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Abstract

This formalizes a “best-so-far next” strategy for fuzzy Logic Programming (FLP) that gen-

eralizes the default Left-Right/Depth-First strategy of Standard Prolog. Fuzzification is intro-

duced through unification operations on standard First-Order Term (FOTs) modulo a similar-

ity (i.e., a fuzzy equivalence relation) on the signature of functors that occur in these FOTs.

The criterion for what “always best” means in this setting is to garantee the highest confidence

level for any possible query answer. This confidence level is identified to the maximal fuzzy

degree over all computable answers. However the number of the latter being unbounded in the

general case, this is not achievable. We propose to use instead a “best-so-far” strategy defined

as the highest confidence level over all the possible fuzzy unifications modulo a functor simi-

larity on the signature between a goal to prove and the clause heads of a fuzzy Prolog program

consisting of an ordered sequence of Horn clauses. Since garanteeing always finding first the

highest possible approximate answer to a query is not possible, this compromise still provides

the best answer it knows about taking into account the available information accumulated at

this point.

Keywords: Prolog; First-Order Term; Functor-Signature Similarity; Unification with Sim-

ilar Functors; Fuzzy Logic Programming; Fuzzy Pattern-directed Reasoning; Approximate

Information Processing.

1 Introduction

1.1 Motivational example

Let us consider the Prolog program’s rule base:

happiness :- freedom, nice weather.

nice weather :- sunny.

nice weather :- partly cloudy, breezy.

freedom :- being on holiday.

together with the fact base:

partly cloudy.

windy.

staying at home.
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and the query:

?- happiness.

The transformation of this query by Prolog’s default search strategy is:

?- happiness.

?- freedom, nice weather.

?- being on holiday, nice weather.

and since no fact in the fact base unifies with being on holiday, this can proceed no further;

so Prolog answers:

No

Since it relies on a strict true/false binary logic, this negative answer, as well as any other

positive answer given by Prolog, is always given with a 100% confidence level.

Let us now consider the same Prolog program where terms are built with the same functor

symbols, this time subject to the similarity closure of the following fuzzy pairs of functors (see [5]

for details on how to compute such a similarity closure):

staying at home ∼0.8 being on holiday

sunny ∼0.7 partly cloudy

windy ∼0.9 breezy

Now, the transformation of the same query ‘?- happiness.’ in the context of the same

Prolog program by a fuzzy Prolog using the fuzzy unification defined in [5] (see Appendix Sec-

tion A.2) with Prolog’s default Left-Right/Depth-First (LR/DF) search strategy is:1

[1.0] ?- happiness.

[1.0] ?- freedom, nice weather.

[1.0] ?- being on holiday, nice weather.

but now our functor similarity says staying at home∼0.8 being on holiday, so the query

becomes fuzzy:

[0.8] ?- nice weather.

[0.8] ?- sunny.

and so, using the first unifiable clause for nice weather, since sunny∼0.7 partly cloudy,

this fuzzy Prolog will answer:

[0.7] Possibly

to the query happinesswith a confidence level of 0.7.

This answer is less categorical than the one given by Prolog to the crisp interpretation of the

same query for the same program. Howewer, this answer is not one that can be obtained with

1We extend our trace of this fuzzy Prolog’s current query transformation at each resolution step with its possibility

level: “[α]? query.” (where 0 < α < 1), and its final answer as one of:

• Yes — for crisp true;

• [α] Possibly — for a fuzzy possibility with confidence level α (where 0 < α < 1);

• No — for crisp false.

The non-negative answers (Yes and Possibly) may be accompanied with a query-variable substitution if any.

Copyright c© 2019 by the Authors All Rights Reserved
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highest confidence. Indeed, if we proceed with a different strategy consisting, not of selecting

(1) the leftmost goal in the query and (2) and earliest fact or rule head in the program that are

fuzzy-unifiable whatever the confidence level may be, but instead (1) the leftmost goal in the query

and (2) earliest fact or rule head in the program that are fuzzy-unifiable with highest confidence, a

smarter fuzzy Prolog will have selected not the first but the second rule defining nice weather,

since the confidence level is 1.0 (because partly cloudy unifies with itself), yielding the new

fuzzy query:

[0.8] ?- breezy.

and, since windy∼0.9 breezy and windy is a fact, this smarter fuzzy Prolog will answer:

[0.8] Possibly

which is a more confident first answer than the one obtained by a fuzzy Prolog using LR/DF search.

One may then wonder how to set up control so that the [0.8]-confidence answer be given

in priority over the [0.7]-confidence answer. In this case, it would suffice to select the clause

whose head literal fuzzy-unifies with the current goal with highest-confidence level. However,

in general this is not sufficient since even if clause-selection is done in this manner, this cannot

guarantee that the confidence level will not decrease further down this proof branch to a value that

will be strictly less than a previous (necessarily non-failing) node of the and/or proof-tree (and in

particular any previously visited successful leaf nodes).

In fact, since Horn-clause resolution is undecidable, this too is obviously undecidable — even

when using breadth-first despite its generally higher book-keeping cost rather than simple depth-

first since it is the only search strategy garanteed to be complete.2 Still, since this is also obviously

a better choice than the one at hand, we can keep going down this proof branch as long as it has

not reached a proof-tree node whose confidence level is actually less than or equal to the latest

proof-tree node with higher confidence level that was previously visited but not fully resolved. If

this happens (i.e., the current node’s confidence level falls too low), the current proof-tree state is

saved for a possible later resumption and control reinstates the previously frozen state and resumes

the proof from there.

This is what the control strategy we formalize in this document does.

