
BABEL : A Base for an Experimental Library

Hassan Ait-Kaci’, Roger Nasr’, Jungyun Scot*

*Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive, Austin, TX 78750, U.S.A.

**Artificial Intelligence Laboratory Taylor Hall 2.124)
The University of Texas, Austin, & X 78712, U.S.A.

This report discusses the implementation of a knowledge base for a library information
system. It is done using a typed logic programming language---LOGIN---where type
inheritance is built in. The knowledge base is structured in a hierarchical taxonomy of
library object classes where each class is represented in a FRAME style knowledge structure
and inherits the properties of its parents, and where infrastructural inference rules have been
established through typed Horn clauses. Also in this document, some programming
techniques aimed at using the power of inheritance as taxonomic inference are discussed.

1 Introcluction

The idea of attribute inheritance has been adopted by various programming languages. In
particular, so called object-oriented programn~ing Ianguages have shown that this idea can
be very practical in solving some knowledge rcprescntation problems. [Goldberg SO] [Stefik
833

Ait-Kaci and Nasr [Ait-Kaci 86a] have proposed a new programming language, LOGIN,
combining the idea of inheritance with logic programming. LOGIN replaces Prolog’s first-
order terms with v-terms which generalize first-or&r terms by allowing partially ordered
constructors. LOGIN uses the standard Prolog operational semantics---a computation
mechanism which implements natural deduction---with a VT-term unification algorithm
rather than an ordinary unification algorithm. It becomes natural to express fkzlne style
knowledge structures [Bobrow 771 [,Minsky 751 using \I!-terms in LOGIN. Furthermore, the
strategies of v-term unification provides efficient expressions of set theoretical operations.

This paper describes an experimcntnl library system called BABEL as a concreie
application written in LOGIN. 1 The motivation for this work is the need for testing the
design concepts of LOGIN, specifically showing ils uscfulncss as a knowIedge and database
language. We believe that our learning experience from the design and implementation of
practical applications is a necessary complement to our theoretical research.

‘BABEL: Authentique I3ibliothkque &rite en LQGIN.

Permission to copy without fee all part of this material is granted provided that the copies are not made or distri-
buted for direct commercial advantage, the ACM copyright notice and the title of the pubIication and its date
appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

C 1988 ACM O-89791-274-8 88 0600 0175 $ 1,50

-175-

Xrr its current state of design, IBABEL ccjnsists of four parts: the rransuction manager, the
query manager, the patural language inrl:rfacc, and the knowledge base. The transaction
manager keeps track of the li.brarian’s traditional duties: checking books in and out,
reminding borrowers of overdue materials, assessing fines, and reserving loaned books for
the next user. The query manager provkles the liblrary’s users with information normally
found in card catalogs. In BABEL, the query manager is an interactive query generator.
The query manager accepts user queries through menus and generates, the equivalent
LOGIN queries. The natural language interface accepts natura.l language queries and
generates equivalent LOGIN queries. 2 The knowledge base in 13ABEL consists of twal parts.
One is static and a representation of the 1ibrary”s structural information; the ot.her is
dynamic, a representation Of its aS,SCrCiol,!d iilfOrrJ~hxl. The structural representation is
formed by organizing library materials into a hierarchy of object cIasses where each class is
given a (type) definition. A set of such definitions constitutes a formal knowledge base as
defined in [Ait-Kaci 86bJ. The asscrrionui information is expressed in an order-sorted typed
Horn logic [Smolka 871, whose types are drawn from the knowledge base. Such logical
sentences, in the form of rules and facts (typed Morn clauses), are used to

l maintain time-dependent recor-ds---e.g., items on loan, on reserve, on shelf,
being retailed, etc.

5. express queries---e-g., itemize all library users holding MI overdue item.
The library’s cxrcnsional database (i.e., the object values) consists of the individual library
items and library users.

Although we introduce LOGIN briefly in Section 2, we shall assume for the most part
that the reader is familiar with logic programming. In Section 3, a quick point is made to
illustrate the LOGXN way of representing; some BABEL library object as opposed to the
Prolog way. In Section 4, our method of building a knowledge base for library information
using a hierarchical classification of library objects is presented. The transaction manager
and the query manager are described in Section 5. FinalIy, a brief conclusion speculating on
this experiment is drawn in Section 6.

2 LOGIN: an Overview

LOGIN [Ait-Kaci 86a] is an elaborati.on of Prolog. The main extension is its new
definition of temls which are arguments of literals. In first-order logic, a liferal is of the
form: p(t1 ,...,tn) where p is a predicate synlbol, and the ti’s are (functional) first-order terms.
LOGIN extends the first-order terms of Prolog into partially ordered (first-order) type
structures called v-terms. A v-term denotes a class of objects. Unification of w-terms
denotes class intersection. The least specific class (the universe) is the Iargest type T, and
the over-specified class (the empty set) is the smallest (uninhabited) type.L.

Informally, a v-term consists of:
1. A root symbol which is a type consu-uctor and denotes a class of objects.

