Implementing a Knowledge-Based Library Information System

with Typed Horn Logic!

Hassan Ait-Kaci
Roger Nasr

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive
Austin, TX 78759

Jungyun Seo

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

Abstract

This article discusses the implementation of a knowledge base for a library information
system. The system was conceived using a typed logic programming language—LOGIN—
where type inheritance is built in. The knowledge base is structured in a hierarchical tax-
onomy of library object classes where each class is represented in a FRAME style knowl-
edge structure and inherits the properties of its parents, and where infrastructural inference
rules have been established through typed Horn clauses. Also in this document, some pro-
gramming techniques aimed at using the power of inheritance as taxonomic inference are
discussed.

!This article is a revised and extended version of [1.

[...] solution to the ancient problem: The library is un-
limited and cyclical. If an eternal traveler were to cross it in
any direction, after centuries he would see that the same vol-
umes were repeated in the same disorder (which, thus repeated,
would be an order: the Order).

JORGE LUIS BORGES, The Library of Babel.

The practical upshot of all this is that if you stick a Babel fish in
your ear you can instantly understand everything said to you in
any form of language.

DOUGLAS ADAMS, The Hitchhicker’s Guide to the Galaxy.

1 Introduction

The idea of attribute inheritance has been adopted by various programming languages. In particular, so
called object-oriented programming languages have shown that this idea can be very practical in solving
some knowledge representation problems. [11]

Ait-Kaci and Nasr [] have proposed a new programming language, LOGIN, combining
the idea of inheritance with logic programming. LOGIN replaces Prolog’s first-order terms with 1)-terms
which generalize first-order terms by allowing partially ordered constructors. LOGIN uses the standard
Prolog operational semantics—a computation mechanism which implements natural deduction—with a
1-term unification algorithm rather than an ordinary unification algorithm. It becomes natural to express
FRAME style knowledge structures [1] using 1/-terms in LOGIN. Furthermore, the
strategies of -term unification provides efficient expressions of set theoretical operations.

This paper describes an experimental library system called BABEL as a concrete application written in
LOGIN.? The motivation for this work is the need for testing the design concepts of LOGIN, specifically
showing its usefulness as a knowledge and database language. We believe that our learning experience
from the design and implementation of practical applications is a necessary complement to our theoretical
research.

In its current state of design, BABEL consists of four parts: the transaction manager, the query man-
ager, the natural language interface, and the knowledge base. The transaction manager keeps track of
the librarian’s traditional duties: checking books in and out, reminding borrowers of overdue materials,
assessing fines, and reserving loaned books for the next user. The query manager provides the library’s
users with information normally found in card catalogs. In BABEL, the query manager is an interactive
query generator. The query manager accepts user queries through menus and generates the equivalent
LOGIN queries. The natural language interface accepts natural language queries and generates equiva-
lent LOGIN queries.® The knowledge base in BABEL consists of two parts. One is static and a repre-
sentation of the library’s structural information; the other is dynamic, a representation of its assertional
information. The structural representation is formed by organizing library materials into a hierarchy of
object classes where each class is given a (type) definition. A set of such definitions constitutes a formal
knowledge base as defined in []. The assertional information is expressed in an order-sorted
typed Horn logic [], whose types are drawn from the knowledge base. Such logical sentences,
in the form of rules and facts (typed Horn clauses), are used to

e maintain time-dependent records—e.g., items on loan, on reserve, on shelf, being recalled, etc.

*BABEL: Authentique Bibliotheque Ecrite en LOGIN.
3The natural language query interface manager is not included in this report and will be implemented in the future.

e express queries—e.g., itemize all library users holding an overdue item.

The library’s extensional database (i.e., the object values) consists of the individual library items and
library users.

Although we introduce LOGIN briefly in Section 2, we shall assume for the most part that the reader
is familiar with logic programming. In Section 3, a quick point is made to illustrate the LOGIN way
of representing some BABEL library object as opposed to the Prolog way. In Section 4, our method of
building a knowledge base for library information using a hierarchical classification of library objects is
presented. The transaction manager and the query manager are described in Section 5. Finally, a brief
conclusion speculating on this experiment is drawn in Section 6.

2 LOGIN: an Overview

LOGIN [] is an elaboration of Prolog. The main extension is its new definition of terms
which are arguments of literals. In first-order logic, a literal is of the form:
p(tl, e ,tn)

where p is a predicate symbol, and the ¢;’s are (functional) first-order terms. LOGIN extends the first-
order terms of Prolog into partially ordered (first-order) type structures called ¢-terms. A /-term denotes
a class of objects. Unification of)-terms denotes class intersection. The least specific class (the universe)
is the largest type (T), and the over-specified class (the empty set) is the smallest (uninhabited) type (L).

Informally, a 1/-term consists of:
1. A root symbol which is a type constructor and denotes a class of objects.

2. Attributes, label and value pairs, which are record fields. Each label is associated with a sub-t)-
term as a value for the label. The sub-t-term can be a constructor, a typed variable called tag, or a
-term.

An example of a v-term is:

book (title => string,
author => name (fname => X: string,
lname => X),

call_number => lc_number,

pub_date => date(day => integer,
month => monthname,
year => integer),

isbn => string)

The root symbol is book—a type constructor—which shows the class that this (1/-term) type expression
denotes. It has five sub-i)-terms under the attribute labels title, author, call_number, pub_date, and isbn.
This v-term denotes a class of book whose authors have the same first and last names, e.g., Allen Allen.

