
Fuzzy Unification and Generalization of First-Order

Terms over Similar Signatures

Hassan Aı̈t-Kaci1 and Gabriella Pasi2

1 HAK Language Technologies — hak@acm.org
2 Universitá de Milano-Bicocca — pasi@disco.unimib.it

Abstract. Unification and generalization are operations on two terms comput-

ing respectively their greatest lower bound and least upper bound when the terms

are quasi-ordered by subsumption up to variable renaming (i.e., t1 � t2 iff

t1 = t2σ for some variable substitution σ). When term signatures are such

that distinct functor symbols may be related with a fuzzy equivalence (called

a similarity), these operations can be formally extended to tolerate mismatches

on functor names and/or arity or argument order. We reformulate and extend pre-

vious work with a declarative approach defining unification and generalization as

sets of axioms and rules forming a complete constraint-normalization proof sys-

tem. These include the Reynolds-Plotkin term-generalization procedures, Maria

Sessa’s “weak” unification with partially fuzzy signatures and its corresponding

generalization, as well as novel extensions of such operations to fully fuzzy signa-

tures (i.e., similar functors with possibly different arities). One advantage of this

approach is that it requires no modification of the conventional data structures for

terms and substitutions. This and the fact that these declarative specifications are

efficiently executable conditional Horn-clauses offers great practical potential for

fuzzy information-handling applications.3

1 Subsumption Lattice

The first-order term (FOT) was introduced as a data structure in software program-

ming by the Prolog language.4 Just like the S-expression for LISP, the FOT is Prolog’s

universal data structure. Using formal algebra notation, we write TΣ,V for the set of

FOTs on an operator signature Σ
def
=

⋃

n≥0 Σn where Σn is a set of operator symbols

of n arguments Σn
def
= {f | arity(f) = n, n ∈ IN}, and V is a set of variables.5 We

shall designate an element f in Σ as a functor, with arity(f) denoting its number of

arguments.6 This set TΣ,V can then be defined inductively as:

TΣ,V
def
= V ∪ {f(t1, . . . , tn) | f ∈ Σn, n ≥ 0, ti ∈ TΣ,V , 0 ≤ i ≤ n}.

3 This article appeared in the pre-proceedings of LOPSTR 2017 with the title “Lattice Opera-

tions on Terms over Similar Signatures.” This version’s title is technically more accurate. This

version is a corrected version of the paper in the conference proceedings. All proofs and more

examples can be found in a more detailed paper [3]. This work is part of a wider study [2].
4
https://en.wikipedia.org/wiki/Prolog

5 We shall use Prolog’s convention of writing variables with capitalized symbols.
6 When arity(f) = n, this is often denoted by writing f/n.

https://en.wikipedia.org/wiki/Prolog
http://hassan-ait-kaci.net/pdf/fuzfotlat-preprint.pdf
http://hassan-ait-kaci.net/pdf/fuzlatdks.pdf
https://en.wikipedia.org/wiki/Prolog

We write c instead of c() for a constant c ∈ Σ0. Also, when the set Σ of functor symbols

and the set V of variables are implicit from the context, we simply write T instead of

TΣ,V . The set var(t) of variables occurring in a FOT t ∈ T is defined as:

var(t)
def
=

{

{X} if t = X ∈ V
⋃n

i=1 var(tn) if t = f(t1, . . . , tn).

The lattice-theoretic properties of FOTs as data structures were first exposed and

studied by Reynolds (in [19]) and Plotkin (in [17] and [18]). They noted that the set T
is ordered by term subsumption (denoted as ‘�’); viz., t � t′ (and we say: “t′ subsumes

t”) iff there exists a variable substitution σ : var(t′) → T such that t′σ = t. Two

FOTs t and t′ are considered “equal up to variable renaming” (denoted as t ≃ t′)
whenever both t � t′ and t′ � t. Then, the set of first-order terms modulo variable

renaming, when lifted with a bottom element ⊥ standing for “no term” (i.e., the set

T/≃∪{⊥}) has a lattice structure for subsumption. It has a top element ⊤ = V (indeed,

since any variable in V can be substituted for any term, V is therefore the class of any

variable modulo renaming). Unification corresponds to its greatest lower bound (glb)

operation. The dual operation, generalization of two terms, yields a term that is their

least upper bound (lub) for subsumption. This can be summarized as the lattice diagram

shown in Fig. 1. In this diagram, given a pair of terms 〈t1, t2〉, the pair of substitutions

〈σ1, σ2〉 are their respective most general generalizers, and the substitution σ is the

pair’s most general unifier (mgu). We formalize next these lattice operations on FOTs

as declarative constraint normalization rules.

t = lub(t1, t2)

t1 = tσ1 t2 = tσ2

t =

{

t1σ = t2σ
tσ1σ = tσ2σ

}

= glb(t1, t2)

σ1
σ
2

σ σ

Fig. 1. Subsumption lattice operations

1.1 Unification rules

In Fig. 2, we give the set of equation normalization rules that we shall call Herbrand-

Martelli-Montanari ([10] and [16]). Each rule is provably correct in that it is a solution-

preserving transformation of a set of equations. We can use these rules to unify two

FOTs t1 and t2, starting with the singleton set of equations E
def
= { t1

.
= t2 }.7 Then,

we transform this set of equations using any applicable rule in any order until none

applies. This always terminates into a finite set of equations E′. If all the equations in

7 In such equations, we use the notation t1
.
= t2 not to confuse it with the equality symbol “=”

(at the meta-level).

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf

TERM DECOMPOSITION

E ∪ {f(s1, . . . , sn)
.
= f(t1, . . . , tn)}

E ∪ {s1
.
= t1, . . . , sn

.
= tn}

[n ≥ 0]

VARIABLE ERASURE

E ∪ {X
.
= X}

E

VARIABLE ELIMINATION

E ∪ {X
.
= t}

E[X←t] ∪ {X
.
= t}

[

X 6∈ var(t)
X occurs in E

]

EQUATION ORIENTATION

E ∪ {t
.
= X}

E ∪ {X
.
= t}

[t 6∈ V]

Fig. 2. Herbrand-Martelli-Montanari unification rules

E′ are of the form X
.
= t with X occurring nowhere else in E′, then this is a most

general unifying substitution (up to consistent variable renaming) σ
def
= { t/X | X

.
=

t ∈ E′ } solving the original equation (i.e., t1σ = t2σ); otherwise, there is no solution.