2. Attributes, label and value pairs, which are record fields. Each label is
associated with a sub-Iv-term as a value for the label. The sub-v-term can be a
constuctor, a typed variable called tag, or a !y-term.

An example of a v-term is:

book(title => string,
author => name(fname => X: string,

lname => X),
call number => lc number,
pub-Zate => date(dIaay => integer,

month => monthname,
year => i.nteger) ,

isbn => string)

-176-

The root symbol is hnoks---a type constructor--- which shows the class that this (xl'-term)
type expression denotes. It has five sub-yr-terms under the attribute labels title, autlzor,
cali rturnber, pub-dare, and is/m. This yr-terms dcnotcs a class of books whose authors
h&the same first and last names, e.g., Allen Allcu.

Each class inherits the attributes of its parents in the class hierarchy---i.e., if a class c has
a subclass d, d inherits all of e’s attributes. For example, we can define an ordering between
the two type symboIs (denoting classes) lihrury-~?tLzccriczf and books as follows. Given a
definition of library-marcriaf3 with its attributes and their types (no root symbol means T),

library_material = (title => string,
author => name,
call number => lc_rzumber,
pub_date => date).

name = (fname => string,
lname => string).

date = (day => integer,
month => monthname,
year => integer).

we can define hooks as:

books = library-material(isbn => string).

which is the salne as:

books = library-material(title => string,
author => name,
call-number => lc number,
pub-date => date,-
isbn => string).

We call books a subtype (subclass) of lihrary-lttaterial. This definition of DO&X can be read
as “&oczks is a subset of li&rury~rnatm-iczl and has one more attribute---ISBN (International
Standard Book Number)",

Figure 1: A Type Hierarchy with Multiple Inheritance

Given a partialIy ordered type hierarchy, we can irnplcment ;I generalized unification
algorithm between v-terms, interpreted 2h.s set interseclion. The following illustrates the
v-term UI Ii Ication algorithm [Ait-Kaci $%a]. Given a type hierarchy in Figure 2, unifying f
the yr- term:

book(title => X,
author => (lname =:> ‘Winston”),
call-number => Y)

and the W-term:
ai-matcrial(titLe q => 2,

author => (fnacue => W),
pub-date => (year => 1985))

results in the y-term:

ai-book(titIe => X,
author =r (fname =z= W,

lname :=> ‘Winston’),
call-number => Y,
pub-date =z= (year => 1985))

Unifying these two ~-terms---books and ai-material---become ai-books. This is
precisely the intersection of two sets, the set of all Al. material and the set of all books (in the
library), which results in the set of all AI books. As illustrated in above example, the set of
the attributes in a resulting v-term from t:he unification of two v-terms is the same as the
union: of attributes in the two v-temls. Taking a union of attributes imposes more
restrictions on the resulting v-term. Restricting a yl-term by assigning constraints (vaIues)
to attributes thus specifies a subset of a set. For example, the v-term

book(au thor => (lname => ‘Winston ‘))

denotes books written by Winston, a subset of all books.

Informal description of v-term unification algorithm is:4 unification of two W-terms fails
if the root symboIs---type constructors---are not unifiable in partialIy ordered type hierarchy,
or the two v-terms have at least one same attribute label but with values which are not
v-term unifiable. Otherwise the unification succeeds.

In LOGIN, one can explicitly define a disjunctive class, which is not allowed in other
frame representation languages [Bobrow 7’71 [Goldstein 771. For example, we can redefine
a v-term date as

date = (day => integer,
month => (integer ; monthname),
year => integer).

monthname = (‘Jan’; ‘Feb’; ‘Ma.r’; ‘Apr’; ‘May’; ‘Jun’;
‘Jul’; ‘Aug’; ‘Sep’; ‘Ott’; ‘Nov’; ‘Dee’).

It means that the attribute month can have a value of type integer or monthnamc, and any
of the twelve character strings can be a valid value of type monthname.

Again, LOGIN is simply Prolog where first-order terms are replaced by W-terms. Thus,
LOGIN uses the standard Prolog operational semantics (SLD-resolution) with a v-term
unification algorithm rather than an ordinary unification algorithm (order-sorted SLD-
resolution [Smolka 871.)

Since ordinary first-order terms in Prolog can be represented as v-terms, LOGIN is more
expressive than Prolog, and subsumes it. For example, an ordinary term in Prolog
f(a,g(b,X)) is equivalently rzpresented in LOGIN as the (v-term} :

f(I => a,
2 => g(1 => b,

2 => X))

--178-

where the function symbols, f and g, in ordinary terms become type symbols in v-terms.
Unlike Prolog, the arity and the order of arguments (attributes) in y-terms are transparent to
the user, in the sense that one may specify only subsets of them, and in any ordcr.5

3 Knowleclge Reprcscntation in LOGIN

Let us consider an example. A record for a book in the library database such as

Call Number : QA76.65 b77
Title : The Handbook of Artificial Intelligence
Author : Avron Barr, Edward A. Feigenbaum
Subject : Artificial Intelligence

can be represented in Prolog as, say,

library-item(type(book),
title(‘The hand book of artificial intelligence’),
author([‘ Avron Barr’, ‘Edward A. Feigenbaum’]),
call-number(‘QA76.65 b77’),
subject(artificial-intelligence)).