Each class inherits the attributes of its parents in the class hierarchy—i.e., if a class ¢ has a subclass
d, d inherits all of ¢’s attributes. For example, we can define an ordering between the two type symbols
(denoting classes) library_material and book as follows. Given a definition of library_material* with its
attributes and their types (no root symbol means T),

*This definition of library_material can be read as ‘library_material is a set of objects of any type with four attributes...’

library_material = (title => string,
author => name,
call_number => lc_number,
pub_date => date).

name = (fname => string,
lname => string).
date = (day => integer,

month => monthname,
year => integer).

we can define book as:
book = library_material (isbn => string).
which is the same as:

book

library_material (title => string,
author => name,
call_number => lc_number,
pub_date => date,
isbn => string).

We call book a subtype (subclass) of library_material. This definition of book can be read as “book is a
subset of library_material and has one more attribute—ISBN (International Standard Book Number)”.

Given a partially ordered type hierarchy, we can implement a generalized unification algorithm be-
tween 1-terms, interpreted as set intersection. The following illustrates the -term unification algo-
rithm []. Given a type hierarchy in Figure 1, unifying the -term:

book (title => X,
author => (lname => ‘Winston’),
call_number => Y)

and the -term:

ai_material (title => Z,
author => (fname => W),
pub_date => (year => 1985))

results in the 1/-term:

ai_book (title => X,
author => (fname => W,
lname => ‘Winston’),
call_number => Y,
pub_date => (year => 1985))

Unifying these two 1-terms—book and ai_material—become ai_book. This is precisely the intersec-
tion of two sets, the set of all Al material and the set of all books (in the library), which results in the set
of all Al books. As illustrated in above example, the set of the attributes in a resulting -term from the
unification of two -terms is the same as the union of attributes in the two -terms. Taking a union of at-
tributes imposes more restrictions on the resulting -term. Restricting a 1-term by assigning constraints
(values) to attributes thus specifies a subset of a set. For example, the 1)-term

library_material

cs_material
book
ai_material database_material
ai_book
byl - bl @ as c1 c2 dq dso ds

Figure 1: A Type Hierarchy with Multiple Inheritance

book (author => (lname => ‘Winston’))

denotes books written by Winston, a subset of all books.

Informally,? unification of two 1-terms fails if the root symbols—-type constructors— are not unifi-
able in partially ordered type hierarchy, or the two 1)-terms have at least one same attribute label but with
values which are not i-term unifiable. Otherwise, the unification succeeds.

In LOGIN, one can explicitly define a disjunctive class, which is not allowed in other frame represen-
tation languages [11]. For example, we can redefine a y-term date as

date = (day => integer,
month => {integer ; monthname},
year => integer).
monthname = {’Jan’; ’'Feb’; ’'Mar’; ’'Apr’; ’'May’; ’'Jun’;
"Jul’; "Aug’; ’'Sep’; 'Oct’; ’'Nov’; ’'Dec’}.

It means that the attribute month can have a value of type integer or monthname, and any of the
twelve character strings can be a valid value of type mont hname.

Again, LOGIN is simply Prolog where first-order terms are replaced by -terms. Thus, LOGIN uses
the standard Prolog operational semantics (SLD-resolution) with a t)-term unification algorithm rather
than an ordinary unification algorithm (order-sorted SLD-resolution [1)

3See [] for rigorous definitions and algorithms.

Since ordinary first-order terms in Prolog can be represented as -terms, LOGIN is more expressive
than Prolog, and subsumes it. For example, an ordinary term in Prolog f(a, g(b, X)) is equivalently
represented in LOGIN as the 1)-term:

£f(1 => a,
2 => g(l => Db,
2 => X))

where the function symbols, f and g, in ordinary terms become type symbols in ¢)-terms.

Unlike Prolog, the arity and the order of arguments (attributes) in ¢-terms are transparent to the user,
in the sense that one may specify only subsets of them, and in any order.’

3 Knowledge Representation in LOGIN

Let us consider an example. A record for a book in the library database such as

Title : The Handbook of Artificial Intelligence
Author : Avron Barr, Edward A. Feigenbaum

Call Number : OQA76.65 b77

Subject : Artificial Intelligence

can be represented in Prolog as, say,

library_item(type (book),
title (‘The hand book of artificial intelligence’),
author ([‘Avron Barr’, ‘Edward A. Feigenbaum’]),
call_number (‘QA76.65 b77"),
subject (artificial_intelligence)).

Given this data, a user query such as:
“Show computer science books written by Edward A. Feigenbaum”

which would be expressed formally in Prolog as

query
:— library_item(type (book),
title (X),
author (Author_1list),
p—
subject (computer_science)),
member (‘Edward A. Feigenbaum’,
Author_1list),
show (X) .

®As a syntactic sugar, LOGIN also supports positional terms in Prolog; ie., terms such as f(a,g(b),X) and
f(a, g(b),num = X) are all valid ¢)-terms. Arguments which have no labels are sensitive to the order.

would not succeed. The query fails because subject(artificial_intelligence) cannot be unified with sub-
Jject(computer_science) in Prolog. In an intelligent library information system, a simple deduction like
“since Atrtificial Intelligence (Al) is one area of Computer Science (CS), all items in the Al area would
be regarded as items in the CS area,” is taken as an inference step.

