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Our objective

The objective of the AWOL project is the design, implementation, experimentation, and demonstration of a

net-aware knowledge-representation and automated-reasoning system offering a radical alternative to mainstream

Semantic Web (SW) technology for an Alternative Web Ontology Language—with, at its vehicle, the HO•O•T
“Ontological Programming” language.1 The key to this objective’s scientific locks—scalability and distribution

of SW processing—is the “Order-Sorted Feature” (OSF ) constraint formalism, as well as its relevant imple-

mentation technology influenced by the LIFE Constraint Logic Programming language in the context of today’s

Internet. HO•O•T is to provide an operational system that:2

• uses OSF terms, which are syntactic notations for labelled graph structures, as universal representation;3

• combines computational semantics from Functional Programming (FP), Constraint Logic Programming

(CLP), and Object-oriented Progrraming (OOP) through the formal view of objects as OSF graphs, and

classes as efficiently enforceable functionally and relationally constrained object-structure specifications;

• defines functions as curryable rules over OSF terms, and relations as constrained Horn clauses over OSF
terms; and,

• uses such a formalism for specifying (and verifying operationally) consistent object structures that are

distributed over the Internet that must verify constraints from their class definitions as well as those inherited

from superclasses.

In the course of the CEDAR project, we initiated work on testing the pragmatics of existing tools and techniques

that have been proposed for the Semantic Web. Among the most important properties is their ability (or lack

thereof) to reason effectively over knowledge bases and deal with enormous quantities of distributed data governed

by this distributed knowledge. CEDAR’s key outcome has been a solid understanding and hands-on experience

with Semantic Web technologies, as well as with Big Linked Data technology.4

I have had a well-documented public stance on how the OSF unification-based approach I developed offers a

viable alternative to the official DL-based Semantic Web languages [4, 5]. The reason is that it is formally simpler,

usably more intuitive to the designer, and practically more efficient. My scientific conviction has been recently

reinforced with the practical performance experiments carried out since 2013 as part of the CEDAR project.

Hence, the AWOL project proposal’s rationale is to leverage well-understood and well-honed architectures and

algorithms from (Concurrent) Constraint (Logic) Programming [33, 34, 3] and Big (Linked) Data [13, 26] in

the specific area of ontological reasoning [20]. I have explicated in detail in my previous research how Prolog’s

efficient implementation techniques (using the Warren Abstract Machine design [1]) can be adapted to compile

OSF unification [12], even modulo relationally and functionally constrained concept definitions [22].

However, the leap forward from LIFE to making the new proposed ontological programming HO•O•T an

alternative language to OWL for the AWOL project is that HO•O•T :

• refers to objects distributed all over the Internet (and not just in a local RAM or silo-ed DB);

• represents all OSF graphs as RDF(S) KB/DBs;5 and,

1HO•O•T stands for Hierarchical Ontologies with Objects and T ypes.
2We shall use the words “class,” “sort,” and “concept” interchangeably as symbols denoting sets of instances. Similarly “subclass,”

“subsort,” and “subconcept” (or “is-a”), all denote set inclusion. These different terminologies come from programming languages, logic,

and knowledge representation, respectively.
3The use of such a universal notation for representing code syntax and data structure alike eases meta-programming through a

quote/unquote meta-operator, just as S-Expressions in LISP, or Prolog terms.
4
http://cedar.liris.cnrs.fr/

5So-called TBoxes/ABoxes in the new Semantic Web lingo. A “TBox” (for “Terminological Box”) is a set of (DL) axioms constraining

data contained in an “Assertional Box” or “ABox.” The TBox is the Knowledge Base (KB) and the ABox is the Data Base (DB). Equivalent

names for Tbox/Abox in more conventional terminology are Schema/Database (also Intensional/Extensional DB).
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• performs reasoning with lazy memoizing to prevent uselessly repeated computations as well as to handle

potential undecidability of some constraints by sacrificing completeness for convergence.6

The expected outcome of AWOL is to demonstrate beyond tenable doubt that OSF constraint logic can be the

basis of scientifically formal, operationally effective, and practically efficient “Ontological Programming” over

distributed RDF-based knowledge and data bases.

The State of the Art

Semantic Web Reasoners

In here give a brief description of the most prominent extant SW reasoners. We limit our selection to systems that

are full-fledged reasoners, and not just classifiers. This is because our interest goes beyond concept classification

and includes Boolean query answering as well. This rules out systems such as ELK [36], CEL [25], CB [35],

etc., that do not support query answering.

We have chosen as a representative set the following system SW reasoners: FaCT++; HermiT; Pellet; TrOWL;

Racerpro; and, SnoRocket.

FaCT++ (Fast Classification of Terminologies) is a reasoner developed at the University of Manchester [49]. It

is based on the Description Logic fragment SHOIQ [32]. It is implemented in C++ as a deductive tableau [39]

adapted to the specifics of this logic. It is claimed to use a wide range of heuristic optimizations. FaCT++ provides

TBox reasoning (subsumption, satisfiability, classification) and partial support for ABox processing (retrieval).

HermiT is also a reasoner for a (slight extension) of the Description Logic fragment SHOIQ.7 It is based upon

hypertableau reasoning, an optimized version of tableau reasoning [40]. It purports to provide a faster process for

classifying ontologies. The main optimization of hypertableau vs. tableau that it tries to minimize nondeterminism

in the treatment of disjunctions and is more memory-efficient. HermiT provides TBox reasoning, with the ability

of checking the consistency of an ontology and inferring implicit relationships between concepts.