1.2 Relation to other work

There have been other fuzzifications of Logic Programming. For the reader curious to situate this

paper in the general existing research context, we next brush a quick relation to other work before

we develop our specific perspective. It is beyond this paper’s scope to be exhaustive. We simply

list those works that we found to be the most closely related to ours in chronological order of

publication.3 For a thorough discussion and other systems, the reader is referred to [5] and [4].

• 1995 — Fuzzy extension of Datalog [1];4;

2Completeness of a proof strategy means that it is garanteed to enumerate all existing finitely derivable solutions.

For example, replacing the freedom clause in the above program with:

freedom :- staying at home, being on holiday.

will make our query have an infinite proof tree.
3Ironically, “most closely related” being a fuzzy property, this constitutes an interesting meta-example of fuzzy

Prolog approximate query seeking a maximal confidence level where the similarity level of two specific approaches to

fuzzy Logic Programming is left to one’s appreciation.
4
http://people.inf.elte.hu/kiss/14abea/Achs 1995 ActaCybernetica.pdf
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• 1997 — Likelog (another fuzzy datalog) [8];5

• 2002 — LP with context-dependent fuzzy unification [6];6

• 2002 — Fuzzy Prolog using CLP(R); not a fuzzy CLP(R) programming language, but

using CLP(R) to implement fuzzy operations on union of intervals of real numbers [25];7

• 2010 — Bousi∼Prolog a fuzzy Prolog using a weak version of fuzzy unification [15];8

• 2015 — FASILL a fuzzy logic programming language with implicit/explicit truth de-

gree annotations, extending Bousi∼Prolog by concurrently allowing many different user-

definable fuzzy connectives in a same application and thus several user-definable interpre-

tations of fuzzy unification by similarity; [17];9

• 2018 — Bousi∼Prolog using Aı̈t-Kaci/Pasi unification [10].10

Whereas this previous work specified several possibilities for dealing with approximate rea-

soning by fuzziness in Logic Programming, we did not find any formally addressing the specific

issue of confidence-driven control and its implication on implementation. What we propose is a

formal specification of a generic control protocol seeking to maximize the confidence level of a

query’s answer provided while extending Prolog’s standard left-right/depth-first search strategy.

The latter is obtained as the special case corresponding to when functor similarity is restricted to

symbol identity only. Our proposed generic best-first search is guided by a heuristic valuation of

confidence level determined by the accumulated approximation degree of the all the partial and

definitive proofs carried out so far at any point of computation. The challenge is then that the

stack-oriented architecture of standard Prolog is no longer viable. Partial states of computation

must be kept sorted in order of fuzzy approximation degrees, each state being saved with all the

information needed to resume from (such as partial solutions as variable substitutions possibly

conflicting with those in later distinct but more complete proof branches).

1.3 Organization of this document

The rest of this document formalizes and operationalizes a “best-so-far” strategy for Fuzzy Logic

Programming (FLP) that generalizes the default LR/DF strategy of Standard Prolog. Section 2

presents a formal operational semantics of Fuzzy Prolog extending the standard resolution seman-

tics of Prolog (recalled in Appendix Section A.1). This uses the fuzzy First-Order Term (FOT )

unification operations modulo a similarity (i.e., a fuzzy equivalence relation) on the signature of

functors used by the FOTs developed in [5] and recalled in Appendix Section A.2.

2 Fuzzy Prolog Resolution

The criterion for what “best so far” means in this setting is the highest confidence level given at

any point by the maximal fuzzy degree over all the possible fuzzy unifications between a goal to

prove and all the clause heads of a program consisting of an ordered sequence of Horn clauses.

When such a maximal degree corresponds to several possible Horn clauses, their order as specified

5
http://www.programmazionelogica.it/[...]/uploads/1997/06/319 Fontana1.pdf

6
http://repositori.udl.cat/bitstream/handle/10459.1/57984/001858.pdf

7
https://cliplab.org/papers/fuzzy-lpar02 bitmap.pdf

8
http://www.sciencedirect.com/science/article/pii/S1571066109002874

9
https://arxiv.org/pdf/1501.02034.pdf

10
https://[...]Towards a Full Fuzzy Unification in the Bousi Prolog system
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in the program prevails. Thus, in the crisp case (i.e., the identity: the empty functor similarity),

this strategy coincides with the default (LR/DF) search of Standard Prolog.

Following Standard Prolog’s formal computational semantics briefly recalled in Appendix

Section A.1, we shall now use the same notation to specify the way our fuzzification of Prolog

proceeds by always choosing the goal/program-head resolving-pair that is fuzzy-unifiable with

the highest confidence level at any point of computation. If there exist several goal/program-head

resolving-pairs with an equal confidence level, computation follows Standard Prolog’s LR/DF or-

der. If there exists none (there is no pair of goal/head that fuzzy-unifies with a positive confidence

level), computation proceeds by backtracking to the latest choice-point of highest confidence level.

If there is no saved backtrack point, computation terminates with a “No” answer.

DEFINITION 1 A fuzzy Prolog query qα is a finite ordered sequence of goals calibrated by a

confidence level 0 < α ≤ 1:

[α] ?- g1, . . . , gn. (1)

with n ≥ 0, and each goal gi is a FOT , for 1 ≥ n.

As in the body of a Standard Prolog query, the comma character ’,’ in a fuzzy query denotes

logical conjunction. Yet, this is now fuzzy conjunction as this will participate in the fuzzy query

resolution transformation rule according to its confidence level.

