
PARIS RESEARCH LABORATORY

d i g i t a l

March 1994

0

Hassan Aı̈t-Kaci
Bruno Dumant
Richard Meyer

Andreas Podelski
Peter Van Roy

The Wild LIFE Handbook
(prepublication edition)

0

The Wild LIFE Handbook
(prepublication edition)

Hassan Aı̈t-Kaci

Bruno Dumant

Richard Meyer

Andreas Podelski

Peter Van Roy

March 1994

c Digital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

This handbook provides a tutorial of the LIFE programming language as well as a complete
description of the capabilities of the Wild LIFE 1.0 system. Although we have attempted to
make the tutorial self-contained, it is preferable that the reader be familiar with Prolog. The
tutorial exposes gradually the main components of LIFE in a synthetic approach: its original
data structure— -term—and its use in predicates, functions, and sort (type) definitions. Along
the way, many useful examples are provided and some common pitfalls are discussed and
illustrated.

Résumé

Ce manuel fournit un cours d’initiation au langage de programmation LIFE, ainsi qu’une
description détaillée des prédicats et fonctions prédéfinis dans l’interprète Wild LIFE 1.0. C’est
la première fois que nous tentons d’écrire une introduction pratique à la programmation en
LIFE. Bien que nous fassions l’effort de n’utiliser que des notions élémentaires ou prédefinies,
il est préférable que le lecteur ait déjà une connaissance de base de Prolog. Le cours expose
graduellement et de façon synthétique les principales composantes de LIFE: sa structure de
données originale—le -terme—et son emploi dans les clauses, les fonctions et les définitions
de sortes (types). Beaucoup d’exemples utiles sont donnés tout au long du manuel et quelques
pièges courants sont illustrés et discutés.

iii

Keywords

Constraint programming, logic programming, functional programming, object-oriented pro-
gramming, rapid prototyping, inheritance.

Acknowledgements

The Wild LIFE project has been very much a team effort. The low-level X Window interface
was implemented by Jean-Claude Hervé. The graphical interface toolkit and accumulator
preprocessor were implemented by Bruno Dumant. We thank the other, past and present,
members and visitors of the Paradise project at PRL and its follow-on, the Proteus project, for
their suffering along with the final debugging of the design and delivery of Wild LIFE. We
appreciate their active and continuing participation giving many examples, bug reports, and
constructive criticisms. For the final haul on version 1.0 we especially thank Arnaud Venet.

iv

Contents

1 Introduction 1

2 Road map 1

3 Running Wild LIFE 3
3.1 Getting started : 3
3.2 Input syntax : 3
3.3 Incremental query extension : 4
3.4 Loading files : 6
3.5 Interrupting execution : 6

4 The basic data structure: -terms 7
4.1 Sorts : 8

4.1.1 Defining sort inheritance : 8
4.1.2 Built-in sorts : 9
4.1.3 Greatest lower bound (glb) : 10

4.2 Attributes : 11
4.3 Variables and tags : 11
4.4 Unification : 12

4.4.1 A step-by-step comparison with Prolog unification : : : : : : : : : 13

5 Predicates 14
5.1 Defining predicates : 14
5.2 Executing predicates : 14
5.3 Pruning the search tree with cut : 15

5.3.1 The scope of cut : 15
5.3.2 Disjunctive terms and cut : 16
5.3.3 Negation-as-failure : 16

6 Functions 17
6.1 Defining functions : 17
6.2 Executing functions : 19
6.3 Matching : 21
6.4 Currying : 22
6.5 Quote and eval : 26
6.6 Choosing between matching and unification : : : : : : : : : : : : : : 27

7 Constrained sorts 29
7.1 Defining constrained sorts : 29

7.1.1 Sort attributes : 29
7.1.2 Constrained sorts : 30

7.2 Executing constrained sorts : 31
7.3 Constrained sorts as daemons : 33

v

8 Basic built-in routines 33
8.1 Control flow : 34
8.2 Ψ-term manipulation : 38
8.3 Arithmetic : 41

8.3.1 Arithmetic calculation : 41
8.3.2 Arithmetic comparison : 42
8.3.3 Boolean arithmetic : 43

8.4 Sorts : 43
8.4.1 Sort calculation : 43
8.4.2 Sort comparison : 45

8.5 Strings : 46
8.5.1 String calculation : 46
8.5.2 String comparison : 47

8.6 Type checking : 47
8.7 Input/output : 47

8.7.1 Reading : 48
8.7.2 Writing : 49
8.7.3 Parsing a string : 52
8.7.4 Operator declarations : 53
8.7.5 Files and streams : 54

8.8 System-related built-ins : 55
8.8.1 The Wild LIFE system : 55
8.8.2 The Unix system : 57
8.8.3 Timekeeping : 58

8.9 Loading files with term expansion : 58
8.9.1 Defining term expansion clauses : : : : : : : : : : : : : : : : : : 59
8.9.2 Using term expansion when loading files : : : : : : : : : : : : : : 59

9 Global variables, persistent terms, and destructive assignment 60
9.1 Global variables : 60
9.2 Persistent terms : 61
9.3 Persistent variables : 61
9.4 Destructive assignment : 62

9.4.1 Backtrackable destructive assignment : : : : : : : : : : : : : : : 62
9.4.2 Nonbacktrackable destructive assignment : : : : : : : : : : : : : 62

9.5 Quoting : 65
9.6 Summary of built-ins : 65

10 Modules 66
10.1 Standard modules : 67
10.2 Using features : 67
10.3 Overloading : 68
10.4 Summary of built-ins : 69

vi

11 Rule-base management 71
11.1 Adding rules : 71
11.2 Deleting rules : 72
11.3 Inspecting rules : 73
11.4 Function definitions : 73
11.5 Summary of built-ins : 74

12 Example programs and programming techniques 75
12.1 Generating prime numbers : 75
12.2 PERT scheduling : 76
12.3 Cryptarithmetic: SEND+MORE=MONEY : : : : : : : : : : : : : : : : 78
12.4 Concurrent programming : 80
12.5 Encapsulated programming : 81
12.6 Classes and instances : 82
12.7 Using destructive assignment to calculate term size : : : : : : : : : : 83
12.8 Using a -term as an array : 84
12.9 Memoization : 85
12.10 Method inheritance in the graphical interface toolkit : : : : : : : : : : 86
12.11 Structural constraints and arithmetic constraints : : : : : : : : : : : : 87

13 Fine points for would-be wizards 88
13.1 Functional variables and apply : 88
13.2 Query levels : 89
13.3 Predicate and function positions : 90
13.4 Compact sort definitions : 92
13.5 Sort encoding : 94
13.6 Printing convention : 94

14 Hints to write more efficient programs 95
14.1 Garbage collection : 95
14.2 Residuation : 96
14.3 Partial evaluation : 97

15 Compatibility with Prolog 97

16 Conclusion: the experience of Wild LIFE 100

A LIFE versus Prolog 101

B Predefined operators 102

C Glossary 103

D Practical information about Wild LIFE 1.0 105

vii

E Manpage 106

F The accumulator preprocessor 109
F.1 Accumulators : 110

F.1.1 Basic examples and syntax : 110
F.1.2 Accumulation : 111
F.1.3 Other features : 112

F.2 Operations on accumulators : 115
F.2.1 Context of an expansion : 115
F.2.2 Operations : 116

F.3 The DCG accumulator : 120
F.3.1 Definition : 120
F.3.2 DCG syntax : 121
F.3.3 Implementation notes : 121

F.4 Passed arguments : 123
F.5 Common problems and debugging : 124
F.6 Term expansion : 125

G The X interface 126
G.1 Event mask values : 126
G.2 Primitive control operations : 126
G.3 Primitive drawing operations : 128

