
Logic Programming with Functions over Order-Sorted
Feature Terms

Hassan ATt-Kaci and Andreas Podelski

Digital F-xluipment Corporation, Paris Research Laboratory
85, avenue Victor Hugo, 92500 Rueil-Malmaison, France

{hak, podelski}@prl .dec.com

Abst rac t , LIFE is an experimental programming language proposing to integrate
logic programming, functional programming, and object-oriented programming. It
replaces first-order terms with ~.b-tenns, data structures which allow computing with
partial information, These are approximation structures denoting sets of values. LIFE
further enriches the expressiveness of ~b-terms with functional dependency con-
straints. Whereas LIFE's relations defined as Horn-clauses use ~b-term unification for
parameter-passing, LIFE's functions use ~b-term matching (i.e., one-way unification).
We explain the meaning and use of functions in LIFE declaratively as solving partial
information constraints. These constraints do not attempt to generate their solutions
but behave as demons filtering out anything else. In this manner, LIFE functions act
as declarative coroutines.

The paradox of euhure is that language [..] is too linear, not comprehensive enough,
too slow. too limited, too eons~aincd, too unnatural, too much a product of its own
evolutlon,aml too artificial, This means that [manI must constandy keep in mind the
limitations language platen upon him,

Enw~a~ T. l.ht.L, Ile~ondCultut~.

1 Introduction

This paper is an informal, albeit precise and detailed, overview of the operational mechanism
underlying functional reduction in the context of a logic programming framework. It is
formulated using order-sorted feature terms as data structures seen as constraints. This
mechanism and data structure are used in the language LIFE [5].

1.1 Tile task

LIFE extends the computational paradigm of Logic Programming in two essential ways:

�9 by using a data structure richer than that provided by first-order constructor terms; and,
�9 by allowing interpretable functional expressions as bonafide terms.

The first extension is based on ~b-terms which are attributed partially-ordered sorts denoting
sets of objects [I, 2]. In particular, ~b-terms generalize first-order constructor terms in their
rOle as data structures in that they ~u'e endowed with a unification operation denoting type
intersection. This gives ant elegant means to incorporate a calculus of multiple inheritance
into symbolic programming. Importantly, the denotation-as-value of constructor terms is

101

replaced by the denotation-as-approximation of ~b-terms. A consequence of this is that the
notion of fully defined element, or ground term, is no longer available. Hence, such familiar
tools as variable substitutions, instantiation, unification, etc., must be reformulated in the
new setting [5].

The second extension deals with building into the unification operation a means to
reduce functional expressions using definitions or interpretable symbols over data patterns. I
Our basic idea is that unification is no longer seen as an atomic operation by the resolution
rule. Indeed, since unification amounts to normalizing a conjunction of equations, and since
this normalization process commutes with resolution, these equations may be left in a
normal form that is not a fully solved form. in particular, i fan equation involves a functional
expression whose arguments are not sufficiently instantiated to match a defmiens of the
function in question, it is simply left untouched. Resolution may proceed until the arguments
are proven to match a definition from the accumulated constraints in the context [3]. This
simple idea turns out invaluable in practice. Here are a few benefits.

�9 Such non-declarative heresies as the is predicate in Proiog and the freeze recta-predicate
in some of its extensions [14, 10] are not needed.

�9 Functional computations ~u'e determinate and do not incur the overhead of the search
strategy needexl by logic programming.

�9 Higher-order functions are easy to return or pass as arguments since functional variables
can be bound to partially appliexl functions.'

�9 Functions can be calleai before the arguments are known, freeing the programmer from
having to know what the data dependencies are.

�9 It provides a [x)werful search-space pruning facility by changing "generate-and-test"
search into demon-controlled "test-and-generate" search.

�9 Communication with the external world is made simple and clean [9].
�9 More generally, it allows concurrent computation. Synchronization is obtained by

checking entaihnent [13, 151.

There are two orthogonal dimensions to elucidate regarding the use of functions in
LIFE:

�9 characterizing functions as approximation-driven coroutines; and,
�9 constructing a higher-order model of LIFE approximation structures.

This present article is concerned only with the first item, and therefore considers the case of
first-order rules defining partial functions over ~,-terms.

1.2 The method

The most direct way to explain the issue is with an example. In LIFE, one can define
functions as usual; say:

f a c l (O) --, I.
f a c t (N : int) --~ N , f a c t (N - 1).

I Several paucrns specifying a same function may possibly have overlapping denotations and
therefore tfie order of the specified patterns define an implicit priority, as is usual in functional
programming using first-order patterns (e.g., [121).

102

More interesting is the possibility to compute with partial information. For example:

minu~(negint) ---, posint.
minus(posint) ---, negint.
minus(zero) ---* zero.

Let us assume that the symbols int, posint, negint, and zero have been defined as sorts
with the approximation ordering such that posint, zero, negint are pairwise incompatible
subsorts of the sort int (i.e., posint A zero = _1., negint A zero = .L, posint A negint = .L).
This is declared in LIFE as int := {posint; zero; negint}. Furthermore, we assume the sort
definition posint := {posodd; poseven} ; i.e., posodd and poseven are subsorts of posint and
mutually incompatible.

The LIFE query Y = minus(X : poseven)? ~wiii return Y = negint. The sortposeven of
the actual paraaneter is incompatible with the sort negint of the formal parameter of the first
rule defining the function minus. Therefore, that rule is skipped. The sort poseven is more
specific than the sort posint of the formal parameter of the second rule. Hence, that rule is
applicable and yields the result Y = negint.

The LIFE query Y = minus(X : .~'tring) will fail. Indeed, the sort string is incompatible
with the sort of the formal p~wameter of every rule defining minus.