Given this data, a user query such as:

“Shw computer science books written by Edward A. Feigenbaum”

which would be expressed formally in Prolog as

query :-
library-item(type(book),

title(X),
author(Author-list),
-,
subject(computer-science)),

member(‘Edward A. Feigenbaum’,
Author-list),

show(X).

would not succeed. The query fails because subjccr(arrificial infelfigence) cannot be unified
with subject(computer scicncc) in Prolog.
simple deduction like ;’

In an intelligent library information system, a
sirlce Artificial Intelligence (AI) is one area of Compurer Science

(CS), ail items in the AI area would be regarded as items in rite CS area.” is taken as an
inference step.

In LOGIN, the same data may be represented as

artificial_inteIligence c computer-science.
/* define hierarchy between two terms */

bIO1 = book(title => ‘The Handbook of Artificial Intelligence’,
author => ((fname => ‘Avron’.

lname => ‘Barr’) ;
(fname => ‘Edward’,
mname => ‘A.‘,
lname => ‘Feigenbaum’)),

call_number => ‘QA76.65 b77’,
SubJect => artificial_intelligenCe).

library-item(blO1).

So, the query:

4S~~ [Ait-Kaci 864 for rigorous definitions and algorithms
5As a synmctic sugar, LOGIN also supports positional terms in Prolog. i.c..f(a.g(b)X) andf(a,g(D),num =>

X) arc all valid v-terms. In this cast, arguments which have no lab& are scnsitivc to tic or&r.

-I79-

query :-
library-item(book(author =-> (Iname =:r ‘Feigenbaum’),

subject q =:.p computer-science,
title => X’r),

show(X).

will succeed with X = ‘The Handbook of Artificial Intelligence’. Since
artiJicial_intelligence is declared as a subtype of computer--science, artificial’-intelligence
can be v-term unifiable with computer-,rcience. Furth~ermore, the disjunctive definlition for
the value of the attribute aurh~r make it possible to succeeds to get an answer in unification
phase, not using inference step. Note that even though the query carries only the first name
of the author, it succeeds to get an answer. This makes it possible to handle an incomplete
query.

Note that number and order of arguments are transparent to the unification of two
v-terms. Also, the reader may wonder why library~item is an assertional predicate rather
that a structural type in the knowledge base like fibrury_material. The reason is that the
latter records static immutable informat.ion pertaining to the structure of a library object,
while the former is needed as a handle to access the actual library records. Representation in
current BABEL of a record’s dynamic .states (e.g., on loan, on shelf, or current borrower,
date due, etc.) will be discussed in Section 4.2.

Naturally, the problem can be solved in Prolog, but it requires more rules and facts in the
inference system, such as:

is-a(X, -) :- var(X), /* to prevent infinite loop */
fail, !.

is-a(X, X).
is-a(X, Y) :- is-a(X, Z),

is-a(Z, Y)-
is-a(artificial-intelligence, computer-science).

We contend that, although semanticahy equivalent, the solution in Prolog is
pragmatically inferior to that of L0GI.N for the following reasons. First, in Prolog, the
number and the order of arguments are not transparent to the programmer, noticeably losing
perspicuity. Second, it is more desirable to express information into the type language (the
partially-ordered knowledge base), whereby realizing a more restricted logic---albeit more
efficiently---leaving to the more general and consequently less efficient deduction system
only the tasks which require its differential power. In addition, this saves precious
backtracking steps (this will be discussed in Section 4.2.)

4 KnowIedge Base of BABEL

‘We now discuss the implementation of BABEL’s knowledge base. The ordering
smrcture of the knowledge base is set inclusion (is-a) between object classes. Each class is
comprised of objects sharing certain chau:acteristics. This is the representation of structural
library information. For example the class denoted by books is the ctass of all books. The
type cs-material is a class of all materials in computer science. Items in c:s-material can be
books, theses, technical reports, microfilms, periodicals, or proceedings in computer science.

‘We can easily come up with a new class by combining two classes to make a more
restricted class. For example, we can define a new object class, cs-books, which is the class
of all computer science books by taking an intersection of the two classes hooks and
cs-material. We call this new class a subclass of both books and cs material---indeed, the
greatest such class. At the same time, these two classes are &led super classes of
cs-books.

Each class may have arbitrarily many attributes represented as label-value pairs. A value
can be a specific ground value or a typed./untyped variable. These attributes are inherited by
lower classes. For example, the class cs_mareriuZ has an attribute su6jecr with the value
computer-science. Since cs-books is a subclass of’ cs-material, the attribute subject and the

--180-

value computer-science are inherited by cs-books. Since the inheritance operation is type
unification and denotes set intersection, the value of an attribute in a subclass takes priority
over an inherited value of the same attribute.