In the rules of Figure 2, Rule VARIABLE ELIMINATION has the side condition X 6∈
var(t) to prevent circular terms, whose presence indicates no FOT solutions. This

condition could be omitted if wished, thus extending the set of FOTs and solutions of

equations to rational FOTs—also called “infinite trees” (see, e.g., [9], [13], [7]).

1.2 Generalization rules

In 1970, John Reynolds and Gordon Plotkin published each an article, in the same

volume ([19] and [18]), giving two identical algorithms (up to notation) for the general-

ization of two FOTs. Each describes a procedural method computing the most specific

FOT subsuming two given FOTs in finitely many steps by comparing them simultane-

ously, and generating a pair of generalizing substitutions from a fresh variable wherever

they disagree being scanned from left to right, each time replacing the disagreeing terms

by the new variable everywhere they both occur in each term.

Next, we present a set of declarative normalization rules for generalization which

are equivalent to these procedural algorithms. As far as we know, this is the first such

presentation of a declarative set of rules for generalization besides its more general

form as order-sorted feature term generalization in [5]. The advantage of specifying

this operation in this manner rather than procedurally as done originally by Reynolds

and Plotkin is that each rule or axiom relates a pair of prior substitutions to a pair of

posterior substitutions based only on local syntactic-pattern properties of the terms to

generalize, and this without resorting to side-effects on global structures. In this way, the

terms and substitutions involved are derived as solutions of logical syntactic constraints.

In addition, correctness of the so-specified operation is made much easier to establish

since we only need to prove each rule’s correctness independently of that of the others.

Finally, the rules also provide an effective means for the derivation of an operational

semantics for the so-specified operation by constraint solving, without need for control

specification as any applicable rule may be invoked in any order.8

8 Such as the Herbrand-Martelli-Montanari unification rules w.r.t. to Robinson’s procedural uni-

fication algorithm.

http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://www.hassan-ait-kaci.net/pdf/ecml01.pdf

Definition 1 (Generalization Judgment). A generalization judgement is an expression

of the form:

(

σ1

σ2

)

⊢

(

t1
t2

)

t

(

θ1
θ2

)

(1)

where σi : var(ti) → T and θi : var(t) → T (i = 1, 2) are substitutions, and t ∈ T
and ti ∈ T (i = 1, 2) are FOTs.

Definition 2 (Generalization Judgment Validity). A generalization judgement such

as (1) is said to be valid whenever tiσi = tθi, for i = 1, 2.

Contrary to other normalization rules in this document which are expressed as con-

ditional rewrite rules whereby a prior form (the “numerator”) is related to a posterior

form (the “denominator”), these normalization rules are more naturally rendered as

(conditional) Horn clauses of judgements. This is as convenient as rewrite rules since

a Prolog-like operational semantics can then readily provide an effective interpretation.

This operational semantics is efficient because it does not need backtracking as long as

the complete set of conditions of a ruleset covers all but mutually exclusive syntactic

patterns. Thus, a generalization rule is of the form:

[φ]
J1 . . . Jn

J
(2)

where φ is a side meta-condition, and J, J1, . . . , Jn are judgements, and it reads, “when-

ever the side condition φ holds, if all the n antecedent judgements Jn are valid, then

the consequent judgement J is also valid.” Such a generalization rule without a spec-

ified antecedent (a “numerator”) is called a “generalization axiom.” Such an axiom is

said to be valid iff its consequent (the “denominator”) is valid whenever its optional

side condition holds. It is equivalent to a rule where the only antecedent is the trivial

generalization judgement TRUE.

Definition 3 (Generalization Rule Correctness). A conditional Horn rule such as

Rule (2) is correct iff Jk is a valid judgment for all k = 1, . . . , n implies that J is a

valid judgment, whenever the side condition φ holds.

Given t1 and t2 two FOTs having no variable in common, in order to find the most

specific term t and most general substitutions σi, i = 1, 2, such that tσi = ti, i = 1, 2,

one needs to establish the generalization judgement:

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1

σ2

)

. (3)

In other words, this expresses the upper half of Fig. 1 whereby t = lub(t1, t2), with

most general substitutions σ1 and σ2. We give a complete set of normalization axioms

and rule for generalization for all syntactic patterns in Fig. 3. Rule “EQUAL FUNCTORS”

uses an “unapply” operation (‘↑’) on a pair of terms (t1, t2) given a pair of substitutions

EQUAL VARIABLES

(

σ1

σ2

)

⊢

(

X
X

)

X

(

σ1

σ2

)

VARIABLE-TERM

[t1 ∈ V or t2 ∈ V; t1 6= t2; X is new]
(

σ1

σ2

)

⊢

(

t1
t2

)

X

(

σ1{t1/X}
σ2{t2/X}

)

UNEQUAL FUNCTORS

[m ≥ 0, n ≥ 0; m 6= n or f 6= g; X is new]
(

σ1

σ2

)

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{f(s1, . . . , sm)/X}
σ2{g(t1, . . . , tn)/X}

)

EQUAL FUNCTORS

[n ≥ 0]

(

σ1

σ2

)

⊢

(

s1
t1

)

↑

(

σ1

σ2

)

u1

(

σ1
1

σ1
2

)

. . .

(

σn−1
1

σn−1
2

)

⊢

(

sn
tn

)

↑

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

(

σ1

σ2

)

⊢

(

f(s1, . . . , sn)
f(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

Fig. 3. Generalization axioms and rule

(σ1, σ2). It may be conceived as (and in fact is) the result of simultaneously “unap-

plying” σi from ti into a common variable X only if such X is bound to ti by σi, for

i = 1, 2. If there is no such a variable, it is the identity. Formally, this is defined as:

(

t1
t2

)

↑

(

σ1

σ2

)

def
=

(

X
X

)

if ti = Xσi, for i = 1, 2;

(

t1
t2

)

otherwise.

(4)

Note also that Rule “EQUAL FUNCTORS” is defined for n ≥ 0. For n = 0 (for any

constant c), it becomes the following axiom:

(

σ1

σ2

)

⊢

(

c
c

)

c

(

σ1

σ2

)

. (5)

Theorem 1. The axioms and the rule of Fig. 3 are correct.

In particular, with empty prior substitutions, we obtain the following corollary.

Corollary 1 (FOT Generalization). Whenever the judgement

(

∅
∅

)

⊢

(

t1
t2

)

t

(

σ1

σ2

)

is valid, then tσi = ti, for i = 1, 2.