Given a Prolog program c1. . . . cm., fuzzy Prolog transforms a fuzzy query:

[α] ?- g1, . . . , gn.

into the new fuzzy query:

[γ] ?- g1σ
⋆, . . . , gi⋆−1σ

⋆, body(c′j⋆)σ
⋆, gi⋆+1σ

⋆, . . . , gnσ
⋆.

where γ
def
= α ∧ β⋆ and i⋆ ∈ {1, . . . , n} and j⋆ ∈ {1, . . . ,m} are the least indices, and σ⋆ the

most general substitution such that:

β⋆ def
=

∨

1 ≤ i ≤ n

1 ≤ j ≤ m

{β | ∃σ s.t. giσ ∼β head(c′j)σ } (2)

and where 〈i⋆, j⋆, σ⋆〉 is a triple consisting of the smallest goal index i⋆, the smallest program

index j⋆, and most general substitution σ⋆, such that gi⋆σ
⋆ ∼β⋆ head(c′j⋆)σ

⋆ for the value of β⋆

given by Equation (2).

If no such indices i⋆, j⋆ and substitution σ⋆ exist such that γ > 0.0, fuzzy Prolog transforms

the query into the failing query false, and answers “No.”

If γ > 0.0 but body(c′j⋆) = true, the new fuzzy query is:

[γ] ?- g1σ
⋆, . . . , gi⋆−1σ

⋆, gi⋆+1σ
⋆, . . . , gnσ

⋆.

i.e., it erases the goal previously at index i⋆ in the query. If γ > 0.0 but the new query is empty

(i.e., true), fuzzy Prolog, answers “Yes” if γ = 1.0 or “[γ] Possibly” if γ < 1.0, and in either

case a query-variable substitution, if any, is printed along the answer.

The formal properties that must hold for such a desired fuzzy Prolog are the following.

Copyright c© 2019 by the Authors All Rights Reserved
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PROPERTY 1 (MONOTONICALLY DECREASING CONFIDENCE LEVEL) Fuzzy Prolog’s search

must provide alternative fuzzy answers to a query according to an order of monotonically

decreasing confidence level.

This makes natural sense as one would prefer answers of higher confidence level first.

PROPERTY 2 (PROLOG SEARCH AS A SPECIAL CASE) Fuzzy Prolog’s search must become

Prolog’s backtracking search for the identity similarity.

This is intuitively reassuring since it is the default case.

LEMMA 1 (PROLOG SEARCH AS A SPECIAL CASE) Fuzzy Prolog’s search preferring first

highest confidence levels, and LR/DF if there are several, corresponds to Prolog’s backtracking

search for the identity similarity.

However, while Property 2 holds in our fuzzy Prolog, Property 1 does not hold due to undecid-

ability of our fuzzy Prolog, which is a corollary of Prolog’s since it is a special case of our fuzzy

Prolog.

COROLLARY 1 (UNDECIDABLE MONOTONICALLY DECREASING CONFIDENCE LEVEL) It is

undecidable for Fuzzy Resolution to be complete following a search choosing in priority the

earliest alternative of highest confidence level to enumerate alternative fuzzy answers to a

query according to an order of monotonically decreasing confidence level.

The fuzzy resolution strategy we presented above regarding the order in which alternative

answers are to be collected by fuzzy Prolog may be formally satisfying. However, many a reader

must have wondered its utility taking into account the high number of fuzzy unifications that must

be computed in order to keep the fuzzy query organized so as to provide answers in decreasing

confidence levels. This is a problem, indeed. Be that as it may, we next show how this can be

minimized, and even tolerated given the reasoning flexibility provided by fuzzy Prolog, with little

change. We keep Prolog’s data structures as they are and only slightly modify its management

of control (since this is all that is needed) using static information. This can drastically limit the

needed pairs of goal/program-head indices that should be tested in the dynamic search for the next

fuzzy resolution given a statically defined functor similarity. We explain this in the next section.

3 Fuzzy Prolog’s Control Management

In addition to having to manage multiple criss-cross fuzzy unifications, a more confident fuzzy

Prolog’s backtracking must return to pursuing the incomplete proof of highest confidence level

Copyright c© 2019 by the Authors All Rights Reserved
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not only upon failing at the end of the current search branch but as soon as it reaches a confidence

level that is strictly less than that the maximal level recorded earlier.11 In other words a proof

branch with a non-zero confidence level is not to be discarded when its confidence level reaches

a lower level than a previous incomplete proof branch. This is because it is still live and can

be revived should its confidence level ever prevails again. Because of this, control should not

discard such an incomplete branch, it should only suspend it; i.e., save it in a state to resume from

where control had suspended it.12 Indeed, it is possible for control to resume transforming this

incomplete fuzzy query at this yet-unfinished computation point as soon as its confidence level

becomes higher than or equal to the current one being proven. Note that the condition is ≥ to

maintain preference for LR/DF order upon equal confidence levels. It makes then sense always

to keep choice-points sorted by highest confidence level first. This entails saving and restoring

partial computations depending on the highest prevailing confidence level, with equal confidence-

level choices being ordered chronologically as in Standard Prolog. In addition, choice-points must

be kept live as long as they lead to resumable computation. This complicates the pure stack-based

architecture used for Standard Prolog.