Thus, in order to determine which of the rules, if any, defining the function in a given
functional expression will be applied, two tests are necessary:

�9 verify whether the actual parameter is more specific than or equal to the formal
parameter;

�9 verify whether the actual parameter is at all compatible with the formal parameter.

What happens if both of these tests fail? Consider the query consisting of the conjunction:

Y = minus(g :int), X = minus(zero)?

for example. Like Prolog, LIFE follows a left-to-right resolution strategy and examines the
equation Y = minus(X : int) first. However, both foregoing tests fail and deciding which
rule to use among those defining minus is inconclusive. Indeed, the sort int of the actual
parameter in that cgdi is neither more specific than, nor incompatible with, the sort negint of
the first rule's formal parameter. Therelore, the function call will residuate on the variable
X. This means that the functional evaluation is suspended pending more information on X.
The second goal in the query is treated next. There, it is found that the actual parameter is
incompatible with the first two rules and is the same as the last rule's. This allows reduction
and binds X to zero. At this point, X has been instantiated and therefore the residual equation
pending on X can be reexamined. Again, as before, a redex is found for the last rule and
yields Y = zero.

The two tests above can in fact be worded in a more general setting. Viewing data
structures as constmints,"more specific" is simply a particular case of constraint entailment.
We will say that a constraint disentails another whenever their conjunction is unsatisfiable;
or, equivalently, whenever it enlzuls its negation. In particular, first-order matching is
deciding entailment between constraints consisting of equations over first-order terms.
Similarly, deciding unifiability of first-order terms amounts to deciding "compatibility" in
the sense used informally above.

The suspension/resumpticm mechanism illustrated in our example is repeated each time
a residuated actual parameter becomes more instantiated from the context; i.e., solving

103

other parts of the query. Therefore, it is most beneficial for a practical algorithm testing
entaihnent and disentaihnent to be incremental. This means that, upon resumption, the test
for the instantiated actual parameter builds upon partial results obtained by the previous
test. One outcome of the results presented in this paper is that it is possible to build
such a test; namely, an algorithm deciding simultaneously two problems in an incremental
manner---entailment and disentailment. The technique that we have devised to do that is
called relative simpliftcation of constraints.

This technique is relevant in the general framework of concurrent constraint logic
programming, represented by, e.g., the guarded Horn-clause scheme of Maher [13], Con-
current Constraint Programming (CCP) [15], and Kernel Andorra Prolog (KAP) [11]. These
schemes are parameterized with respect to an abstract class of constraint systems. An in-
cremental test for entailment and disentaiiment between constraints is needed for advanced
control mechanisms such as delaying, coroutining, synchronization, committed choice, and
deep constraint propagation. LIFE is formally an instance of this scheme, namely a CLP
language~using a constraint system based on order-sorted feature structures [6]. It employs
a related, but limited, suspension strategy to enforce deterministic functional application.
Roughly, these systems are concurrent thanks to a new effective discipline for procedure
parameter-passing that we could describe as "call-by-constraint-entailment" (as opposed to
Prolog's call-by-unification).

in this paper, we recall the basic terminology and notation of LIFE, unification and
matching, and we sketch the essence of relative simplification. Formal material rewording
everything in rigorous terms can be found in [[41. Nevertheless, in the final section we
include the formal version of the simplilication rules specifying the algorithms discussed
informally in this paper, and state the theoretical results proven in [4].

2 LIFE Data Structures

The data objects of LIFE are ~b-terms. They are structures built out of sorts and features. ~/,-
Terms are partially ordered as data descriptions to reflect more specific information content.
A ~b-term is said to match another one if it is a more specific description. For first-order
terms, a matching substitution is a variable binding which makes the more general term
equal to the more speciiic one. This notion is not appropriate here. Unification is introduced
as taking the grcatest lower bound (GLB) with respect to this ordering.

2.1 SnrLs and features

Sorts are symbols. They are meant to denote sets of values, Here are a few examples:
person, int, true, 3.5, _L, T. Note that a value is assimilated to a singleton sort. We call ,5
the set of all sorts. They come with a partial ordering <, meant to reflect set inclusion. 2 For
example,

�9 J_ < john < man < person < T;
�9 _L < true < bool <_ T;
�9 .L < 2 < poseven < int < T .

z Sorts and their relative ordcring arc specified by the user.

104

Fig. 1. A partial order of sorts

The sorts T (top) and _L (bottom) are respectively the greatest and the least sort in S and
denote respectively the whole domain of interpretation and the empty set.

Sorts also come with a GLB operation ^. For example,

�9 person A male : man;

�9 male A f e m a l e = hermaphrodite;

�9 man A w o m a n : _L;

etc., which can be visualized as shown in Figure 1. We will refer back to this figure in
several examples to come.

Fczltures (or attribute labels) are also symbols and used to build ~-terms by attaching
attributes to sorts. The set of feature syml• is called ~'. We will use words and natural
numbers as I~tures. The latter are handy to specify attributes by positions as subterms in
first-order terms. Examples of feature symbols are age, spouse , 1,2.

2.2 ~b-Terms

Basic ~-terms are the simplest form of @terms. They arc:

�9 variables; e.g., X, Y, Z, . . .

�9 sorts; e.g., person, int, true, 3.5, T, . . .
�9 tagged sorts; e.g., X : T , Y : person

Stand-alone variables are always implicitly sorted by T, and stand-alone sorts are always
implicitly tagged by some variable occurring nowhere else. Thus, one might say that a basic
@term is always of the Iorm variable : sort.