2 Fuzzy Lattice Operations

2.1 Fuzzy unification

A fuzzy unification operation on FOTs, dubbed “weak unification,” was proposed by

Maria Sessa in [20]. It normalizes equations between conventional FOTs modulo a

http://www.sciencedirect.com/science/article/pii/S0304397501001888

similarity relation ∼ over functor symbols. This similarity relation is then homomor-

phically extended to one over allFOTs. It is: (1) the (crisp) identity relation on variables

(i.e., X ∼1 X , for any X in V); otherwise, (2) zero when either of the two terms is a

variable (i.e., X ∼0 t and t ∼0 X , for any X 6= t in V); otherwise (3):

f(s1, . . . , sn) ∼(α∧
∧

n
i=1 αi) g(t1, . . . , tn) if f ∼α g and si ∼αi

ti, i = 1, . . . , n

where α ∈ [0, 1] and αi ∈ [0, 1] (i = 1, . . . , n) denote the unification degrees to which

each corresponding equation holds.9

In Fig. 4, we provide a set of declarative rewrite rules equivalent to Sessa’s case-

based “weak unification algorithm” [20]. To simplify the presentation of these rules

while remaining faithful to Sessa’s weak unification algorithm, it is assumed for now

that functor symbols f/m and g/n of different arities m 6= n are never similar. This is

without any loss of generality since Sessa’s weak unification fails on term structures of

different arities.10 Later, we will relax this and allow functors of different arities to be

similar.

FUZZY TERM DECOMPOSITION

(E ∪ {f(s1, . . . , sn)
.
= g(t1, . . . , tn)})α

(E ∪ {s1
.
= t1, . . . , sn

.
= tn})α∧β

[

f ∼β g

n ≥ 0

]

VARIABLE ERASURE

(E ∪ {X
.
= X})α

Eα

VARIABLE ELIMINATION

(E ∪ {X
.
= t})α

(E[X← t] ∪ {X
.
= t})α

[

X 6∈ var(t)
X occurs in E

]

EQUATION ORIENTATION

(E ∪ {t
.
= X})α

(E ∪ {X
.
= t})α

[t 6∈ V]

Fig. 4. Normalization rules corresponding to Maria Sessa’s “weak unification”

The rules of Fig. 4 transform Eα a finite conjunctive set E of equations among

FOTs along with an associated truth value, or “unification degree,” α ∈ [0, 1], into

E′
α′ another set of equations E′ with truth value α′ ∈ [0, α]. Given to solve a fuzzy

unification equation s
.
= t between two FOTs s and t, form the set {s

.
= t}1 (i.e., with

unification degree 1), and apply any applicable rules in Fig. 4 until either the unification

degree of the set of equations is 0 (in which case there is no solution to the original

equation, not even a fuzzy one), or the final resulting set Eα is a solution with truth

value α in the form of a variable substitution σ
def
= {X/t | X

.
= t ∈ E} such that

sσ ∼α tσ.

From our perspective, a fuzzy unification operation ought to be able to fuzzify full

FOT unification: whether (1) functor symbol mistmatch, and/or (2) arity mismatch,

and/or (3) in which order subterms correspond. Sessa’s fuzzification of unification as

weak unification misses on the last two items. This is unfortunate as this can turn out

to be quite useful. In real life, there is indeed no such garantee that argument positions

9 The ∧ operation used by Sessa in this expression is min; but other interpretations are possi-

ble ([8], [2]).
10 See Case (2) of the weak unification algorithm given in [20], Page 413.

http://www.sciencedirect.com/science/article/pii/S0304397501001888
ftp://ftp.micronet-rostov.ru/linux-support/books/computer%20science/Fuzzy%20systems/Fuzzy%20Sets%20And%20Systems%20Theory%20And%20Applications%20-%20Didier%20Dubois%20,%20Henri%20Prade.pdf
http://hassan-ait-kaci.net/pdf/fuzlatopdks.pdf
http://www.sciencedirect.com/science/article/pii/S0304397501001888

of different functors match similar information in data and knowledge bases, hence the

need for alignment [15].

Still, it has several qualities:

– It is simple—specified as a straightforward extension of crisp unification: only one

rule (Rule “FUZZY TERM DECOMPOSITION”) may alter the fuzziness of an equation

set by tolerating similar functors.

– It is conservative—neither FOTs nor FOT substitutions per se need be fuzzified;

so conventional crisp representations and operations can be used; if restricted to

only 0 or 1 truth values, it is equivalent to crisp FOT unification.

We now give an extension of Sessa’s weak unification which can tolerate such fuzzy

similarity among functors of different arities. Given a similarity relation ∼ on a ranked

signature Σ
def
= Σn≥0, ∼: Σ2 → [0, 1] which, unlike M. Sessa’s equal-arity condi-

tion, now allows mismatches of similar symbols with distinct arities or equal arities but

different argument orders. Namely,

– it admits that (∼ ∩ Σm ×Σn) 6= ∅ for some m ≥ 0, n ≥ 0, such that m 6= n;

– for each pair of functors 〈f, g〉 ∈ Σ2, such that f ∈ Σm and g ∈ Σn, with

0 ≤ m ≤ n, and f ∼α g, (α ∈ (0, 1]), there exists an injective (i.e., one-to-

one) mapping p : {1, . . . ,m} → {1, . . . , n} associating each of the m argument

positions of f to a unique position among the n arguments of g (which is denoted

as f ∼p
α g).

Note that in the above, m and n are such that 0 ≤ m ≤ n; so the one-to-one argument-

position mapping goes from the lesser set to the larger set. There is no loss of generality

with this assumption as this will be taken into account in the normalization rules.

Example 1. [Similar functors with different arities] Consider person/3, a functor of

arity 3, and individual/4, a functor of arity 4 with:

– similarity truth value of .9; i.e., person/3 ∼.9 individual/4; and,

– one-to-one position mapping p : {1, 2, 3} → {1, 2, 3, 4}:

from person/3 to individual/4 with p : {1→ 1, 2→ 3, 3→ 4}

so that:

person(Name, SSN,Address) ∼p
.9 individual(Name,DoB, SSN,Address)

writing f ∼p
α g a similarity relation between a functor f and a functor g of truth value α and f -

to-g argument-position mapping p; in our example, person ∼{1→1,2→3,3→4}
.9 individual.

With this kind of specification, we can tolerate not only fuzzy mismatching of terms with dis-

tinct functors person and individual, but also up to a correspondance of argument positions

from person to individual specified as p, all with a truth value of .9.