However, there are also many observations that could, and should, be made in favor of this

operational semantics of fuzzy Prolog to be worthy of pursuit, especially taking into account the

interpretation expressive flexibility fuzzy Prolog provides over strict Prolog. Here are the most

notable we propose to use to some advantage:

• a fuzzy Prolog using the foregoing control strategy does not fuzzify programs (i.e., rules and

facts); rather, it only fuzzifies unification by tolerating that some functors in the signature

be similar, and in this way it can always quantify a visited node in the proof tree with a

confidence level (and therefore its answers, since they are as proof-tree leaf nodes);

• the similarity over all the known functors is static;

• our fuzzy Prolog is an extension of “pure” Prolog — the rules and facts are static;

• therefore, static partial cross-unification of query goals and program head terms can be

computed to avoid being done over and over at runtime;

• in addition, the number of such fuzzy-unifiable goal/head pairs is likely to be very small;

• even though the stack-architecture advantage offered by LR/DF is compromised (since back-

tracking from an unfinished branch is not definitive), our fuzzy Prolog control still has a

flavor of always “trying the next available option” — only now it needs to keep state stacks

somehow organized according to confidence and keep track of where each next highest-

confidence level query needs to resume from, since it may be to one suspended much ear-

lier than the one that would be on top of a standard depth-first stack of disjunctive proof

branches. And when going back to such an earlier greater-confidence level, control-switch

cannot just discard all its work since the last choice point unless it reached a definitive failure

point (standard backtracking).

11Why not just the latest or earliest recorded incomplete branch? Because we should give preference to the highest

confidence level among the earliest potential standard Prolog proof.
12Purists might call this a fuzzy-proof continuation in the manner of continuation-passing style proofs [12].

Copyright c© 2019 by the Authors All Rights Reserved
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A Appendix

A.1 Prolog resolution

In this section we recall very briefly some well-known characteristics of Prolog along with notation con-

ventions we follow in the rest of this paper.

DEFINITION 2 A Prolog program is a finite ordered sequence of Horn clauses of the form:

c1.
...

cm.

(3)

where m ≥ 0.

As a logical reading, a Prolog program denotes the ordered disjunction of its clauses (the order being

that in which they appear in the program).

DEFINITION 3 A Horn clause c is of the form:

h :- b1, . . . , bk. (4)

where head(c)
def
= h is a FOT and body(c)

def
= b1, . . . , bk, k ≥ 0, is a possibly empty finite ordered

sequence of FOT s.

In a Horn clause, the symbol ‘:-’ stands for ‘←’ (backward implication) and denotes logical “if,” while

the comma character ‘,’ denotes logical “and” (conjunction). A Horn clause with an empty body stands

for the form “h :- true.” and is written simply “h.” and is called a fact; a Horn clause with a non-empty

body is called a rule.

DEFINITION 4 A Prolog query q is a finite ordered sequence of goals of the form:

?- g1, . . . , gn. (5)

where n ≥ 0, and each goal gi is a FOT , for 1 ≥ n.

As in the body of a clause, the comma character ’,’ in a query denote logical conjunction. A query may

be seen as the body of a headless Horn clause (i.e., a Horn clause whose head is true).

Standard Prolog’s operational semantics consists in establishing the proof of a query given a Prolog

program using Robinson’s resolution [23]. It is a query transformation process that is considered successful

if it terminates with the empty query (written true, the idempotent—or identity—element for conjunc-

tion). It is considered unsuccessful if it terminates with the failing query (written false, the absorptive—or

zero—element for conjunction). Determining whether this process terminates for any query and program is

undecidable since one can easily encode a Turing Machine in Prolog.13,14

13https://www.metalevel.at/prolog/showcases/turing.pl
14Or see a simpler one on https://en.wikipedia.org/wiki/Prolog.

Copyright c© 2019 by the Authors All Rights Reserved
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Prolog uses a search strategy we shall call LR/DF, which stands for “left-right/depth-first.” It is “left-

right” because it establishes query goals in the order they are written.15 It is “depth-first” because it will

select first the earliest Horn clause of a program having a head that unifies with the goal being proven. This

is made operational using backtracking control (which is conveniently implementable with an architecture

of stacks). This is expressed formally using the above terminology and notation as follows.

Given a program c1. . . . cm., Prolog transforms a query ?- g1, . . . , gn. into the new query:

?- body(c′j)σ, g2σ, . . . , gnσ.

where 1 ≤ j ≤ m and j is the least index such that there exists a substitution σ with g1σ = head(c′j)σ
where c′j is a consistent variable-renaming copy of cj .

If no such index j and substitution σ exist, Prolog transforms the query into the failing query false, and

answers “No.”

If body(c′j) = true, the new query is ?- g2σ, . . . , gnσ.
If the new query is empty (i.e., true), Prolog prints the resulting query-variable substitution if any and

answers “Yes.”

This works for Prolog, defining its LR/DF strategy.

In the next section, we consider a fuzzy Prolog whose syntax of FOTs, rules, and facts are identical

to Prolog’s, but where the interpretation is resolution giving preference to a “best-first” choice of resolving

pairs rather than a LR/DF. Such a fuzzy Prolog interprets Standard Prolog programs (i.e., Horn clauses over

FOTs). It also transforms Prolog queries, only this time it does so with a fuzzy confidence level computed

using fuzzy unification of FOT over functor symbols that may be related with a fuzzy equivalence relation

as formally defined in [5].

A.2 Fuzzy FOT unification

This summarizes the fuzzy FOT unification operation setting presented in [3] and formally justified in

detail in [5].

Sessa’s weak unification A fuzzy unification operation onFOTs, dubbed “weak unification,” was pro-

posed by Maria Sessa in [24] which consists in normalizing fuzzy equations between conventional FOTs

modulo a similarity relation ∼ over functor symbols [11]. This similarity relation is then homomorphically

extended to one over all FOT s. Following Maria Sessa’s formal setting [24], we assume given such a

similarity relation between functors of equal arity (i.e., which admit the same number of arguments). Upon

this basis, this similarity can be extended homomorphically from functors to FOT s as follows. Let ∼ be a

similarity on functors of equal arity in a signature Σ.

