside with the tag map γ, we will also erase the corresponding tag equation in

the constraint when applying Rule TAG ELIMINATION.
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• endomorphic mapping: γ(X) = Z, γ(Y) = Z;

3. apply Rule RENAMING TAGS APART:

•
{

Z : intern

&

Z . roommate
.
= Q1 & Z . advisor

.
= D1 & Q1 : person & Q1 . rep

.
= E &

D1 : hak & D1 . secretary
.
= E & E : employee

&

Z . roommate
.
= S & Z . advisor

.
= D2 & Z . helper

.
= H2 & S : student &

S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A

& A : person
}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z;

4. apply Rule TAG ELIMINATION:

•
{

Z : intern & Z . roommate
.
= I & I

.
= Q1 & I

.
= S

&

Z . advisor
.
= D1 & Q1 : person & Q1 . rep

.
= E & D1 : hak & D1 . secretary

.
= E

& E : employee

&

Z . advisor
.
= D2 & Z . helper

.
= H2 & S : student & S . rep

.
= S &

D2 : hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A : person

}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1)
def
= I, γ(S)

def
= I;

5. apply Rule RENAMING TAGS APART:

•
{

Z : intern & Z . roommate
.
= I

&

Z . advisor
.
= D1 & I : person & I . rep

.
= E & D1 : hak & D1 . secretary

.
= E

& E : employee

&

Z . advisor
.
= D2 & Z . helper

.
= H2 & I : student & I . rep

.
= I &

D2 : hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A : person

}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I;

6. apply Rule TAG ELIMINATION:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & D3

.
= D1 & D3

.
= D2

&

I : person & I . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

&

Z . helper
.
= H2 & I : student & I . rep

.
= I & D2 : hak & D2 . assistant

.
= A

& H2 : ali & H2 . spouse
.
= A & A : person

}

;
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• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I;

7. apply Rule SORT INTERSECTION:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3

&

I : person & I . rep
.
= E & D3 : hak & D3 . secretary

.
= E & E : employee

&

Z . helper
.
= H2 & I : student & I . rep

.
= I & D3 : hak & D3 . assistant

.
= A

& H2 : ali & H2 . spouse
.
= A & A : person

}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1)
def
= D3,

γ(D2)
def
= D3;

8. apply Rule FEATURE FUNCTIONALITY:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : student

&

I . rep
.
= E & D3 : hak & D3 . secretary

.
= E & E : employee

&

Z . helper
.
= H2 & I . rep

.
= I & D3 : hak & D3 . assistant

.
= A & H2 : ali

& H2 . spouse
.
= A & A : person

}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =
D3;

9. apply Rule TAG ELIMINATION:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : student &

I . rep
.
= I & E

.
= I

&

D3 : hak & D3 . secretary
.
= E & E : employee

&

Z . helper
.
= H2 & D3 : hak & D3 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A

& A : person
}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =
D3;

10. apply Rule SORT INTERSECTION:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : student &

I . rep
.
= I

&

D3 : hak & D3 . secretary
.
= I & I : employee

&

Z . helper
.
= H2 & D3 : hak & D3 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A

& A : person
}

;
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• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =

D3, γ(E)
def
= I;

11. apply Rule SORT INTERSECTION:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : student &

I . rep
.
= I & D3 : hak

&

D3 . secretary
.
= I & I : employee

&

Z . helper
.
= H2 & D3 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A &

A : person
}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =
D3, γ(E) = I;

12. apply Rule RENAMING TAGS APART:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : intern &

I . rep
.
= I & D3 : hak

&

D3 . secretary
.
= I

&

Z . helper
.
= H2 & D3 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A &

A : person
}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =

D3, γ(E) = I, γ(H2)
def
= H3, γ(A)

def
= B;

13. normal form:

•
{

Z : intern & Z . roommate
.
= I & Z . advisor

.
= D3 & I : intern &

I . rep
.
= I & D3 : hak

&

D3 . secretary
.
= I

&

Z . helper
.
= H3 & D3 . assistant

.
= B & H2 : ali & H3 . spouse

.
= B &

B : person
}

;

• endomorphic mapping: γ(X) = Z, γ(Y) = Z, γ(Q1) = I, γ(S) = I, γ(D1) = D3, γ(D2) =
D3, γ(E) = I, γ(H2) = H3, γ(A) = B.

This normal form is that of t = glb(t1, t2) shown in Figure B.2, with the corresponding endomorphic

mapping γ such that t = γ(t1) = γ(t2).