Starting with the Herbrand-Martelli-Montanari ruleset of Fig. 2, fuzziness is intro-

duced by relaxing “TERM DECOMPOSITION” to make it also tolerate possible arity or

argument-order mistmatch in two structures being unified. In other words, the given

functor similarity relation ∼ is adjoined a position mapping from argument positions

http://snap.stanford.edu/social2012/papers/lacostejulien-palla-etal.pdf

of a functor f to those of a functor g when f 6= g and f ∼α g with α ∈ (0, 1]. This

is then taken into account in tolerating a fuzzy mismatch between two term structures

s = f(s1, . . . , sm) and t = g(t1, . . . , tn). This may involve a mismatch between the

terms’ functor symbols (f and g), their arities (m and n), subterm orders, or a combi-

nation. We first reorient all such equations by flipping sides so that the left-hand side is

the one wih lesser or equal arity. In this manner, assuming f ∼p
β g and 0 ≤ α, β ≤ 1,

an equation of the form:
{

f(s1, . . . , sm)
.
= g(t1, . . . , tn)

}

α
for 0 ≤ m ≤ n acquires

its truth value α ∧ β due to functor and arity mismatch when equated. A fully fuzzified

term-decomposition rule should proceed with replacing such a fuzzy structure equation

with the following conjunction of fuzzy equations between subterms at correspond-

ing indices given by the one-to-one argument mapping p : {1, . . . ,m} → {1, . . . , n}:
{

s1
.
= tp(1), . . . , sm

.
= tp(m), . . .

}

α∧β
. Note that all the subterms in the right-

hand side term that are arguments at indices which are not p-images are ignored as they

have no counterparts in the left-hand side. These terms are simply dropped as part of the

fuzzy approximative unification. This generic rule is shown in Fig. 5 along with another

rule needed to make it fully effective: a rule reorienting a term equation into one with a

lesser-arity term on the left.

GENERIC WEAK TERM DECOMPOSITION

[

0 ≤ m ≤ n; f ∼p

β g
]

(E ∪ {f(s1, . . . , sm)
.
= g(t1, . . . , tn)})α

(

E ∪ {s1
.
= tp(1), . . . , sm

.
= tp(m)}

)

α∧β

FUZZY EQUATION REORIENTATION

[0 ≤ n < m]

(E ∪ {f(s1, . . . , sm)
.
= g(t1, . . . , tn)})α

(E ∪ {g(t1, . . . , tn)
.
= f(s1, . . . , sm)})

α

Fig. 5. Generic fuzzification of FOT unification’s decomposition rule

Theorem 2. The fuzzy unification rules of Fig. 4 where Rule “FUZZY TERM DECOM-

POSITION” is replaced by the rules of Fig. 5 are correct.

In other words, applying this modified ruleset to E1
def
= {s

.
= t}1, an equation set

of truth value 1 (in any order as long as a rule applies and its truth value is not zero)

always terminates. And when the final equation set is a substitution σ, it is a fuzzy

solution with truth value α such that sσ ∼α tσ.

Example 2. [FOT fuzzy unification with similar functors of different arities] Let

us take a functor signature such that: {a, b, c, d} ⊆ Σ0, {f, g, ℓ} ⊆ Σ2, {h} ⊆ Σ3; and let us

further assume that the only non-zero similarities argument mappings among these functors are:

– a ∼.7 b,

– c ∼.6 d,

– f ∼{1→2,2→1}
.9 g and g ∼{1→2,2→1}

.9 f ,

– ℓ ∼{1→2,2→3}
.8 h.

Let us consider the fuzzy equation set {t1
.
= t2}1:

{h(X, g(Y, b), f(Y, c))
.
= ℓ(f(a, Z), g(d, c))}1 (6)

and let us apply the rules of Figure 4 with rule WEAK TERM DECOMPOSITION is replaced by

the rules of Figure 5:

– apply Rule FUZZY EQUATION REORIENTATION with α = 1 since arity(ℓ) < arity(h):

{ℓ(f(a,Z), g(d, c))
.
= h(X, g(Y, b), f(Y, c))}1 ;

– apply Rule GENERIC WEAK TERM DECOMPOSITION to:

ℓ(f(a, Z), g(d, c))
.
= h(X, g(Y, b), f(Y, c))

with α = 1 and β = .8 since ℓ ∼{1→2,2→3}
.8 h, to obtain:

{f(a, Z)
.
= g(Y, b), g(d, c)

.
= f(Y, c)}

.8 ;

– apply Rule GENERIC WEAK TERM DECOMPOSITION to f(a, Z)
.
= g(Y, b) with α = .8

and β = .9 since f ∼{1→2,2→1}
.9 g, to obtain:

{a
.
= b, Z

.
= Y, g(d, c)

.
= f(Y, c)}.8 ;

– apply Rule GENERIC WEAK TERM DECOMPOSITION to a
.
= b with α = .8 and β = .7

since a ∼.7 b, to obtain:

{Z
.
= Y, g(d, c)

.
= f(Y, c)}.7 ;

– apply Rule GENERIC WEAK TERM DECOMPOSITION to g(d, c)
.
= f(Y, c) with α = .7

and β = .9 since f ∼{1→2,2→1}
.9 g, to obtain:

{Z
.
= Y, d

.
= c, c

.
= Y }

.7 ;

– apply Rule GENERIC WEAK TERM DECOMPOSITION to d
.
= c with α = .7 and β = .6

since d ∼.6 c, to obtain:

{Z
.
= Y, c

.
= Y }

.6 ;

– apply Rule EQUATION ORIENTATION to c
.
= Y with α = .6, to obtain:

{Z
.
= Y, Y

.
= c}

.6 .

– apply Rule VARIABLE ELIMINATION to Y
.
= c with α = .6, to obtain:

{Z
.
= c, Y

.
= c}

.6 .

This last equation set is in normal form with truth value .6 and defines the substitution σ =
{ c/Z, c/Y } so that:

t1σ = h(X, g(Y, b), f(Y, c)) { c/Z, c/Y } ∼.6 t2σ = ℓ(f(a, Z), g(d, c)) { c/Z, c/Y } , (7)

that is:

t1σ = h(X, g(c, b), f(c, c)) ∼.6 t2σ = ℓ(f(a, c), g(d, c)). (8)

Example 3. [The same fuzzy unification with more expressive symbols] Let us give

more expressive names to functors of Example 2 in the context of, say, a gift-shop Prolog database

which describes various configurations for multi-item gift boxes or bags containing such items as

flowers, sweets, etc., which can be already joined as pairs or not joined as loose couples.