Pellet is a free open-source Java-based reasoner [45]. It, too, is based on the tableau algorithm and supports the

Description Logic fragment SHOIN (D). It provides TBox reasoning (subsumption, satisfiability, and classifi-

cation) and ABox reasoning (retrieval, conjunctive query answering). It uses many optimization techniques and

supports entailment checks and ABox querying through its interface.

TrOWL (Tractable reasoning infrastructure for OWL 2) was developed at the University of Aberdeen [48].

This is a system that starts by transforming an ontology from OWL-DL to OWL-QL [28] in order to classify it in

polynomial time. Under this transformation, conjunctive query answering and consistency checking remain the

same as for OWL-DL. In addition, TrOWL can generate a database schema for storing normalized representations

of OWL-QL ontologies.

Racerpro is a commercial version of RACER (Renamed ABoxes and Concept Expression Reasoner) [31, 30].

It implements a reasoner for the description logic SHIQ. RACER provides both TBox and ABox reasoning.

It supports all the optimizations of FaCT++ as well as new techniques for dealing with number restrictions and

ABoxes.

Snorocket [37] was proposed as a high-performance implementation of a polynomial-time classification algo-

rithm for the lightweight Description Logic EL [24].8 It was primarily meant to be optimized for classifying

SNOMED CT. It can process only conjunctive queries.

Critical analysis The main criticism this PI holds toward these DL-based languages is their inability to scale up

to very large ontologies. One of the objectives of the CEDAR project was to test the foregoing reasoners on this

aspect. We benchmarked them, along our own proof-of-concept prototype, on publicly available ontologies of

6This lazy semantics, incidentally, adheres effectively to a final—as opposed to initial—algebra interpretation of OSF terms (which

can form infinitely descending approximation chains [2]).
7This fragment is called SHOIQ+ [44].
8Description Logics in the EL-family are weaker versions that provide existential roles (∃r.C) but no universal roles (∀r.C). This

amounts to being able to specify taxonomies with domain/range constraints for roles and attributes (i.e., functional features and set-valued

functional features as done in [9]).
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enormous sizes: Wikipedia,9 BioModels,10 MeSH,11 and NCBI.12 Focusing first on basic taxonomic reasoning

(i.e., involving only concepts but no attributes), the results showed that, for the same queries, our prototype was

several orders of magnitude more efficient than all these DL-based reasoners; or rather, than those of them that

could return at all [10, 23]. Proceeding with the same experiments on attributed concept taxonomies led to similar

results [11].

Another, no less important, criticism this PI shares with several actual users of OWL, is its being unintuitive.

The first obstacle to a user is its undue complication—both at the syntax and semantic level. One of the main

drawbacks experienced by field workers using OWL technology for Ontological Programming is its insistance

on so-called “Open-World” (OW) semantics (opposed to “Closed-World” (CW) semantics, by which LP, OOP,

and database systems abide). Basically, OW semantics makes the assumption that, in a complete proof system,

a logical sentence will be deemed false only if it can be so proven explicitly. Whereas, CW semantics considers

false any sentence that cannot be proven true even when the proof system’s reasoning capabilities are limited (i.e.,

polymorphic type inference), or its proof strategy is incomplete (e.g., Prolog’s left-right/depth-first Horn-clause

resolution). In the PI’s experience, OW is actually useful in much rarer use cases and is unfortunately at the origin

of much voiced frustration (see, e.g., [47, 29]).

Still, large efforts have been invested in using OWL as the representation and reasoning language for very large

ontologies (such as MeSH or NCBI cited above). It is however not so clear what these knowledge bases are

actually used for. If one is to use OWL only as a formal notation, then such languages as Z, OCL, or even simply

UML, are much more familiar to, and actually used by, real users.

Knowledge-representation systems using an OW assumption prevent using implicit knowledge (such as default

conclusions) on the grounds that it would render the logic non-monotonic. In effect, such a system must then have

three truth values: “true,” “false,”, and “undecided.” Thus, this makes dealing with undecidable but recursively

enumerable decisions impossible (e.g., Horn Logic). Besides, actual knowledge evolves non-monotonically in

real life; so, having a non-monotomic inference system is not a hinder to its use. What is problematic, on the

other hand, is that the OW assumption is counter-intuitive to many users in addition to being impractical since it

requires adding an undue amount of specific information to cover anything known to be false.13

On the other hand, the CW assumption takes pragmatic computational advantage of default knowledge while

relieving knowledge-base developers from having to specify as well properties known not to hold. Finally, if one

actually needs OW reasoning on some specific knowledge, it is always possible to add to such axioms continua-

tions in the style of LIFE’s residuation [17, 16]—i.e., a suspended computation waiting for more information (a

kind of conditional truth: “true, if a few pending constraints are verified”) [19].

The Resource Description Framework

Clearly, as the foregoing statements show, I believe that the W3C went astray with putting all its Semantic Web

eggs the single OWL basket of DL-based technology. On the other hand, I also believe that it has been quite

judicious in proposing the Resource Description Framework (RDF) as a more elementary and less pretentious

lingua franca for a universal representation of all Semantic Web information. In this regard, it has acknowledged

the fact that all such information is representable as a set of web-wide interconnected labelled graphs—a view

that I fully espouse. RDF is indeed a simple notation for such objects where everything is denoted by a Uniform

Resource Identifier (URI). Most importantly, no operational semantics, let alone formal reasoning, has been

ascribed to it. It is just a notational system—and that is that.