In LOGIN, the same data may be represented as

artificial_intelligence < computer_science.
/+ define hierarchy between two terms =/

b101 = book(title => ‘The Handbook of Artificial Intelligence’,
author => { (fname => ‘Avron’,
lname => ‘Barr’) ;
(fname => ‘Edward’,
mname => ‘A.’,
lname => ‘Feigenbaum’)},
call _number => ‘QA76.65 b77',
subject => artificial_intelligence).

library_item(b1l01) .
So, the query:

query
:— library_item(book (author => (lname => ‘Feigenbaum’),
subject => computer_science,
title => X)),
show (X) .

will succeed with X = ‘The Handbook of Artificial Intelligence’. Since artificial_intelligence is declared
as a subtype of computer_science, artificial_intelligence can be 1)-term unifiable with computer_science.
Furthermore, the disjunctive definition for the value of the attribute author make it possible to succeeds to
get an answer in unification phase, not using inference step. Note that even though the query carries only
the last name of the author, it succeeds to get an answer. This makes it possible to handle an incomplete

query.

Note that number and order of arguments are transparent to the unification of two -terms. Also,
the reader may wonder why library_item is an assertional predicate rather that a structural type in the
knowledge base like library_material. The reason is that the latter records static immutable information
pertaining to the structure of a library object, while the former is needed as a handle to access the actual
library records. Representation in current BABEL of a record’s dynamic states (e.g., on loan, on shelf,
or current borrower, date due, etc.) will be discussed in Section 4.2.

Naturally, the problem can be solved in Prolog, but it requires more rules and facts in the inference
system, such as:

is_a (X, _)
:— var (X), /* to prevent infinite loop */
fail, !.

is_a (X, X).

is_a (X, Y)
:— is_a(X, 7),
is_a(z, Y).

is_a(artificial_intelligence, computer_science).

We contend that, although semantically equivalent, the solution in Prolog is pragmatically inferior to
that of LOGIN for the following reasons. First, in Prolog, the number and the order of arguments are
not transparent to the programmer, noticeably losing perspicuity. Second, it is more desirable to express
information into the type language (the partially-ordered knowledge base), whereby realizing a more
restricted logic—albeit more efficiently—Ileaving to the more general and consequently less efficient
deduction system only the tasks which require its differential power. In addition, this saves precious
backtracking steps (this will be discussed in Section 4.2.)

4 Knowledge Base of BABEL

We now discuss the implementation of BABEL’s knowledge base. The ordering structure of the knowl-
edge base is set inclusion (is-a) between object classes. Each class is comprised of objects sharing certain
characteristics. This is the representation of structural library information.

For example the class denoted by book is the class of all books. The type cs_material is a class of all
materials in computer science. Items in cs_material can be books, theses, technical reports, microfilms,
periodicals, or proceedings in computer science.

We can easily come up with a new class by combining two classes to make a more restricted class. For
example, we can define a new object class, cs_book, which is the class of all computer science books by
taking an intersection of the two classes book and cs_material. We call this new class a subclass of both
book and cs_material—indeed, the greatest such class. At the same time, these two classes are called
super classes of cs_book.

Each class may have arbitrarily many attributes represented as label-value pairs. A value can be a
specific ground value or a typed/untyped variable. These attributes are inherited by lower classes.

For example, the class cs_material has an attribute subject with the value computer_science. Since
cs_book is a subclass of cs_material, the attribute subject and the value computer_science are inherited
by cs_book. Since the inheritance operation is type unification and denotes set intersection, the value of
an attribute in a subclass takes priority over an inherited value of the same attribute.

In addition to object class hierarchies, BABEL maintains several conceptual term hierarchies in its
knowledge base. Operationally and semantically there is no difference between the two, but the purpose
of a conceptual hierarchy is different from that of an object hierarchy.

For example, cs_book has an attribute with label subject and value computer_science. The class
ai_book, a subclass of cs_book, also has the same attribute, subject, but has a different value, artifi-
cial_intelligence. Since ai_book is a subtype of cs_book, artificial_intelligence should be a subtype of
computer_science. Therefore, artificial_intellig-ence is classified as a subclass of computer_science in
the conceptual term hierarchy of subjects. It does not describe a class of physical objects but rather a
conceptual relationship between subjects.

4.1 Classes in the Knowledge Base

In this section, we examine the relationships among the different classes in the knowledge base.

The highest class in BABEL'’s physical library object taxonomy, library_material, encompasses all the
library’s contents. Each item in the library is then classified by its physical description—book, magazine,
film, etc.—and also by subject—philosophy, social science, pure science, etc.

4.1.1 Classification by Physical Description

According to [], one possible taxonomy of library material by physical description is as fol-
lows:

printed_monograph: printed materials including books, pamphlets, articles, and printed sheets.
Subclasses include monograph and pamphlet.

e cartographic_material: geographical representations. Subclasses include maps_atlases and globes.
e music_score: subclasses include vocal_score and instrument_score.

e sound_recording: subclasses include disc and tape.

e motion_picture: subclasses include motion_film and video_tape.

e micro_forms: sublasses include microfilm and microfiche.