In addition to object class hierarchies, BABEL maintains several conceptual term
hierarchies in its knowledge base. Operationally and semantically there is no difference
between the two, but the purpose of a conceptual hierarchy is different from that of an object
hierarchy. For example, cs books has an attribute with label subject and value
computer-science. The class acbooks, a subclass of cs-books, also has the same attribute,
subject, but has a different value, artij5cial~intelIigence. Since ai-books is a subtype of
cs-books, artificial intelligence should be a subtype of computer science. Therefore, -
artifciai-inteLligence is classified as a subclass of computer science & the conceptual term
hierarchy of subjects. It does not describe a class of physicacobjects but rather a conceptual
relationship between subjects.

4.1 Classes in tile Knowledge Base

In this section, we examine the relationships among the different classes in the
knowledge base.

The highest class in BABEL’s physical library object taxonomy, library material,
encompasses all the library’s contents. Each item in the library is then classified by its
physical description---book, magazine, film, etc.---and aIso by subject--- (philosophy, social
science, pure science, etc.

4.1.1 Classification by Physical Description

According to[Gorman 781, one possible taxonomy of library nlateriai by physica[
description is as follows:

l printed monograph: printed materials including books, panlphlets, arlicles, and

printed sheets. Subclasses include monograph and pamphlet.

l cartographic material:
globes and maps-atlases.

geographical representations. Subclasses include

l music-score: subclasses include vocal-score and instrument score.
- sound-recording: subclasses include disc and tape.
l motionyicture: subclasses include motion$lm and video-tape.
l microforms: sublasses include microfilm and microfiche.

The above six subclasses of library-material are physically distinct. However, serials,
another subclass of library-material, is not; in the sense that serials is a class of publications
of any type of medium issued in succession, either numerically or chronologically, and
intended to be continued indefinitely. We can generate new subclasses by combining other
classes with the class serials. For example, the subclass series-books is a subclass of two
classes, series and books.

4.1.2 Classification by Subject

This section describes BABEL’s classification by subject. In this taxonomy, library
materials are classified according to their subjects, regardless of physical description.
Therefore, new subclasses can be generated by combining any classes in this scheme with
any classes defined by physical description.

According to Dewey classification, all library items are divided into ten subject classes---
independent of their physical description. A taxonomy of library material by subject is
obtained by further constraining the type of the subject attribute of library material to be
the appropriate specific subtype of subjects, from the conceptual subject hierarchy. Thus.
such a type definition as:

-181-

philosophy-material ==
library-material(subject => philosophy).

is made for al1 such material. In additio,n to I~hiiasophy, thq include applied scimcc, urt,
hisl’my, language, literature, pure-sciem~e. religim, and social-science. For ea<ih of these---
call it ???---there is a corresponding type definition:

???-material =
library-materiaI(subje;t => ???).

Once more, general-reference cannot bc: specified with any specific sub.jcct, and therefore
simply declared to be a subclass of library-material:

general-reference < library-material.

These classes can also be divided into more specific subclasses. For example, the class of
pure science material can be divided into following subclasses having more specific
subjects; for example,

mathematics-material =
pure-science-material(subject => mathematics).

Still further, these classes divide into even more specific subclasses, ad fib.

Thus, subclasses can be derived as desired to make the structural knowledge base of
BABEL a truly static inference system. For example, WC can combine two classes,
art~ficial_irttelligencc_r7lateriai! and prog.raI?rming_~anguage, as follows:

ai~programming~language_material =
artificial~intelligence~material(subject => ai_.programming_language).

ai~programming~language_material =
programmingAu~guage_matcrjal(subject. => ai_programll7illg_Iangunge).

In this way, we can realize multiple inheritance in a class hierarchy. Indeed, the conceptual
hierarchy allows class coercion by subject value unification. For instance

X = linguistics,
X = artificial-intelligence,
Y = book(subject => X).

bccomcs

Y = book(subject => natural-language-processing).

4.1..3 User CIass Hierarchy

The user hierarchy is yet another part of the structural knowledge base in BABEL. The
clnss library_user is placed at the top OF this hierarchy. Subclasses include fucuiry-user,
sraAfBuser, and srudenr-user. student-user has two subclasses, graduate_srud~nr-user and
undergraduate srudenr user.
at the bottom of this h&archy.

AI1 ground values denoting individual user records are placed

The class Zibrary_user has several attributes to identify each user. Those are ss-,lru?lhcr
(soc:ial security number), rtunze, and address. One tnore attribute, fine, keeps a record of
library fines incurred by library users---elements of this class.