DEFINITION 5 (SESSA’S FOT SIMILARITY) The fuzzy relation ∼T on TΣ,V is defined inductively as

follows:

1. ∀X ∈ V , X ∼T
1 X ;

2. ∀X ∈ V , ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X ;

3. if f ∈ Σn and g ∈ Σn with f ∼α g, and if si ∈ T and ti ∈ T are such that si ∼T
αi

ti for

i = 1, . . . , n, then:

f(s1, . . . , sn) ∼
T
α∧

∧
n

i=1
αi

g(t1, . . . , tn). (6)

THEOREM 1 (FOT SIMILARITY [24]) The relation ∼T defined by Definition 5 is a similarity relation on

the set of FOTs TΣ,V .

Since from the above definition of similarity ∼T extends homomorphically a similarity ∼ on the func-

tors to all FOTs in T , we shall also assimilate ∼T to ∼. This allows to define formally fuzzy subsumption

amongFOTs as the fuzzy relation� on T that can be verified to be a preorder (modulo variable renaming)

as a corollary of Theorem 1.

15Assuming of course that the writing direction goes from left to right, as in English.
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DEFINITION 6 (FUZZY FOT SUBSUMPTION) For all terms t1 ∈ T and t2 ∈ T , t1 is said to be sub-

sumed by t2 for some α in [0, 1] (and this is written t1 �α t2) if and only if there exists a substitution

σ ∈ SUBST
T

such that t1 ∼α t2σ.

Note that, for the identity similarity on the signature and α = 1, this reduces to the classical definition of

term subsumption, as expected.

In Definition 6, the more specific term t1 is then called a fuzzy instance of term t2 realized with subsi-

titution σ at approximation degree α. It comes also that the “more general” relation on FOT substitutions

extends to a “fuzzy more general” fuzzy relation on substitutions, which can also readily be verified to be

a fuzzy preorder on SUBST
T

as a corollary of Theorem 1. It is formally equivalent to the relation defined

in [24].16

DEFINITION 7 (FUZZY “MORE GENERAL” ORDERING ON FOT SUBSTITUTIONS) If σ1 and σ2 are

two substitutions in SUBST
T

and α in [0, 1], we say that σ1 is less general than σ2 at approximation degree

α (and this is written σ1 �α σ2), if and only if for any term t ∈ T , it is true that tσ1 �α tσ2 as terms.

Also as expected, note that for the identity similarity on the signature and α = 1, this reduces to the classical

“more general than” ordering on substitutions.

The following fuzzy relation defined on SUBST
T

can also be verified to be a similarity as a corollary

of Theorem 1.17

DEFINITION 8 (FOT SUBSTITUTION SIMILARITY) Given an approximation degreeα in [0, 1], two sub-

stitutions σ and θ in SUBST
T

are said to be α-similar (written σ ∼α θ) iff tσ ∼α tθ for all FOT t in T .

Therefore, referring to Definition 6 of fuzzy FOT subsumption, it comes as a fact that:

LEMMA 2 For any two substitutions σ and θ in SUBST
T

and approximation degree α in [0, 1], σ �α θ iff

σ ∼α θδ for some substitution δ.

The following two facts regarding the fuzzy term subsumption relation on terms and the fuzzy “more

general” relation on substitutions will be useful later in a proof arguments.

LEMMA 3 For any two approximation degrees α and β in [0, 1], for any terms t1, t2, and t3 in T , if

t1 �α t2 and t2 �β t3, then t1 �α∧β t3.

COROLLARY 2 For any two approximation degrees α and β in [0, 1], for any substitutions σ1, σ2, and σ3

in SUBST
T

, if σ1 �α σ2 and σ2 �β σ3, then σ1 �α∧β σ3.

Using the definition of similarity between terms in T extending one on functors of equal arity, Sessa

proposes to extend the FOT unification problem to the following fuzzy unification problem: given two

FOTs t1 and t2 in T , find the most general substitution σ ∈ SUBST
T

and maximum approximation degree

α in [0, 1] such that t1σ ∼α t2σ.

In Figure 1, we provide a set of declarative rewrite rules for fuzzy unfication equivalent to Sessa’s

case-based “weak unification algorithm” [24]. To simplify the presentation of these rules while remaining

faithful to Sessa’s weak unification algorithm, it is assumed for now that functor symbols f/m and g/n
of different arities m 6= n are never similar. This follows Sessa’s assumption for weak unification, which

fails on term structures of different arities. (See Case (2) of the weak unification algorithm given in [24],

Page 413.) Later, we will relax this and allow functors of different arities to be similar.

The rules of Figure 1 transform Eα, a finite conjunctive set E of equations amongFOTs along with an

associated approximation degree α in [0, 1], into E′
α′ , another set of equations E′ at approximation degree

α′ in [0, α]. Given to solve a fuzzy unification equation s
.
= t between two FOTs s and t, we start by

forming the set { s
.
= t }1 (i.e., a singleton equation set at approximation degree 1), then transform it using

any applicable rules in Figure 1 until either the approximation degree of the transformed set of equations is

0 (in which case there is no solution to the original equation, not even a fuzzy one), or the final resulting set

16Op. cit., Page 410, Definition 6.2
17A equivalent definition is given in [16].
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WEAK TERM DECOMPOSITION

[f ∼β g; n ≥ 0]

(E ∪ { f(s1, . . . , sn)
.
= g(t1, . . . , tn) })α

(E ∪ { s1
.
= t1, . . . , sn

.
= tn })α∧β

VARIABLE ERASURE

(E ∪ {X
.
= X })α

Eα

VARIABLE ELIMINATION

[X 6∈ var(t); X occurs in E]

(E ∪ {X
.
= t })α

(E[t/X ] ∪ {X
.
= t })α

EQUATION ORIENTATION

[t 6∈ V ]

(E ∪ { t
.
= X })α

(E ∪ {X
.
= t })α

Figure 1: Normalization rules corresponding to Maria Sessa’s “weak unification”

Eα is a solution at approximation degreeα in the form of a variable substitution σ
def
= { t/X | X

.
= t ∈ E }

such that sσ ∼α tσ.