The above six subclasses of library_material are physically distinct. However, serials, another subclass
of library_material, is not; in the sense that serials is a class of publications of any type of medium issued
in succession, either numerically or chronologically, and intended to be continued indefinitely. We can
generate new subclasses by combining other classes with the class serials. For example, the subclass
series_book is a subclass of two classes, series and book. A part of the type hierarchy of library materials
classified by physical description is in Figure 2).

4.1.2 Classification by Subject

This section describes BABEL'’s classification by subject. In this taxonomy, library materials are clas-
sified according to their subjects, regardless of physical description. Therefore, new subclasses can be
generated by combining any classes in this scheme with any classes defined by physical description.

According to Dewey classification, all library items are divided into ten subject classes—independent
of their physical description. A part of the type hierarchy of library materials classified by subject classes
is illustrated in Figure 3. A taxonomy of library material by subject is obtained by further constraining
the type of the subject attribute of library_material to be the appropriate specific subtype of subjects,
from the conceptual subject hierarchy. Thus, such a type definition as:

philosophy_material
= library_material (subject => philosophy) .

is made for all such material. In addition to philosophy, they include applied_science, art, history,
language, literature, pure_science, religion, and social_science. For each of these—call it ???—there is
a corresponding type definition:

???_material
= library_material (subject => 227?).

auwsa0p
CE ot s Propditary

Figure 2: Hierarchy by Physical Description

Figure 3: Hierarchy by Subject Class

10

Once more, general_reference cannot be specified with any specific subject, and therefore simply de-
clared to be a subclass of library_material:

general_reference < library_material.

These classes can also be divided into more specific subclasses. For example, the class of pure science
material can be divided into following subclasses having more specific subjects; for example,

mathematics_material
= pure_science_material (subject => mathematics) .

Still further, these classes divide into even more specific subclasses, ad lib.

Thus, subclasses can be derived as desired to make the structural knowledge base of BABEL a truly
static inference system. For example, we can combine two classes, artificial_intelligence_material and
programming _language, as follows:

ai_programming_language_material
= artificial_intelligence_material (subject => ai_programming_language) .

ai_programming_language_material
= programming_language_material (subject => ai_programming_language) .

In this way, we can realize multiple inheritance in a class hierarchy. Indeed, the conceptual hierarchy
allows class coercion by subject value unification. For instance

X = linguistics,

X = artificial_intelligence,

Y = book (subject => X).
becomes

Y = book (subject => natural_language_processing).

4.1.3 User Class Hierarchy

The user hierarchy is yet another part of the structural knowledge base in BABEL. The class library_user
is placed at the top of this hierarchy. Subclasses include faculty_user, staff_user, and student_user.
The class student_user has two subclasses, graduate_student_user and undergraduate_student_user. All
ground values denoting individual user records are placed at the bottom of this hierarchy.

The class library_user has several attributes to identify each user. Those are ss_number (social security
number), name, and address. One more attribute, fine, keeps a record of library fines incurred by library
users—elements of this class.

11

........................
.......

Figure 4: Conceptual Term Hierarchy of Subjects

12

Figure 5: User Hierarchy

13

4.2 Attributes in Classes of Library Material
4.2.1 Representation of Object States

At this point, we must emphasize a key observation pertaining to the pragmatic use of static vs. dynamic
information.

Most of the information about an item such as a specific book instance in BABEL, is static. Indeed, au-
thor, title, publication, and all such information is not time dependent, and thus is adequately represented
in LOGIN as structures suffering no side-effects (attribute/value pairs). However, during the course of
its existence in BABEL, such a library item also evolves through a time-dependent maze of states which
describe its status at particular points in time. Thus, whether a book is on shelf, borrowed, recalled, etc.,
is obviously going to determine the behavior of queries about it. Hence, such dynamic information must
somehow be side-effected as the BABEL item evolves in time.

Let us take as an example the particular BABEL object: the book 570/ that we have seen before. Let
us consider the problem of representing its state showing whether it has been checked out. Having an
attribute/value pair such as

b101 (check_out => boolean).

whose boolean value would be subject to destructive assignments as the book’s state changes is obviously
not so clean.

The ideal solution would be provided by augmenting Prolog (and thus LOGIN) with a pointer type.
Assuming such an expression of the form 1 (b101) to denote the address of b/0I—now a purely static
object—one could thus keep a record of the dynamic information in a dynamic table, checked_out, which
can be side-effected by assert/retract sequences. For example,

check_out(1 ((isbn = ‘0-86576-004-7")))

will succeed if it has been recorded that b10/ is currently on loan. The reason for desiring to use a
pointer to b101 as opposed to b101 itself is obviously to avoid copying the whole 101 structure into the
check_out table. Clearly, this solution presents the advantage of separating cleanly static and dynamic
information about BABEL objects. Unfortunately, this not implementable in Prolog where such pointer
expressions are missing. This leads us to our compromise. Of course, this solution is provisional until
more versatile addressing primitives are eventually implemented for LOGIN.

