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ABSTRACT

The purpose of this paper is to give an introduction
to a possibly wider generalization of the mathematical
framework of the theory of hierarchies and eigen value
analysis to the continuous case. Extensions and
generalization of expressions of eigen functions and
basic theorems on consistency are given. A conjecture
about what consistency and continuity mean is thus
drawn from a simple discussion about judgments.
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Introduction

The theory of hierarchies based on pairwise comparison matrices
gives a means to generate, through a process of decomposition into levels
of vectors of priorities, an overall priority vector whose elements (from
1 to N, say) are the final weights of the N co~ponents regarding the
top objective of the hierarchy. One can thus ask the question of using
a similar process when the decomposition can no longer be done into a
discrete set of components, but rather into a continuous interval of
components. To illustrate this, let us think of an objective whose
achievement depends on time -- different instants of the day, say. A
discrete decomposition could roughly be: [Morning, Midday, Evening, Night]
for example; and the pairwise comparison analysis would give a priority
vector of four components correspondi ng to the four moments. Now, we
can also consider a day as a continuous interval of time, every point of
which can be compared to any other. What was a pairwise comparison
matrix in a discrete model thus becomes the set of all the values of
these judgments, for any couple of instants of the day.

More generally, given an interval [a,b], we can as a first approach
assume that the judgments are defined by

J(s,t) (s,t) E [a,b] x [a,b],
wher-e J is a function of the two argumentss and t , points of the "e f tec t"

interval [a,b].
The properties of this function J are to translate the reciprocity

of the judgments and the scaling of the judgments. This is written as:
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J(S,t) • J(t;s) ;:1 2V(s,t) e: [a,b] (1)

o ~.~ .::. J(s,t) .::.a
a.

V(s,t) e: [a,b]2 (2 )

where a is the scale used for the judgments. (Note that for all t in
[a,b] J(t,t) ;:1).

Let us assume, for the moment, that the function J has all nice
properti es such as continuity; integra bi1ity, and so forth, with regard
to both arguments, and let w be the function. on [a,b] which shall be
the eigen function, solution of the integral equation:

b
f J(s,t)w(t)dt = ~ w(s)
a

(3)

and a normalization relation:

b
f w(t)dt;: 1
a

(4)

The integral equation (3) can be rewritten as:

b
w(s) ;:! K~(s,t)w(t)dt

a
(5 )

where
;: J(s,t)

A
(6)

The equation (5) is a particular case of the typical Fredholm's integral
equation
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b
a(s) ~(s) + f K(s,t) ~(t)dt = f(s)a (7)

in which the "right hand side would be the function identically null on
1[a~bJ. This type of equation has been studied and numerical methods

of resolution have been developed and are available. It is not of our
. present purpose to discuss this point here.2

\.' \Overall Prlorty Function
Similarly to the discrete case~ we are bound to consider a succession

of dominance levels in a hierarchy. Let us first recall some notation
and formulation in the discrete case in order to give the corresponding

Jgeneralization in the continous case.
We shall remember a discrete -- complete -- hierarchy to be a sequence

of n levels. A level i has Ni elements and therefore the ith level
priority vector Pi has Ni components and is expressed as

i' . T
P. = [Pl p~ ... P~.J
1 1

i=1~2~ ... ~n

Between two successive levels i and i+l~ is an eigen matrix, II. -who se
11

columns are the eigen vectors resulting from the impact of the higher ith
level upon its successor i+l-st level. The matrix II. has dimension

1

'As a=l~ the equation (5) is in fact a Fredholm integral equation of
the second kind.

2For more details, see [lJ and [2J, and all referred and abundant
literature in these books.
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Ni+l x Ni and a recurrent relation exists between the eigen matrices
and the priority vectors:

P. = II. 1 P. 11 1- 1-
1=1,2, ... ,n (8)

top objective

Level n

N, elements

N2 elements
Nn elements

Level 1
Level 2

Expanding the relation (8) to have the expression of a component of Pi
in terms of P. l' we get:

1-

N. 1i =1-
p. = ~

J k=l
j=1,2, ... ,Ni (9)

From (8) and (9), expanding now the recurrence we obtain the expression
of the overall priority vector P in terms of the first level eigenn _
vector:

·N N Nln-l n-2 n-l n-2 , pln ~ ~ ~p. = II. k II IIk k
1 k =1 k =1 k =1 1 1 k1 k2 n-2 n-1 kn_1

1 2 n-1 .
(10)

An interesting remark, here, is that the. expression (10) appears to be

the expression of a .tensor. 3

3It is in fact a degenerate tensor of order 1-- a hypo tensor. How-
ever, the importanttensorial properties (i .e., multi-linearity,
covariance, tensorial product, etc ... ) hold and it would be of interest
to establish the contravariance of the left eigen vector prority vector.