4.2 Attributes in Classes of Library .Material

4.2.1 Representation of Object States

At this point, we must emphasize a key observation pertaining to the pragmatic use of
static vs. dynamic information. Most of the information about an item such as a specific
book instance in BABEL, is static. Indeed, author, title, publication, and all such

-182-

information is not time dependent, and thus is adequately represented in LOGIN as
structures suffering no side-effects (attribute/value pairs). However, during the course of its
existence in BABEL, such a library item also evolves through a time-dependent maze of
states which describe its status at particular points in time. Thus, whether a book is on shelf,
borrowed, recalled, etc., is obviously going to determine the behavior of queries about it.
Hence, such dynamic information must somehow be side-effected as the BABEL item
evolves in time.

Let us take as an example the particular BABEL object: the book 6lUZ that we have seen
before. Let us consider the probIem of representing its state showing whether it has been
checked out. Having an attribute/value pair such as

b 10 1 (check-out => boolean).

whose boolean value would be subject to destructive assignments as the book’s state
changes is obviously not so clean.

The ideal solution would be provided by augmenting Prolog (and thus LOGIN) with a
pointer type, Assuming such an expression of the form * (hZOZ) to denote the address of
bIOJ---now a purely static object---one could thus keep a record of the dynamic information
in a dynamic table, checked-out, which can be side-effected by assert/retract sequences. For
example, check our(A((isbn => ‘O-86576-004-7’))) will succeed if it has been recorded that
blOZ is currently on loan. The reason for desiring to use a pointer to OIOZ as opposed to
6101 itself is obviously to avoid copying the whole bZO1 structure into the check-out table.
Clearly, this solution presents the advantage of sepnrating cleanly static and dynamic

information about BABEL objects. Unfortunately, this not implementable in Prolog where
such pointer expressions arc missing. This leads us to our compromise. Of course, this
solution is provisional until more versatile addressing primitives arc eventually implemented
for LOGIN.

At any rate, we built into LOGIN a special type symbol record key which is simply
syntactic sugar for a newly generated type symbol (and thus incomparable with any other

-

type symbol other than itself and T). The Lisp programmer may see it as (gcnsym). Such a
symbol is then used as a unique key into a dynamic table which records the changes of state
of whatever BABEL item has it as the value of a uniquely corresponding state attribute.
Naturally, the value actuaIly generated stays invisible to the user. Thus, provided that
library-material has the attribute/value pair check-out = > record key, the query6 -

. . ., library_item(b10l(check_out => X)), recorded(X,yes,.J, .._

will succeed only if b1OZ is currently recorded as being on loan.
4.2.2 Library Object Attributes

In BABEL, each class of the physical hierarchy shares eleven common attributes.
Therefore, they can be defined at the highest level of the hierarchy---i.e., /i.+rary_maferia,!,
Those attributes are:

l fit/e---title of a library item. It is a list of words.

9 I-responsibility--- list (conjunction) of authors or editors for most works.

l s-responsibility---set (disjunction) of authors or editor for most works.

* subj.ect--- subject category of the item. It has one of the classes in the subject
hierarchy as its value.

* caf~_number---has a fc rtumbcr (library congress number) of the item as a
value. Ic-number, in t&n, has several attributes. Those are c letter (category
letter), f-digit (first digit), s-digit (second digit), and cutte&zg of the call
number. For example, the call number “QA 76.55 ~77” can be represented as

%k PrcdicaLc record(Key.ValuePefcrencc) succeeds wirh the side cffcct of cntcring (asserting) in the
Prolog fact (h-h) tdk tic Pair cKcy,Valuo and SC@ Rcfcrcncc to its memory address. The companion
rClation reCUrdCd(~CY,VQlUe~Cfcrence) succeeds if a uniMk corresponding pair W& r~ordcd.

-1%3-

(call-number =:v (c-letter => ‘QA’,
f-digit -:> 7G,
s-digit =I:> 55,
cutterinl: => ‘~77’))

l publisher---an attribute for publisher information,. It has a value of type publish.
The type publish has, in turn, sevlzral attributes: prrDfi.Fher__na,7lc, for the name
of the publisher, and address of the publisher.

l date-ofgub---publication date of the item. It has three auributes: duy, monr!k,
and year.

l language---idiom in which the work is published.

l lend-info---has lend-tab (loan table) as a value type. This loan table lend-tab
has several attributes:

8 library-use-on Iy--- record key used to record whether the item may be
checked out.

l fendgeriod--- record key used to record the lending period.

. check-out---record key used to record whether the item is currently on
loan.

l checking time ---record key used to record when the item was last loaned. -
g return time---record key used to record when the item is due. -
- ss number ---record key used to record the social security number of the

b&rower.
The attributes, checking--time, return-time, and ss-number, have no meaningful
value if the value recorded by check-out is no.

l recalled---record key used to record whether the item has been requested by
another user.

l recall-info--- has a record key used to record a recall-tab as a value. The class
recall-tab has three attributes: fype, which shows the type of recall request---
recall or search; ss number, which is the social security number of the
requesting party; an&more, whic:h shows other recall requests (if there are
muhiple requests).

l resewe-info--- has a record key used to record the value reserve-tub to show

whether the item is reserved for special USC (e.g., a course). The value appears
only if the item is reserved. The class reserve-tub has five attributes:
instructor, course-name, course-number, semester, and year.