Example B.3 OSF generalization — Here is a step-by-step trace of constraint normalization com-

puting the generalization lub(t1, t2) of the OSF terms t1 and t2 defined in Example B.1. It computes
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their lub, along with the corresponding endomorphic mappings γi : TagSet(t) 7→ TagSet(ti), for i = 1, 2,

using the OSF generalization rules of Figure A.4 as follows.

We start by dissolving t1 and t2:

• ϕ(t1) = X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person &

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

• ϕ(t2) = Y : employee & Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
= H2

& S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali &

H2 . spouse
.
= A & A : person

We then initiate the normalization process as indicated by Expression (A.27) on Page 123. Starting

with:

{P = ROOT(t1) }, {P = ROOT(t2) } ⊢
[

ϕ(t1) ‖ ϕ(t2)
]

where P is a new tag symbol for ROOT(lub(t1, t2)), and defining:

γ1(P)
def
= ROOT(t1) = X

γ2(P)
def
= ROOT(t2) = Y

we proceed applying the rules of Figure A.4 until none applies. This produces the following trace.4

1. Start with:

•
[

X : student & X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person &

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

‖

Y : employee & Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
= H2 &

S : student & S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali &

H2 . spouse
.
= A & A : person

]

• γ1 = {P = X }

• γ2 = {P = Y }

2. apply Rule SORT INDUCTION:

• P : person
[

X . roommate
.
= Q1 & X . advisor

.
= D1 & Q1 : person & Q1 . rep

.
= E &

D1 : hak & D1 . secretary
.
= E & E : employee

‖

Y . roommate
.
= S & Y . advisor

.
= D2 & Y . helper

.
= H2 & S : student &

S . rep
.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A

& A : person
]

• γ1 = {P = X }

4As for OSF unification, we shall underline the parts of a constraint matching a generalization rule’s prior

pattern, which rule is then applied next.
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• γ2 = {P = Y }

3. apply Rule FEATURE INDUCTION:

• P : person & P . roommate
.
= S

[

X . advisor
.
= D1 & Q1 : person & Q1 . rep

.
= E & D1 : hak & D1 . secretary

.
= E

& E : employee

‖

Y . advisor
.
= D2 & Y . helper

.
= H2 & S : student & S . rep

.
= S &

D2 : hak & D2 . assistant
.
= A & H2 : ali & H2 . spouse

.
= A & A : person

]

• γ1 = {P = X,Q = Q1 }

• γ2 = {P = Y,Q = S }

4. apply Rule FEATURE INDUCTION:

• P : person & P . roommate
.
= Q & P . advisor

.
= D

[

Q1 : person & Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

‖

Y . helper
.
= H2 & S : student & S . rep

.
= S & D2 : hak & D2 . assistant

.
= A

& H2 : ali & H2 . spouse
.
= A & A : person

]

• γ1 = {P = X,Q = Q1,D = D1 }

• γ2 = {P = Y,Q = S,D = D2 }

5. apply Rule SORT INDUCTION:

• P : person & P . roommate
.
= Q & P . advisor

.
= D & Q : person

[

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

‖

Y . helper
.
= H2 & S . rep

.
= S & D2 : hak & D2 . assistant

.
= A & H2 : ali

& H2 . spouse
.
= A & A : person

]

• γ1 = {P = X,Q = Q1,D = D1 }

• γ2 = {P = Y,Q = S,D = D2 }

6. apply Rule SORT INDUCTION:

• P : person & P . roommate
.
= Q & P . advisor

.
= D & Q : person & D : hak

[

Q1 . rep
.
= E & D1 : hak & D1 . secretary

.
= E & E : employee

‖

Y . helper
.
= H2 & S . rep

.
= S & D2 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A

& A : person
]

• γ1 = {P = X,Q = Q1,D = D1 }

• γ2 = {P = Y,Q = S,D = D2 }
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7. apply Rule FEATURE INDUCTION:

• P : person & P . roommate
.
= Q & P . advisor

.
= D & Q : person & D : hak

& Q . rep
.
= R

[

D1 . secretary
.
= E & E : employee

‖

Y . helper
.
= H2 & S : student & S . rep

.
= S & D2 : hak & D2 . assistant

.
= A

& H2 : ali & H2 . spouse
.
= A & A : person

]

• γ1 = {P = X,Q = Q1,D = D1,R = E }

• γ2 = {P = Y,Q = S,D = D2,R = S }

8. apply Rule SORT INDUCTION:

• P : person & P . roommate
.
= Q & P . advisor

.
= D & Q : person & D : hak

& Q . rep
.
= R & R : person

[

D1 . secretary
.
= E

‖

Y . helper
.
= H2 & D2 . assistant

.
= A & H2 : ali & H2 . spouse

.
= A &

A : person
]

• γ1 = {P = X,Q = Q1,D = D1,R = E }

• γ2 = {P = Y,Q = S,D = D2,R = S }

All the above can be summarized as illustrated by the lattice diagrams shown in Figure B.2.