This, in my opinion, is as clever as it is simple an idea in that it sets an agreed upon standard for sharing

distributed information. This is because it does not presume any a priori semantics other than being a conventional

notation for distributed labelled graphs.

9This is an ontology derived from the Wikipedia online database and containing 111,599 concepts.
10This is an ontology of various biological models containing 182,651 concepts.
11This is an ontology of Medical Subject Headings of the National Library of Medicine; it contains 286,381 concepts.
12This is the National Center for Biotechnology Information’s ontology of all known living organisms; it contains 903,617 concepts.
13For example, this document is a real-life OWL use case report [29]. Curiously, it is one of the use cases cited in the official OWL 2

documentation meant to illustrate the usefulness of OWL as an ontology specification and reasoning system “in the field.” Unless the

OWL 2 document’s authors cited it without actually reading it, it is clearly a de facto admission on their part of the counter-intuitiveness

and ineffectiveness (not to mention intolerable inefficieny) of the system they expect “Mr. User” to choose for ontological reasoning.
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Further elaborations of RDF, notably RDF Schema (RDFS), RDF with attributes (RDFa), and the Simple

Knowledge Organization System (SKOS), are also RDF-based notational systems proposing purely representa-

tional conventions for (respectively) typed, attributed, and taxonomically organized graph-based information. As

such, they do not have the pretense of being reasoning systems. Even as “knowledge-representational” systems,

they merely offer RDF-based notational conventions for oft-used constructs in knowledge representation. No a

priori formal proof-theoretic interpretation is imposed: only informal, though familiar, syntactic constructs are

made available.

RDF comes with an XML-based surface syntax, but its internal data format is that of a set of triples (graph

edges of the form 〈subject, predicate, object〉) stored in so-called triplestores. There is no name scoping in RDF.14

There are alternative more convenient (for humans) shorthand notations for RDF triples other than its verbose

and awkward XML syntax (e.g., N3, or Turtle). One in particular is growing in popularity: the Java Script

Object Notation (JSON). It has become a de facto standard as “a lightweight data-interchange format [. . . ] easy

for humans to read and write, [. . . and] for machines to parse and generate.” JSON describes an object (i.e., a

graph) as a set of Key/Value pairs (two double-quoted strings). It has emerged out of the JavaScript programming

community as a standard data representation. It maps to RDF (and vice-versa)—up to shared conventions. It may

be viewed as a more user-friendly (i.e., readable) as well as more economical (trees vs. sets of edges) notation. It

has however its own conventions.

“JSON Linked Data” (JSON-LD) adds to JSON the notion of “context.” Such a context is a kind of type

“ontology,” a schema constraining the nature and structure of JSON data referring to it. All objects must abide by

the definitional structure edicted for them by the schema they refer to. For this, JSON-LD uses a standard “normal

form” obtained using so-called “format algorithms” (conventional syntax normalization) for JSON-LD.15

For a comprehensive overview of basic informal notational conventions for expressing “knowledge” represen-

tations using RDF, see this presentation. As well, if only to get an idea of the current lack of general agreement in

the design and use of RDF-derived dialects, it is worth mentioning this “RDF-bashing” set of comments by one

of its designers.16

In terms of implementation resources and tools, one of the most reliable and open-source system for a wide

variety of Semantic Web processing services is indubitably Jena.17 It is uncommitted as to which system to

recommend for the Semantic Web. It merely offers well-designed software-engineering modules implementing

various specifications issued from various Semantic-Web W3C Working Groups. It offers an impressive set of

system-level and reasoning-level primitives. It is Java-based (and thus Scala-compatible).18

Alternative approaches: Constraint-based distributed computing

As seen in the previous overview, the vast majority of ontology specification systems and languages today are

simple notational conventions carrying no formal proof-theoretic semantics. The only ones that come as well

with a formal operational semantics for reasoning are based on Description Logic, the foremost representative

of which is the Web Ontology Language (OWL), an ontology specification and reasoning formalism adopted as

a recommendation by the W3C. This, however, has proven to yield more than questionable usefulness [47], let

alone performance or scalability [4].

An alternative that has curiously been largely ignored, arises from (Constraint) Logic Programming. However,

despite its relative loss of public interest since its heydays in the 1980s, Logic Programming technology still

somehow renders impressive services. This is illustrated for example by the specification and processing of

Natural Language Processing and knowledge-based reasoning needed to make out a meaning expressed for human

agents. Such use of Prolog in IBM Watson’s Jeopardy Win has been acknowledged among the critical strengths

of this software’s “reasoning” power.19,20 This is not a simple reasoning feat, and indeed quite impressive. It is

this sort of Prolog technology, improved with constraint-solving, functional programming, and recent advances

14
http://manu.sporny.org/2013/rdf-identifiers/

15
http://www.w3.org/TR/json-ld-api/

16Warning—crude opinionated language!
17
https://jena.apache.org/

18As justified later, Scala will be the AWOL project’s implementation language choice.
19
http://www.cs.nmsu.edu/ALP/wp-content/uploads/2011/03/PrologAndWatson1.pdf

20
http://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
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in functional-style “MapReduce” schemes of computations allowing declarative high-performance concurrent

processing over massive amounts of data,21 that the AWOL project intends to adapt and use.