– a
def
= violet,

– b
def
= lilac,

– c
def
= chocolate,

– d
def
= candy,

– f
def
= pair,

– g
def
= couple,

– ℓ
def
= small-gift-bag,

– h
def
= small-gift-box,

with the following similarity degrees and argument mappings,:

– violet ∼.7 lilac,

– chocolate ∼.6 candy,

– pair ∼.9 couple,

– pair ∼{1→2,2→1}
.9 couple and couple ∼{1→2,2→1}

.9 pair,

– small-gift-bag ∼{1→2,2→3}
.8 small-gift-box.

With these functors Equation (6) now reads:

(t1)

small-gift-box (X
, couple(Y,lilac)
, pair(Y,chocolate)
)

.
=

(t2)
small-gift-bag (pair(violet, Z)

, couple(candy,chocolate)
)

With the new functor symbols, the substitution σ = {chocolate/Z, chocolate/Y }
obtained after normalization yields the fuzzy solution:

(t1σ)

small-gift-box (X
, couple(chocolate,lilac)
, pair(chocolate,chocolate)
)

∼.6

(t2σ)
small-gift-bag (pair(violet,chocolate)

, couple(candy,chocolate)
)

with truth value .6 capturing the unification degree to which σ solves the original equation.

Rule GENERIC WEAK TERM DECOMPOSITION is a very general rule for normalizing

fuzzy equations over FOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or

order of arguments;

2. when restricted to tolerating only similar equal-arity functors with matching argu-

ment positions, it reduces to Sessa’s weak unification’s WEAK TERM DECOMPOSI-

TION rule;

3. when truth values are further restricted to be in {0, 1}, it reduces to Herbrand-

Martelli-Montanari’s TERM DECOMPOSITION rule;

4. it requires no alteration of the standard notions of FOTs and FOT substitutions:

similarity among FOTs is derived from that of signature symbols;

5. finally, and most importantly, it keeps fuzzy unification in the same complexity

class as crisp unification: that of Union-Find ([14], [21]).11

As a result, it is more general than all other extant approaches we know which propose

a fuzzy FOT unification operation. The same will be established for the fuzzifica-

tion of the dual operation: first a limited “functor-weak” FOT generalization corre-

sponding to the dual operation of Sessa’s “weak” unification, then to a more expressive

“functor/arity-weak” FOT generalization corresponding to our extension of Sessa’s

unification to functor/arity weak unification.

2.2 Fuzzy generalization

Let t1 and t2 be two FOTs in T to generalize. We shall use the following notation for

a fuzzy generalization judgement:

(

σ1

σ2

)

α

⊢

(

t1
t2

)

t

(

θ1
θ2

)

β

(9)

given:

– σi : var(ti) → T (i = 1, 2): two prior substitutions with prior truth value α,

– ti (i = 1, 2): two prior FOTs,

– t: a posterior FOT ,

– θi : var(t) → T (i = 1, 2): two posterior substitutions with truth value β.

Definition 4 (Fuzzy Generalization Judgment Validity). A fuzzy generalization jud-

gement such as (9) is valid whenever 0 ≤ β ≤ α ≤ 1 and tiσi ∼β tθi for i = 1, 2.

Definition 5 (Fuzzy Generalization Rule Correctness). A fuzzy generalization rule is

correct iff, whenever the side condition holds, if all the fuzzy generalization judgments

making up its antecedent are valid, then necessarily the generalization judgment in its

consequent is valid.

In Fig. 6, we give a fuzzy version of the generalization rules of Fig. 3. As was the

case in Sessa’s weak unification, we assume as well (for now) that we are only given a

similarity relation ∼ ∈ Σ × Σ → [0, 1] on the signature Σ = ∪n≥0Σn such that for

all m ≥ 0 and n ≥ 0, m 6= n implies ∼ ∩Σm × Σn = ∅ (i.e., if functors f and g
have different arities, then f 6∼ g).

Rule SIMILAR FUNCTORS uses a “fuzzy unapply” operation (‘↑α’) on a pair of terms

(t1, t2) given a pair of substitutions (σ1, σ2) and a similarity degree α. It is the result of

11 Quasi-linear; i.e., linear with a log . . . log coefficient [1].

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=92AF7CA745E2C0B8EB619F09FFB5D3CA?doi=10.1.1.64.8967&rep=rep1&type=pdf
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/UnionFind.pdf

FUZZY EQUAL VARIABLES

(

σ1

σ2

)

α

⊢

(

X
X

)

X

(

σ1

σ2

)

α

FUZZY VARIABLE-TERM

[t1 ∈ V or t2 ∈ V; t1 6= t2; X is new]
(

σ1

σ2

)

α

⊢

(

t1
t2

)

X

(

σ1{t1/X}
σ2{t2/X}

)

α

DISSIMILAR FUNCTORS

[f 6∼ g; m ≥ 0, n ≥ 0; X is new]
(

σ1

σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

X

(

σ1{f(s1, . . . , sm)/X}
σ2{g(t1, . . . , tn)/X}

)

α

SIMILAR FUNCTORS

[

f ∼β g; n ≥ 0; α0
def
= α ∧ β

]

(

σ1

σ2

)

α0

⊢

(

s1
t1

)

↑α0

(

σ1

σ2

)

u1

(

σ1
1

σ1
2

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sn
tn

)

↑αn−1

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

αn
(

σ1

σ2

)

α

⊢

(

f(s1, . . . , sn)
g(t1, . . . , tn)

)

f(u1, . . . , un)

(

σn
1

σn
2

)

αn

Fig. 6. Functor-weak generalization axioms and rule

“unapplying”σi from ti, for i = 1, 2, into a common variableX , if any such exists such

that the terms Xσi are respectively similar to ti with similarity degrees αi. It returns a

fuzzy pair of terms and a similarity degree in (0, α] defined as:

(

t1
t2

)

↑α

(

σ1

σ2

)

def
=

(

X
X

)

α∧α1∧α2

if ∃X ∈ V , ti ∼αi
Xσi

for some αi ∈ (0, 1] i = 1, 2;

(

t1
t2

)

α

otherwise.