B.2 Other DecidableOSF Constraints

The set of OSF -constraints normalization rules presented thus far may be extended with useful

additional axioms that enable other constraints commonly enforced in object/class-based systems;

viz.., partial features, element constructors, and aggregation. We next describe additional rules

that enforce such additional axioms.

§ PARTIAL FEATURES

Let dom : F 7→ 2S associate to a feature f its domain dom(f), the set of maximal sorts in S for

which f is defined. A feature f is said to be:

• total when dom(f) = {⊤};

• undefined when dom(f) = {⊥};

• partial when it is neither undefined nor total.
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Given a feature f ∈ F , for each sort s ∈ dom(f), the range of f over s, denoted as rans(f) ∈ S,

is the set of all maximal sorts of the possible values that feature f can take on sort s.5 A possible

OSF -constraint normalization rule correctly enforcing such partial features is shown as Rule

PARTIAL FEATURE in Figure B.3.

PARTIAL FEATURE:

φ & X.f
.
= X ′

φ & X.f
.
= X ′ & X : s & X ′ : s′

[s ∈ dom(f); s′ ∈ rans(f)]

Figure B.3: Partial Feature

Note however that Rule PARTIAL FEATURE is non-deterministic, since there may be several

incomparable maximal sorts making up the domain (or, for a sort in its domain, several ranges)

for a partial feature when it has multiple domains and corresponding ranges (even for a single

domain sort). One way to ease this issue is to introduce a new supersort (or use one if there is

one) of all the domain sorts of a feature, and a new supersort (or use one if there is one) for all its

range sorts. However, note that, semantically, this is not equivalent since there may be a loss of

information since f :
∨

k≥2 dk →
∨

k≥2 rk is algebraically coarser than f :
∨

k≥2(dk → rk).
6

This way of enforcing, even if only partially, known or declared domains and ranges for fea-

tures is to generate constraints to that effect systematically when dissolving an OSF -term. In-

deed, we can also redefine theOSF -dissolution function ϕ defined by Equation (3.5) on Page 71,

with:

ϕ(t)
def
= X : s & X.f1

.
= X1 & . . . & X.fn

.
= Xn

& X : s1 & . . . & X : sn
& X1 : s

′
1 & . . . & Xn : s′n

& ϕ(t1) & . . . & ϕ(tn)

(B.2)

where si
def
=
∨

dom(fi) (i.e., the lub of all the known or declared maximal domains of fi), and

s′i
def
=
∨

si
ransi(fi) (i.e., the lub of all the known or declared ranges of fi on domain si), for

i = 1, . . . , n.7 This will include explicitly the most general feature domain/range constraints.

Then, normalizing with the rules of Figure B.4 PARTIAL FEATURE DOMAIN NARROWING

and PARTIAL FEATURE RANGE NARROWING will “finish the job,” as each rule uses sort

information on a feature’s domain (resp., range) to further constrain its range (resp., domain)

whenever this information is available. Importantly, the third side condition of each rule is to

ensure finite termination of normalization by preventing repeated introductions of useless sort

constraints, as is the case for example for Rule PARTIAL FEATURE—which, while being correct,

is also non-deterministic as well as non-terminating!

5Computational linguists, who have borrowed heavily from the OSF formalism to express HPSG grammars for

natural-language processing, call this category of axioms “feature appropriateness” axioms (see, e.g. [47]).
6Can you see why? (Hint: a range sort depends on its feature’s domain—try for k = 2.)
7Again, if an actual sort symbol does not exist in S for either lub expressions, a new one is introduced for si or
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PARTIAL FEATURE DOMAIN NARROWING:

φ & X.f
.
= X ′ & X ′ : s′

φ & X : s & X.f
.
= X ′ & X ′ : s′

[dom(f) = {s}; rans(f) = {s′}; X : s′′ 6∈ φ with s′′ � s]

PARTIAL FEATURE RANGE NARROWING:

φ & X : s & X.f
.
= X ′

φ & X : s & X.f
.
= X ′ & X ′ : s′

[dom(f) = {s}; rans(f) = {s′}; X′ : s′′ 6∈ φ with s′′ � s′]

Figure B.4: Partial Feature Narrowing

All this special handling of partial features in the OSF machinery is done perhaps with the

necessity of introducing many new symbols for missing unique lubs, but it can be done automati-

cally and incurs no penalty for execution nor space in sort ordering checking nor lattice operations

thanks to bit encoding techniques [12]. On the other hand, in practice, this narrows features to

their appropriate domain and range sorts, including eliminating spurious feature applications,

even trivial ones such as, e.g., typos.