At any rate, we built into LOGIN a special type symbol record__key which is simply syntactic sugar
for a newly generated type symbol (and thus incomparable with any other type symbol other than itself
and T). The Lisp programmer may see it as (gensym). Such a symbol is then used as a unique key
into a dynamic table which records the changes of state of whatever BABEL item has it as the value of a
uniquely corresponding state attribute. Naturally, the value actually generated stays invisible to the user.
Thus,7provided that library_material has the attribute/value pair check_out => record__key,the
query

, library_item(bl101 (check_out => X)) , recorded(X,yes,_) ,

will succeed only if b101 is currently recorded as being on loan.

"The predicate record(Key, Value, Reference) succeeds with the side effect of entering (asserting) in the Pro-
log fact (hash) table the pair (Key,Value) and sets Reference to its memory address. The companion relation
recorded(Key, Value, Reference) succeeds if a unifiable corresponding pair was recorded.

14

4.2.2 Library Object Attributes

In BABEL, each class of the physical hierarchy shares eleven common attributes. Therefore, they can be
defined at the highest level of the hierarchy—i.e., for library_material (see Figure 6). Those attributes

arc:

title—title of a library item. It is a list of words.

I_responsibility—Ilist (conjunction) of authors or editors for most works.

s_responsibility—set (disjunction) of authors or editor for most works.

subject—subject category of the item. It has one of the classes in the subject hierarchy as its value.

call_number—has a Ic_number (library congress number) of the item as a value. lc_number, in
turn, has several attributes. Those are c_letter (category letter), f_digit (first digit), s_digit (second
digit), and cuttering of the call number. For example, the call number “QA 76.55 s77” can be
represented as

(call_number => (c_letter => ‘QA’,
f_digit => 76,
s_digit => 55,
cuttering => ‘s77'))

publisher—an attribute for publisher information. It has a value of type publish. The type publish
has, in turn, several attributes: publisher_name, for the name of the publisher, and address of the
publisher.

date_of_pub—publication date of the item. It has three attributes: day, month, and year.
language—idiom in which the work is published.

lend_info—has lend_tab (loan table) as a value type. This loan table lend_tab has several attributes:

library_use_only—record key used to record whether the item may be checked out.

lend_period—record key used to record the lending period.

check_out—record key used to record whether the item is currently on loan.

checking_time—record key used to record when the item was last loaned.

return_time—record key used to record when the item is due.

ss_number—record key used to record the social security number of the borrower.

The attributes, checking_time, return_time, and ss_number, have no meaningful value if the value
recorded by check_out is no.

recalled—record key used to record whether the item has been requested by another user.

recall_info—has a record key used to record a recall_tab as a value. The class recall_tab has three
attributes: fype, which shows the type of recall request—recall or search; ss_number, which is the
social security number of the requesting party; and more, which shows other recall requests (if
there are multiple requests).

15

Figure 6: Attributes in Library Material

16

e reserve_info—has a record key used to record the value reserve_tab to show whether the item is
reserved for special use (e.g., a course). The value appears only if the item is reserved. The class
reserve_tab has five attributes: instructor, course_name, course_number, semester, and year.

These eleven attributes are common to all library items. There can be more attributes, depending on
the specific class of a library item. For example, every item in the class monograph has an attribute isbn
(International Standard Book Number), while items in serials have issn (International Standard Serial
Number).

BABEL demonstrates an example of its ability to infer by its flexible handling of the attributes pertain-
ing to statement of responsibility. Notice that we have two such attributes. One is s_responsibility, the
other is [_responsibility. The information contents of these attributes are the same. However, the internal
structures are different. The attribute, s_responsibility, is defined as a disjunctive class of authors, while
the attribute /_responsibility is defined as a list of authors. The reason to keep two different attributes for
the same information is purely for efficiency. For example, a book item, b/0] say, is asserted to be a
library_item as follows:

b101
= book (
title => ‘The handbook of artificial intelligence’,
s_responsibility =>
(type => author,
author => { (fname => F1l: ‘Avron’,
lname => Ll1: ‘Barr’) ;
(fname => F2: ‘Edward’,
mname => M2: ‘A.’,
lname => L2: ‘Feigenbaum’) },
1_responsibility =>
(type => author,
author => (name => (fname => F1,
lname => L1),
co_name => (name => (fname => F2,
mname => M2,
lname => L2)))),
call_number => (c_letter => ‘QA’,
f_digit => 76,
s_digit => 65,
cuttering => ‘b77"),
subject => artificial_intelligence).

library_item(b101) .

When a user wants an item by many authors, but knows the name of only one, BABEL can process
the request through the two attributes s_responsibility and [_responsib-ility. The first is used to verify
efficiently (indeed by simple match as opposed to search®) the existence of the author in the set of the
item’s authors (disjunction of authors), and the second is used to keep all authors (conjunctive list of
authors) and to be able to list the names of all authors because we cannot enumerate authors with a
disjunctive class. The following user query, although somewhat incomplete, gets a successful response
without backtracking:

8 Actually LOGIN encodes a type hierarchy when it compiles the hierarchy so that it can check types in one matching
operation without searching the entire type hierarchy [1.

17

“Show me a book, written by Feigenbaum, of which subject is computer science”

query
:— library_ item(book (s_responsibility =>
(author => (lname => ‘Feigenbaum’)),
subject => computer_science,
title => X)),
show (X) .