105

Features ~u'e used to build up more complex ~b-terms. Thus, the following g,-term is
obtained from the Xb-term person by attaching the feature age typed by the ~b-term int: 3

X : person(age ~ i : int).

The sort ~lt the root of a ~b-ter,n, here Person, is called its principal sort. A ~P-term
can be seen as a record structure. Features correspond to field identifiers, and fields are, in
turn, associatcxi to Xb-terms. These are flexible records in the sense that variably many fields
may be attached to the principal sort. For example, we can augment the Xb-term above with
another featttre:

X : person(age ~ I : int,
spouse =} Y : person(age =} J : int)).

This ~/,-ter m denotes the set of all objects X of sort person (in the intended domain), whose
value I under the function age is of sort int, whose value Y under the function spouse is of
sort person, and the value J of Y under the function age is of sort int.

The following ~-term is more specific, in the sense that the above set becomes smaller
if one further requires that the values / and J coincide; namely, age(X) = age(spouse(X)):

X : person(age ~ I : int,
spouse ~ Y : person(age ~ I)).

It denotes the subset of individuals in the previous set of person's whose age is the same
as their spouse's. This ~b-term uses a coreference thanks to sharing the variable/ . The next
~b-term is even more specific, since it contains an additional (circular) coreference; namely,
X = spouse(spouse(X)):

X : person(age ~ I : int,
spouse ~ Y : person(age ~ i,

spouse ~ X)).

It denotes the set of all individuals in the previous set whose spouse's spouse is the
individual in question. Note that only variables that are used as coreference tags need to he
put explicitly; i.e., those that occur at least twice.

To be well-formed, the syntax of a ~b-term requires three conditions to be satisfied:
(1) the sort _k may not occur; (2) at most one occurrence of each variable has a sort; (3) all
the features attached to a sort are pairwise different. These conditions are necessary to ensure
that a ~b-ter,n expresses coherent inlk)rmation. For example, X : man(friend ~ X : woman),
violating Condition (2), is not a ~b-term, but X : man(friend :=> X) is.

As for ordering, a ~-term is mt~:le more specific through:

�9 sort refinement; e.g., X : int < U : T;
�9 adding features typed by ~b-terms; e.g., X : T (age =~ int) < U : T;
�9 adding coreference; e.g., X : T(l ikes =~ X) < U : T(l ikes =} V).

Note that, as record structures, Xb-terms are both record types and record instances. They,
in addition, permit mixing type and value information. Finally, they also permit constraining
records with equations on their parts.

:5 To illustrate the Xb-term ordering, we will give a decreasing matching sequence of ~b-terms going
from more gener~d to more specifi c ones.

't Xl t Per'v~ t

spott~e

~vpo~r

106

name ,[X2 : id]

/
X~ :/d t X 5 : per.,;on [name m [

Fig; 2. An OSF-Gmph

2.3 ~b-Terms as graphs

There is a straightforward rcpresenU~tion of a ~b-term as a rooted directed graph. Let us
assume that every variable is explicitly sorted (if necessary, by the sort T) and every sort
is explicitly tagged (if necessary, by a single-occurrence variable). The nodes of the graph
are the variables, their labels are the corresponding sorts; for every feature mapping one
variable X to another one Y there is an arc (X, Y) labeled by that feature. One node is marked
as the root (whose label is called the root sort or the principal sort of the ~b-term).

For example, the ~b-term:

x1 : person(name ~ x2 : id(flrst ~ X3 : string,
last ~)(4 : string),

spouse ~ X5 : person(name ~ X6 : id(last ~ X4),
spouse ~ x~)).

corresponds to the OSF-graph shown in Figure 2.

2.4 ~ -Terms as values

One Imrticular interpreUltion is readily available Ibr ~b-tcrms. Namely, the syntactic interpre-
tation if" whose domain is the set of all ~b-terms. Note that ~b-tcrms have a dual personality.
They arc syntactic objects (graphs) representing the values of the domain of ~', and they
also arc types which denote sets. In the particular case of the intcrprctation ~, they denote
subsets of the domain of if'; i.e., sets of @terms. We shall see this dual view does not lead
to paradox, au contraire.

107

In the interpretation ~', a sort s E ,5 denotes the set of all ~-terms whose root sort is
a subsort of s. A feature t E .~" denotes the function mapping a @term to its sub-~b-term
under that feature, or to T, if there is none.

Thus, a sort denotes the set of all ~b-term values which, as ~b-term types, are more
specific than the basic ~b-term s. In fact, it is possible to show that in general a ~b-term
denotes the set of all ~b-terms which are more specific than the ~b-term itself. This is the
"@terms as filters" principle established in [5]. It yields directly the fact that the partial
ordering < on ~b-terms is exactly set-inclusion of the sets denoted by the ~-terms in the
~b-term domain.

2.5 Feature trees as values

We obtain two other examples of OSF-algebras when we "compress" the ~b-term domain by
identifying values, in ~ first step, we say that two ~b-terms which are equal up to variable
renaming represent the same value of the domain, or: two isomorphic graphs are identified.
We call the OSF-algebra hereby obtained ~0.

It is well known that a rooted directed graph represents a unique rational tree obtained
by unfolding. Hence, unfolding an OSF-graph yields what we call a feature tree. Such a
tree is one whose nodes are labeled with sorts and whose edges are labeled with features.
Therefore, we can also identify ~b-terms which represent the same rational tree. The domain
hereby obtained is essentially the feature tree structure 7" introduced first in [7] and [8].