§ ELEMENT CONSTRUCTORS

A sort denotes a set of values of the domain of interpretation. When this set is a singleton, the

sort is assimilated to the value contained in the denoted singleton (e.g., a number, a string, etc.).

However, such data may also have structure; then, it is assimilated to a data constructor. Such a

structure denotes an individual element only when all its subterms under a set of specific features

do as well. For example, a pair constructor “pair” with features “left” and “right” will

denote a single pair object only when both subterms under these two features denote each a single

individual; otherwise, it denotes a set. Thus, the OSF term pair(left → 1,right → 2)
denotes the individual object 〈1, 2〉, whereas if the sort nat denotes the set of natural numbers

N, then the term pair(left → nat,right → nat) denotes the set of all pairs whose left

and right subterms are natural numbers (viz., { 〈m,n〉 | m ∈ N, n ∈ N }). For such sorts, we

must then ensure that only individual-denoting terms are uniquely represented.

Let E (for “element,” or “extensional,” sorts) be the set of sorts in S that are element con-

structors. Define the arity arity(e) of such an element sort e giving its feature arity as a set of

features—i.e., arity : E 7→ 2F . The set arity(e) is the set of features that completely determine

the unique element of sort e. In other words, whenever all features of arity(e) denote single-

tons, then so does e. All such values ought to be uniquely identified. Note in passing that all

atomic constants in E always have empty arity. For example, for any number n, arity(n) = ∅.
The OSF -constraint normalization rule that enforces this uniqueness axiom on element sorts is

called Rule WEAK EXTENSIONALITY as shown in Figure B.5.

s′i.

Copyright c© 2019 by the Authors All Rights Reserved

http://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf


D
R

A
F
T

DRAFT—PLEASE DO NOT DISTRIBUTE

DRAFT—PLEASE DO NOT DISTRIBUTE

Page 141 Version of January 8, 2019

WEAK EXTENSIONALITY:

φ & X : s & X ′ : s

φ & X : s & X
.
= X ′

[

s ∈ E; ∀f ∈ arity(s), {X.f
.
= Y,X′.f

.
= Y } ⊆ φ

]

Figure B.5: Weak Extensionality

With this rule, for example, if S = {⊤,⊥,nil,cons,list,nat, 0, 1, 2, . . .} such that

nil < list, cons < list, n < nat for n ∈ N (where < is the subsort ordering). Let

E = {nil,cons, n}, (n ∈ N), such that arity(nil) = ∅, arity(cons) = {head,tail}, and

arity(n) = ∅ for n ∈ N. Then, theOSF term:

X : cons(head → 1,tail → nil) & Y : cons(head → 1,tail → nil)

is normalized into:

X : cons(head → 1,tail → nil) & X
.
= Y

This rule is called “weak” because it can only enforce uniqueness of acyclic elements. Rules

with a stronger condition working for cyclic terms are given next.

§ STRONG EXTENSIONALITY

Basically, the reason why Rule WEAK EXTENSIONALITY of Figure B.5 does not recognize

singletons that are cyclic terms is that it works inductively. Doing so, it is well-founded only

because it proceeds from leaves to their roots. However, for cyclic terms, there may be no leaf to

proceed from. Consider, for example, an extensional sort s ∈ E such that arity(s) = {f}, and

the conjunction of cyclic terms:

X : s(f → X) & X ′ : s(f → X ′) (B.3)

or, even better, that of the mutually cyclic terms:

X : s(f → X ′) & X ′ : s(f → X). (B.4)

Now, arity(s) = {f} means that “s denotes a singleton sort whenever its f feature denotes one

as well.” Semantically, in both examples, variables X and X ′ denote therefore the same element

(due to all the features in arity(s) being consistently sorted as singletons). However, the Rule

WEAK EXTENSIONALITY does not transform either term (B.3) or term (B.4) into one where X
and X ′ are equal as they should be as per the semantics of arity and extensionality. Therefore,

this inductive manner of proceeding will not work for cyclic extensional terms such as these.