(10)

Importantly, note that fuzzy unapplication defined by Equation (10) returns a pair of

terms and a (possibly lesser) approximation degree, unlike crisp unapplication defined

by Equation (4) which returns only a pair of terms. Because of this, when we write a

fuzzy judgment, as we do in Rule SIMILAR FUNCTORS, such as:

(

σ
σ′

)

α

⊢

(

t
t′

)

↑α

(

σ
σ′

)

u

(

θ
θ′

)

β

(11)

this is shorthand to indicate that the posterior similarity degree β is at most the one

returned by the fuzzy unapplication

(

t
t′

)

↑α

(

σ
σ′

)

. Formally, the notation of the fuzzy

judgment (11) is equivalent to:

(

t
t′

)

↑α

(

σ
σ′

)

=

(

s
s′

)

β′

and

(

σ
σ′

)

β′

⊢

(

s
s′

)

u

(

θ
θ′

)

β

(12)

for some β′ such that β ≤ β′ ≤ α. This is because a fuzzy unapplication invoked while

proving the validity of a fuzzy judgment may require, by Expression (10), lowering the

prior approximation degree of the judgment.

Note also that Rule “SIMILAR FUNCTORS” is defined for n ≥ 0. For n = 0, it

becomes the following fuzzy judgment:

(

σ1

σ2

)

α

⊢

(

c
c

)

c

(

σ1

σ2

)

α

(13)

which can be verified to be an axiom since it is valid at any approximation degree α in

[0, 1], for any constant c in Σ0, and any substitutions σ1 and σ2 in SUBST
T

, thanks to

the reflexivity of the similarity ∼α on T .

Theorem 3. The fuzzy generalization rules of Fig. 6 are correct.

In Fig. 7, we give a fuzzy version of the generalization rules taking into account

mismatches not only in functors, but also in arities; i.e., number and/or order of argu-

ments. Unlike Sessa’s unification, we now assume that we are not only given a similarity

relation ∼ ∈ Σ × Σ → [0, 1] on the signature Σ = ∪n≥0Σn, but also that functors

of different arities may be similar with some non-zero truth value as specified by an

one-to-one argument-position mapping for each pair of so-similar functors associating

to each argument position of the functor of least arity a distinct argument position of the

functor of larger arity. The only rule among those of Figure 6 that differs is the last one

(SIMILAR FUNCTORS) which is now a pair of rules called FUNCTOR/ARITY SIMILARITY

LEFT and FUNCTOR/ARITY SIMILARITY RIGHT to account for similar functors’s argu-

ment positions depending which side has less arguments. If the arities are the same, the

two rules are equivalent.

FUNCTOR/ARITY SIMILARITY LEFT
[

f ∼
p

β
g; 0 ≤ m ≤ n; α0

def
= α ∧ β

]

(

σ1

σ2

)

α0

⊢

(

s1
tp(1)

)

↑α0

(

σ1

σ2

)

u1

(

σ1
1

σ1
2

)

α1

. . .

(

σm−1
1

σm−1
2

)

αm−1

⊢

(

sm
tp(m)

)

↑αm−1

(

σm−1
1

σm−1
2

)

um

(

σm
1

σm
2

)

αm
(

σ1

σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

f(u1, . . . , um)

(

σm
1

σm
2

)

αm

FUNCTOR/ARITY SIMILARITY RIGHT
[

g ∼
p

β
f ; 0 ≤ n ≤ m; α0

def
= α ∧ β

]

(

σ1

σ2

)

α0

⊢

(

sp(1)
t1

)

↑α0

(

σ1

σ2

)

u1

(

σ1
1

σ1
2

)

α1

. . .

(

σn−1
1

σn−1
2

)

αn−1

⊢

(

sp(n)

tn

)

↑αn−1

(

σn−1
1

σn−1
2

)

un

(

σn
1

σn
2

)

αn
(

σ1

σ2

)

α

⊢

(

f(s1, . . . , sm)
g(t1, . . . , tn)

)

g(u1, . . . , un)

(

σn
1

σn
2

)

αn

Fig. 7. Functor/arity-weak generalization axioms and rule

Theorem 4. The fuzzy generalization rules of Fig. 6 where Rule “SIMILAR FUNCTORS”

is replaced with the rules in Fig. 7 are correct.

Example 4. [FOT fuzzy generalization] Consider the signature Σ containing Σ0 =
{a, b, c, d}, Σ2 = {f, g, l}, and Σ3 = {h}, and the closure ∼ of the similar pairs a ∼.7,

c ∼.6 d, f ∼.8 g, and l ∼.9 h. Let us take all argument-position mappings as the default

(identity on least-arity set). Let us apply the fuzzy generalization axioms of Figure 6 and the

rule of Figure 7 to t1
def
= h(g(b, Y), f(Y, c), V), and t2

def
= l(f(a, Z), g(c, d)); that is, let

us find term t, substitutions σi ∈ SUBST
T

(i = 1, 2), and similarity degree α in [0, 1], such

that tσ1 ∼α h(g(b, Y), f(Y, c), V) and tσ2 ∼α l(f(a, Z), g(c, d)). This is expressed as the

following fuzzy judgment:

(

∅
∅

)

1

⊢

(

h(g(b, Y), f(Y, c), V)
l(f(a, Z), g(c, d))

)

t

(

σ1

σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY RIGHT, we can infer that t = l(u1, u2):

(

∅
∅

)

1

⊢

(

h(g(b, Y), f(Y, c), V)
l(f(a, Z), g(c, d))

)

l(u1, u2)

(

σ1

σ2

)

α

which, when replaced by the rule’s antecedents, since h ∼.9 l and 1 ∧ .9 = .9, becomes the

sequence:

(

∅
∅

)

.9

⊢

(

g(b, Y)
f(a, Z)

)

↑.9

(

∅
∅

)

u1

(

σ′
1

σ′
2

)

α′

,

(

σ′
1

σ′
2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑α′

(

σ′
1

σ′
2

)

u2

(

σ1

σ2

)

α

.

By evaluating the fuzzy unapplication in its first judgment, this sequence becomes:

(

∅
∅

)

.9

⊢

(

g(b, Y)
f(a, Z)

)

u1

(

σ′
1

σ′
2

)

α′

,

(

σ′
1

σ′
2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑α′

(

σ′
1

σ′
2

)

u2

(

σ1

σ2

)

α

.