To implement the above example in Prolog, we need to keep the name of authors as a list of names.
For example,

/* Fact =/
book (/* the title =/
‘The handbook of artificial intelligence’,
/+* the list of the last names of authors «/
[‘Barr’, ‘Feigenbaum’],
/% the call number =/
‘QA76.65 b77',
/* subject x/
artificial_ intelligence).

/* Query =/

query

:— book (X, Name_list, _, Y),
is_a (Y, computer_science),
member (‘Feigenbaum’, Name_list),
show (X) .

As demonstrated, in Prolog, the first literal in the query book(X, Name_list, _,) will succeed with
any item in the relation book. Then it will check if the subject of the item can be regarded as com-
puter_science using is_a inference rules which was defined in section 3. Then it will check if ‘Feigen-
baum’ is in the list of last names of the authors. If any of above two checkings fails, then it backtracks
and checks the next item. It might require backtracking through all the books in the library.

5 Transaction and Query Managers

BABEL would not be much of an experiment without some sample application programs. In this section,
we discuss the transaction and query managers of BABEL. The query manager serves the user of the
library, and the transaction manager serves the staff.

5.1 Transaction Manager

In its present state of conception, BABEL manages five basic transactions for the librarian:

e Maintaining records of current library material and users;’

°In its current status, implementation of BABEL does not support on-line data insert and delete operations which require
dynamic updates of class hierarchy.

18

e Check out and return operations;
e Recall request processing;
e Reserve request processing;

e User fine calculation and notice generation.

These are, of course, not meant to be as realistic as possible—e.g., few libraries (hopefully) fine
without repeated warnings!

5.1.1 Checkout and Return operations

When a user wishes to borrow a book, the librarian requests information from a terminal at the lending
desk by call number. If the book is cleared for lending (not reserved or previously requested), its status
is updated during the lending transaction as follows:

check_out :-
/+* Read call number of an item =*/
get_call_number (LC_number : lc_number),
/+ Get the record of the item using the call numberx/
library_item((call_number => LC_number,
lend_info => (lend_period => Lend_Period_Key,
checked_out => Checked_out_Key,
checking_time => Checking_time_Key,
ss_number => SS_number_Key,
return_time => Return_time_Key),
recalled => Recalled_Key,
recall_info => Recall_info_Key)),
/+ Read the social security number of the user =/
get_ss_number (SS_num),
/+ If somebody recalled the item, and =/
(recorded(Recalled_Key, vyes, _)
-> /+ 1if the recall person is the borrower =*/
(recorded(SS_number_Key, recall_tab(ss_number => SS_num), _)
-> remove_recall (LC_number)
; (write (‘This item is recalled by another user.’),
fail))
; true),
/+ Set Check_out to yes =/
putvar (Checked_out_Key, yes),
/* Set user ss_number to SS_number */
putvar (SS_number_Key, SS_num),
(more_to_check_out
-> check_out
; true).

The return transaction is as follows. Any fines are assessed at this time:

return :-
/* Read call number of an item =*/
get_call_number (LC_number : lc_number),

19

/+ Get the record using the call number =/
library_item(Item : (call_number => LC_number,
lend_info => Linfo: (checked_out => Checked_out_Key,
ss_number => SS_number_Key,
return_time => Return_time_Key),
recalled => Recalled_Key)),
get_current_time (CU_time),
/x Now, Checked_out becomes ‘no’ x/
putvar (Checked_out, no),
/* get expected return time from the record with record key =*/
recorded (Return_time_Key, Return_time, _),
/+* If it is over the due date, =*/
(late_return(CU_time, Return_time),
-> /*x calculate and make a fine notice x/
process_fine (Item, SS_num),
; true),
(more_to_return
-> return
; true).

5.1.2 Recall Request Operation

If a book is not on shelf, a user can request it through one of two operations. In the first, a search request,
the book is located and held for one week. In the second, a recall request, the requested book is already
on loan. A notice is sent to the current borrower that the book has been requested. When it is returned,
the librarian sends the person who made the request a notice that the book is waiting. The algorithm
follows.

add_recall :-
/* Read call number x/
get_call_number (LC_number : lc_number),
/+ Get the record using the call number =/
library_item(Item(call_number => LC_number,
recalled => Recalled_Key,
recall_info => Recall_info_Key)),
/* Read recall informations, =*/
get_recall info(Recall_tab: recall_tab),
/+ put the recall informations at the end of the recall list =/
put_end(Recall_info_Key, Recall_tab),
/+ Now, Recalled becomes ‘yes’ «*/
putvar (Recalled, yes)),
(more_to_recall
-> add_recall
; true) .

5.1.3 Reserve Request Operation

When an instructor needs certain material to remain available in the library for students during the period
of a given course, the librarian enters that information using the following algorithm.

reserve :-—
/* Read call number of the item x/

20

get_call_number (LC_number : lc_number),
/+ Get the record of the item using the call number =*/
library_item((call_number => LC_number,
lend_info => (lend_period => Lend_Key,
library_use_only => Luse_Key),
reserve_info => Reserve_info_Key)),

(library_use_only

-> /% Classify if the item is requested for library use only =/

putvar (Luse_Key, yes)
; /x or not for library use only x/
putvar (Luse_Key, no))

/+ Read desired loan period, and =*/
get_period (Period),
/* put the value to the attribute lend_period =*/
putvar (Lend_Key, Period),
/* Read reserve informations, and =/
get_reserve_info (Reserve_Tab),
/+ put it to the attribute reserve_infox*/
putvar (Reserve_info_Key, Reserve_Tab),
(more_to_reserve

—> add_reserve

; true).