H The graphical interface toolkit 130
H.1 Introduction : 130
H.2 Boxes and their placement constraints : : : : : : : : : : : : : : : : : : 130

H.2.1 Boxes used as padding : 131
H.2.2 Positioning : 131
H.2.3 Lists : 132
H.2.4 Sizes of boxes : 133
H.2.5 Creating a box : 133

H.3 Main constructors : 133
H.3.1 Panels : 133
H.3.2 Buttons : 134
H.3.3 Menus : 134
H.3.4 Sliders : 134

H.4 Looks : 135
H.4.1 Look types : 135
H.4.2 Inheritance of looks : 136
H.4.3 Colors and fonts : 136

H.5 The hierarchy of graphical interface objects : : : : : : : : : : : : : : : 138
H.6 Screen objects : 139

viii

I The C-LIFE interface 140
I.1 Description : 140
I.2 A simple example : 140
I.3 Summary of functions and prototypes : : : : : : : : : : : : : : : : : : 140
I.4 Memory management : 141
I.5 An exhaustive example : 141

References 145

ix

Wild LIFE Handbook 1

... l’élément ne préexiste pas à l’ensemble, il n’est ni plus
immédiat ni plus ancien, ce ne sont pas les éléments qui
déterminent l’ensemble, mais l’ensemble qui détermine
les éléments.

GEORGES PEREC La vie, mode d’emploi.1

1 Introduction

LIFE is a programming language originally conceived by Hassan Aı̈t-Kaci and his colleagues
at MCC, in Austin, Texas [4, 5, 3]. It is a synthesis of three different programming paradigms:
logic programming, functional programming and object-oriented programming.2 LIFE is a
declarative logic-based language that can be seen as a constraint language. It derives its syntax
and resolution method from Prolog. Except for differences in built-ins, Prolog programs
can run unaltered in LIFE if they follow the syntactic convention that each predicate and
functor symbol is used with one arity only. However, the addition of functions, approximation
structures (-terms) and inheritance greatly enriches the language and allows one to formulate
efficient programs more easily, more concisely, and—in our opinion—more naturally [7, 8].

Wild LIFE 1.0 is an interpreter for LIFE written in C. The main design goals for Wild LIFE
are functionality and robustness. The interpreter implements most of the LIFE language and
is robust enough to support serious program development. To increase the system’s general
usefulness, we have added a large number of useful tools and example programs.

As a general rule, users of Wild LIFE are encouraged to use LIFE’s unique features wherever
possible. They should not worry about low-level efficiency issues, but think only of using the
expressive power of the language. We are using Wild LIFE to develop a LIFE compiler. We
are making every effort to ensure that the compiler generates efficient code for well-written
programs. Its design goals are to be competitive in speed with the best implementations of
Prolog and to be usable for arbitrary large programs and data.

2 Road map

The purpose of this document is twofold: it is intended as a tutorial to the LIFE language
as well as a programmer’s reference to the Wild LIFE system. Table 1 gives an outline of its
contents.

To aid in understanding Wild LIFE, we shall use a special “watchful eyes” sign, ggs s, to
highlight specific points where the behavior of Wild LIFE may run counter to conventions or
expectations. It will act as a conspicuous marking device at the outset of a paragraph to indicate
that you should watch out for the observation to follow to avert potential trouble.

The LIFE compiler will be as compatible as possible with Wild LIFE 1.0. To ensure that your
programs will be portable to the compiler, they should only make use of built-ins documented
in this handbook. There exist other, undocumented built-ins. We strongly recommend that you
do not use undocumented built-ins. We do not make any guarantees that they will continue to
exist in the compiler.

1Life, a user manual.
2Or rather, a particular view of object-oriented programming dealing essentially with inheritance.

Research Report Draft March 1994

2 Hassan Aı̈t-Kaci et al.

Tutorial
Sections 1–3 (pages 1–7) The basic properties of the LIFE language and the

Wild LIFE system.
Sections 4–7 (pages 7–33) A general introduction to the concepts of LIFE: -terms (the data structure), predicates, functions,

and sorts.

Reference
Section 8 (page 33) The core set of built-in routines.
Section 9 (page 60) The implementation of destructive assignment and

the concepts of global variables and persistent
terms.

Section 10 (page 66) The module system.
Section 11 (page 71) Rule-base primitives that have been kept for

compatibility with Prolog, but whose use is not
encouraged.

Programming techniques
Sections 12–14 (pages 75–97) Examples and useful information on how to write

good programs.
Section 15 (page 97) A full list of the differences between Wild LIFE

and Prolog.

Appendices
Appendix A (page 101) A short list of reasons why you should use LIFE

instead of Prolog.
Appendix B (page 102) The predefined operators in Wild LIFE.
Appendix C (page 103) A glossary of frequently-used terminology.
Appendix D (page 105) Information on what the system release contains,

how to get it, and how to get in touch with other
LIFE users.

Appendix E (page 106) The manpage for the system, describing the vari-
ous execution options.

Appendices F–I (pages 109–144) Documentation of four useful tools: the accumu-
lator preprocessor, the X interface, the graphical
interface toolkit, and the C-LIFE interface.

Table 1: Road map of the Wild LIFE handbook

March 1994 Digital PRL

Wild LIFE Handbook 3

3 Running Wild LIFE

3.1 Getting started

To start running the interpreter at the shell level, simply invoke the command wild life.
The program responds with the following message of identification, and the prompt> when it
is ready to accept input:

Wild_Life Interpreter Version 1.0
Copyright (C) 1991-93 DEC Paris Research Laboratory
No customizing file loaded.
>

At this point you may either make assertions, submit queries to be solved or exit by typing the
key sequence CTRL-D which closes the input stream. The query halt? can also be used to
terminate Wild LIFE. (Note: throughout the handbook anything written like this
is simulated input or output from the interpreter.)

Upon startup, Wild LIFE automatically loads the file .wild_life. This is a convenience
to allow you to customize your environment at each session. The customization file is first
looked for in the current directory, and if not found there, in your home directory. If none is
found, then Wild LIFE prints the message No customizing file loaded as is done
above.

3.2 Input syntax

Wild LIFE uses essentially the same syntax as ISO Standard Prolog, which is very close
to the Edinburgh syntax [10, 15, 19]. Unless specifically indicated to be different, the same
syntactic conventions apply. In particular, variables are capitalized (or start with an underscore
“ ”) whereas everything else is not, = is the unification predicate, :- defines a clause, ! is the
cut predicate, etc. When we depart from the familiar syntax, we will comment on the changes,
giving our justification for adopting them.

There are two kinds of user input to Wild LIFE: declarations and queries. A declaration
becomes part of the program and is not executed. A query is a question asked of the system.
The syntactic difference between the two is how they terminate:� Declarations are terminated by a period: “.”.� Queries are terminated by a question mark: “?”.

Example 3.1� Assert that chaplin is funny: type funny(chaplin). then hCRi.3� Ask who is funny: type funny(X)? followed by hCRi; this will yield the answer
X=chaplin.� Ask for another answer: type ; followed by hCRi; there is no more answer since chaplin
is the only funny thing around.

3We will use the notation hCRi to denote a carriage return.

Research Report Draft March 1994

4 Hassan Aı̈t-Kaci et al.

Spaces, tabs, and line feeds appearing between tokens are ignored, so feel free to indent
things as you wish or give input over several lines. When you do this, the prompt becomes “|
” after the first line. The system knows when the query or declaration has ended. Comments
are introduced by % and terminate at the end of the line.

System messages, warnings, and error messages all start with three stars ***, which make
them easy to recognize. If the query can be satisfied then Wild LIFE will print the bindings of
the query variables followed by the message *** Yes. If the query cannot be satisfied, the
message *** No will be printed.

Example 3.2 Let us assert a few facts defining a paternity relation:

> father(john,harry).