;
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Let us, now draw a generaTtzation to a continuous level hierarchy.

Thts ts, s:tnrtlarly, a sucesston of dominance levels, each. one oeing a

cont inuou s intervaJ ~ . the Hh.l evel ts an tnterva 1 fa.; bJ t say ~ We
.11

then can def lne for each level a priority function v , taki:ng values on1 .

[ai,biJ and normalized over [a1,b1J; that is,

b.
f 1 w.(t)dt = 1a. 1 .

1
;=1,2,. . .,n (11 )

Now, between two successive levels, i and i+l, a two argument eigen func-

tion that we shall call the "impact function" generalizes the cory-·

cept of the eigen matrices by a recurrent relation:

obviously equivalent to equation (9).

top objective

'a dtl bl
1evel 1 1 , I

1evel 2
a2 dt2 b2

I I

1eve l
an bnn

Acccrdtnql y , the expression (10)' becomes the expression of the over-

all pr ior-i ty tunct tcn: ,
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(13)

Moreover and to be com~te - if not elegant - , we can consider a
general mixed hierarchy both discrete and continuous, each level of which
being a sequence of finite intervals:

ith 1evel

and then the avera 11 priority vector of functions (actua 11s, a functi on
N N

from [O,lJ 1 to [O,lJ n) would be given by a combination of both (10)
and (13), and des¢ite its monstrosity4 is easily understandable.

Consistency - The Judgment Function
In the discrete case, the pairwise comparison matrix of judgments

is clearly illustrated5 by the "idea of comparisons of stone weights.
The concept af consistency then "is s"ignificantly "introduced and induces
a very elegant and solid mathematical framework supporting the various
and many appl icat ions of hier-ar chy and eigenvale analysis. It is observed

4Which is our reaSQn not to give it here explicitly!
5As presented in [3J. page 31.
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that , except fQr the case of Z-dimenS:l0nal matrices, real 1 ife (t.e.,
-

liias.e.d .anc suojectiye "exper-ts" judgments due to human uncapab il tty to
- -

. grQup as: a wEiole a complex and scat ter ed phenomenon}, pr-ovldes but in-

consistent matr tces., Al thouqh consistency as: a pure mathenat tcal concept

(as we shan see) is: nicely general lzed to the cont tnuous case , it

appears to be 11nked to continuity of judgments,

Definition 1: A reciprocal judgment function J defined over [a,b]2
is consistent when

J(s,t) = J(s,u) . J(u,t) V(s,t) E: [a,b]2 (14)

An alternative definition for consistency, easily
deduced as equivalent to definition 1, is:

Definition 2:
2

A reciprocal judgment function J defined over [a,b]
is consistent when

J(s,t) - w(s) \I(s,t) E: [a,b]2~ wrtT (15)

where w is a solution of equation (3).

The second 1S obtained from the t ir s t by noticing that the ratio ~~t~}
1"$ tndependent of u and we thus: can cle'ine'w( s) ~ J(s~u) to a mul ti-

t wrtT . J(t)u)

plicattve constant (equal to one by normalization). w(s) thus defined

cbv tous ly solves (3}. Ttle converse (i.e" Definition 2;?4~Definition 1)
.;:d>

is: tr-tv iel .
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TheQrem 1: If J i~ pos.itive ~nd consistent then

and
...·1J(s,t) ;::;JC ttS:)

Proof: From Definition 1 J(s)s) = '(~,s) . J(s,s) and hence
J(s,s} ::;1. Now J(s,s) = J(s,t) . Jet,s) implies

J(s,t) 1= -:-JJ ('--s ---',t-'-) Y s, t .

Theorem 2: If the reciprocal judgment function J is consistent)
then w(s) = J(s,t), VtE:[a,bJ, is a solution of
equation (3). This is trivially proved by substitution.

Corollary: If J is consistent, equations (3) and (4) are
simultaneously and uniquely solved by

J( s ,t)w( s) = ---'--'-~-
!~J(x,t)dx

The following theorem gives a nice extension
to Theorem 5 of [3J in both its statement and
its proof.

TheQrem 3: A reciprocal judgment function J defined over [a,bJ2
is.consi~tent if and only if ~ ::;b-a.