These eleven attributes are common to all library items. There can be more attributes,
depending on the specific class of a library item. For exampfe, every item in the class
monograph has an attribute isbn (International Standard Book Number), while items in
serials have issn (International Standard !jerial Number).

:BABEL demonstrates an example of its ability to infer by its flexible handling of the
attributes pertaining to staternent of responsibility. Notice that we have two such attributes.
One is s-responsibility, the other is l-responsibility. The information contents of these
attributes are the same. However, the internal structures are different. The attribute,
s-rSesponsibility, is defined as a disjunctive class of authors, while the attribute
I-responsibility is defined as a list of authors. The reason to keep two different attributes for
the same information is purely for efficiency. For example, a book item, b/O/ sny, is
asserted to be a library-item as follows:

blO1
= book(

title => ‘The handbook of artificial intelligence’,
s-responsibility =>

(type => author,

-l&4-

author => ((fname => Fl: 'Avron',
lname => Ll: 'Barr') ;

(fname => F2: 'Edward',
mname => M2: 'A.',
lname => L2: 'Feigenbaum')),

l-responsibility =>
(type => author,
author => (name => (fnaxne => Fl,

lname => Ll),
co-name => (name => (fname => F2,

mnanle => M2,
lname => L21)1),

call number => (c-letter => ‘QA’, -
f-digit => 76,
s-digit => 65,
cuttering => ‘b77') P

subject => artificial-intelligence).

library-item(bl01).

When a user wants an item by many authors, but knows the name of only one, BABEL
can process the request through the two attributes s-responsibility and I-responsibility. The
first is used to verify efficiently (indeed by simple match as opposed to search7) the
exislence of the author in the set of the item’s authors (disjunction of authors), and the
second is used to keep ail authors (conjunctive list of authors) and to be able to fisr the
names of all authors because we cannot enumerate authors with a disjuctive class. The
following user query, although somewhat incomplete, gets a successful response without
backtracking:

“Show me a book, written by Feigcnbaum, of which subject is computer science’ ’

query :-
library-item(book(s-responsibility =>

(author => (Iname => ‘Feigenbaum’)),
subject => computer-science,
title => X)),

show(X).

TO implement the above example in Prolog, we need to keep the name of authors as a list
of names. For example,

/* Fact */
book(/* the title */

'The handbook of artificial intelligence’,
/* the list of the last names of autholrs */
['Barr', 'Feigenbaum'],
/* the call number */
'QA76.65 b77',
/* subject */
artificial_intelligence).

/* Query */
query :-

book(X, Name-list, -, Y),
is-a(Y, computer-science),
member('Feigenbaum', Name-list),
show(X).

As demonstrated, in Prolog, the first Iiteral in the query book(X,ZVame-fist,-,-) will
succeed with any item in the relation books. Then it will check if the subject of the item can
be regarded as computer science using is-a inference rules which was defined in section 3.
Then it will check if ‘Fe&cnbaum’ is in the list of last names of the authors. If any of above
two checkings fails, then it backtracks and checks the next item. It might require
backtracking through all the books in the library.

'Actually LOGIN encodes a t,ype l~ier;lrchy when it. compiles the hierarchy SO that, ii. +~a~l check (*YI~cS
in 01le matching operation wif,Imut scarclling the enlire lype hiern.rcIiy. [AYt.-Jc=i 871

-185-

:BABEL would not be much of an experiment without :some sample application
programs. In this section, we ddiscuss the transaction and query managers of BAUEL. The
query manager serves the user of the librimy, and the transaction manager serves the staff.

5.1 Transaction Manager

In its present state of conception, BABEL manages E,ve basic transactions for the
librarian:

l Maintaining records of current library material and users;*

l Check out and return operations;

l Recall request processing;

l Reserve request processing;

l User fine cafculation and notice generation.
These are, of course, not meant to be as realistic as possibie---e.g., few libraries (hopefully)
fine without repeated warnings!

We discuss only checkout and return oi>cl*ilti<>ns due to space limitation.

When a user wishes to borrow a book., the libmrian requests information from a terminal
at the lending desk by call number. Tf’ the book is cleared for lending (not reserved or
previously requested), its status is updated during the lending transaction as follows:

check-out :-
/* Read call number of an item */
get_call_number(LC-n~er : lc-number),
/* Get the record of the item using the
library_item((call number => LC-number,

1endIinfo => (lendgeriod
checked-out

call number*/

=> Lend_Period_Key,
=> Checked out Key,

checking-time => Checking-Time-Key,
ss number => SS-number Key,
return~hne => Return-Time-Key),

recalled => Recalled-Key,
recall info - => Recall-i.nfo-Key)) ,

/* Read the social security number of the user */
get-ss-number(SSpum),
/* If somebody recalled the item, and */
(recorded (Recalled-Key, yes, -)

-> /* if the recall person is the borrower */
(tecoxded(SS-number-Key., recall tab(ss-number => SS mm), -)

-> rexnove~recall(lC~number) -
; (write('This item is recalled by another user.'),

fail))
. true),

/*'Set Check out to yes */
putvar (Checked-out-Key, yes),
/* Set user ss-number to SS-number */
putvar(SSpumber-Key, SS_num),
(more to check out

-> check out -
; true 7.