Constraints offer a natural declarative paradigm for concurrent distributed computing when a process is con-

strued as constraint normalization [43]. The constrained logical variables shared by several constraints lend

themselves to automatic inter-process communication channels coordinating the concurrent normalization of all

constraints. Normalization (the process of solving a constraint) transforms a piece of data structure wherein con-

strained logical variables occur until it reaches either (1) a solved form—in which case the constraint is verified

(i.e., it “succeeds”); or (2) an inconsistent form—in which case the constraint is violated (i.e., it “fails”); or (3) an

undecided form—in which case the constraint normalization process is suspended until additional information

accrues (i.e., it “residuates”).22 Thus, computation proceeds as the simultaneous normalization of constraints. In

this (implicit) way, processes sharing logical variables use them as communication channels [6].

A well-known example of contraint solving is First-Order Term (FOT) matching as used in FP (e.g., term-

rewriting systems). It consists in the normalization of the constraint that “t2 must be more general than (or

subsume) t1.” A FOT matching constraint solved form is a finite conjunction of variable bindings of t2 (a subsi-

titution σ such that t1 = t2σ).

Another well-known example is FOT unification as used in LP (e.g., Prolog). Indeed, FOT unification of two

FOTs t1 and t2 consists in the normalization of the equality constraint t1 = t2. A unification’s solved form is a

finite conjunction of variable bindings of both FOTs’ logical variables (a subsititution σ such that t1σ = t2σ).

A lesser-known example is FOT unification modulo functional dependencies (as used in LeFun [17, 16]).

There, since function application uses FOT matching while predicate resolution uses FOT unification, function

application may suspend and wait until arguments become sufficiently instantiated (through concommitant unifi-

cations).

Yet another constraint system generalizing FOT matching and unification is LIFE’s OSF graph matching

and unification [18, 21]. It is this latter constraint system that we propose to generalize further in the AWOL
project to a fully distributed concurrent system to provide efficient ontological reasoning power for the Semantic

Web.

More expressive OSF-based systems can be used for ontological reasoning, in which concepts in taxonomies

are formalized as set-denoting sorts subject to arbitrary relational and functional constraints. Depending on

the expressiveness, so-constrained OSF unification can become undecidable. However, decidable restrictions

thereof still offer very expressive capabilities for ontological reasoning [20]. Even more interesting is the use of

lazy constraint normalization [3]. This technique guarantees that only constraints relevant to a concept’s use be

normalized. This adds efficiency as well as tolerating potentially undecidable constraints, although at the expense

of losing completeness. In addition, implementation techniques generalizing the way Logic Programming is

compiled into low-level abstract machine instructions (viz., [1]) are readily adaptable [12, 22].

What does AWOL have to offer that hasn’t been offered yet?

The AWOL project’s proposed approach is a radically different alternative to the majority of current Semmantic

Web systems which almost exclusively rely on Description Logic. Because the latter paradigm uses Tableau-

based reasoning, it is at best very difficult to scale up reasoning and data analysis to the sizes of knowledge and

data bases that accrue, and will continue to do so “explonentially” [10]. It addition, incremental and fault-tolerant

distributed reasoning is still an unsolved set of challenges for the OWL-family of ontology web languages.

Even at the syntax level, OWL is, by any standards, unwieldy and confusing. However, having a simple uni-

form syntax using a universal information structure is an important aspect of any AI language. From LISP’s

S-expression to Prolog’s First-Order Term (FOT), it enables meta-programming through a quote/eval mechanism.

It is thus easy to define dynamic syntax-generating macros, a great tool most appreciated by seasoned AI pro-

grammers.23 In LIFE , this facility was put to use everywhere in the generation of both static and dynamic code.

For Natural Language Processing (NLP) applications, for example, Prolog’s Definite-Clause Grammars (DCG)

21Technically: monoid homomorphisms [27].
22The term “residuation” and verb “to residuate” were coined by the PI to denote a residual yet unsolved constraint (since it is a

computational residue) [17, 16]. Residual variables are those yet unbound remaining in one or several residuations.
23
http://docs.julialang.org/en/release-0.1/manual/metaprogramming/
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are but a meta-syntax preprocessing into Prolog’s syntax with continuation structures.24 Even more expressive

multidimensional DCG-like preprocessing is possible (as shown in LIFE) thanks to OSF structures using so-

called accumulators. This is done thanks to paired in/out feature labels that can discriminate among distinct

information-processing threads, compose them, and invert them.25

But a new lower-level representation in the form of graphs (sets of RDF triples) is now the standard representa-

tion. Despite insignificant quibbles on notation (sets of triples vs. sets of key/value pairs), the consensus de facto

is undoubtedly that a graph data model now prevails as the vehicle of information.26 And such is the case at all

levels: whether type/schema/TBox or program/data/Abox.

Finally, and quite importantly, the RDF has been adopted as a new data format replacing the relational model.

Just as SQL became the technology for relational databases, so has the SPARQL RDF Query Language become

the standard RDF-querying and view-generating language. Combining the reasoning power of HO•O•T on TBoxes

to optimize the use of SPARQL on Aboxes as the RDF-oriented processing of massive triplestores can also be

used to pragmatic advantage with HO•O•T [11].

Related work

A noteworthy offshoot of several key ideas originating in the LIFE project, is the work done by Gert Smolka on

the Oz language [46], and later re-designed and re-implemented by Peter Van Roy as the Mozart programming

system.27 Both Smolka and Van Roy had been my former collaborators in the LIFE project at Digital Paris

Research Lab from 1988 until 1994.