2.6 Unification o1' ~b-terms

We say that ~bl is unifiable with ~b2 if ~bj ^ ~b2 ~ _L; i.e., if there exist ~b-terms with
non-empty denotations which are more specific than both ~bt and ~b~. One can ~ show that
then there exists a unique (up to variable renaming) ~b-term ~b which is the most general of
all these, the 'greatest lower bound' (GLB) of~bl and ~b2, written ~ = ~bl ^ ~b2.

For the set denotation of ~b-terms, ^ is exactly set intersection. An important result
illustrating the significance of the ~b-term interpretation ~ is that ~bz is unifiable with ~bz if
and only if the intersection of the two sets denoted by ~bl and ~b2 in the @term domain is
non-empty.

2.7 Constraints and ~b-terms

We also view a ~b-term logically as a constraint formula by Ilattening it into what we call its
dissolved form. For ease of notation, we shall write (X : ~b) to indicate that the root variable
of the @term ~b is X.

More precisely, the ~b-term X : s(tl ~ (Xl : ~b=), . . . , t , =~ (X, : ~b,)) corresponds to
the conjunction of the constraint X : s & X.g~ - Xl & X.t, - X, and of the constraints
corresponding to ~bl, . . . , ~b,. A basic ~b-term X : s corresponds to the sort constraint X : s.
For example, the ~b-term:

=_ X : person(likes ~ X,
age ~ Y : int)

is identified with the constraint:

108

~b = X : p e r s o n & X . a g e - Y & Y : in t & X . l i k e s - X .

Thus, the constraint ~b is a conjunction of atomic sort constraints of the form X : s and
atomic fea~ture constraints of the form X.t - Y. The interpretation of the sort and feature
constraints over the intended domain is straightlbrward, given that sorts are interpreted as
subsets of the clomain and features as unary functions over the domain.

A value lies in the set denoted by the ~b-term ~b in an interpretation2" if and only if the
constraint X - Z & ~b is satisfiable in the interpretation ~, with that value assigned to the
variable X, and Z being the root variable of ~b. All v=u'iables of ~b are implicitly existentially
quantified. This rellects our view of ~b-terms as set-denoting types.

2.8 Rules fl)r Unilicalion

Unifying (Xn : ~bi) and (X2 : ~b2) amounts to deciding satisfiability of the conjunction
~bx & ,~2 & Xn - X2. Thus, the unification algorithm can be specified in terms of constraint
normalization rules. A constraint containing the conjunction over the line is rewritten into
an e q u i v a l e n t constraint by replacing this conjunction by the constraint under the line. We
only need four rules that are illustrated schematically on an example below. (Refer to the
sorts of Figure 1.)

Equality:

. . . X : p e r s o n & U : m a l e & U - X . . ,

. . . X : p e r s o n & X : m a l e & U - X . . .

Sorts:

. . . X : p e r s o n & X : m a l e . . .

. . . X : m a n . . .

Features:

. . . X . l i k e s - Y & X . l i k e s "-- V . . .

. . . X . l i k e s - Y & V - Y . . .

Clash:

. . . X:_L ...

_L

One can show that a constraint is satis[iable if and only if it is normalized to a constraint
different from the f a l s e constraint &. If we identify every constraint containing a sort
constraint of the form X : _1_ with t h e f a l s e constraint, we omit the the clash rule.

In particular, the ~-terms (Xl : ~l) and (X2 : ~b2) are unifiable if and only if
~s & ~b2 & Xl - X2 is normalized into a constraint ~b different from .1.. This constraint
~b corresponds, apart from its equalities (between variables), to the @term (unique up to
variable renaming) ~bt A ~b2.

3 Relative Simplification

We use the framework of first-order logic to transform the combined entaiimenUdisentail-
ment problem into one that can be solveAI by the relative simplification algorithm.

109

3.1 Matching and entailment

In the remainder of this paper, when considering the matching problem ~bl _< ~b2, we will
refer to ~bj as the actual parameter and its variables (named X, Y, Z, . . .) as global, and to ~b2
as the formal parameter and its variables (named U, VI W,. . .) as local.

In the Concurrent Constraint Logic Programming framework, the matching problem
generalizes to the entaihnent problem; namely, whether the actual constraint, also called
context, entails the fortnal constraint, also called guard [13, 15].

First observe that, for example, the first-order term tl = f (Z , f (Y , y)) matches the term
t2 = f (W , V), and that the implication:

VXVYVZ (X - f (Z , f (Y , Y)) ~ 3 U 3 V 3 W (X A U & U -- f (W , V)))

is valid. Generally, the term tl matches t2 (noted tl < t2) if and only the implication
X "- tl - , 3 U 3 V (X - U & U -:- t2) is valid, where V stands for all variables of t2. More
shortly, X - tl entails X - U & U =" t2.

Note, however, that there is an essential difference between ~b-term matching and first-
order term matching. For example, the term f (a , a) matches the terror(v, V). This is true
because first order terms denote individuals. This is no longer true in LIFE. For example,
the ~-terln X : f (1 ==~ Y : int, 2 ~ Z : int) does not match the ~b-term U : f (l ==r V, 2 ==r V)
as two occurrences of the same sort does not entail that the individuals in that sort be equal.
Therefore, X : s(l ==~ ~ba,2 :r ~b2) is less specific than the ~b-terln U : s(1 =r V,2 =r V)
only i f the root variables of ~bl and ~b2 are identical (or bound together).

This does not mean that values and operations on them are not available in LIFE. 4
What the above point illustrates is that to recognize that a sort is a fully determined value,
and hence to enforce identity of all its distinct occurrences, one needs this information
declared explicitly, in effect adding an axiom to the formalization of such sorts. So-declared
extensional sorts can then be treated accordingly thanks to an additional inference rule
(being a?ninimal non-bottom sort is not sufficient). Without this rule, however, equality of
distinct occurrences cannot be entailed and the behavior illustrated is the only correct one.
The point of this paper being independent if this issue, we shall omit this additional rule.