The alternative is to proceed coinductively, from roots to leaves or previously processed

nodes, while keeping a record of which extensional sorts appear with which variables, since

such sorts denote single element. This is done by carrying an occurrence context as a set Γ of
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elements of the form s : {X1, . . . , Xn}, where Xi ∈ V , for i = 1, . . . , n, (n ≥ 0), where s ∈ E
is extensional, and such that each such s may not occur more than once in any such occurrence

context Γ. A contexted rule is one of the form:

(Rule Number) RULE NAME :

Prior Context ⊢ Prior Form

Posterior Context ⊢ Posterior Form

[

Condition
]

Appropriate extensional sort occurrences record-keeping is thus achieved using contexted

Rule Extensional Variable of Figure B.6. The “real” work is then done by contexted Rule

STRONG EXTENSIONALITY. Using these two rules on weak normal forms will work as ex-

pected; viz., it will merge any remaining potential cyclic extensional elements that denote the

same individual.

EXTENSIONAL VARIABLE:

Γ ⊎ {s : V, . . . , } ⊢ φ & X : s

Γ ⊎ {s : V ∪ {X}, . . .} ⊢ φ & X : s

[

X 6∈ V ; s ∈ E; s′ ∈ E;
∀f ∈ arity(s), {X.f

.
= X′, X′ : s′} ⊆ φ

]

STRONG EXTENSIONALITY:

Γ ⊎ {s : {X,X ′, . . .} ⊢ φ

Γ ⊎ {s : {X, . . .} ⊢ φ & X
.
= X ′

[s ∈ E]

Figure B.6: Strong extensionality

§ RELATIONAL FEATURES AND AGGREGATION

TheOSF formalism deals with functional features. However, relational features may also come

handy. A relational feature is a binary relation or, equivalently, a set-valued function. In other

words, a multi-valued functional attribute may be aggregated into a set. Indeed, combining Rule

SORT INTERSECTION with Rule FEATURE FUNCTIONALITY of Figure 3.6 enforces that a

variable’s sort, and hence value, may only be computed by intersection of consistent sorts. On

the other hand, a relational feature denotes a set-valued function, and normalization must thus

provide a means for aggregating mutually distinct values of a sort.

This semantics can be accommodated with the following value aggregation rule, which gener-

alizes Rule SORT INTERSECTION. The notation for the atomic constraint “X : s” is generalized

to carry an optional value e ∈ E (i.e., e is an extensional sort): “X = e : s” means “X has value

e of sort s,” where X ∈ V , e ∈ E , s ∈ S. The shorthand “X = e” means “X = e : ⊤.” When the

sort s ∈ S is a commutative monoid 〈⋆, 1⋆〉, the shorthand “X : s” means “X = 1⋆ : s.”
The conditions (3.4) are then extended with:

A, α |= X = e : s iff eA ∈ sA and α(X) = eA. (B.5)
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Thus, element values of a sort that denotes a commutative monoid M = 〈⋆, 1⋆〉 may be com-

posed using this monoid’s operation. In particular, such a monoid operation may be that of a set

constructor; i.e., one that is associative, commutative, and idempotent. This is what Rule VALUE

AGGREGATION of Figure B.7 accommodates.

VALUE AGGREGATION:

φ & X = e : s & X = e′ : s′

φ & X = e ⋆ e′ : s ∧ s′
[s, s′ both subsorts of commutative monoid 〈⋆, 1⋆〉]

Figure B.7: Aggregation

Note that Rule VALUE AGGREGATION is more general than need be for just accommodating

aggregating a set (i.e., a commutative idempotent free monoid) or a multiset (commutative but

non-idempotent free monoid). Indeed, it also accommodates any other commutative monoids

using aggregation operations such as min, max, sum, product, etc., . . . Thus, one may use this

rule by using AGGREGATE(f, s,m, ⋆, 1⋆) to declare the fact that when feature f is applied on

(domain) sort s, it takes values in (range) sort m denoting a specific commutative monoid 〈⋆, 1⋆〉
(i.e., s ∈ dom(f) and rans(f) = m). In other words,

X : s & X.f
.
= Y & Y = 1⋆ : m. (B.6)

Then, the rules PARTIAL FEATURE DOMAIN/RANGE NARROWING used in conjunction with

Rule VALUE AGGREGATION of Figure B.7 will use such a declaration to proceed with the

correct aggregation for so-declared features.