*** Yes
> father(john,charles).

*** Yes
> father(harry,michael).

*** Yes

We assert that X is the grandfather of Y if X is the father of Z and Z is the father of Y:

> grandfather(X,Y) :- father(X,Z),father(Z,Y).

*** Yes

We try a query:

> grandfather(A,B)?

*** Yes
A = john, B = michael.

3.3 Incremental query extension

Upon success of a query, the user is offered the possibility of extending it using the resulting
context. This can be continued to any level of nesting. The query level is printed in the form of
a numbered and indented prompt. At the prompt the user can take one of the following actions:� Type a goal followed by ? to extend the query.� Type hCRi to abandon the last query increment and go back to the previous level.� Type ; to force backtracking and look for another answer.� Type a period . to pop up to the top-level prompt from any depth.

March 1994 Digital PRL

Wild LIFE Handbook 5� Make an assertion that uses the variable-binding context by typing a declaration followed
by a period “.”.

Example 3.3 Continuing on the previous example, now enquiring about A’s son C (where
A=john):

--1> father(A,C)?

*** Yes
A = john, B = michael, C = harry.

Let us check whether an alternative solution exists that is compatible with the context of the
previous level by forcing backtracking:

----2> ;

*** Yes
A = john, B = michael, C = charles.

We are again at query level 2, but one that is independent from the previous level 2. Let us
again force backtracking:

----2> ;

*** No
A = john, B = michael.

This query extension fails and brings the level back to 1; i.e., back to the answer to goal
grandfather(A,B)?. Observe that in this context, variable C no longer exists. Let us
proceed, asking for the father C of B (michael):

--1> father(C,B)?

*** Yes
A = john, B = michael, C = harry.

And further, whether A (john) is the father of C (harry):

----2> father(A,C)?

*** Yes
A = john, B = michael, C = harry.

To go back to level 2, we type hCRi:
------3>

*** No
A = john, B = michael, C = harry.

Research Report Draft March 1994

6 Hassan Aı̈t-Kaci et al.

We now give up with . to go back to top level:

----2> .
>

We find incremental querying to be a powerful means of user interaction. It is particularly
useful for exploring solutions step by step or seeking further information. Fine points about
incremental querying are given in Section 13.2.

3.4 Loading files

A program file is a text file composed of definitions and queries. A query in a file behaves
as a directive does in Prolog. Any combination of definitions and queries that are entered
by the user may appear in a program file. To load a program file simply type the query
load("filename")?. The filename must be a string, i.e., enclosed in double quotes. The
suffix “.lf” is added automatically if necessary. If a syntax error occurs in a file being loaded,
it is reported along with the line number at which it was detected, and it causes Wild LIFE to
abort further processing and go back to the top level.

For serious development work, it is recommended that you put your programs in modules
and load them with the command import("filename")?. The Wild LIFE system comes
with a large number of example programs, each of which is defined in a separate module.
This allows example programs to be loaded in the same session without affecting each other
or any other programs that may be loaded. See for example the cryptarithmetic program of
Section 12.3.ggs s load is neither Prolog’s consult nor reconsult (although it comes closest to
consult). If a file being loaded attempts to redefine an already defined object whose
definition may not be extended, then an error is reported. As a result, you will have to exit
Wild LIFE and restart it when you need to reload a file.

3.5 Interrupting execution

If execution of a query goes into an infinite loop or takes too long to compute, you may
interrupt it by typing CTRL-C. There might be a slight delay if a garbage collection was taking
place. When the interrupt is dealt with, the following prompt appears:

*** Command (q,c,a,s,t,h)?

Each letter is a mnemonic shorthand for a command corresponding to a specific action to be
taken for Wild LIFE at this point. Hence, typing h (or ?) in response to this prompt will yield
the following to be printed:

*** [Quit (q), Continue (c), Abort (a), Step (s,RETURN),
Trace (t), Help (h,?)]

*** Command (q,c,a,s,t,h)?

Typing q will make Wild LIFE exit the session; c will make execution resume from where it
was interrupted; a will cause it to abort execution and return to top level; h will make Wild

March 1994 Digital PRL

Wild LIFE Handbook 7

LIFE print out a reminder of the meaning of these abbreviations; t will turn trace mode on; s
(resp., hCRi) will turn single-stepping on. Both tracing and single-stepping are automatically
turned off by a and c.

4 The basic data structure: -terms

Just as Prolog is based on first-order (Herbrand) terms, LIFE is based on -terms.4 In
order to compare the two, one can say that -terms are to Prolog terms what flexible records
are to static arrays. Namely, instead of selecting subterms just by numeric positions, we can
use labels (i.e., symbolic keywords, also called features), and instead of fixing the number of
subterms beforehand, we can add more subterms to a term at any time (even by user-input at
run time). We call a subterm together with its label an attribute of the -term. A label may be
any natural number or any symbol. The symbol must be single-quoted if it does not start with
a lower-case letter or if it contains non-alphanumeric characters other than underscore.

Furthermore, instead of Prolog’s mutually incompatible functor symbols we use sort symbols
that the programmer puts into a hierarchy (expressing hereby their relation, i.e., their “degree
of compatibility”).

Finally, in order to express coreferences (“aliasing”) not just between leaves of the term, but
between any subterms, we may attach tags (i.e., variables) to any subterms of a -term. In
particular, this allows us to describe cyclic structures.

Example 4.1 Here are a few sample -terms:� 42, a specific integer;� int, the sort that denotes all integers;� -5.66, a specific floating point number;� 2.10776e-8, a specific floating point number in exponential notation;� real, the sort that denotes all floating point numbers;� "a small piece of rope", a specific string;� string, the sort that denotes all strings;� abc def1, a sort;� ’%* strange characters!’, a sort whose name contains strange characters (note
the single quotes);� date(friday,"XIII"), a -term with implicit numeric labels;� date(1=>friday, 2=>"XIII"), the same -term with explicit numeric labels;� date(2=>"XIII", 1=>friday), the same -term yet again, showing that the
order of explicit labels is irrelevant;� freddy(nails => long, face => ugly, films => 5), a -term with
keyword labels;� rectangle(width => S:int, length => S), a -term with two attributes
that are aliased together, as indicated by the tag S;� X:person(home => address(occupants => [X])), a -term with a cyclic
reference, as indicated by the tag X.

4If you substitute Prolog terms by LIFE’s -terms the resulting language is called Login [4].

Research Report Draft March 1994

8 Hassan Aı̈t-Kaci et al.

A -term describes a set of objects, which themselves may be represented as records. Hence,
the -term may be construed as a record type. A -term with given attributes describes records
with at least the fields specified by the attributes, but possibly others. The values in the fields
are themselves records which are described by -terms. Furthermore, the records must satisfy
the coreferences expressed by the tags of the -term.

4.1 Sorts

Sorts are the syntactic entities attached to the root of every -term. In this sense, they take
over the role of type names in C and functors in Prolog. Sorts by themselves constitute the
most basic -terms. The sort attached to the root of a -term is called its principal sort (or
root sort).

Any symbol that is introduced in the text of a program or query is considered a sort unless
it is declared otherwise or it is a label. A sort may be any integer or floating point number
or character sequence. The character sequence must be surrounded by single quotes if it
does not start with a lower-case letter or if it contains non-alphanumeric characters other than
underscore. A character sequence surrounded by double quotes is also allowed; it is an explicit
string.

No conceptual difference is made between values and sorts. This means that, for example,
the value 1 is specified by the sort 1. The fact that this is an integer value is specified by saying
that 1 is a subsort of the sort of all integers, which is written int.