The fact that (X : ~bl) < (U : ~b2), i.e., tile Xb-term (X : ~,bi) matches the ~-term
(U : ~'2), translates into the fact that thecorresponding constraint X/'l entails the constraint
~2 & U - X. This means that the implication Xbt ---, 3U, V, W. . . ~b2 & U "-- X is valid.
Here, 3U, V, W. . . indicates that all local variables are existentially quantified. The global
variables ',we universally quantified.

3.2 Entailment of general constraints

We will now give a precise explanation of a fact which is well-known for c.onstructor terms.
An actual parameter t~ matches a formal parameter t2 if and only if the unification of the
two terms binds only variables ol't2, but no variable of 4. In other words, only local, but no
global, variables are instantiated,

4 Of course, one can use actual values of sort int, real, or string in expressions with their usual
operations as in most prngramming languages. In fact, LIFE provides the additional freedom to
write such expressions mixing actual values or their sort approximations ha, real, or string. Such
expressions are either solved by local propagation or residuate pending further refinements of the
non-value sorLq into wducs.

110

The unification of the term tl = f (Z , f (Y , Y)) and the term t2 = f (W , V) yields the
variable bindings W -- Z and V - f (Y , Y). On the other hand, the conjunction:

X - f (Z , f (Y , Y)) & U - X & U - f (W , V)

is equivalent to:

X - f (Z , f (V , Y)) & (U - X & V - f (Y , Y) & W "-" Z) ,

and the last part of this conjunction is valid if the local variables U, V, W are existentially
quantified.

This is the general principle which underlies the relative simplification algorithm.
Namely, the actual constraint qq entails xb2 & U - X if and only if the following holds.
Their conjunction ~bl & ~b2 & U - X is equivalent to the conjunction ~/,j & g,~ of the
actual constraint ~bl and a constraint ~b~ which is valid if existentially quantified over the
local variables. In our case, ~b~ will be a conjunctiOn of equalities binding local to global
variables. Formally,

~b, --, 3U, v, w , . . . ~2 & U -" X

if and only if there exists a Ibrmula ~b~ such that

(~bl & ~b2 & U - X) ,-, (~bl & ~b~) and ~ 3U, V, W . . . ~b~.

This statement is correct since validity of the implication ~bl ---, 3U ~bz & U - X is the
same as the validity of the equivalence (~b~ & (3U ~2 & U - X)) ,--, ~bl. This fact is
analogous to the fact that a set is the subset of another one if and only if it is equal to the
intersection of the two. The condition ~ 3U, V, W. . . ~b~ in the statement expresses that
~bl & (3U, V, W, . . . ~b~)is equivalent to ~bl.

3.3 Towar(Is relative simplification

Operationally, in order to show that (X : ~bl) < (U : ~b2) holds, it is sufficient to show that
the conjunction ~b~ & ~b2 & U -" X is equivalent to ~bl & ~b', where ~b~ is some constraint 2
which, existentially quantified over the variables of ~b2, is valid. In our case, again, ~k~ will
be a conjunction of equalities binding variables of ~b2 to variables of ~bl.

Therefore, in order to test (X : ~bl) < (U : ~b2), we will apply successively the unification
rules on the constraint ~bl & ~b2 & U - X if they do not modify ~s. We obtain three kinds of
transformations which are illustrated schematically below. (Refer to the sorts of Figure 1.)

Equality:

. . . X "--Y & U - X . . .

. . . X - Y & U - Y . . .

Sorts:

. . . X : man & U - X & U : person . . .

. . . X : m a n & U - X . . .

Features:

. . . X . l i k e s - Y & U & X & U . l i k e s - V . . .

. . . X . l i k e s - Y & U - X & V "-:- Y . . .

111

The equality rule is derived from the corresponding unification rule, which has to be
restricted to me• only the formal constraint. If the actual constraint contains an equality
between two global variables, then occurrences of one of them may be eliminated for the
other. A global variable is never eliminated for a local one.

The sort rule corresponds to two applications of unification rules, first the elimination of
the local by the global variable, and then the reduction of two sort constraints on the same
variable (here X : man & X : person) to one sort constraint (namely X : man ^ person) .
Clearly, if the "global sort" is a subsort of the "local sort" then this application does not
modify the global constraint. The feature rule works quite similarly.

For example, the rules above can be used to show that the ~-term:

~bt -= X : man(l ikes ~ Y : person, age ~ I : int)

matches the ~b-term:

~b2 =- .U : person(l ikes ~ V).

Namely, the constraint ~b= & ~b2 & U - X :

X : man & X . l i k e s - Y & Y : person & X . a g e - ! & l : int
& U : person & U.likes - V
& U - X

is normalized into:

X : man & X . l i k e s - Y & Y : person & X . a g e - I & I : int
& v - Y & U - X ;

that is,

~b~ & V - Y & U - X .

Clearly, 9 U 3 V (V - Y & U - X) is valid. Therefore, the constmint~bl entails theconstraint
~ b 2 & U - X.

3A Relative simplification for entailment

The rules above are such that ~bl & ~b rewrites to ~/'l & ~b~; i.e., the global constraint ~/'1
is not mc• by the simplification. In this case, we say that the constraint ~b simplifies
to ~ ' relatively to the actual constraint ~bl. In other words, ~bl acts as a context relatively
to which simplification of ~b is carried out. In general, this context formula may be any
formula. Hence, we can reformulate the rules above as relative-simplification rules. We use
the notation ~ I,/,I to mean that ~b is simplified into ~b' relatively to the context formula ~b.
Schematically,

Equality:

. . . U - X . . .
I . . . x - v . . . I

. . . U - - Y . . .