For example, declaring: AGGREGATE(offspring,person,person,∪, ∅), would en-

sure that whenever applied on sort person feature offspring aggregates values of sort

person using set union (∪). The default value is the empty set (∅). If the feature offspring

of a person object is an individual element p of sort person, it is assimilated to the singleton

set {p}.
Note however that we require a commutative monoid to ensure confluence of this rule with the

other OSF -constraint normalization rules in a non-deterministic normalization setting. In other

words, the order in which the rules are applied does not matter on the outcome of the aggregation

only when the monoid operation is commutative. This rule can also be used on non-commutative

collection structures such as lists (free monoid), although the order of application may then result

in different structures.

Decidability results concerning the differences between attributive concepts using functional

features vs. relation roles are reviewed in [112]. Aggregation has also been considered in the

same setting in [34] with similar decidability results. This last work offers intriguing potential

connections with the paradigm of declarative aggregation as described in [60] or [66] where a

versatile computable algebraic theory of monoid comprehensions is defined in terms of monoid

homomorphisms effective declarative aggregates where the aggregation can be any associative

binary operation. As defined in [59], a Monoid Comprehension Calculus can be defined as a
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conservative extension of the λ-calculus with aggregates to specify an object-relational model

enjoying algebraic properties that greatly facilitate query optimization.

B.3 FOT Terms as OSF Terms

As mentioned at the beginning of Chapter 3, a FOT can be seen as a special case of OSF term.

More precisely, it is an OSF term when functional constructor symbols are syntactically seen as

mutually incomparable sorts, all of which are subsorts of one “most general sort” (denoted using

the symbol ‘⊤’ and denoting the congruence class of any variable modulo renaming), and all of

which are supersorts of one “least general sort” the sort of no term (denoted using the symbol

‘⊥’ and denoting the empty set) which can be construed as failure of unification. Its features are

argument positions. As functions, they are are subterm projections: for any function symbol f

of arity n, f(t1, . . . , tn).i
def
= ti, for i ∈ {1, . . . , n}. However, the semantics of arity imposes

that positions be partial features (i.e., position i is defined for sort f/n only for i ≤ n). We can

formally recast Herbrand and rational terms as OSF terms as follows.

A first-order rational term in TΣ,V can be viewed as a particular ψ-term. For this, it suffices

to take S = Σ ∪ {⊤,⊥} and F = N − {0}. Namely, function symbols in Σ =
⋃

n>0Σn

denote singleton sorts (i.e., they are mutually incomparable and ∀f ∈ Σ,⊥ ≺ f ≺ ⊤), and

positive integers as features (i.e., argument projections). Thus, the term f(t1, . . . , tn) is the ψ-

term f(1 → t1, . . . , n → tn). The features here are argument positions and are interpreted

in the OSF formalism as projection functions. Additional axioms are needed to enforce arity

constraints. Namely:

arity(⊤) = ∅ (B.7)

arity(⊥) = { i ∈ N− {0} | i ≤ max{n > 0 |Σn 6= ∅} } (B.8)

∀f ∈ Σn : arity(f) = {1, . . . , n} (B.9)

∀i ∈ F : dom(i) =
⋃

i≤n

Σn (B.10)

∀i ∈ F , ∀f ∈ Σ : ranf (i) =

{

⊤ if f ∈ dom(i),
⊥ otherwise.

(B.11)

Condition (B.7) states that ⊤ has empty arity. This corresponds to the fact that logical vari-

ables may appear only as term leaves. Condition (B.8) states that ⊥ has the maximal arity of

all symbols. Condition (B.9) declares the arity for each function symbol. Condition (B.10) de-

clares the domains for each argument position—namely, the set of symbols that have at least that

many arguments. Condition (B.11) enforces the domains and ranges declared in the signature for

function symbols according to their arity constraints.

For sorted algebras, the sort signature S may also contain non-minimal sorts above the

singleton-denoting functors of Σ. Thus, multi- or order-sorted versions of free term algebra TΣ,V
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are readily expressible in theOSF formalism by making Condition (B.11) involve non-singleton

sorts other than⊤ as the range of projection features. With these signature constraints,rules PAR-

TIAL FEATURE DOMAIN/RANGE NARROWING of Figure B.4 combined with the basic OSF
normalization rules of Figure 3.6 will make unification of (rational) Herbrand terms behave as

expected.8

It is therefore expected that on such restricted OSF terms, theOSF unification (Figure 3.6)

and generalization (Figure A.4) operations correspond to FOT unification (Figure 2.3) and gen-

eralization (Figure 2.5), respectively.

However, for this to be the case, implicit extensionality must be explicitly taken into account.