4.1.1 Defining sort inheritance

Sorts are put in a hierarchy by specifying a partial order relation between sorts. The order
relation is declared by means of sort inheritance definitions, which are written as s1 <| s2.
This declaration can be read as “s1 is-a s2” or “s1 is a subsort of s2.” 5 The text s1 <| s2
is the programmer equivalent of the mathematical notation s1 / s2. Through this declaration,
s1 inherits all properties of s2. A sort may occur in several inheritance definitions if it has
more than one direct relative (i.e., parent or child).

Sorts denote sets, and the partial order between them amounts to the subset relation. Hence,
a sort may be viewed as a type of records and the partial order as type inheritance. We will later
see (in Section 7, page 29) that we can declare a definition for a sort; it then becomes a class
in the object-oriented sense. The subsorts of a sort inherit all the properties defined for the
parent sort. Different sorts may have common subsorts, thus allowing multiple inheritance.

Example 4.2 Let us declare a small hierarchy that describes the relationships between trucks
and vehicles. We assume that any truck is also a vehicle and that any property pertaining to
vehicles also applies to trucks. That is, trucks inherit all properties of vehicles. This is specified
in Wild LIFE by typing truck <| vehicle. Subsequently, Wild LIFE’s unification will
take the inheritance information into account.

> truck <| vehicle. % A truck is a vehicle

5This must not be confusedwith the predicate subsort that tests whether two sorts are related (see Section 8.4).

March 1994 Digital PRL

Wild LIFE Handbook 9

*** Yes
> mobile(vehicle). % A vehicle is mobile

*** Yes
> useful(truck). % A truck is useful

*** Yes
> mobile(X),useful(X)? % What is mobile and useful?

*** Yes
X = truck.

A cycle within the hierarchy (such as a <| b. b <| c. c <| a.) is reported as
an error. This enforces consistency of the sort ordering as it is specified by the user. Consistency
checking becomes more complex when properties are attached to sorts (in Section 7). Wild
LIFE does not check consistency of properties attached to sorts.

4.1.2 Built-in sorts

At the summit of the hierarchy of sorts, there is a greatest sort, denoted by >, pronounced
“top.” That is, between any sort s and the sort > the order relation s <| > is always specified.
In Wild LIFE the symbol @ is used to represent >.6

Likewise, at the base of this hierarchy we find the sort ?, pronounced “bottom”. That is,
between any sort s and the sort ? the order relation ? <| s is always specified. In Wild LIFE
the symbol fg is used to represent ?.

From now on, we will write @ and fg to denote > and ?. The sort @ denotes the set of all
records. The sort fg denotes the empty set.

Besides @ and fg, the other built-in sorts available to the user are:� All integers, floating point numbers and the symbols int and real, with the order
relations n <| int (for all integers n), r <| real (for all non integral floating point
numbers r), and int <| real. For example, 0,-5, and 3.0 are subsorts of int and
thus of real; 2.5 and 26.77 are subsorts of real but not of int.� list, [] (empty list, which may be written nil) and cons (the list constructor), with
the order relations [] <| list and cons <| list. Lists may be written with the
same syntax as Prolog; e.g.:
[a,b,c] = [a,b|[c]] = [a,b,c|[]] = [a|[b|[c|[]]]].� All strings s and the symbol string, with the order relations s <| string. Specific
strings appear within double quotes as in "this is a string".7� bool, true and false with the order relations true <| bool and false <|
bool.

6Because> is not a standard ASCII character, we need an ASCII symbol to stand for it. Besides resembling a
looped-around a that could stand for anything, the symbol @ has a shape that is reminiscent of an embryo—a
perfect ideogram to denote the most primeval sort in LIFE!

7 As opposed to other non-numeric sorts, strings are non-interned symbols, i.e., they are not put in the symbol
table.

Research Report Draft March 1994

10 Hassan Aı̈t-Kaci et al.� built in, a sort which is a supersort of all built-in sorts, with the order relations
list <| built in, string <| built in, real <| built in and bool
<| built in.

To summarize, the system contains the following predefined declarations.

built_in <| @.

list <| built_in.
string <| built_in.
real <| built_in.
bool <| built_in.

cons <| list.
[] <| list.

int <| real.

true <| bool.
false <| bool.

When extending built-in sorts it is recommended to respect the following elementary prop-
erties.� int <| real� glb(list, real) = fg� glb(string, real) = fg� glb(list, string) = fg� glb(true, false) = fg
If these properties are not respected then the interpreter may behave in a strange manner: it
may crash or it may not recognize the built-in sorts for what they are.

4.1.3 Greatest lower bound (glb)

The glb of two sorts r and s is their largest common subsort. Since sorts denote sets, the glb
corresponds to set intersection.

There always exists at least one common subsort, namely fg. If fg is the largest common
subsort, then we say that r and s are incompatible. We note that incompatibility is always
declared implicitly, i.e., two sorts are incompatible because the user has not declared any
common subsort, nor is there is a common built-in sort (except for fg, of course). This is in
contrast to other hierarchies used for knowledge representation or computational linguistics
where the incompatibility has to be declared explicitly.

The glb of two sorts r and s is not always given by one sort which is declared in the hierarchy.
Namely, if there are several sorts s1 ; : : : ; sn which are common subsorts of r and s and which
are not in an order relation among themselves, then the glb of r and s is given by the disjunctive
sort fs1; : : : ; sng.

In Wild LIFE, if during execution a disjunctive sort is computed, then it is not created
or printed out as such. Instead, operationally it introduces a disjunction, just as a predicate
definition with several clauses introduces a disjunction.

March 1994 Digital PRL

Wild LIFE Handbook 11

Example 4.3 Say we define a hierarchy containing the sorts two wheels and four wheels
that represent classes of objects having respectively two and four wheels.� bike <| two wheels.� bike <| vehicle.� truck <| four wheels.� truck <| vehicle.� car <| four wheels.� car <| vehicle.
From this hierarchy we can deduce the following values for the glb:� glb(two wheels, vehicle) = bike� glb(four wheels, vehicle) = fcar;truckg� glb(two wheels, four wheels) = fg� glb(bike, vehicle) = bike� glb(bike, @) = bike
The disjunctive sort fcar;truckg is immediately enumerated.

4.2 Attributes

A -term in its basic form is simply a sort. A more complicated -term is constructed by
taking a sort and attaching attributes to it. An attribute is a pair consisting of a label and an
associated -term. For example, consider the -term:

show(title => "Bewitched",
genre => sitcom,
where => television,
mother_in_law => "Agnes Moorehead")

This -term describes the set of records with at least the four fields title, genre, where
and mother in law. This set includes records with other fields as well. The -term makes
no statement regarding the other fields, not even whether they exist or not.

Ψ-terms are extensible record descriptions. This means that attributes may be added at
will at run-time, even by user-input. For example, a computation may start with the value
circle(origin => P), and this value can later be refined to circle(origin =>
P, radius => R). An important application of this extensibility is the use of -terms as
hash tables.

For ease of use, Wild LIFE allows consecutive numeric labels to be implicit. For example,
thing(a,b,c) is equivalent to thing(1 => a, 2 => b, 3 => c). The order of
attributes is completely irrelevant and so this -term can also be written as thing(2 => b,
3 => c, 1 => a).

4.3 Variables and tags

Variables start with (underscore) or an upper case letter. An anonymous variable may be
written with a single . This is in fact equivalent to @, the top sort. Variables can be used to
tag a -term and then used as explicit handles for referencing the -term. The syntax used

Research Report Draft March 1994

12 Hassan Aı̈t-Kaci et al.

to express the tagging of a -term t by a variable X is X : t. These references may be cyclic;
i.e., a variable may occur within a -term tagged by it. For example, X:[42|X] represents a
cyclic list with single element 42. If a variable occurs by itself, not tagging a -term, then it is
implicitly considered to be tagging @, exactly as if it had been written X:@.8ggs s The terms s(X,X:t) and s(X:t,X) are identical, i.e., the tagging construct “:” is
simply a syntactic device used to represent sharing and cycles in the textual representation of a
term. It is possible to write any directed graph structure as linear text using variables and tags.
For example, when Wild LIFE sees X:foo(bar => X), it creates a single cyclic structure
with name X.9

The tagging construct : is not exclusively reserved to be used in the form X:t. Other
sensible forms are t:X (which is equivalent to X:t), and more generally, X1:X2: : : : :Xn,
(which is equivalent to X1:X2, X2:X3, : : : , X(n�1):Xn, for n variables X1 through Xn). At most
one of the Xi may be a term whose value is different from @.