Proof; C:3)assume J is cons ts.tent, From equation (3) we have

. b 1 .w(s) ::;fa I J(s,t)w(t)dt

substituting under the integral sign, it comes
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w(s;}
b. b. 1 ---

;::, !Q. fa, 2 JCs.~t} JCt.u} wCu)du dt
II

oy De.ftntttQn 1~

b 1 - b-
w(s:) = f - w(s)dt = ~ wCS)- a A - A :. A = b-a

~Conversel y, from the express ion of A

A = fb J(s t) wet) dt
- a ' wesT

taking integral of both sides

lI(b-a) = fb fb J(s t) wet) dt ds = fb fb G(s,t)dt ds- aa 'WGT aa

where
G(s,t) = J(s,t) ~~;~

Inverting the integral signs in the second integral

_A(b-a) ~ -f~;;a. !~;;a G(s ~t) dtds + f~=a r ~=a G(s, t){·:~
.»

hence

Noting that
- - -1

G(s,t) = G(t,s) v (s,t)

) !

!
I
I
I
I
!
!
i
I
I
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it comes
, '1 b s· ' '1 .

A ~ Q._~ fSMa ft=~ [G(s~t) + GCs,t)Jdt ds

But
1x + - > 2x- *'Ix ER

hence,

A > _1_ Jb rS 2 dt ds = b-a, - b-a 's=a t=a

A attains its minimum value when, and only when

G(s,t) + G(:,t) attains its minimum 2. That is

, A = b-a )- G(s,t) + 1 .... 2 hence G(s,t) = 1G(s,t) ~
and J(s t) = w(s), ,WrtT Q.E.D.

Corollary: For any general reciprocal judgment function over [a ,b]2,
A > b-a.

Theorem 4: If J is positive and consistent, and if w is a
sQ1ution of equation (3) t~en J(s,t) ~ J(u,v) if and only if

/
I..

w(s) > w(u)
WCff _. WCVT

Proof: By De fi. n i.t i,Q n 2.

It ts expected ~ when we give judgments. that we try to be as
consistent as possible. The ideal case being attained for the most
consistent. In a matrix (discrete case) of judgments, if two elements
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to be compared o.re '1arely differentiable. \,lith respect to a same

ofijecttvet it is nat~ral to observe~ near co~ststency~ the same or

very close values' of tELeir comparisons ~fith the other elements. So,

tending to consi s tency and. making two' el ements: fie"" closer and closer

to each other w111 make a consistent judgment matrix tend toward a
,

limiting continuous judgment function. In o ther words, consistency

for a judgment function will correspond to conti nui ty of thi s function.

Nothing prevents us from being more accurate in our definitions

of consistency and we thus·can define:

1. Consistency at a point:
to Era,b] when J(s,to)

J is consistent at
~( to •u) = J ( s , u) V( s .u)

2. Consistency: J is consistent on [a,b] when
J ( S , t) . J ( t , u) = J ( s ,u ) V' ( s , t , u) e [C1-, t.,J3

Wethen coul d conjecture the fall owi ng theorem .

..flheorem: a reciprocal positive judgment function J~iS consistent
at to if and only if J is continuous at t. J, although
of two arguments, being reciprocal, has t e property
that it is continuous with respect to one argument if
and if it is continuous with respect to the other one.
This. comes. as a straight forward remark from (1) and (2),
and hence '(I,e can simply state IIJ eontinous at to" without
s:peci:fying ~Jhich argument. ..

Conc1 us ion

The idea of this. paper has no other meaning than pure theoretical

general tzat ion, No app l teat ion to any IIreal 1i fell (made-up or not)

probl em has: 5.een made yet, But it is not outrageous to think of an

example where judgments non~consistent if non-continuous -- could be
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expressed b.ya, judgr.,:;nt func tiOil, and ttlete.f~)'e,ana 1ys.i s being drawn
would gtve a. pt'i.Qri:t.r!dt~trifiutiQn at any point which is of real

___ t,;£.. t c:.. _
tnter-ast tor compute t tonal purposes, -..- -,

(~~
E~amples of Consistent Judgment Functions

for 0 < I kl < Lno.- b.-a
where 0. is the judgment scale. In this case, the eigen function is

w(s) =
k eks

kb kae e

b) ) _ f(s ) where such that 0 < f(t)Any J(s,t ~ fftT
'It e [a .b] and

Max f(t)
t s[a,b] < aMin f(t)
t s[a,b]

and
Mi.n f( t)

t da,b] 1
Max rm ;>--a

t s[a~b]
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