More recently, and sharing basic ideas with Mozart’s and our approach to concurrent constraint processing us-

ing logical variables and process communication channels, but exploited in the area of service-oriented program-

ming, is the SyncFree project coordinated by Marc Shapiro.28 SyncFree’s basic idea, the notion of a Commutative

Replicated Data Type (CRDT), is very related to incremental distributed constraint programming (through the use

of “monotonic distributed data structures”) [38]. In fact, the distributed object unification operation of Distributed

Oz is a (simple) CRDT. Each replicated node does local unification, and as long as there are no unification failures,

all nodes are consistent without communicating with each other.

Yet another offshoot of the Mozart system is the Transreal Initiative.29 This was submitted as a Future and

Emerging Technologies (FET) proposal that did not get funded.30 It has the interesting notion of elasticity—the

ability to ramp up resources quickly to meet inciental demand (like, e.g., an electric plant).

Both CRDTs (commutative data types) and elasticity (adaptive clouds) are in perfect agreement with our ap-

proach to distributed OSF-based constraint programming in that they seek to process information incrementally

as it materialize.

Implementation consideration

Scala/Akka To its designers and many other language experts and users, and this author as well, Scala is

best described as “Java/C# done right.”31 Some striking advantages of Scala is that is has powerful features

unsupported by Java (nor C#) while staying fully cross-compatible with Java through the use of a JVM backend.

Among the most useful to ease implementation of several AWOL–HO•O•T features, Scala provides:

• a unified type system (value and object types all substype of Any) makes worrying about value/object

boxing/unboxing unecessary;

• primitive comprehensions (for-expressions);

24Such a linear-list representation, then called difference-list, is just a pair of logical variables X-Y: one (X) bound to its start and one

(Y) unbound used as sequence terminator rather than using the empty list [] as usual. Thus, any difference-list X-X with the same stat

and end variable is the empty sequence. This representation makes sequence concatenation constraints solvable in constant time by simply

binding the end-variable of the first to the start of the second.
25
http://hassan-ait-kaci.net/pdf/WildLIFE-HANDBOOK.pdf

26See for example the standardized triple data formats and inter-format mappers: http://rdf-translator.appspot.com/.
27
http://mozart.github.io/mozart-v1/doc-1.4.0/dstutorial/index.html

28This is a 3-year European project that started October 2013.
29
http://beernet.info.ucl.ac.be/staticfiles/transreal/IntelligentSystemsFuture.pdf

30It passed threshold but not high enough.
31The name “Scala” stands for “Scalable language.”
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• higher-order functional types and methods are supported;

• partial application of functional (currying) returning higher-order functions is automatic (nameless func-

tions—i.e., closures—are supported);

• lazy (delayed) expressions;

• delimited continuations (non-local exits); and,

• a powerful concurrent processing library (based on the Actor Model).

This last point, the most recent, is a powerful addition to Scala’s set of libraries: the Akka actor-model concurrency

toolset. The Actor Model32 is a very flexible and powerful concurrent programming model.

Its development was “motivated by the prospect of highly parallel computing machines consisting of

dozens, hundreds or even thousands of independent microprocessors, each with its own local memory

and communications processor, communicating via a high-performance communications network”

(Carl Hewitt). Since that time, the advent of massive concurrency through multi-core computer ar-

chitectures has revived interest in the Actor model.

The Actor Model is the concurrent paradigm used in the Erlang programming language,33 and, as stressed, of the

more recent Scala.34,35

X10 An alternative to Scala, also open-source, could be IBM Research’s X10 multicore language.36 In fact,

X10 is the implementation language of C10, a strongly-typed, object-oriented, probabilistic, timed, Concurrent

Constraint Programming language currently being designed and developed by Vijay Saraswat of IBM Research.37

X10 is surprisingly close to Scala: it is a polymorphically typed higher-order object-oriented language func-

tional with a Scala-like syntax. It compiles to the JVM (through Java) and C++. It natively supports concurrent

constraint programming. Its concurrency model, the Asynchronous Partitioned Global Address Space (APGAS)

Programming Model,38 is based on the notion of places and asynchrony.39 An X10 statement qualified with

the keyword “async” is spawned as new process, a so-called “activity,” running in parallel and returns imme-

diately. Such activities communicate through the variables they share. A synchronizing construct “finish”

preceding a statement forces waiting for all subactivities to end before proceding. In a way, “async” is similar,

though not quite, to the “lazy” expression constructs in Scala. However there is no need in Scala for explicit

synchronization: it is automatic. An X10 activity corresponds essentially to an actor in the Actor Model. The

notion of place—a collection of data and activities over such data—is a means to do concurrent computation

on a distributed shared memory. The core API provides a global structure (named “GlobalRef”) that can be

used to migrate computation from a current local place to another local place “p” within the global space with

the construct “at (p)” preceding a statement. This suspends its execution in its current place, serializes local

variable and the data they are bound to, and move them to place “p,” where they are deserialized and execution

resumes.

Compared to X10, Scala offers simpler and more powerful constructs. Along with the Akka library, it comes to

be a better choice of implementation vehicle for a more convenient management of concurrency with distributed

shared variables. On the other hand, X10’s native support of distributed concurrent constraint-processing shar-

ing a partitioned global address space allows it to run on specialized parallel hardware (e.g., GPGPU) to boost

performance.

The foregoing facts justify the PI’s preference for using Scala (possibly along with Java) as the implementation

language for the AWOL project. It is a well-designed language, and makes a clever opportunistic use of the JVM

as a machine language. Scala’s Akka library provides actor-based multi-threading management of concurrent

processes. This, with Scala itself and its other libraries, make it a convenient toolkit for the specific needs of the

AWOL project’s constraint-based reasoning system.