Example 4.4 Here are four examples of the use of tags.� father(name => N:string,son => boy(name => N))
represents a father who has a son, such that the son shares the same name as his father.
The tag N represents the name.� [A,A]
is a list whose first and second elements are identical.� L:[int,int,int|L]
is a cyclic list of length three whose three elements are integers.� write(A),happy(A:person)?
prints the output person, then go on to prove the goal happy(person), because the
tag A was bound to person globally for the whole query at parse time. This query is
equivalent in all respects to write(A:person),happy(A)?.

4.4 Unification

Unifying two -terms consists in (1) computing the greatest lower bound glb of their root
sorts, (2) binding the root variables together, (3) attaching to them all the attributes of the two
parent -terms, and (4) unifying recursively the -terms in corresponding attributes. If during
this procedure a glb is found to be fg, then the unification is said to fail. Otherwise it is said to
succeed.

Example 4.5 Here is a series of sample unifications that progressively illustrate the properties
of -term unification. The last example is particularly interesting as it shows the unification of
two cyclic -terms. Note that fg causes an immediate failure when executed.

8The term X:@(1) is not the same as X(1). The latter is a function application. See Section 6.4.
9The : is different from the unification predicate “=”. The latter performs a calculation at run-time. For

example, in X = foo(bar => X) the term on the right-hand side of = is not bound to X until run-time.

March 1994 Digital PRL

Wild LIFE Handbook 13

Unifying with results in
U:@ V:@ U:V:@
U:100 V:int U:V:100
5.6 int fg
car(wheels=>4) vehicle(wheels=>N:int) car(wheels=>N:4)
int(luck=>bad) 13(roman=>"XIII") 13(roman=>"XIII",luck=>bad)
[A,B,C] [1,2,3] [A:1,B:2,C:3]
[H|T] [a,b,c,d] [H:a|T:[b,c,d]]
X:s(s(X)) Y:s(s(s(Y))) X:Y:s(X)

The unification of two -terms corresponds to testing whether the intersection of the two
sets of records described by the two -terms is empty. If it is nonempty, then the unification
yields a -term that describes the intersection. The records in the intersection have all the
fields of both sets. This explains why the attributes of the unifier -term form the “union” of
the ones of the two parent -terms. Here union means the set of attributes that appear in at
least one of the two -terms. The attribute for a common label has a -term describing the
intersection of the two corresponding -terms.

4.4.1 A step-by-step comparison with Prolog unification

Unification of -terms generalizes unification of Prolog terms. This is progressively illus-
trated in the following cases.

1. Unifying two terms with same root sorts and arguments, e.g., X : foo(s1; : : : ; sn) and
Y : foo(t1; : : : ; tn), is done as in Prolog.

2. Unifying X : foo(s1; : : : ; sn) and Y : bar(t1; : : : ; tm) leads to failure exactly as in
Prolog if foo and bar are incompatible in the sort hierarchy. This means that the user
has not declared any subsort which is below both foo and bar. Whether n = m or
n 6= m has no effect on success or failure.

3. Unifying two -terms which have exactly the same set of labels and the same sort,
X : foo(l1 => s1; : : : ; ln => sn) and Y : foo(l1 => t1; : : : ; ln => tn), is a slight
generalization of case (1); there the numeric features l1 = 1; : : : ; ln = n are left implicit.
The unification proceeds in direct extension of case (1).

4. Unifying two -terms which have the same set of labels and two compatible sorts s1
and s2, X : s1(l1 => s1; : : : ; ln => sn) and Y : s2(l1 => t1; : : : ; ln => tn), proceeds
like in case (3) with the only difference that the unifier has as root sort the glb of the sorts
s1 and s2.

5. Unifying two -terms which have any sets of labels and two compatible root sorts s1
and s2. Some of the labels are common to both terms and others exist in only one
term. This proceeds as in case (4); the only difference is that the unifier -term has the
attributes obtained by unifying the terms at the common labels plus all the attributes that
exist in only one term.10

10This allows one to program with hash tables in LIFE.

Research Report Draft March 1994

14 Hassan Aı̈t-Kaci et al.

6. Unifying two -terms which have any sets of labels and two incompatible root sorts r
and s leads to failure as in case (2).

5 Predicates

Predicates are defined and executed in Wild LIFE in the same manner as they are in Prolog,
only -terms replace Herbrand terms. This is not a tutorial on Prolog, so—for information
going further than the explanations given below—please consult your local library [10, 15, 19].

Except for differences in built-ins, Prolog programs can run unaltered in LIFE if they follow
the syntactic convention that each predicate and functor symbol is used with one arity only.
See Section 15 for a complete list of differences between LIFE and Prolog.

5.1 Defining predicates

A predicate definition consists of one or several definite clauses. Clauses are stored in the
assertion base in the same order as they will be entered during execution. A definite clause
is written in the form Head :- Body. where Head is an atomic goal and Body is a non-
empty sequence of atomic goals. An atomic goal is a -term whose root sort is defined as a
predicate in the program. The clause Head :- succeed. may be abbreviated as Head..
It is called a fact.11

Once defined as a predicate name, an identifier may not be declared as a sort. However, a
predicate name may be used as data. It behaves as if it were a sort with single parent @ and
single child fg.

5.2 Executing predicates

As in Prolog, Wild LIFE uses top-down/left-right SLD-resolution to execute a query. A
query (or resolvent) is a sequence of atomic goals separated by a comma “,”, exactly as in the
body of a clause.

Operationally, execution of a query proceeds roughly in the following manner. The resolvent
is set initially to the query, and it behaves as a stack of predicate calls:

1. If the resolvent is not empty, an atomic goal P is popped from the resolvent. If the
resolvent is empty, then the query succeeds. The result of the computation is given in
the variable bindings.

2. The first clause Head :- Body defining P is chosen. If there are no more clauses,
then the query fails. A choice point is created to allow a return to this execution state on
backtracking. The choice point contains the next clause defining P.

3. Head is unified with P and Body is pushed on the resolvent. The new resolvent is
the body Body followed by the remainder of the old resolvent. Execution continues at
step (1).

4. If the unification in step (3) leads to failure, then execution backtracks to the most recent
choice point, and continues forward from there.

11LIFE uses succeed and fail as the predicates that are always satisfied and never satisfied, respectively.
LIFE uses true and false as sorts that mean true and false.

March 1994 Digital PRL

Wild LIFE Handbook 15

The above execution is similar to that of an imperative language such as C except that parameter
passing is done by unification and execution may return to previous states by backtracking.

Example 5.1 Here is a two-clause program which will print the items in a list one per line:

print_list([]) :- !.
print_list([H|T]) :-

write(H), % Print the first element
nl, % Start a new line
print_list(T). % Print the rest of the list

This translates in English to something like this:� To print the empty list don’t do anything.� To print a list whose first element is H (the rest being T) write H and start a new line and
print the list T.

And now we can try it out:

> print_list([a,b,c])?
a
b
c

*** Yes

5.3 Pruning the search tree with cut

The built-in predicate “!” in Prolog or Wild LIFE, pronounced “cut”, allows the user to
control the searching behavior of a program by cutting out alternatives from the search tree.
Executing a cut is like executingsucceed but with a side-effect: it removes all the alternatives
which occurred from the moment the rule was chosen to the moment the cut is reached. This
means that the next rules in the predicate’s definition will not be tried and any alternatives that
may have arisen during the proof of the current rule will not be explored either.