In [24],18 a transformation rule of a set of equation at approximation degree is considered to be correct

when all the solutions of the posterior set are also solutions of the anterior set but with a possibly lesser

similarity degree, which is also our Definition 10.19

Generic fuzzy FOT unification From our perspective, a fuzzy unification operation ought to be able

to fuzzify full FOT unification: whether (1) functor symbol mistmatch, and/or (2) arity mismatch, and/or

(3) in which order subterms correspond. Sessa’s fuzzification of unification as weak unification misses on

the last two items. This is unfortunate as this can turn out to be quite useful. In real life, there is indeed no

such garantee that argument positions of different functors match similar information in data and knowledge

bases, hence the need for alignment [18].

Still, Sessa’s approach has several qualities:

• It is simple — specified as a straightforward extension of crisp unification: only one rule (Rule

“FUZZY TERM DECOMPOSITION”) may alter the fuzziness of an equation set by tolerating similar

functors.

• It is conservative — neither FOTs nor FOT substitutions per se need be fuzzified; so conventional

crisp representations and operations can be used; if restricted to only 0 or 1 similarity degrees, it is

equivalent to crisp FOT unification.

We now give an extension of Sessa’s weak unification which can tolerate such similarity among functors

of different arities. We are given a similarity relation ≈ : Σ × Σ → [0, 1] on a ranked signature Σ
def
=

⊎

n≥0 Σn. Unlike M. Sessa’s equal-arity condition, we now allow similar symbols with distinct arities, or

equal arities but different argument orders.

We formalize this by requiring that the fuzzy equivalence relation ≈ on Σ be such that:

18Op. cit., Page 410.
19Note that in [24], no explicit proof for of formal correctness of “weak unification algorithm” is given: it is just men-

tioned that “it can be proven following the same line of the proof” for crisp unification in classible Logic Programming

in [7].
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• for each pair of functors 〈f, g〉 ∈ Σm × Σn where 0 ≤ m ≤ n and f ≈ g, and any approximation

degree α, there exists a one-to-one (i.e., injective) mapping µα
fg : { 1, . . . ,m } → { 1, . . . , n } asso-

ciating each of the m argument positions of f with a unique position among the n arguments of g,

which we shall express as f ≈µα

fg g;

• argument-position alignment mappings between similar functors must be consistent at any approxi-

mation level; namely, they must verify the following four conditions:

– approximation consistency: for any functors f ∈ Σ and g ∈ Σ, and any approximation degrees

α ∈ [0, 1] and β ∈ [0, 1] :

α ≤ β =⇒ µα
fg ⊆ µβ

fg (as sets of pairs); (7)

– reflexive consistency: for any functor f/n and any degree α ∈ [0, 1]:

µα
ff = 11{1,...,n}; (8)

– symmetric consistency: for any two equal-arity functors f/n and g/n and any degree α ∈
[0, 1]:

µα
fg ◦ µα

gf = 11{1,...,n}; (9)

– transitive consistency: for any three functors f/m, g/n, h/ℓ s.t. 0 ≤ m ≤ n ≤ ℓ and any

degree α ∈ [0, 1]:

µα
fh = µα

gh ◦ µ
α
fg. (10)

Note that Condition (10) applies when 0 ≤ m ≤ n ≤ ℓ; so the one-to-one argument-position mappings

always go from a smaller set to a larger set. There is no loss of generality with this assumption as this will

be taken into account in the definition of non-aligned FOT similarity,20 and in the normalization rules.21

This amounts to systematically taking a FOT with functor of least arity as similarity class representative.

Finally, note also that such a class representative is not unique because for similar functors of equal arity,

it can be either terms due to Condition (9). Indeed, then the set of positions are equal and there are two

injections from this set to itself in each direction which are mutually inverse bijections; i.e., inverse permu-

tations in the order of arguments realigning one’s with the other’s in either direction. The similarity degrees

in both directions are always equal due to symmetry of similarity.

Fuzzy unification with similar functors and arity mismatch

As in the case of similarity restricted to functors of equal arities only, the similarity with argument position

alignment mapping on functors can be extended homomorphically to a similarity on FOTs. Let ≈ be a

similarity on functors of any arity in a signature Σ. To lighten notation, rather than writing systematically

f ≈µfg g for two functors f and g such that arity(f) ≤ arity(g), we shall sometimes simply write f ≈p
α g,

with p standing for the injective argument realignment mapping µfg.

DEFINITION 9 The fuzzy relation ≈T on TΣ,V is defined inductively as:

1. ∀X ∈ V , X ≈T
1 X ;

2. ∀X ∈ V , ∀ t ∈ T such that X 6= t, X ∼T
0 t and t ∼T

0 X ;

3. if s = f(s1, . . . , sm) and t = g(t1, . . . , tn) with n < m, then s ≈T t = t ≈T s;

4. if f ∈ Σm and g ∈ Σn with m ≤ n and f ≈p
α g, and if si ∈ T , i = 1, . . . ,m, and tj ∈ T ,

j = 1, . . . , n, are such that si ≈T
αi

tp(i) for all i ∈ { 1, . . . ,m }, then:

f(s1, . . . , sm) ≈T
α∧

∧
m

i=1
αi

g(t1, . . . , tn). (11)

20Cf., Definition 9 below.
21Cf., Figure 2 below, Rule FUZZY EQUATION ORIENTATION.
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THEOREM 2 (NON-ALIGNED FOT SIMILARITY [5]) The fuzzy relation ≈T on the set T of FOTs

specified in Definition 9 is a similarity.