Let us take an example to illustrate this: seen as an OSF term, the FOT f(a, a) is the OSF
term f(1 → X1 : a, 2 → X2 : a) rather than f(1 → X1 : a, 2 → X1). These two OSF terms

will have the same denotation only if the sort symbols f and a are considered extensional, and

if f ∈ Σ2 (i.e., its arity is 2). Then, Rule WEAK EXTENSIONALITY of Figure B.5 will ensure

identities of equal denotations.9

When all signature functors are declared as extensional and their positions are partial features,

then the OSF unification and generalization of FOT s coincides with FOT unification and

generalization, respectively.

Example B.4 FOT generalization using OSF rules — Since a FOT is a special case of OSF
term, we can verify that using the OSF generalization rules of Figure A.4 computes the correct FOT
generalizing two given FOTs. Let us illustrate this using the terms of Example 2.3 on Page 18.

We are given two FOTs: t1
def
= f(a, a, a) and t2

def
= f(b, c, c). Written as OSF terms, they correspond

to the ψ-terms:

ψ1
def
= X1 : f(1 → Y1 : a, 2 → Z1 : a, 3 → U1 : a)

ψ2
def
= X2 : f(1 → Y2 : b, 2 → Z2 : c, 3 → U2 : c)

which, once dissolved, correspond to the following OSF constraints:

φ1
def
= X1 : f & X1 . 1

.
= Y1 & Y1 : a

& X1 . 2
.
= Z1 & Z1 : a

& X1 . 3
.
= U1 & U1 : a

φ2
def
= X2 : f & X2 . 1

.
= Y2 & Y2 : b

& X2 . 2
.
= Z2 & Z2 : c

& X2 . 3
.
= U2 & U2 : c.

We then initiate the normalization process as indicated by Expression (A.27) on Page 123.

1. Start with:

• γ1 = {X = X1 }

• γ2 = {X = X2 }

8Since rational terms may be cyclic, for rational-term unification, one must dispense with X 6∈ var(t) test in

Rule VARIABLE ELIMINATION [122].
9The strong extensionality rules of Figure B.6 enforce these identities for cyclic terms as well.
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•
[

X1 : f & X1 . 1
.
= Y1 & Y1 : a & X1 . 2

.
= Z1 & Z1 : a & X1 . 3

.
= U1 &

U1 : a

‖

X2 : f & X2 . 1
.
= Y2 & Y2 : b & X2 . 2

.
= Z2 & Z2 : c & X2 . 3

.
= U2 & U2 : c

]

2. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1 }

• γ2 = {X = X2 }

• X : f
[

X1 . 1
.
= Y1 & Y1 : a & X1 . 2

.
= Z1 & Z1 : a & X1 . 3

.
= U1 & U1 : a

‖

X2 . 1
.
= Y2 & Y2 : b & X2 . 2

.
= Z2 & Z2 : c & X2 . 3

.
= U2 & U2 : c

]

3. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1,Y = Y1 }

• γ2 = {X = X2,Y = Y2 }

• X : f & X . 1
.
= Y

[

Y1 : a & X1 . 2
.
= Z1 & Z1 : a & X1 . 3

.
= U1 & U1 : a

‖

Y2 : b & X2 . 2
.
= Z2 & Z2 : c & X2 . 3

.
= U2 & U2 : c

]

4. apply Rule SORT INDUCTION:

• γ1 = {X = X1,Y = Y1 }

• γ2 = {X = X2,Y = Y2 }

• X : f & X . 1
.
= Y & Y : a∨b

[

X1 . 2
.
= Z1 & Z1 : a & X1 . 3

.
= U1 & U1 : a

‖

X2 . 2
.
= Z2 & Z2 : c & X2 . 3

.
= U2 & U2 : c

]

5. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1,Y = Y1,Z = Z1 }

• γ2 = {X = X2,Y = Y2,Z = Z2 }

• X : f & X . 1
.
= Y & Y : a∨b & X1 . 2

.
= Z

[

Z1 : a & X1 . 3
.
= U1 & U1 : a

‖

Z2 : c & X2 . 3
.
= U2 & U2 : c

]

6. apply Rule SORT INDUCTION:

• γ1 = {X = X1,Y = Y1,Z = Z1 }
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• γ2 = {X = X2,Y = Y2,Z = Z2 }

• X : f & X . 1
.
= Y & Y : a∨b & X1 . 2

.
= Z & Z : a∨c

[

X1 . 3
.
= U1 & U1 : a

‖

X2 . 3
.
= U2 & U2 : c

]

7. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1,Y = Y1,Z = Z1,U = U1 }

• γ2 = {X = X2,Y = Y2,Z = Z2,U = U2 }

• X : f & X . 1
.
= Y & Y : a∨b & X . 2

.
= Z & Z : a∨c & X . 3

.
= U

[

U1 : a

‖

U2 : c
]

8. apply Rule SORT INDUCTION:

• γ1 = {X = X1,Y = Y1,Z = Z1,U = U1 }

• γ2 = {X = X2,Y = Y2,Z = Z2,U = U2 }

• X : f & X . 1
.
= Y & Y : a∨b & X . 2

.
= Z & Z : a∨c & X . 3

.
= U & U : a∨c

9. apply Rule WEAK EXTENSIONALITY (on value a∨c eliminating tag U for tag Z).

• γ1 = {X = X1,Y = Y1,Z = Z1,Z = U1 }

• γ2 = {X = X2,Y = Y2,Z = Z2,Z = U2 }

• X : f & X . 1
.
= Y & Y : a∨b & X . 2

.
= Z & X . 3

.
= Z & Z : a∨c.

ThisOSF normal form corresponds to the FOT f(Y,Z,Z) as computed in Example 2.3 when the

∨ operation on two different functors returns ⊤ (i.e., in this case: a ∨ b = a ∨ c = ⊤).

Example B.5 FOT generalization using OSF rules — Example B.4 could as well have started

out by putting the initial terms in normal extensional form. Namely,

φ1
def
= X1 : f & X1 . 1

.
= Y1

& X1 . 2
.
= Y1

& X1 . 3
.
= Y1 & Y1 : a

φ2
def
= X2 : f & X2 . 1

.
= Y2 & Y2 : b

& X2 . 2
.
= Z2

& X2 . 3
.
= Z2 & Z2 : c.

As shown by the normalization below, this terminates with the same results (up to tag renaming) as the

normalization above, although with a different rule sequence.

1. Start with:
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• γ1 = {X = X1 }

• γ2 = {X = X2 }

•
[

X1 : f & X1 . 1
.
= Y1 & X1 . 2

.
= Y1 & X1 . 3

.
= Y1 & Y1 : a

‖

X2 : f & X2 . 1
.
= Y2 & Y2 : b & X2 . 2

.
= Z2 & X2 . 3

.
= Z2 & Z2 : c

]

2. apply Rule SORT INDUCTION:

• γ1 = {X = X1 }

• γ2 = {X = X2 }

• X : f
[

X1 . 1
.
= Y1 & X1 . 2

.
= Y1 & X1 . 3

.
= Y1 & Y1 : a

‖

X2 . 1
.
= Y2 & Y2 : b & X2 . 2

.
= Z2 & X2 . 3

.
= Z2 & Z2 : c

]

3. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1, Y = Y1 }

• γ2 = {X = X2, Y = Y2 }

• X : f & X . 1
.
= Y

[

X1 . 2
.
= Y1 & X1 . 3

.
= Y1 & Y1 : a

‖

Y2 : b & X2 . 2
.
= Z2 & X2 . 3

.
= Z2 & Z2 : c

]

4. apply Rule FEATURE INDUCTION:

• γ1 = {X = X1, Y = Y1, Z = Y1 }

• γ2 = {X = X2, Y = Y2, Z = Z2 }

• X : f & X . 1
.
= Y & X . 2

.
= Z

[

X1 . 3
.
= Y1 & Y1 : a

‖

Y2 : b & X2 . 3
.
= Z2 & Z2 : c

]

5. apply Rule COREFERENCE INDUCTION:

• γ1 = {X = X1, Y = Y1, Z = Y1 }

• γ2 = {X = X2, Y = Y2, Z = Z2 }

• X : f & X . 1
.
= Y & X . 2

.
= Z & X . 3

.
= Z

[

Y1 : a

‖

Y2 : b & Z2 : c
]

6. apply Rule SORT INDUCTION:
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• γ1 = {X = X1, Y = Y1, Z = Y1 }

• γ2 = {X = X2, Y = Y2, Z = Z2 }

• X : f & X . 1
.
= Y & X . 2

.
= Z & X . 3

.
= Z & Y : a∨b

[

Y1 : a ‖

Z2 : c
]

7. apply Rule SORT INDUCTION:

• γ1 = {X = X1, Y = Y1, Z = Y1 }

• γ2 = {X = X2, Y = Y2, Z = Z2 }

• X : f & X . 1
.
= Y & X . 2

.
= Z & X . 3

.
= Z & Y : a∨b & Z : a∨c
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