32
https://en.wikipedia.org/wiki/Actor model

33
http://www.erlang.org/

34
http://www.scala-lang.org/

35
http://en.wikipedia.org/wiki/Scala (programming language)

36
http://x10-lang.org/

37
https://github.com/saraswat/C10

38
http://x10-lang.org/documentation/tutorials/apgas-programming-in-x10-24.html

39
http://x10.sourceforge.net/documentation/intro/latest/html/node4.html
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AWOL Project’s Gantt-Chart Task Schedule

Scientific Program

Project organization

Task descriptions The core of the AWOL project will consist in four concurrent tracks:

1. Track T1—Specification Tasks of this track will focus on activities relating to providing the linguistic

details of the various operational parts of the AWOL system. It consists of a language with a syntax

and operational semantics for specifiying, verifying, and reasoning with ontological taxonomies. It will be

an elaboration of the HO•O•T language [7], the basic ontological language proposed in the course of the

CEDAR project. These parts make up a language with a concrete syntax and an operational semantics

consisting of knowledge-processing units (i.e., related to the syntax and meaning of the contents of an

Assertional Box—or ABox); of data-processing units (i.e., related to the syntax and meaning of the contents

of a Terminological Box—or TBox); and of query-processing over specific knowledge and data (i.e., related

to the syntax and meaning of the contents of a Query Box—or QBox). They will be packaged as a sequence

of gradually more sophisticated system designs of data/knowledge processing for ontological programming.

The targeted execution context for the HO•O•T language will be the BLINK distributed architecture [8] (or

similar distributed file system), possibily with simulations of eventual missing functionalities.

2. Track T2—Implementation Tasks in this track will make up the sequence of partial implementations of

the gradually more complex designs from Track T1. It is expected to provide also feedback to Track T1

for potential language design adjustments made apparent from concrete implementation experience. It is

important to realize that the intent of the AWOL project is to target specifically the BLINK distributed

architecture, and experiment with its prototype as a system-level intermediate layer for use cases involving

massive amounts of data [8]. It may simulate such an interface as the implementation context may be.

However, the use of BLINK per se is not mandatory: any similar distributed file system can be used.

Another important point is the candidate’s deliberate choice of using Scala as the prototyping language

vehicle for the justifications spelled out in the preceding section.
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3. Track T3—Experimentation Tasks in this track will make up the sequence of testing partial implemen-

tations realized in Track T2 as they materialize over experimental knowledge and data bases. This track

will too provide feedback to the precedent (Track T2) for potential adjustments made apparent from actual

benchmarks and concurrent orchestration protocols (including network-oriented communication). Experi-

mentation on benchmarks—such as the the Lehigh University Benchmark (LUBM), or the Berlin SPARQL

Benchmark (BSBM), but also on our own large-attributed TBox generator—generating queries on do-

main/range and other (relational and functional) constraints on attribute for huge existing ontologies (e.g.,

NCBI). The development of a frontend OWL-to-HO•O•T compiler to enable processing OWL-based ontolo-

gies in HO•O•T .

4. Track T4—Demonstration Tasks in this track will demonstrate the AWOL system’s behavior as de-

ployed on actual knowledge/data networked over the Internet. Several use cases will be considered and

measurement made in comparison with the (then available) state of the art.

More details on each track and the tasks comprising them follow.

T1 Specification Track—total duration: 20 quarters (4 quarters = 1 year)

• Task T1.1—HO•O•T V0.* syntax and operational semantics Duration: 4 quarters.

– basic sort taxonomies; Modules; modulated subsort encoding; incremental encoding;

– syntax-driven operational semantics using Plotkin Structural Operational Semantics [41, 42];

– feature domain/range constraints; down-propagation of constraints in the taxonomy;

– implementation pragmatics; pre-processing; normalization; compilation; efficiency considerations;

built-in aspects; shared-scope communication; communication among solvers;

– develop specifications for typical use cases of HO•O•T V0.* illustrating the extents (and limits) of its

expected expressive and operational power.

• Task T1.2—HO•O•T V1.* syntax and operational semantics Duration: 4 quarters. Additional features of

HO•O•T V1 vs. HO•O•T V0:

– add net-aware relational constraints over OSF graph structures and LOGIN-like rules,40 and CLP

semantics to define semantic properties of sorts defined in a taxonomy;

– down-propagation of rule-defined relational constraints in the taxonomy, and ontology normalization

(preprocessing and compilation);

– add SPARQL interface with knowledge-driven query optimization;41

– develop specifications for typical use cases of HO•O•T V1.* illustrating the extents (and limits) of its

expressive and operational power.

• Task T1.3—HO•O•T V2.* syntax and operational semantics Duration: 4 quarters. Additional features of

HO•O•T V2 vs. HO•O•T V1:

– Add functional-dependency constraints over OSF graph structures, using net-aware residuation [17,

16] as an implicit communication mechanism;

– down-propagation of rule-defined functional constraints in the taxonomy;

– develop specifications for typical use cases of HO•O•T V2.* illustrating the extents (and limits) of its

expressive and operational power.