Since we have just formally defined a new notion of similarity ≈T on T extending Sessa’s similarity

∼T to non-aligned functors, all the properties we covered for ∼T carry over to corresponding extensions

for terms with non-aligned functors. Namely, Definitions 6–8 and Lemmas 2–3, as well as Corollary 2,

where the term similarity ∼T is replaced with any similarity on T such as ≈T (or ∼∼∼T that we shall define

later and prove also to be a similarity on T extending ≈T ). Indeed, it is easy to see that all these notions

are valid algebraically when parameterized with any relation on FOT proven to be a similarity on T .

Weak unification with fuzzy functor/arity mismatch

Starting with the Herbrand-Martelli-Montanari set of unification rules ([13] and [20]),22 fuzziness is intro-

duced in Sessa’s weak unification by relaxing “TERM DECOMPOSITION” to make it also tolerate possible

arity or argument-order mismatch in two structures being unified. It is the only rule that does not pre-

serve the equation set’s similarity degree. In the same manner, Rule FUZZY NON-ALIGNED-ARGUMENT

TERM DECOMPOSITION in Figure 2 is the only one that may possibly alter (decrease) the equation set’s

similarity degree. Also, the given functor similarity relation ≈ on Σ is adjoined a position mapping from

argument positions of a functor f to those of a functor g when f ≈α g with f 6= g, for some α in (0, 1]. This

is then taken into account in tolerating a fuzzy mismatch between two term structures s
def
= f(s1, . . . , sm)

and t
def
= g(t1, . . . , tn). This may involve a mismatch between the terms’ functor symbols (f and g),

their arities (m and n), subterm ordering, or a combination. We first reorient all such equations by flip-

ping sides so that the left-hand side is the one wih lesser or equal arity. In this manner, assuming f ≈p
β g

and 0 ≤ α, β ≤ 1, an equation set of the form:
{

. . . , f(s1, . . . , sm)
.
= g(t1, . . . , tn), . . .

}

α

for 0 ≤ m ≤ n acquires its new similarity degree α ∧ β due to functor and arity mismatch when

equated. Thus, a fully fuzzified term-decomposition rule should proceed by replacing a structure equa-

tion by the conjunction of equations between their respective subterms at corresponding indices given by

the one-to-one argument mapping p : { 1, . . . ,m } → { 1, . . . , n }, but (possibly) decreasing the original

equation set similarity degree by conjoining it with that of the decomposed terms’ functor pair; that is,
{

. . . , s1
.
= tp(1), . . . , sm

.
= tp(m), . . .

}

α∧β
. Note that all the subterms in the right-hand side term that

are arguments at indices which are not p-images are ignored as they have no counterparts in the left-hand

side. These terms are simply dropped as part of the approximation. This generic rule is shown in Figure 2

along with another rule needed to make it fully effective: a rule reorienting a term equation into one with a

lesser-arity term on the left.

DEFINITION 10 (FUZZY UNIFICATION RULE CORRECTNESS) A fuzzy unification rule that transforms

a pair Eα consisting of a set of equations E and a prior approximation degree α, into a pair E′
β consisting

of a set of equations E′ and a posterior approximation degree β, is said to be correct iff β is the largest

degree such that β ≤ α and all the solutions of E′ are also solutions of E at approximation degree β.

Note that this notion of correctness, contrary to that of crisp unification, does not require that all solutions

of the posterior sets of equations be the same as those of of the prior set. It only states that this is so at a

possibly lesser posterior approximation degree.

THEOREM 3 (FUZZY NON-ALIGNED FOT UNIFICATION [5]) The fuzzy unification rules of Figure 1

where Rule “WEAK TERM DECOMPOSITION” is replaced by the rules of Figure 2 are correct.

Rule FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION is a very general rule for nor-

malizing fuzzy equations over FOT structures. It has the following convenient properties:

1. it accounts for fuzzy mismatches of similar functors of possibly different arity or order of arguments;

2. when restricted to tolerating only similar equal-arity functors with matching argument positions, it

reduces to Sessa’s weak unification’s WEAK TERM DECOMPOSITION rule;

22This ruleset is recalled in [5].
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FUZZY NON-ALIGNED-ARGUMENT TERM DECOMPOSITION

[

0 ≤ m ≤ n; f ≈p
β g

]

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

(

E ∪ { s1
.
= tp(1), . . . , sm

.
= tp(m) }

)

α∧β

FUZZY EQUATION ORIENTATION

[0 ≤ m < n]

(E ∪ { g(t1, . . . , tn)
.
= f(s1, . . . , sm) })α

(E ∪ { f(s1, . . . , sm)
.
= g(t1, . . . , tn) })α

Figure 2: Fuzzy FOT unification’s non-aligned decomposition and orientation rules

3. when similarity degrees are further restricted to be in { 0, 1 }, it is the Herbrand-Martelli-Montanari

TERM DECOMPOSITION rule;

4. it requires no alteration of the standard notions of FOTs and FOT substitutions: similarity among

FOTs is derived from that of signature symbols;

5. finally, and most importantly, it keeps fuzzy unification in the same complexity class as crisp unifi-

cation: that of Union-Find [26].23

As a result, it is more general than all other extant approaches we know which propose a fuzzy FOT
unification operation. The same is established for the fuzzification of the dual operation: a limited “functor-

weak” FOT generalization corresponding to the dual operation of Sessa’s “weak” unification, and a more

expressive “functor/arity-weak”FOT generalization corresponding to the extension of Sessa’s unification

to functor/arity weak unification.