By Rule FUNCTOR/ARITY SIMILARITY LEFT,12 it comes that u1 = g(u3, u4) and, since

g ∼.8 f and .9 ∧ .8 = .8, the sequence becomes:

(

∅
∅

)

.8

⊢

(

b
a

)

↑.8

(

∅
∅

)

u3

(

σ′′
1

σ′′
2

)

α′′

,

(

σ′′
1

σ′′
2

)

α′′

⊢

(

Y
Z

)

↑α′′

(

σ′′
1

σ′′
2

)

u4

(

σ′
1

σ′
2

)

α′

,

(

σ′
1

σ′
2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑α′

(

σ′
1

σ′
2

)

u2

(

σ1

σ2

)

α

.

By evaluating the fuzzy unapplication in the first judgment, and using Rule FUNCTOR/ARITY

SIMILARITY LEFT in the 0-arity case as Axiom (13), since b ∼.7 a and .8 ∧ .7 = .7, we have

u3 = b, and the sequence becomes:

(

∅
∅

)

.7

⊢

(

b
a

)

b

(

∅
∅

)

.7

,

(

∅
∅

)

.7

⊢

(

Y
Z

)

↑.7

(

∅
∅

)

u4

(

σ′
1

σ′
2

)

α′

,

(

σ′
1

σ′
2

)

α′

⊢

(

f(Y, c)
g(c, d)

)

↑α′

(

σ′
1

σ′
2

)

u2

(

σ1

σ2

)

α

.

12 Since f and g have equal arities, we could also use Rule FUNCTOR/ARITY SIMILARITY

RIGHT. This would end in an equivalent final result, modulo functor similarities at the final

approximation degree. In the remainder of this example, we shall omit making this remark,

and choose the left rule over the right for equal-arity functors.

The validity of the first fuzzy judgment is thereby established. We proceed with the remaining

sequence of fuzzy judgments evaluating the fuzzy unapplication in the first of its judgments,

which sets α′ = .7:
(

∅
∅

)

.7

⊢

(

Y
Z

)

u4

(

σ′
1

σ′
2

)

.7

,

(

σ′
1

σ′
2

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑.7

(

σ′
1

σ′
2

)

u2

(

σ1

σ2

)

α

.

By Axiom FUZZY VARIABLE-TERM, we infer from this that u4 = X1, a new variable, and the

judgments become:
(

∅
∅

)

.7

⊢

(

Y
Z

)

X1

(

{ Y/X1 }
{ Z/X1 }

)

.7

,

(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

↑.7

(

{ Y/X1 }
{ Z/X1 }

)

u2

(

σ1

σ2

)

α

.

The validity of the first fuzzy judgment of the above sequence is thereby established. We proceed

with the remainder evaluating the fuzzy unapplication in the first of its judgments, which returns

the same pair of terms with the similarity degree kept at .7:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

f(Y, c)
g(c, d)

)

u2

(

σ1

σ2

)

α

.

and by Rule FUNCTOR/ARITY SIMILARITY LEFT with u2 = f(u5, u6), this becomes:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

↑.7

(

{ Y/X1 }
{ Z/X1 }

)

u5

(

θ1
θ2

)

β

,

(

θ1
θ2

)

β

⊢

(

c
d

)

↑β

(

θ1
θ2

)

u6

(

σ1

σ2

)

α

.

Evaluating the fuzzy unapplication gives β = .7:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

u5

(

θ1
θ2

)

.7

,

(

θ1
θ2

)

.7

⊢

(

c
d

)

↑.7

(

θ1
θ2

)

u6

(

σ1

σ2

)

α

.

and by Axiom FUZZY VARIABLE-TERM, we infer from this that u5 = X2, a new variable,

which yields:
(

{ Y/X1 }
{ Z/X1 }

)

.7

⊢

(

Y
c

)

X2

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

,

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.7

⊢

(

c
d

)

↑.7

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

u6

(

σ1

σ2

)

α

,

and establishes the penultimate judgment. The last remaining judgment, after evaluating its fuzzy

unapplication, since c ∼.6 d and .7 ∧ .6 = .6, is:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

u6

(

σ1

σ2

)

α

,

for which Axiom FUZZY VARIABLE-TERM allows us to infer that u6 = c and α = .6:
(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

⊢

(

c
d

)

c

(

{ Y/X1, Y/X2 }
{ Z/X1, c/X2 }

)

.6

.

This validates the last judgment and completes the fuzzy generalization whereby t = l(g(b,X1),
f(X2, c)) is the least fuzzy generalizer of t1 = h(g(b, Y), f(Y, c), V) and t2 = l(f(a, Z),
g(c, d)) at approximation degree .6, with:

– σ1 = { Y/X1, Y/X2 } so that tσ1 = l(g(b, Y), f(Y, c)) ∼.6 t1; and,
– σ2 = { Z/X1, c/X2 } so that tσ2 = l(g(b,Z), f(c, c)) ∼.6 t2.

3 Conclusion

We have summarized the principal results regarding the derivation of fuzzy lattice op-

erations for the data structure known as first-order term. This is achieved by means

of syntax-driven constraint normalization rules for both unification and generalization.

These operations are then extended to enable arbitrary mismatch between similar terms

whether functor-based, arity-based (number and order), or combinations. The resulting

lattice operations are in the same class of complexity as their crisp versions, of which

they are conservative extensions—namely that of Union/Find. All these details, along

with proofs and examples, are to be found in [3].

As for future work, there are several avenues to explore. The most immediate con-

cerns implementation of such operations in the form of public libraries to complement

extant tools for first-order terms and substitutions [12]. This is eased by the fact that the

fuzzy lattice operations do no require altering these conventional first-order structures.

There are several other disciplines where this technology has potential for fuzzifying

applications wherever FOTs are used for their lattice-theoretic properties such as lin-

guistics and learning. Finally, most promising is using this work’s approach to more

generic and more expressive knowledge structures for applications such as Fuzzy In-

formation Retrieval [6]. We are currently developing the same formal construction for

fuzzy lattice operations over order-sorted feature (OSF) graphs [4]. Encouraging initial

results are being reported in [2].