• Task T1.4—HO•O•T V3.* syntax and operational semantics Duration: 4 quarters. Additional features of

HO•O•T V3 vs. HO•O•T V2:

– management of net-aware name scopes; degrees of privacy;

– management of uncertainty (Bayesian inference, fuzzy-set logic, rough-set, paraconsistency, . . . )

40Net-aware Horn clauses over OSF terms [14, 15].
41Extending the technique used in [11].
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– develop specifications for typical use cases of HO•O•T V2.* illustrating the extents (and limits) of its

expressive and operational power.

• Task T1.5—final HO•O•T syntax and operational semantics Duration: 4 quarters. Ultimate version to meet

the AWOL project’s language-level (HO•O•T V4.*). Additional features of HO•O•T V4 vs. HO•O•T V3:

– ensure stable version syntax and semantics;

– full recap specification.

T2 Implementation Track—total duration: 18 quarters Implementation Track T2 parallels Specification

Track T1 with 6 months delay. Each task corresponds to implementing the specifications of the corresponding

task in Track T1, as illustrated on the task schedule diagram of Figure .

• Task T2.1—HO•O•T on BLINK V0.* implementation of HO•O•T V0.* specified up to the end of Task T1.1.

Duration: 4 quarters

• Task T2.2—HO•O•T on BLINK V1.* implementation of HO•O•T V1.* specified up to the end of Task T1.2.

Duration: 4 quarters

• Task T2.3—HO•O•T on BLINK V2.* implementation of HO•O•T V2.* specified up to the end of Task T1.3.

Duration: 4 quarters

• Task T2.4—HO•O•T on BLINK V3.* implementation of HO•O•T V3.* specified up to the end of Task T1.4.

Duration: 4 quarters

• Task T2.5—final HO•O•T on BLINK implementation of final HO•O•T version specified up to the end of

Task T1.5. Duration: 2 quarters

T3 Experimentation Track—total duration: 16 quarters Experimentation Track T3 parallels Implementa-

tion Track T2 with 6 months delay. Each task corresponds to experimentng with the implementation developed

in the corresponding task in Track T2, as illustrated on the task schedule diagram of Figure .

• Task T3.1—LivEMUSIC use case in HO•O•T V0.* experimentation with HO•O•T on BLINK imple-

mented up to the end of Task T2.1. Duration: 4 quarters

• Task T3.2—LivEMUSIC use case in HO•O•T V1.* experimentation with HO•O•T on BLINK imple-

mented up to the end of Task T2.2. Duration: 4 quarters

• Task T3.3—LivEMUSIC use case in HO•O•T V2.* experimentation with HO•O•T on BLINK imple-

mented up to the end of Task T2.3. Duration: 4 quarters

• Task T3.4—final LivEMUSIC use case in HO•O•T experimentation with final HO•O•T on BLINK imple-

mented up to the end of Task T2.4. Duration: 4 quarters

T4 Demonstration Track—total duration: 14 quarters Demonstration Track T4 parallels Experimentation

Track T3 with 6 months delay. Each task corresponds to demonstrating with the results honed in the experimen-

tation performed in the corresponding task in Track T3, as illustrated on the task schedule diagram of Figure .

• Task T4.1—AWOL System V0.* demonstration of LivEMUSIC use case in HO•O•T V0.* experimented

with up to the end of Task T3.1. Duration: 4 quarters

• Task T4.2—AWOL V1.* demonstration of LivEMUSIC use case in HO•O•T V1.* experimented with up

to the end of Task T3.2. Duration: 4 quarters

• Task T4.3—AWOL System V2.* demonstration of LivEMUSIC use case in HO•O•T V2.* experimented

with up to the end of Task T3.3. Duration: 4 quarters

• Task T4.4—final AWOL System demonstration of LivEMUSIC use case in HO•O•T V3.* experimented

with up to the end of Task T3.4. Duration: 2 quarters

Description of requested resources

Personnel other than PI
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Post-docs Two high-caliber internationally competitive post-doc positions: one overseeing Tracks 1 and 2 and

one overseeing Tracks 3 and 4.

• Specification and implementation Prerequisites: alumnus of top-rated institutions; solid experience in

language design and prototyping; solid practical experience in software system development in Java, C++,

C (Scala a plus), as well as scripting (JavaScript, Python, C shells, etc.); working familiarity with the

theory and practice of Constraint Logic Programming, Functional Programming, and Object-Oriented Pro-

gramming; experience with Semantic Web technology; industrial software development a plus. Duties:

overseeing Tasks T1 and T2. (Duration: 20 quarters)

• Experimentation and demonstration Prerequisites: alumnus of top-rated institutions; solid practical ex-

perience in software system development in Java, C++, C (Scala a plus), as well as scripting (JavaScript,

Python, C shells, etc.); high familiarity with distributed database and RDF-based Web Programming tools,

(esp. SPARQL); deep understanding of distributed database technology and tools; high familiarity with Big

Data technology and tools; industrial software development a plus. Duties: overseeing Tasks T3 and T4.

(Duration: 16 quarters)

Research engineer One highly-qualified Research Engineer in advanced software development.42 Prerequi-

sites: alumnus of top-rated institutions; solid practical experience in software system development in Java, C++,

C (Scala a plus), as well as scripting (JavaScript, Python, C shells, etc.); serious experience in industrial software

research protoping. Duties: in charge of setting up and maintaining the project’s web site; AWOL software tools

(e.g., GUI, cloud access, etc.); software modules’ cohesiveness; adherence to standards; general software (all 4

tracks). (Duration: 20 quarters)

PhDs Four PhD’s positions: one per track.