The Wild LIFE 1.0 interpreter does no clause indexing. This means that each clause of a
deterministic predicate should contain a cut. The cut must be placed at the earliest point in the
clause body where you are sure that if execution reaches that point, that the correct clause has
been selected. No bindings to variables visible outside of the predicate should be done before
the cut. This condition ensures that the cut does not change the predicate’s semantics, i.e., it is
a green cut [15]. The print list example given above contains a correct use of cut.

The cut predicate is useful because it allows one to reduce the number of alternatives,
especially if you know for certain that all alternatives would fail. For the interaction of cut and
functional evaluation (including residuation and coroutining), see Section 6.

5.3.1 The scope of cut

The choice-point associated to a cut is linked to the environment that existed when the cut
was first encountered by the interpreter. If a goal passed as an argument contains a cut, that

Research Report Draft March 1994

16 Hassan Aı̈t-Kaci et al.

cut will remove choice points much further than expected. This behavior of cut should not be
relied upon, since it probably will change in the compiler. Cut should be used in Wild LIFE
only to guarantee that a predicate is deterministic, without changing its semantics.

5.3.2 Disjunctive terms and cut

If a goal contains disjunctive terms in its arguments, then the choice-points for those are
created before a rule to prove it is chosen. Hence, they do not lie in the scope of a cut in the
body of the rule.

Example 5.2 Suppose that the rule:

p(A) :- ! , write(A).

has been asserted. The query p(X:f1;2;3g)? will generate three solutions: X = 1 and
the output 1, then (upon backtracking with ;) X = 2 and the output 2, and then X = 3 and
the output 3.

Since executing the cut removes alternatives relative to disjunctive terms in the head of the
rule, the query q(X)? will only generate one solution: X=1 and write 1 if the rule:

q(A:{1;2;3}) :- !, write(A).

has been asserted.

5.3.3 Negation-as-failure

An interesting application of cut is negation-as-failure,12 just as in Prolog. It is written “\+”.
The symbol \+ was chosen in Prolog because it resembles a tilted version of the mathematical
symbol for “not provable”, namely “ 6`”.

Example 5.3

\+(G) :- G,!,fail.
\+ .

The first rule uses the fact that goals use the same data structure as -terms. It first tries to
prove the goal G, then if there was a solution, cuts out all alternatives and fails. If there are no
solutions to G then the next rule is used for not and this always succeeds.

This does not quite do what you expect because all the parameters of X have been evaluated
before they were passed. In other words, functions, disjunctions and sorts that needed evaluating
have been dealt with, so “\+(write(fa;b;cg))?” for example will print abc before
failing.

Example 5.4 This example shows the use of a variable name in a query to replace a goal.
12This form of negation is often unsound. Functions in LIFE provide sound negation for equalities.

March 1994 Digital PRL

Wild LIFE Handbook 17

> X=write("Here I am!")?

*** Yes
X = write("Here I am!").
--1> X?
Here I am!
*** Yes
X = write("Here I am!").

For more information on using variables as predicates, see Section 13.3 (page 90).

6 Functions

In LIFE, a function is a routine that is called by matching and that returns a result. Functional
computations are determinate, i.e., a function call only fires once and is never backtracked to. A
function may be called before the values of its arguments are known. In that case, the function
will suspend. Technically, a function that suspends is said to residuate and the suspension is
called a residual equation or residuation. The function will execute as soon as its arguments
are known. A function may also be curried, i.e., called with missing arguments. Residuation
and currying provide implicit coroutining.

An order-independent routine is one whose result depends only on the value of its arguments,
and not on the order in which the arguments were bound relative to when the routine was called.
If all built-in routines called during the execution of a program are order-independent, then
the value of the final result is independent of the order in which the program’s functions and
predicates are executed. The order affects only the execution efficiency. See Section 13.3
(page 90) for more information on order-independence when functions and predicates are used
together.

Since functions can be called before their argument values are known, this frees the program-
mer from having to know what the data dependencies are. It provides a powerful search-space
pruning facility by letting “generate-and-test” search be changed into daemon-controlled “test-
and-generate” search. A residuated function acts like a daemon: it continuously checks whether
its arguments are sufficiently instantiated. These checks implement a form of “data-driven”
synchronization. That is, the ability of functions to residuate yields a form of concurrent
programming.

Moreover, such non-declarative heresies as the is/2 predicate in Prolog and the freeze meta-
predicate in Prolog II are not needed. Arithmetic functions in Wild LIFE residuate when
necessary. Functional residuation provides most of the abilities of MU-Prolog’s wait declara-
tions [13] and NU-Prolog’s when declarations [14].

6.1 Defining functions

A function definition consists of one or more function rules. These are stored in the assertion
base in the same order as they will be tried during execution. A function rule is written in the
form Head -> Expr. where Head is a -term whose root-sort name f is the name of the
function being defined, and Expr is a -term. The rule is read as “Head evaluates to Expr”.

Research Report Draft March 1994

18 Hassan Aı̈t-Kaci et al.

Head may not contain any function calls.
Functions, declared sorts, and predicates share the same name space. That is, a given

identifier may only be used for one of the three. Attribute labels (features), however, have their
own independent name space.

Example 6.1 This example defines the factorial function n! = n(n� 1)(n� 2):::1 . The result
expression of the second rule contains a call to the built-in function *, which is written as an
infix operator.

> fact(0) -> 1.
> fact(N:int) -> N*fact(N-1).
> write(fact(5))?
120
*** Yes

Example 6.2 This example defines a functionlistlen(L) that calculates the length of a list.
It uses -terms to represent the natural numbers, 0 for 0, and s(T) for n + 1 if T represents
n. The call listlen(L) will residuate if L’s value is unknown (usually @). For example,
the result of listlen([, |]) is the -term s(s(@)) which represents any n � 2. This
correctly represents what is known of the length of [, |].

> listlen([]) -> 0.
> listlen([_|L]) -> s(listlen(L)).
> write(listlen([a,b,c]))? % A list of length 3
s(s(s(0)))
*** Yes
> write(listlen([_,_|_]))? % A list of length at least 2
s(s(@))
*** Yes

The result of a function can be a -term that represents a predicate. For this result to be
executed as a predicate, it must be in a predicate position, i.e., in a place where a predicate is
expected.

The result of a function can be a boolean, i.e., a -term whose root sort is true or false.
Such a function may be used in a predicate position. The result true is executed as success
and the result false is executed as failure.

A functional expression is a -term whose root-sort name is a function name, say f. The
attributes of the -term are its arguments. A special case is the functional expression that
constitutes the head of a function rule defining f ; its attributes are called the formal arguments.
Otherwise, the functional expression represents a call to the function f ; then, its attributes are
called the actual arguments.

March 1994 Digital PRL

Wild LIFE Handbook 19

6.2 Executing functions

A functional expression F is evaluated in the following manner. All arguments of a function
are evaluated before the function is evaluated. In what follows we assume that F contains no
evaluable expressions in its subterms.

1. Choose the first rule Head -> Expr defining F. If no such rule exists, then return fg.
Returning fg causes an instant failure to take place. Failure causes backtracking to the
most recent choice point.

2. Match F with Head.

3. If F matches Head then the rule fires and the body is evaluated and returned. We say F
matches Head if to make them equal, refinements have to be made only to Head and
not to F. That is, Head is more general than F.

4. If F and Head are non-unifiable, then the rule fails. Pick the next rule in the definition
of F and go to step (2). If there are no more rules then return fg.