Sorts:

. . . U - X & U : person . . .
I . . . X : ,nan . , . l

. . . U - - X & . . .

112

Features:

. . . U - X & U . l i k e s - V . . .
I ... x.lit:es- Y ... I

. . . U - X & V - Y ' . . .

Using these rules, the constraint ~b2 = U - X & U : p e r s o n & U . l i k e s - V in the
previous example simplifies to ~b~ = U -'-- X & V - Y relatively to:

~bn =- X : m a n & X . l i ke s - Y & Y : p e r s o n & X . a g e - I & i : int.

l n v a r i a n c e o f re lat ive s impl i f i ca t ion is the following property. If ~, simplifies to ~b ~
relatively to if, then the conjunction of ~b with ff is equivalent to the conjunction of ~b ~ with
4,.

This invariance justifies the correctness of the relative simplification algorithm with
respect to entailment. Namely, if tb simplifies to ~b' relatively to ~ and ~b t consists only of
equations binding local variables, then ~b entails ~b.

Proof of completeness of the algorithm needs the assumption that the set .~" of features
is infinite. Note that exactly thanks to the infiniteness of ~" our framework accounts for
flexible records; i.e., the indefinite capacity of adding fields to records.

3.5 Relative simplilicalion for disentailment

If the result of the matching test ~bl < ~b2 is negative, i .e. , the actual constraint does not
entail the formal constraint, then we must know more; namely, whether the two terms are
non-unifiable. Non-unifiability is equivalent to the fact that the actual parameter will not
match the formal one even when further instantiated; e.g. , when further constraints are
atUlched as conjuncts. Logically, this amounts to saying that a context formula $ d i sen taUs

a guard constraint ~b if and only if the conjunction $ & ~b is unsatisfiable. In terms of
relative simpliIicatiou, ~ diseutails ~b if and only if ~b simplifies to the f a l s e constraint .L
relatively to ~.

For example, X : mal e is non-unifiable with U : w o m a n , s T h e constraint U :
w o m a n & U - X simplifies to _t_ relatively to the constraintX : male , since w o m a n A m a l e =

_L, using a rule of the form indicated below, and then the Clash rule.

Sorts:

. . . U - X & U : w o m a n . . .

. . . U - X & U : w o m a n A ma l e . . .
[. . . x : male . . .]

The following example shows that a sort clash cannot always be detected by comparing
sorts in the formal constraint one by one with sorts in the actual constraint; i .e. , one needs
several steps with intermediate sort intersections.

The ~-term Z : T (l i k e s ~ X : m a l e , f r i e n d ~ Y : f e m a l e) is non-unifiable with the ~-
term W : T (l i k e s ~ U : p e r s o n , f r i e n d ~ U) . The constraint ~b = X : m a l e & Y : f e m a l e

disentails the constraint ~b = U - X & U "-- Y & U : per son . Operationally, the constraint
~b simplifies to .1. relatively to the context r Here are the steps needed to determine this:

s Refer to the sorts of Figure 1.

113

. . . U - X & U - Y & U : person . . .

. . . U - X & U - Y & U : person A male . . .

. . . U - X & U - Y & U : man ^ f e m a l e . . .

_L

There is an issue regarding the enforcing of functionality of features in the simplification
of a constraint ~b relatively to a context r This may be explained as follows. Let us suppose
that two global variables X and Y become bound to the same local variable U. Then,

�9 the context ~b entails the constraint ~b only if ~b contains X - Y; and,
�9 the context ff disentails the constraint ~b if the same path of features starting from X and

Y, respectively, leads to variables X' and Y', respectively, whose sorts are incompatible.

There are essentially two cases, depending on whether a new local variable has to be
introduced or not. Each case is illustrated in the next two examples.

The ~b-ter,n: 6

= Z : T (l i k e s ~ X : T (a g e ~ II : poseven) ,

f r i e n d ~ Y : T (a g e ~ t2 : posodd))

is non-unifiable with the ~b-term:

~b - W : T (likes :r U,

f r i e n d ~ U)

That is, the constraint @ disentails the constraint ~b. Operationally, with the context ~b, the
constraint ~b simplifies, in a first step, to:

W - - Z & U A X & U - - Y .

Then, using the rule:

. . . U - X & U - Y . . .
[. . , X .agr "- I 1 & Y . a g e "- 12 . . .]

. . . U - X & U "- Y & . I "-ll & . l - 1 2 . . .

where .i is a new variable, to:

W " - - Z & U - X & U - Y & J - I 1 & . l - 1 2

and finally to .L, since the sorts o f l l and/2 (poseven and posodd) are incompatible.
The rules enforce the following property: a global variable is never bound to more

than one local variable. Therefore, if the variable X or the variable Y is already bound to a
local variable, no new local variable naust be introduced. This is illustrated by the second
example.

The ~b-term:

-- Z : T (l i k e s ~ X : T (a g e :~ Ii : poseven) ,
f r i e n d :~ Y : T (a g e =~ 12 : posodd) ,

age ~ i l)

We assume that poseven ^ posodd = _L.

114

is non-unifiable with the ~b-term:

~b = W : T(l ikes ~ U,
friena ~ U(age ~ .i),
age ~ J)

Operationally, with the context ~, the constraint ~b simplifies, in a first step, to:

W - Z & U - X & U - Y & J - i~.

Then, using the rule:

. . . U " - - X & U A y & j A It . . .
I . . . X . a g e "- I I & F ,a&e ".2. 12 . . .]