• PhD Topic 1 Formal design and sepcification of the HO•O•T knowledge representation and automated rea-

soning system, including an OWL-to-HO•O•T front-end compiler—Track T1. (Duration 12 quarters)

• PhD Topic 2 Formal design and implementation of a Scala-based concurrent architecture for HO•O•T , with

a Scala/SPARQL interface and approximated reasoning libraries—Track T2. (Duration 12 quarters)

• PhD Topic 3 Experimental design and investigation of a backend compilation scheme and concurrency

protocols from the HO•O•T ’s Scala backend to a distributed file system (BLINK, or other)—Track T3.

(Duration 12 quarters)

• PhD Topic 4 Design and development of a comprehensive HO•O•T demonstration platform on actual

benchmarks—Track T4 (Duration 12 quarters)

MSc interns Four MSc positions: one per track.

• MSc Topic 1 Realization and testing of a high-performance Scala library for partial-order encoding, in-

cluding, but not only, bit-vector encoding; code modulation; incremental encoding—Track T1. (Duration

4 quarters)

• MSc Topic 2 Realization and testing of a knowledge-enhanced HO•O•T /SPARQL interface for high-perfor-

mance intelligent Big Linked Data processing—Track T2. (Duration 4 quarters)

• MSc Topic 3 Experimental investigation of a backend compilation scheme and concurrency protocols for

HO•O•T to a distributed file system (from Scala to BLINK, or similar distributed file system)—Track T3.

(Duration 4 quarters)

• MSc Topic 4 Contribution to the HO•O•T demonstration platform on actual cloud benchmarks—Track T4.

(Duration 4 quarters)

Other necessary resources

• Travel—estimated national/international travel (conferences, meetings, scientific guests), for 7 persons

(project members or visitors) per year.

• Other consumables—extra memory per laptop/desktop for all project members.

• Other goods and services—organization of 3 scientific meetings over the course of 5 years.

42In French: “ingénieur de recherche” ideally member of “Corps des Mines” or similar excellence.
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• Subcontracting—access to cloud network platforms for experimentation with distributed ontological pro-

cessing over distributed triplestores.

Potential collaborations

The AWOL system will benefit from potential research collaborations with prominent international figures.

No remuneration or other compensation is envisaged for such collaborations. The persons listed below are all

esteemed peers, senior figures in their field. Each has agreed on the principle to contribute a small amount of their

time to collaborate with the AWOL project in the form of student co-supervision or internship on specific topics

as appropriate.

• Pat Lincoln, SRI International—I have known Pat Lincoln, now Director of SRI International’s CS Lab,

since he was part of the research project that I led at MCC, in Austin, TX, in the late 1980’s. He has since

made quite a name for himself in a varied array of advanced Computer Science research areas—viz., AI,

computational biology, and cyber-security. He was one of the original implementers of the first ever version

of LIFE at MCC.

• Manuel Hermenegildo, Universidad Politécnica de Madrid—A former colleague of mine at MCC, in

Austin, TX, Manuel Hermenegildo, is now a Professor at the Universidad Politécnica de Madrid (UPM), as

well as founder and director of the IMDEA Software Institute, also in Madrid. He is considered among the

foremost aficionados in parallel constraint logic programming. He is the principal designer and mastermind

of the CIAO CLP programming system at UPM’s CLIP Lab, a research group he created in, and has headed

since, the late 1990’s. Among many of Manuel’s original ideas, CIAO also integrates some ideas from

LIFE .

• Peter Van Roy, Université Catholique de Louvain—Peter Van Roy is a former member of the LIFE
development team at Digital PRL. He is now a Professor at the Université Catholique de Louvain (UCL).

He has been a major contributor to the theory and practice of Concurrent Constraint Programming and

is now a prominent figure in the field. His work on the Mozart constraint programming system is highly

regarded, and borrowed several key ideas from our previous common work on LIFE . Lately, his interests

have grown to address similar concerns as some expressed in this proposal.

• Gopalan Nadathur, University of Minnesota—Gopalan Nadathur is a professor in the department of

Computer Science and Engineering at the University of Minnesota. He is one of the early designers of the

higher-order logic programming language λProlog, and the main designer of its Teyjus implementation.

He is quite familiar with my work, and LIFE in particular. We have known each other since we were both

doing our PhDs at the University of Pennsylvania.

Conclusion

I have presented the technical context and methodology I am proposing for the AWOL project. I believe that

what I am proposing is a bold and ambitious challenge—and, as well, a maverick’s pursuit. Because of its defiant

nature,43 this proposal is a radical departure from mainstream research and development of a truly semantic web.

In this regard, it is admittedly a “high-risk” proposal. However, it is also definitely a “high-gain” endeavor as

well if successful. Confidence that it is feasible comes, first of all, from my own experience having designed

and overseen the many years of internationally recognized high-quality research and development efforts that led

to the LIFE constraint-logic programming language. I am also and especially comforted by the encouraging

experimental results obtained in the course of the ANR Chair of Excellence CEDAR project in distributed onto-

logical reasoning. Finally, by enabling constraint-driven reasoning such as described in this proposal, I trust my

capacity to show the world that expressing knowledge with HO•O•T on a BLINK distributed system can process

net-aware ontologies much more efficiently and scalably than any OWL may hope to. The expected result is a

highly performant and scalable Alternative Web Ontology Language.

43Essentially, my saying that the vast majority of current Semantic Web reasoners following the same non-scalable and unduly compli-

cated Description-Logic gospel is a serious technological mistake.
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versité Claude Bernard Lyon 1, Villeurbanne, France, October

2014.
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