5. If neither step (3) nor step (4)’s conditions are true then residuate. This suspends the
execution of F and returns the temporary result @. If any of F’s arguments are refined
then resume execution at step (2). When the function fires, the actual result will be
unified with the temporary result. Therefore the temporary result may be used in further
function calls as if it were the actual result.

This execution mechanism corresponds to a simple formal logical specification [6]. Step (3)
corresponds to testing whether F implies Head. Step (4) corresponds to testing whether F
implies the negation of Head.

Operationally, the residuation is attached to each of the residuation variables. These are
the variables of the calling functional expression on which its comparison with the formal one
is still pending. More precisely, two conditions are guaranteed to hold for the residuation
variables. It is possible to instantiate the set of residuation variables so that the rule fires. It is
possible to instantiate any one residuation variable so that the rule fails.

Multiple residuations can be attached to a single variable if there are multiple function calls
with this variable in their arguments. If the variable is unified then all the residuations are
resumed. The order in which the functions are resumed is deliberately left unspecified.

As with clauses, the rules defining a function are looked up in the order they are entered.
The important difference is that functions are deterministic, i.e., functional computations are
determinate. That is, there is no backtracking once a rule has fired, so the first rule to fire
hides all those following it. In the jargon of committed-choice languages, matching is a
commit-condition; if the head of a rule is matched, the execution is committed to take that rule.

Another way of seeing this is that functional evaluation does not allow argument guessing
as would be non-deterministically possible by narrowing (i.e., using unification instead of
matching when calling functions). In order to unify the variables in the calling functional
expression, one has to use the built-in function “|” (such-that).

The built-in arithmetic functions extend the above scheme in an important way: they perform
all deterministic local propagations. That is, they infer the values of one or more arguments, if

Research Report Draft March 1994

20 Hassan Aı̈t-Kaci et al.

that inference is unique. For example, the goal 0=B-C unifies B and C. The goal A=A*B does
nothing, since there are two possible solutions: A=0 or B=1. This is a form of narrowing.

Example 6.3 Here is an example of residuation using the previously defined function fact.
First, we impose the constraint A = B!, i.e., A is the factorial of B, using the fact function
given earlier.

> A=fact(B)?

*** Yes
A = @, B = @˜.

The expression fact(B) residuates, yielding @ as a temporary result. The tilde ˜ after @
means that B is a residuation variable, i.e., a variable which, if its sort is made more precise
(more information is known), will cause the residuated function to be re-evaluated.

--1> B=real?

*** Yes
A = @, B = real˜.

The function fact still residuates because int <| real.

----2> B=5?

*** Yes
A = 120, B = 5.

5 <| int so fact(B:5) can be calculated. Let us now go back to the previous query level
by typing hCRi:

------3>

*** No
A = @, B = real˜.
----2> A=123, B=6?

*** No
A = 123, B = real˜.

We have now strengthened the constraint to 6! = 123, and of course this constraint always
fails.

Example 6.4 This example illustrates the execution order of a residuating functional evaluation
in interaction with a calling predicate.

March 1994 Digital PRL

Wild LIFE Handbook 21

> p(X) :- write("From p: ",X).
> f(X:int) -> X | write("From f:",X).

*** Yes
> p(f(X))? % p’s body is executed, f’s is not
From p: @
*** Yes
X = @˜.
--1> X=1? % f’s body is now executed
From f: 1
*** Yes
X = 1.

Example 6.5 This example illustrates the execution order of functions in interaction with a
calling predicate (namely, unification =) and with predicates called by such-that.

> fact2(0) -> 1.
> fact2(N) -> N*fact2(N-1) | write(N," ").

*** Yes
> 7=fact2(3)?
1 2 3
*** No

6.3 Matching

We describe the problem of matching of two -terms as the problem whether the “actual -term” (the caller) matches the “formal -term” (the definition). This avoids the potential
confusion about the direction of matching. The actual -term matches the formal one if it
describes a subset of the set described by the formal -term.

This yields the following conditions for the actual -term to match the formal -term:

1. The root sort of the actual -term is a subsort of the root sort of the formal -term.

2. The -terms in the attributes of the formal -term are matched by the -terms in the
corresponding attributes of the actual -term (which must exist).

3. The coreferences (the variable aliases) of the actual -term express (at least) the coref-
erences of the formal -term.

The first condition is clear from the sort hierarchy. The two root sorts can be equal, since a
sort is a subsort of itself. The second condition means that if a label together with its value t
forms an attribute of the formal -term, then an attribute with the same label and a value t0 has

Research Report Draft March 1994

22 Hassan Aı̈t-Kaci et al.

to be present in the actual -term, and t0 has to match t. The third condition means that if two
occurrences in the formal -term are aliased (tagged with the same variable), then this has to
be true for the corresponding occurrences in the actual -term.

A successful match is possible if the actual and the formal -terms can be unified so that
only formal variables are bound; i.e., the actual -term remains untouched. To be precise,
this means that three conditions have to be met after the unification. First, a sort in the actual -term is intersected only with a supersort (higher in the hierarchy). Second, no subterm in the
actual -term gets attributes with new labels. Third, an actual variable is not bound to another
actual variable.

Example 6.6 A call to the following functiondiff(X,Y) will fail if X and Y have been unified
and succeed if X and Y are non-unifiable. Otherwise it will residuate. Note that it residuates
on all common subterms of X and Y. This is necessary to guarantee that non-unifiability is seen
immediately.

> diff(X,X) -> fail.
> diff(X,Y) -> succeed.

> diff(X,Y)? % This residuates

*** Yes
X = @˜, Y = @˜.
--1> X=1, Y=1? % This also residuates

*** Yes
X = 1˜, Y = 1˜.
----2> X=@(int,foo), Y=@(42,foo)? % This also residuates

*** Yes
X = 1(int˜,foo˜)˜, Y = 1(42˜,foo˜)˜.
------3> X=Y? % This fails

*** No
------3> X.1=23? % This succeeds

*** Yes
X = 1(23,foo), Y = 1(42,foo).

6.4 Currying

A functional expression is curried if it has one or more missing arguments. A function may
be curried on any subset of its arguments, and the missing arguments may be applied in any
order. A curried functional expression is itself a function. It can be passed around and applied
several times.

March 1994 Digital PRL

Wild LIFE Handbook 23

Example 6.7 We define a function f on three arguments which are selected by the labels
eggs, bacon and toast. It returns the list of its three arguments. We call it with only two
arguments. The function f returns a curried form which is bound to A. We can apply A any
number of times, by specifying a third argument (which is indexed by the label toast).

> f(eggs=>X, bacon=>Y, toast=>Z) -> [X,Y,Z].

> A=f(eggs=>a, bacon=>b), write(A)?
f(eggs => a,bacon=> b)
*** Yes
--1> R1=A(toast=>c),R2=A(toast=>d),write(R1,R2),nl,write(A)?
[a,b,c][a,b,d]
f(eggs => a,bacon=> b)

The curried expression A is unchanged.

Currying is different from residuation. A residuated functional expression returns its result,
which has the value @ until the function fires. The result may be used in further calculations
before the function has fired. A curried functional expression A may only be used in functional
applications of the form A(l1=>X1; :::; ln=>Xn).
Example 6.8 This example shows the difference between currying and residuation. We define
a function in one argument, which is a -term with three attributes. We call it with a -term
with only two attributes. Hence, the functional expression residuates and returns @ as its value.
If its argument gets more instantiated by adding the missing attribute, the function fires. This
is possible only once.

> g(@(eggs=>X, bacon=>Y, toast=>Z)) -> [X,Y,Z].

> A=g(B:@(eggs=>a, bacon=>b)), write(A)?
@
*** Yes
--1> B=@(toast=>c), write(A)? % Fire the function g
[a,b,c]

Example 6.9 We define the function h with labels 1, 2 and 3. Since these are consecutive
numeric labels, they do not have to be explicit. If the function is curried in the first two
arguments then we need to give the label 3 explicitly. If the function is curried in the third
argument then we can leave the labels 1 and 2 implicit since they are consecutively numbered
from 1.