. . . U - X & U - Y & . l - ll & . l - 1 2 . . .

where J is a new variable, to:

W - Z & U - X & U - Y & J " - I ~ & J - 1 2

and finally to _L, Ibr the same reason as above.
In order to be complete with respect to disentaiiment, the algorithm must keep track

of all pairs of variables (X, Y) (X', Y') whose equality is induced by the binding of X
and Y to the same kx:al variable. That is, it must propagate equalities along features, In
our presentation, it will be conceptually sufficient to refer explicitly to the actual equalities
binding the global vm'iables to a common local variable. Practically, this can of course be
done more efficiently.

3.6

I f ~ b & U - X
applied further,

�9 ~ entails ~b

I= ~--,

Specifying the relative simplilication algorithm

simplilies to "~' relatively to ~b and no relative-simplification rule can be
then:

& U - X; formally,

3u, v,w (r "-x),

if and only if ~b t, with the variables of ~b existentially quantified, is valid; formally:

b 3U, V,W... ~'.
�9 qb disentails ~b & U - X; lbrmal ly:

r -~gU, V,W...(,I, & U -X),

i f and only i r ~ ' = .L.

This test is incremental. Namely, every relative simplification of the constraint ~ to
some constraint ~b' relatively to the context ~ is also a relative simplification relatively to
an incremented context ,;b & ,//, for any constraint r

Recapitulating, our original goal was a simultaneous test of matching and non-unifiability
for two given ~b-terms tb~ and ~b2. This test was recast as a test of entailment and disentaiiment
for the constraints to which the tb-terms dissolve. Namely, ifX and U are the root variables
of~bl and ~b2, respectively, the test whether tbl entails or disentails ~b2 & U - X.

In our setting, the entailment test succeeds if and only if ~ is a conjunction of matching
equations; i.e., of the Iorm tb~ -- U -- X & V -- Y & W "-- Z where the local variables
U, V, W are all different.

115

Feature Decomposition:

@ a U . t - V & U . t - W
(B O

@&u.t "--v&w "-v

Sort Intersection:

~ b & U : s & U : s '
03.2)

@&U:sA.~ ~

Variable Elimination:

03.3)
~ & u A v

, l , [v /u] a u - v

Inconsistent Sort:

@ax:•
(t3 4)

_L

Variable Clean-up:
@ & u - u

(B.5)
,p

CuE Var(,~)a,,a U r V

Fig.3. Basic Simplification

4 Siml}lification Rules

Wc givc now thc Ibrmal vcrsion of thc simplification rules specifying the algorithms
discusscd informally in this palx~r, and state the thcorctical results proven in [4]. Herc,
OSF-constraints arc conjunctions of atomic sort constraints of the form X : s, atomic
fcaturc constraints of the form X.l - Y, and equations X - Y. Their interpretations over
OSF-algcbras arc straightforward (r Section 2.7).

4.1 Unitication-Satisfiability

Thc first algorithm, called basic simplification, dctcrmines whether a constraint ~ is
consistcnt; i.e., if it is satisfiablc in somc OgF-aigcbra .A--and, thcrcforc, in particular in ~.
Unification of two ~b-tcrms re~luces to this problem.

Givcn an OgF-constraint ~, it can bc normalizcd by choosing non-dctcrministically and
applying any applicablc rulc among thc transformations rules shown in Figure 3 until none
applies. A rulc transforms thc numcrator into thc dcnominator. Thc cxpression r
sumds for thc formula obtained from r aftcr replacing all occurrcnces of Y by X.

116

Feature Decomposition:

~ b & U . l - V & U . l - W
(El)

& u . t - v & w - v

Relative Feature Decomposition:

~ b & U - X & U . s V
(F.2)

~b&U " - - X & V " - Y

Relative Feature Equality:

~ b & U - Xl & U " - - X 2 & V - YI
(F.3)

~b & U "--XI & U - X2 & V - Yi & V - }'2

Variable Introduction:

~b & U - X~ & U "- X2
(F.4)

~b & U "-'Xt & U - X 2 & V "-- h & V "-- }'2

if X . l - - Y E ~

if Xi.l - h E ~. Xz.l "- Y2 E
and V "-- Yz ~ ~b

ifX,.l - h E ~, X2.I - }'2 E
and Y, ~ Var(~b) and Y2 ~ Var(~b)
where V is a new variable

Fig. 4. Simplification relatively to ~b : Features

The rules of Figure 3 are solution-preserving (i.e., equivalence transformations), finite
terminating, and conlluent (modulo vtu'iable renaming).

The effectuality of the basic-simplification system is summed up in the following
statement:

Effectuality of hasic-simplification The constraint ~b is satisfiable if and only if
the normal form ~b' of ~b is different from the false constraint, i.e., ~b' ~ _L.

4.2 Matching-Entaihnent/I)isentaihnent

The next algorithm, called relative simplification, determines whether a consistent constraint
6b entails or disentails a constraint ~b which is the dissolved form of some ~b-term with root
variable U. Th.'lt is, it decides two problems simultaneously:

�9 the validity of the implication V2' (~b--, 3/./. (~b & U - X));
�9 the unsatisfiability of the conjunction q~ & ~ & U - X.

Matching of two ~b-tcrms reduces to the first of the two problems, non-unifiability to the
second.

The relative-simplification system for OSF-constraints is given by the rules in Figures 4,
5, anti 6. An OSF-c0nstraint ~b simplifies to ~b' relatively to ~b by a simplification rule p if
is an instance or p and the applicability condition (on ~ and on ~b) is satisfied. We say that
~b simplifies to ~b ~ relatively to q~ if it does so in a linite number of steps.