References

1. Aho, A., Hopcroft, J., Ullmann, J.: The Design and Analysis of Computer Algorithms.

Addison-Wesley, Reading, MA (1974)

2. Aı̈t-Kaci, H., Pasi, G.: Fuzzy lattice-theoretic operations over data and knowledge structures.

Technical Report (in preparation), HAK Language Technologies (2017), [online]

3. Aı̈t-Kaci, H., Pasi, G.: Fuzzy lattice operations on first-order terms over signatures with

similar constructors—a constraint-based approach. Journal Submission Preprint (submitted

in July 2017, revised in September 2108), [online]

4. Aı̈t-Kaci, H., Podelski, A., Goldstein, S.C.: Order-sorted feature theory unification. Journal

of Logic Programming 30(2), 99–124 (1997), [online]

5. Aı̈t-Kaci, H., Sasaki, Y.: An axiomatic approach to feature term generalization. In: de Raedt,

L., Flach, P. (eds.) Proceedings of the 12th European Conference on Machine Learning

(ECML’01). pp. 1–12. LNCS 2167, Springer-Verlag, Berlin Heidelberg (September 2001),

[online]

6. Baziz, M., Boughanem, M., Pasi, G., Prade, H.: A fuzzy set approach to concept-based infor-

mation retrieval. In: Montseny, E., Sobrevilla, P. (eds.) Proceedings of the Joint 4th Confer-

ence of the European Society for Fuzzy Logic and Technology and the 11èmes Rencontres

Francophones sur la Logique Floue et ses Applications, Barcelona (Spain). pp. 1287–1292.

EUSFLAT/LFA (September 7–9, 2005), [online]

7. Colmerauer, A.: Prolog and infinite trees. In: Clark, K.L., Åke Tärnlund, S. (eds.) Logic

Programming, pp. 231–251. Academic Press (1982)

8. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications, Mathematics in

Science and Engineering, Edited by William F. Ames, Georgia Institute of Technology, vol.

144. Academic Press (180), [online]

http://hassan-ait-kaci.net/pdf/fuzfotlat-preprint.pdf
https://www.researchgate.net/publication/221582279_A_Similarity-Based_WAM_for_BousiProlog
https://www.irit.fr/publis/ADRIA/BougPetal001a.pdf
http://www.hassan-ait-kaci.net/pdf/osf-theory-unification.pdf
http://hassan-ait-kaci.net/pdf/fuzlatopdks.pdf
http://hassan-ait-kaci.net/pdf/fuzfotlat-preprint.pdf
http://www.hassan-ait-kaci.net/pdf/osf-theory-unification.pdf
http://www.hassan-ait-kaci.net/pdf/ecml01.pdf
https://www.irit.fr/publis/ADRIA/BougPetal001a.pdf
ftp://ftp.micronet-rostov.ru/linux-support/books/computer%20science/Fuzzy%20systems/Fuzzy%20Sets%20And%20Systems%20Theory%20And%20Applications%20-%20Didier%20Dubois%20,%20Henri%20Prade.pdf

9. van Emden, M.H., Lloyd, J.W.: A logical reconstruction of Prolog II. Journal of Logic Pro-

gramming 2, 143–149 (1984), [online]

10. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Faculté des sci-

ences de l’université de Paris, Paris (France) (1930), [online]; English translation in [11]

11. Herbrand, J.: Logical Writings. Harvard University Press, Cambridge, MA (1971), edited by

Warren D. Goldfarb

12. Iranzo, P.J., Manzano, C.R.: A similarity-based WAM for Bousi∼Prolog. In: Proceedings of

the 10th International Work-Conference on Artificial Neural Networks (IWANN ’09)—Part

I: Bio-Inspired Systems: Computational and Ambient Intelligence. pp. 245–252. Springer,

Salamanca, Spain (June 10–12, 2009), [online]

13. Jaffar, J.: Efficient unification over infinite terms. New Generation Computing 2(3), 207 –

219 (September 1984), [online]

14. Knight, K.: Unification: a multidisciplinary survey. ACM Computing Surveys 21(1), 93–124

(March 1989), [online]

15. Lacoste-Julien, S., Palla, K., Davies, A., Kasneci, G., Graepel, T., Ghahramani, Z.: SiGMa:

Simple greedy matching for aligning large knowledge bases. In: Dhillon, I.S., Koren, Y.,

Ghani, R., Senator, T.E., Bradley, P., Parekh, R., He, J., Grossman, R.L., Uthurusamy, R.

(eds.) Proceedings of the 19th ACM International Conference on Knowledge Discovery and

Data Mining (SIGKDD 2013—Chicago, IL, USA). pp. 572–580. Association for Computing

Machinery, ACM, New York, NY (USA) (August 11–14, 2013), [online]; see also [online]

16. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Transactions on Pro-

gramming Languages and Systems 4(2), 258–282 (April 1982), [online]

17. Plotkin, G.D.: Lattice theoretic properties of subsumption. Technical Memo MIP-R-77, De-

partment of Machine Intelligence and Perception, University of Edinburgh, Edinburgh, Scot-

land (UK) (June 1970)

18. Plotkin, G.D.: A note on inductive generalization. In: Metzer, B., Michie, D. (eds.) Machine

Intelligence 5, chap. 8, pp. 154–163. Edinburgh University Press, Edinburgh, Scotland (UK)

(1970), [online]

19. Reynolds, J.C.: Transformational systems and the algebraic nature of atomic formulas. In:

Metzer, B., Michie, D. (eds.) Machine Intelligence 5, chap. 7, pp. 135–151. Edinburgh Uni-

versity Press, Edinburgh, Scotland (UK) (1970), [online]

20. Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoretical Com-

puter Science 275, 389–426 (2002), [online]

21. Wayne, K.: Union-find. Tutorial lecture slides based on book “Algorithm Design” by Jon

Kleinberg and Éva Tardos (Addison-Wesley, 2015), [online]

https://www.sciencedirect.com/science/article/pii/0743106684900013
http://archive.numdam.org/article/THESE_1930__110__1_0.pdf
https://www.researchgate.net/publication/221582279_A_Similarity-Based_WAM_for_BousiProlog
https://link.springer.com/article/10.1007/BF03037057
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=92AF7CA745E2C0B8EB619F09FFB5D3CA?doi=10.1.1.64.8967&rep=rep1&type=pdf
http://snap.stanford.edu/social2012/papers/lacostejulien-palla-etal.pdf
https://arxiv.org/pdf/1207.4525.pdf
http://moscova.inria.fr/~levy/courses/X/IF/03/pi/levy2/martelli-montanari.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/MI5_note_ind_gen.pdf
http://www.cs.cmu.edu/afs/cs/user/jcr/ftp/transysalg.pdf
http://www.sciencedirect.com/science/article/pii/S0304397501001888
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/UnionFind.pdf

	Fuzzy Unification and Generalization of First-Order Terms over Similar Signatures