A.3 Prolog’s LEGO SOS Semantics

A LEGO-state machine is a syntax-oriented state-transformation automaton. A state of this machine is a

quadruple of the form 〈L,E,G,O〉 that stands for Literal, Environment, Goals, Or-continuation. It specifies

a formal operational semantics for Prolog in the same manner as the SECD machine is defined to stand for

Store, Code, Environment, Dump to designate a state 4-tuple 〈S,E,C,D〉 for a state-transformation machine

for the call-by-value λ-calculus [19, 9]. This 4-tuple state is the unit being transformed at each step of

computation of deterministic Plotkin-style formal Structure-Oriented Semantics (SOS) [22] we define for

Prolog with the syntactic domains and state-transformation normalization rules that follow.

Notation A syntactic domain is specified as a set of elements represented either as a given atomic domain

or as a meta-expression of syntactic domains. Given two syntactic domain expressions E and E′, we shall

write E×E′ the cartesian product of E and E′; i.e., the set of all pairs 〈e, e′〉where e ∈ E and e′ ∈ E′. We

shall write E +E′ the disjoint union of E and E′; i.e., the set E ∪E′ where E ∩E′ = ∅. Given a syntactic

domain expression E, the domain expression E denotes the complement of the set denoted by the domain

expression E (i.e., any syntactically well-formed domain expression that is syntactically incompatible with

E). The domain expression E∗ def
= Σn≥0E

n denotes the set of possibly empty sequences of domain

23Quasi-linear; i.e., linear with a log . . . log coefficient [2].
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expressions of E. That is, an element of domain E∗ is either the empty tuple 〈〉, or a tuple 〈e1, e2〉 where

e1 ∈ E and e2 ∈ E∗. We also write 〈e〉 rather than 〈e, 〈〉〉 and 〈e1, e2, e3〉 instead of 〈e1, 〈e2, e3〉〉. The

domain expression E+ def
= Σn≥1E

n denotes the set of non-empty sequences of domain expressions of E;

in other words, E∗ = {〈〉}+ E+. Finally, we shall write e : E to state that the syntactic term expression e
has one of the form required for elements of the syntactic domain expression E.

Terms and Literals

Basic Syntactic Domains

V Variables

Φn Function symbols of arity n(n ≥ 0)
Πn Predicate symbols of arity n(n ≥ 0)

Derived Syntactic Domains

Atomic symbols : A
def
= V +Φ0 +Π0

Function Symbols : Φ
def
=

∑

n≥0

Φn

Predicate Symbols : Π
def
=

∑

n≥0

Πn

Functional Terms : T
def
= {⊥}+ V +

∑

n≥0

(Φn × T n)

Literals : L
def
=

∑

n≥0

(Πn × T n)

First-Order Unification

Syntactic Domains

Unificands : U
def
= (T +Φ+Π)+

Equations : EQ
def
= U × U

Environments : E
def
= V → T

U-Continuations : UC
def
= EQ∗

U-States : US
def
= EQ× E × UC

Copyright c© 2019 by the Authors All Rights Reserved
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Transition Rules

〈t1 : T + {⊥}, t2〉, e, 〈〉

〈t1, t2〉, e, 〈〉
{t1==t2} (done)

〈t1, t2〉, e, 〈〈u1, u2〉, uc〉

〈u1, u2〉, e, uc
{t1==t2} (more)

〈x : V, u : V 〉, e, uc

〈e∗(x), u〉, e[x→ u], uc
(lvar)

〈u : V , x : V 〉, e, uc

〈x, u〉, e, uc
(rvar)

〈x : V, y : V 〉, e, uc

〈e∗(x), e∗(y)〉, e[x→ e∗(y)], uc
{x=/=y} (bvar)

〈x1 : 〈u1, v1〉, x2 : 〈u2, v2〉〉, e, uc

〈u1, u2〉, e, 〈〈v1, v2〉, uc〉
{x1=/=x2} (push)

〈f1 : Φn1
+Πn1

, f2 : Φn2
+ Πn2

〉, e, uc

〈⊥,⊥〉,�, 〈〉
{f1=/=f2 or n1=/=n2} (fail1)

〈〈u, v〉, a : Φ + Π〉, e, uc

〈⊥,⊥〉,�, 〈〉
(fail2)

〈a : Φ + Π, 〈u, v〉〉, e, uc

〈⊥,⊥〉,�, 〈〉
(fail3)

Prolog (without cut)

Syntactic Domains

Programs : P
def
= D∗

Definitions : D
def
= C∗

Clauses : C
def
= L :- B

Bodies : B
def
= {true}+ L×B

Goals (And-Continuations) : G
def
= B∗

Or-Continuations : O
def
= D × E × L×O

P-States : PS
def
= L× E ×G×O

Copyright c© 2019 by the Authors All Rights Reserved
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Transition Rules

true, 1V , goal, 〈〉
(initialize)

true, e, 〈〉, o

true, e, 〈user〉, o
(success)

fail, e, g, 〈〉

fail,�, g, 〈〉
(failure)

fail, e, 〈r, a〉, 〈d : 〈〉, , , 〉

next, e, a, 〈d, , , 〉
(try again)

fail, e, 〈r, 〈r′, a〉〉, 〈〈〉, e′, g, o〉

next, e′, a, o
(backtrack)

next, e, a, 〈〈〈h :- l, b〉, d〉, e′, g, o〉

l, e′′, 〈b, a〉, 〈d, e′, g, o〉
{〈 , e′′, 〉 = unify(〈g, h, e′〉)} (next try)

true, e, 〈〈h, r〉, a〉, o

h, e, 〈r, a〉, o
(true)

g : {true, fail, next}, e, a, o

next, e, a, 〈d, e, g, o〉
{d = definition(g)} (prove)
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