117

Relative Variable Elimination:

4 2 & U - X & V - X
(EO

~[u/v] & v - x & v - x

Equation Entailment:

~ & U ~ X & U ~ Y
(E.2)

r

i f v ~ Var(,l,), v - x r '1',
and U ~ V

if X = Y or if X - Y E ~.

Fig. 5. Sinnplifieati0n relatively to ~ : Equations

The relative-simplilication system preserves an important invariant property: the con-
junction ~ & ~, is equivalent to the conjunction ~ & ~b'. Again, the rules are finite
terminating, and confluent (modulo variable renaming).

A set of bindings Ui -" X~, i = 1 n is a functional binding ifall the variables Ui are
mutually distinct.

The effectuality of the relative-simplification system is summed up in the following
statement:

Effectuality of relative-simplilication The solved OSF-constraint ~ entails (resp.,
disentails) the OSF-constraint 3U. (U - X & ~b) if and only if the normal form ~b ~
of ~b & U - X relatively to ~ is a conjunction of equations making up a functional
binding (resp.. is the false constraint ~b ~ = I) .

5 Conclusion

We have presented informally the essence of LIFE that is relevant to functions and
explained the gist of our method for deciding incrementally entailment and disentailment
of constraints. We call this new technique relative simplification. Reading this paper will
provide an elaborate intuition of the technical details reported formally in [4]. There, we
expound the concept of relative simplification as a general proof-theoretic method for
proving guards in concurrent constraint logic languages using guarded rules. The specific
relative simplification rules for OSF-constraints are given and proven correct and complete.
Then, residuation is naturally explained using relative simplification. Finally, the operational
semantics of function reduction is shown to be congruent with the semantics of ~-terms as
approximation structures.

118

Sort Intersection:

~ b & U : s & U : d
(s.O

~k & U : s A .r

Sort Containment:

~ b & U - X & U : s
(S.2)

! b & U - X

Sort Refinement:

~ b & U - X & U : s
(s.3)

~ b & U - - X & U : s A . q

Relative Sort Intersection:

~ b & U - X & U - X'
(s .4)

~b & U "-X & U - X' & U : s A , q

Sort Inconsistency:

~k&U:_L
(s.5)

J_

if X : s ~ E ~, and s ~ < s

if X : s ~ E ~k, and s A s ~ < s

ifX : s e ~,X' :s ' E ~,
s A . ~ "~ < s , s A s ~ < s ~,

am/U : s" ~ ~b, for any sort s"

Fig. 6. Simplilication rclativcly to ~b : Sorts

119

References

1. Hassan A'it-Kaci. An a!gebraic sem:mtics approach to tile effective resolution of type equations.
Theoretical Computer Science, 45:293-351, 1986.

2. Hassan A'ft-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Prograrmning, 3:185-215, 1986.

3. Hassan Ai't-Kaei and Roger Nasr. Integrating logic and functional programming. Lisp and
Symbolic Computation, 2:51-89, 1989.

4. Hassan AYt-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRLRcsearch
Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueii-Malmaison, France,
June 1991. Revised, Novembre 1992.

5. Hassan AYt-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszyhski
and Martin Wirsing, editors, Proceedings of the 3rd International Symposium on Programming
Language bnplementation atul Logic Programming (Passau, Germany), pages 255-274. Springer-
Verlag, LNCS 528, August 1991

6. Hassan A'='t-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research Report 11,
Digital Equipment Corporation, Paris Research Laboratory, RueiI-Malmaison, France, 1991.
(Revised, October 1992; to appear in the Journal of Logic Programming).

7. Hassan AYt-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for
logic programlning with entailment. In Proceedings of the 5th International Conference on F~h
Generation Computer System.v, pages 1 O12-1022, Tokyo, Japan, June 1992.1COT.

8. Rolf Backofen and Gert Smolka. A complete and decidable feature theory. DFKI Research
Report RR-30-92, German Research Center for Artificial Intelligence, Saarbrileken, Germany,
1992.

9. Staffan Bonnier and Jan Maluszyfiski. Towards a clean amalgamation of logic programs with
external procedures. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Programming.
Proceedings of the 5th International Conference and Symposium, pages 311-326, Cambridge,
MA, 1988. MIT Press.

10. Alain Cohuerauer. Prok~g I1: Manuel de rEftrence et mod~le thtorique. Rapport technique,
Universit6 de Marseille, Groupe d'lntelligence Artificielle, Facult6 des Sciences de Luminy,
Marseille, France, March 1982.

11. Seif Haridi and Sverker Jansen. Kernel Andorra Prolog and its computation model. In David
H. D. Warren and IJeter Szeredi, editors, l_x~gic Programming,Proeeedings of the 7th international
Conference, pages 31--46, Cambrklge, MA, 1990. MIT Press.

12. Robert Harper, Robin Milner, and Mads Torte. The definition of standard M L - Version 2. Report
LFCS-88-62, University of Edinburgh, Edinburgh, UK, 1988.

13. Michael Maher. Logic semantics for a class of committed-choice programs. In Jean-Louis
Lassez, editor, Logic. Progrmmning, Proceedings of the Fourth International Conference, pages
858-876, Cambridge, MA, 1987. MtT Press.

14. Lee Naish. MU-Prolog 3.1db ReJbrence Manual. Computer Science Department, University of
Melbourne, Melbourne, Australia, May 1984.

15. Vijay Saraswat. Concurrent constraint programming. In Proceedings of the 7th Annual ACM
Symposium on Pruw.iples of Progrmnming Languages, pages 232-245. ACM, January 1990.