The return transaction is as follows. Any fines are assessed at this time:

return :-
/* Read call number of an it- */
get call~number(LC~number : lc-ntier),
/* -&t the record using the Call member */
library-itenl(Item : (call-Fumber => LC_nder,

lend-Lnfo => Linfo:(checked-out => Checked-out-KeYl
ss-number => SS-number-Key,
return-time S- Return-time-Key),

recalled => Recalled-Key))r
get-current-time (CU-t-1 ,
/* Now, Checked-out becomes 'no' */
putvar (Checked-out, no) ,
/* get expected return td from the record with record key */

recorded(Return>ime_Key, Return-time, -1,
/* If it is over the due date, */
(late return(CUJime, Return_tb) I

-> /" calculate and make a fine notice */
process-fine(Ite% SS-n-1,

; true),
(more_to-return

-> return
; true) .

5.2 Query Manager

The query manager in BABEL is an interactive query generator using menu operation.
Once it is activated, it shows possible options which may be used for searching through
BABEL which constitute the user’s interactive choice. From this choice, the query manager
generates a formal LOGIN query, and executes it. There are various kinds of search queries,
which can be classified according to the key value to be used. Typical examples are,

1. Show by call number

2. Show by title

3. Show by statement of responsibility, i.e., author, editor, ccc.

4. Show by temporal, i.e., publication date, etc.

5. Show by ISBN for books

6. Show by ISSN for serials

7. Show by subject

8. Show by physical description
The user may choose one or more keys to find an item. For example, if the user chooses 1,
for call number, then the query manager reads the call number, e.g., ‘QA 76.66 b77’, and
generates the query such as,

library-item(X : (call-number => (c-letter => ‘QA’,
f-digit => 76,
s-digit => 66,
cuttering => ‘b77’)),

show-item(X).

If the user chooses 3 and 7, then the system gets the name of author, e.g., ‘Feigenbaum’, and
the category of subject, e.g., cornpurer science. Then, the generated query looks like -

library-item(X : computer-science-material
(author => (lname => ‘Feigcnbaum’))),

show-item(X).

The generalized unification operation in LOGIN provides two invaluable built-in search
strategies: focusing computation only on relevant domains of objects, and i,tfer.yccling such
domains. Such are indeed very effective for navigating through the knowledge base of
BABEL. Both features are performed in exactly same manner---through v-unification---
but one can use them differently. For example, let us suppose that a user requests a book on

--187-

both computer science and linguistics written by Robert F. Simmons. Tkr~ WC IWO l>ossible
ways to request it. The first:

library-item(X : computer-science-books
(author :=::r (fname =-> ‘Robert ‘,

mname. => ‘F.‘,
lname :-> ‘Simmons’))),

library-item(X : linguistics-books),
show-item(X).

and the second

X = computer-science,
X = linguistics,
library-item(Y : book(author =:> (fname => ‘Robert’,

mname => ‘F,’
lname => ‘Simmons’),

subject => X)),
show-item(Y).

Through unification steps in LOGIN, the first query becomes:

iibrary-item(X : nip-book(author => (fname => ‘Robert’,
mname => ‘F.‘,
lname => ‘Simmons’))),

show-item(X).

The domain of X which is computer-science-books and linguistics-books is intersected
down to natural_language_/lrocessing_baoks. This is focusing the domain of objects.

On the other hand, the second query becomes:

library-item(Y : book(author =:> (fname => ‘Robert’,
mname => ‘I;.‘,
lname => ‘Simmons’),

show-item(Y).
subject => natural-language-processing)),

In this case, the variable X, which first hecomes computer-science through unification, is
intersected with the term linguistics, and finally becomes narurai_ia~lgua~egrocessing. In
this way, intersection of types keeps a finer and finer focus on relevant solutions.

In BABEL, we can use either of the above queries, thanks to the hierarchy of physical
library material classified by subjects together with the conceptual subject hierarchy.
Operationally, however, there is a big difference between the two queries. In the first query,
we can reduce the search space by focusing the domain of objects, but not in the second
query. In the latter case, LOGIN wiI1 visit each record in the class books to check whether
the value of subject is naturai-language~~rocessing.

6 Conclusion

We have prcscntcd a prototype Iilxal-y csptxt system, BABEL, writeu in LOGIN. By
using v-terms, rather than first-or-dcr terms. LOGIN provides effective methods to represent
FRA,MEi style knowledge struclurc while kc:cping full cxprcssive power of Prolog.