5.2 Query Manager

The query manager in BABEL is an interactive query generator using menu operation. Once it is acti-
vated, it shows possible options which may be used for searching through BABEL which constitute the
user’s interactive choice. From this choice, the query manager generates a formal LOGIN query, and
executes it. There are various kinds of search queries, which can be classified according to the key value
to be used. Typical examples are,

1. Show by call number

Show by title

Show by statement of responsibility, i.e., author, editor, etc.
Show by temporal, i.e., publication date, etc.

Show by ISBN for books

Show by ISSN for serials

Show by subject

® N kWD

Show by physical description

The user may choose one or more keys to find an item. For example, if the user chooses 1, for call
number, then the query manager reads the call number, e.g., ‘QA 76.66 b77’, and generates the query
such as,

21

library_item(X : (call_number => (c_letter => ‘QA’,
f_digit => 76,
s_digit => 66,
cuttering => "b77")),
show_item(X) .

If the user chooses 3 and 7, then the system gets the name of author, e.g., ‘Feigenbaum’, and the
category of subject, e.g., computer_science. Then, the generated query looks like

library_item (X : computer_science_material
(author => (lname => ‘Feigenbaum’))),
show_item (X) .

The generalized unification operation in LOGIN provides two invaluable built-in search strategies:
focusing computation only on relevant domains of objects, and intersecting such domains. Such are
indeed very effective for navigating through the knowledge base of BABEL. Both features are performed
in exactly same manner—through v -unification— but one can use them differently.

For example, let us suppose that a user requests a book on both computer science and linguistics
written by Robert F. Simmons. There are two possible ways to request it. The first:

library_item (X : computer_science_book
(author => (fname => ‘Robert’,
mname => ‘F.’,
lname => ‘Simmons’))),
library_item(X : linguistics_book),
show_item (X) .

and the second

X computer_science,
X = linguistics,
library_item(Y : book (author => (fname => ‘Robert’,
mname => ‘F.’
lname => ‘Simmons’),
subject => X)),
show_item(Y) .

Through unification steps in LOGIN, the first query becomes:

library_item (X : nlp_book (author => (fname => ‘Robert’,
mname => ‘F.’,
lname => ‘Simmons’))),
show_item(X) .

The domain of X which is computer_science_book and linguistics_book is intersected down to natu-
ral_language_processing_book. This is focusing the domain of objects.

On the other hand, the second query becomes:

library_item(Y : book (author => (fname => ‘Robert’,
mname => ‘F.’,
lname => ‘Simmons’),
subject => natural_language_processing)),
show_item(Y) .

22

In this case, the variable X, which first becomes computer_science through unification, is intersected
with the term linguistics, and finally becomes natural_language_processing. In this way, intersection of
types keeps a finer and finer focus on relevant solutions.

In BABEL, we can use either of the above queries, thanks to the hierarchy of physical library material
classified by subjects together with the conceptual subject hierarchy.

Operationally, however, there is a big difference between the two queries. In the first query, we
can reduce the search space by focusing the domain of objects, but not in the second query. In the
latter case, LOGIN will visit each record in the class book to check whether the value of subject is
natural_language_processing.

6 Conclusion

We have presented a prototype library expert system, BABEL, written in LOGIN. By using -terms,
rather than first-order terms, LOGIN provides effective methods to represent FRAME style knowledge
structure while keeping full expressive power of Prolog.

The strategy of 1-term unification algorithm with order-sorted Horn logic [] provides ef-
ficient way to express set theoretical operations. Every set theoretical operations can be expressed in
unification operation in LOGIN. Thus, it is possible to use a set-at-a-time operation in LOGIN. For
example, we can use assert to assert the fact whether a library material is reserved. If an Al faculty re-
quests to reserve all artificial_intelligence_material, then we can use set-at-a-time operation by asserting
the whole set of artificial_intelligence_material is reserved.

LOGIN ?- assert (reserved(artificial_intelligence_material)).

yes

LOGIN ?- reserved((title => ‘The handbook of artificial intelligence’)).
yes

As in above example, since any item which is an artificial intelligence material succeeds to unify with
artificial_intelligence_material, we can assert a set at a time without asserting every items in Al as re-
served.

In its comparison with its potential implementation in Prolog, BABEL in LOGIN seems to provide the
following advantages.

1. The knowledge base taxonomy is easy to use and maintain because of the following features:

e Since attributes of a class inherit to its subclass, it allows default value.

e Every attribute is represented as a pair consisting of a label and a value, as opposed to a
position number and a value. Thus, the order of arguments in a -term is transparent to the
programmer. As a result, the number of attributes in two -terms does not need to be the
same to unify the 1)-terms.

e LOGIN directly supports new programming features like semantic domain definitions and
domain focusing and intersecting.

e The above features enable a user to get without much overhead a response from queries
containing incomplete information.

2. LOGIN code is also likely to be better than Prolog’s for several reasons:

23

e Many deductions can be done at the unification level rather than at the resolution level. For
example, the unification strategy using disjunctive classes, as described in Section 4.2, sig-
nificantly reduces the number of environment changes and backtrackings.

e By adding more restrictions to each argument in a query, one can reduce the domain of the
search space.

In summary, intrinsic features of LOGIN look very promising for dealing efficiently with the rich
taxonomic information found in information systems such as BABEL.

In the course of developing this experiment, ideas for real-life software development in a sophisticated
language like LOGIN have emerged. Such an example is the integration of a user-specifiable inheritance
operation on specific attributes. A mild example in the form of a self-description facility is being added
to LOGIN for BABEL where definition strings are related by prefix ordering as opposed to subclass
ordering. Extensions thereof may be string or regular expression matching, etc.

In conclusion, we shall certainly admit that more work needs to be done to determine fully the ef-
fectiveness of LOGIN in a real application. To make its advantages concrete, we need to be careful in
implementing an engine for LOGIN and its extensions so that the overhead in performing a generalized
unification algorithm does not outweigh the efficiency gained.

References

[Ait-Kaci 86a] Ait-Kaci, H., “An Algebraic Semantics Approach to the Resolution of Type Equations.”
Theoretical Computer Science 45, 1986, pp. 293-351.[online ']

[Ait-Kaci 87] Ait-Kaci, H., Boyer, R., Lincoln, P., and R. Nasr, The Efficient Implementation of Ob-
ject Inheritance. MCC Technical Report AI-102-87. Microelectronics and Computer
Technology Corporation, Austin, TX. July, 1987.[online'!]

[Ait-Kaci 86b] Ait-Kaci, H. and R. Nasr, “LOGIN: A Logic Programming with built-in Inheritance.”
Journal of Logic Programming 3(3), October, 1986, pp. 185-215.[online]

[Ait-Kaci 88] Ait-Kaci, H., Nasr, R., and J. Seo “BABEL: A Base for an Experimental Library.” Pro-
ceedings of ACM SIGIR 11th Conference on Research and Development in Informa-
tion Retrieval, Grenoble, France, June 13—15, 1988, Presses Universitaires de Grenoble,
pp. 175-190.[online 3]

[Bobrow 77] Bobrow, D. G., and T. Winograd, “An overview of KRL, a Knowledge Representation
Language.” Cognitive Science 1, 1977, pp. 3-46

[Goldstein 77] Goldstein, I. P. and R. B. Robert, “NUDGE, a Knowledge-Based Scheduling Program.”
Proceedings of 5th IJICAI 1977 , pp. 257-263.

[Goldberg 80] Goldberg, A. and D. Robson, Smalltalk80: The Language and its implementation,
Addison-Wesley, 1980.

Ohttp://hassan-ait-kaci.net/pdf/tcs—86.pdf
Uhttps://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
Phttps://hassan-ait-kaci.net/pdf/login-jlp-86.pdf
Bhttps://hassan-ait-kaci.net/pdf/babel.pdf

24

http://hassan-ait-kaci.net/pdf/tcs-86.pdf
https://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
https://hassan-ait-kaci.net/pdf/login-jlp-86.pdf
https://hassan-ait-kaci.net/pdf/babel.pdf
http://hassan-ait-kaci.net/pdf/tcs-86.pdf
https://hassan-ait-kaci.net/pdf/encoding-toplas-89.pdf
https://hassan-ait-kaci.net/pdf/login-jlp-86.pdf
https://hassan-ait-kaci.net/pdf/babel.pdf

[Gorman 78] Gorman, M. and P. W. Winker, (Eds.), Anglo-American Cataloguing Rules, 2nd ed.,
America Library Association and Canada Library Association, 1978.

[Minsky 75] Minsky, M., “A framework for representing knowledge.” In P. Winston (Ed.) The psy-
chology of computer vision, McGraw-Hill, 1975, pp. 211-277

[Smolka 87] Smolka G., and H. Ait-Kaci, Inheritance Hierarchies: Semantics and Unification. MCC
Technical Report AI-057-87. Microelectronics and Computer Technology Corporation,
Austin, May 1987. (To appear in 1989 in C. Kirchner (Ed.) Journal of Symbolic Com-
putation, Special Issue on Unification.)[online'#]

[Stefik 83] Stefik, M., D. G. Bobrow, S. Mittal, and L. Conway, “Knowledge Programming in
LOOPS: Report on an Experimental Course,” Artificial Intelligence, Fall 1983, pp. 3—
14.

“https://hassan-ait-kaci.net/pdf/jsc-89.pdf

25

https://hassan-ait-kaci.net/pdf/jsc-89.pdf
https://hassan-ait-kaci.net/pdf/jsc-89.pdf

	Introduction
	LOGIN: an Overview
	Knowledge Representation in LOGIN
	Knowledge Base of BABEL
	Classes in the Knowledge Base
	Classification by Physical Description
	Classification by Subject
	User Class Hierarchy

	Attributes in Classes of Library Material
	Representation of Object States
	Library Object Attributes

	Transaction and Query Managers
	Transaction Manager
	Checkout and Return operations
	Recall Request Operation
	Reserve Request Operation

	Query Manager

	Conclusion