The strategy of yf-term unification algot-ithm with or&r-sorted typed Horn logic [Smolka
871 provides efficient way to cxprcss set Ihcorclical operations. Every set theoretical
operations can be exprcssecl in unification opelxtion in LOGIN, Thus, it is possible to use a
set-at-a-time operation in LOGIN. For cxamplc, WC c;ln USC ussc~‘t to assert the fact whether
a library material is rcscrvcd. l.f an AI fWaculty requests to reserve all
arti~iciaI_i,ltelli~cflce-~~~~~tcria/, then WC c;ul USC Set-(It-a-time operation by asserting the
whole set of urtificial irrtciiigoxc matcrinl is rcscrvcd. - -

--188-

LOGIN ?- assert(reserved(artificial_intelligence-material)).
Yes

LOGIN ?- reserved((title => ‘The handbook of artificial intelligence’)).
Yes

As in above example, since any item which is an artificial intelligence material succeeds to
unify with artificiaI~intelligence~tnateria1, we can assert a set at a time without asserting
every items in AI as reserved.

In its comparison with its potential implementation in Prolog, BABEL in LOGIN seems
to provide the following advantages.

1. The knowledge base taxonomy is easy to use and maintain because of the
following features:

l Since attributes of a class inherit to its subclass, it allows default value.

l Every attribute is represented as a pair consisting of a label and a vaiue,
as opposed to a position number and a value. Thus, the order of
arguments in a v-term is transparent to the programmer. As a result, the
number of attributes in two v-terms does not need to be the same to
unify the v-terms.

l LOGIN directly supports new programming features like semantic
domain definitions and domainfocusing and intersecting.

l The above features enable a user to get without much overhead a
response from queries containing incomplete information.

2. LOGIN code is also likely to be better than Prolog’s for several reasons:
l Many deductions can be done at the unification level rather than at the

resolution level. For example, the unification strategy using disjunctive
classes, as described in Section 4.2, significantly reduces the number of
environment changes and backtrackings.

- By adding more restrictions to each argument in a query, one can reduce
the domain of the search space.

In summary, LOGIN looks very promising for dealing efficiently with the rich taxonomic
information found in BABEL. Ideas for convenient programming which may turn out to be
good or bad have emerged. Such an example is the integration of a user-specifiable
inheritance operation on specific attributes. A mild example in the form of a self-description
facility is being added to LOGIN for BABEL where definition strings are related by prefix
ordering as opposed to subclass ordering. Extensions thereof may be string or regular
expression matching, etc.

In conclusion, we shall certainly admit that more work needs to be done to detemline
fully the effectiveness of LOGIN in a real application. To make its advantages concrete, we
need to be careful in implementing an engine for LOGIN and its extensions so that the
overhead in performing a generalized unification algorithm does not outweigh the efficiency
gained,

References

[Ai’t-I<aci %a] Ai’t-Knci, I-I., An Algcl~raic Sc:m;m tics Approach to the Resolution of
Type Equa.tions. in Jourm. of Thcomticd Computer Science 45, lOSG,
pp 203-351.

[Kit-Kaci SGb] Ai’t-Kaci, H. and R.. Nasr, LOGIN: A Logic Programming with built-
in Xnhcritancc. in Journ. of Logic FYogra.mming Vol. 3, No. 3, October,
lOSG, pp 185-215.

-189-

[Ai’t-Kaci S7] Ai’t-Kaci, H., Bayer, R., Lincoln, I’. , and Ii.. Nasr, The Efficient Imple-
mcntatiot~ of’ Object Jtd~critancc. hiCC Technical &port AI-l.OG-87,
AI/ISA Project. Micr~dcctronics and Computer ‘I’eclxdogy Corpo-
ration, Austin, TS. JuIy, 19S7.

[Goldstein 771 Goldstein, I. I’. a.ncl R.. B. R.ol>crt., AWD(JE, a jlillott~~cd~c:-ba.sed
schxluling program. IeTCAI--5, fi:Zi-333, 197’7

[Goldl>erg SO] Golclbcrg, A. and D. Rol>sou, S~~mlltall~SO: The L.mguoge ;imd its
implerncn~atio~l, Aclcli~;oll-~~:esIc~y, l!XO.

[German 781 Gornmn, M. and P. 1’17. 1VinIic*r, (Eels.), A+o-Amwica.n ChtaJogu-
ing RuIcs, 2nd ccl., Anlcrica. Liljrnry Association and Ca,nncla Library
Association, 1975.

[Minsky 751

[Smolka 571 Smolks G . , and H. Ai’t,-Iiaci, I~hdtamce Hierarchies: Semantics and
Unification. MCC Tcxhnica.1 R.qwrt AI-05’7-87, AI/ISA Project. Mi-
croelectronics and Comlxt,cr Tccl~~~ology Corporation. Austin, Ma.y
1087.

[StCfili S3j St&k, M., D. G. BolxoW, S. h~lil,tal, and L. Conwa.y, “I<Xlowldge Pro-
gramming in LOOPS: R.cl)ort 011 a.11 Eqxrimcntal Course,” ArhYkia.l
Intciligcnce, Ihll 19S3, 1~1). 3-14.

-190-