Research Report Draft March 1994

24 Hassan Aı̈t-Kaci et al.

> h(A,B,C) -> [A,B,C].

> X1=h(a,b), X2=h(3=>f)?

*** Yes
X1 = h(a,b), X2 = h(3 => f).
--1> Y1=X1(3=>c), Y2=X2(d,e), write(Y1), write(Y2)?
[a,b,c][d,e,f]ggs s Currying in Wild LIFE is not defined in the usual way because the list of required

arguments is indexed by labels which are not necessarily consecutive natural numbers. There-
fore, arguments are consumed by name, and not by position as in the �-calculus.13 The
usual way of defining currying would be to say: f (X; Y) = f (X)(Y). The definition im-
posed by labels in Wild LIFE is: f (X1;X2) = f (X1)(2 =>X2). We get the same result with:
f (X1;X2) = f (2 =>X2)(X1).

Wild LIFE 1.0 cannot parse an expression of the form f (X1)(2 =>X2). It must be written in
two parts as F(2 =>X2) and F = f (X1). A curried functional expression F looks like a -term,
and indeed has the same syntax as a -term. However, it is illegal to unify F with another
term. It is possible to inspect the arguments of F with the . (projection) or has feature
functions. More information about the implementation of currying in Wild LIFE may be found
in Section 13.1 (page 88).

Example 6.10 In this example, the operator / (real division) is curried and inverted.

> A = F(B), F = /(2=>A)?

*** Yes
A = real˜, B = real˜, F = /(2 => A).
--1> A = 5?

*** Yes
A = 5, B = 25, F = /(2 => A).

Example 6.11 The standard example of a higher-order function is the built-in function map.
It is defined as follows:

map(F,[])->[].
map(F,[H|T])->[F(H)|map(F,T)].

It takes a function, or a variable that will be instantiated to a function (e.g., a curried functional
expression), and a list and applies the function to every element of the list. The following
execution fragment shows how to couple the function map with residuation.

13A calculus handling currying with named arguments and consumption by position is presented in [2].

March 1994 Digital PRL

Wild LIFE Handbook 25

> fact(0) -> 1.
> fact(N) -> N*fact(N-1).
> R=map(F,[4,5,6,7])?

*** Yes
F = @˜˜˜˜, R = [@,@,@,@].
--1> F=fact?

*** Yes
F = fact, R = [24,120,720,5040].

Example 6.12 This example defines a function with two rules where each rule has an argument
with a different label. The function will curry if arguments are missing relative to the rule
being matched against. Taking advantage of this behavior is bad programming style in Wild
LIFE and will probably be forbidden in the compiler.

> foo(a=>int) -> 1.
> foo(b=>int) -> 2.

> X=foo(b=>0)?

*** Yes
X = foo(b => 0).
--1> Y=X(a=>string)?

*** Yes
X = foo(b => 0), Y = 2.

Example 6.13 This example shows how residuation, currying, and functional variables can
be combined together: a constraint is generated which binds the variable R to the result of
applying F to A, where at that point both F and A are unknown. Later the argument A is
chosen by the predicate pick arg and the function F by the predicate pick function.
Note that *(2 => 4) is a curried function which multiplies its first argument by 4. Define
the following predicates in addition to fact seen before.

pick_arg({5;3;7}).

pick_func(*(2=>4)).
pick_func(fact).

test :-

Research Report Draft March 1994

26 Hassan Aı̈t-Kaci et al.

R=F(A), % Apply an unknown function
% to an unknown argument

pick_arg(A), % Pick an argument
pick_func(F), % Pick a function
write("Function ",F,

" applied to argument ",A,
" is ",R),

nl,
fail. % Force backtracking

and let us try it.

> test?
Function *(2 => 4) applied to argument 5 is 20
Function fact applied to argument 5 is 120
Function *(2 => 4) applied to argument 3 is 12
Function fact applied to argument 3 is 6
Function *(2 => 4) applied to argument 7 is 28
Function fact applied to argument 7 is 5040

*** No

6.5 Quote and eval

Since terms are manipulated as data in Wild LIFE, and since functions are evaluated eagerly,
it is often necessary to prevent such an evaluation to happen. This is done, quite similarly to
Lisp, by using a quoting operator. It is written as a prefix backquote ‘ . This distinguishes
it from the single quote ’ already used to write symbols that contain non-alphanumeric
characters. A backquoted expression is a -term and may be manipulated like any -term.

Example 6.14 This is an example of quoting a functional expression.

> X=1+2?

*** Yes
X = 3.
--1> Y=‘(1+2)?

*** Yes
X = 3, Y = 1 + 2

The following built-ins are related to quote.� The function eval(E) evaluates the result of the quoted expression E. It does not
modify E. For example, continuing the interaction above:

March 1994 Digital PRL

Wild LIFE Handbook 27

Example 6.15

----2> Z=eval(Y)?

*** Yes
X = 3, Y = 1 + 2, Z = 3.� The function evalin(E) evaluates in-place the quoted expression E. The quoted

expression E is replaced by its result.� The predicate non strict(P) declares that the arguments of P are quoted, not evalu-
ated, when the routine is called. This predicate should be used only as a declaration, i.e.,
in a query and not in a definition. This predicate is non-strict, i.e., it does not evaluate
its argument.

Example 6.16 This is an example of a non-strict predicate.

> non_strict(p)?
> p(X) :- write(X).

> p(1+2)?
1 + 2
*** Yes

Calling p(1+2) prints the quoted term 1+2.

If an argument is shared between a strict and a non-strict routine, then it is considered
non-strict. That is, non-strict dominates over strict.

6.6 Choosing between matching and unification

How does a programmer choose between matching and unification as calling mechanisms?
Functions are called by matching and predicates are called by unification. Matching is one-
way, i.e., it does not modify its arguments, so it can act only as an input passing mechanism.
Unification is symmetric, i.e., it can act as both an input and an output passing mechanism.

To modify a function’s arguments, the built-in function E|G (pronounced “E such that G”)
can be used. It evaluates and returns the expression E, and then proves the predicate G. The
latter is called by unification, and hence if it is given one of the function’s arguments, that
argument will be unified.

We illustrate the differences between unification and matching as calling mechanisms by
means of a routine to append two lists. We give three definitions of this routine: as a function,
a predicate, and using such-that. Here are the definitions:

Research Report Draft March 1994

28 Hassan Aı̈t-Kaci et al.

% The standard functional version of append:
append1([],L) -> L.
append1([X|L1],L2) -> [X|append1(L1,L2)].

% The standard predicate version of append:
append2([],L,L).
append2([X|L1],L2,[X|L3]) :- append2(L1,L2,L3).

% A variant that matches its first argument
% and unifies its third:
append3([],L,R) -> true | R=L.
append3([X|L1],L2,R) -> true | R=[X|L3], append3(L1,L2,L3).

The append1 function waits until its first argument is a list before returning its result. The
append2 predicate executes to completion immediately and unifies its result with its third
argument. Backtracking will provide alternate results. The append3 function uses such-that.
It waits until its first argument is a list (just like append1) and unifies its result with its
third argument (just like append2). The advantage of append3 over append1 is that tail
recursion optimization is regained because the variable L3 is used as a place-holder for the
result. Here is an example execution showing that append1 and append2 behave the same
if their arguments are instantiated:

> A=append1([1,2],[3,4]), append2([1,2],[3,4],B)?

*** Yes
A = [1,2,3,4], B = [1,2,3,4].

In the following example execution of append1, the arguments are not instantiated at the call:

> A=append1(B,C)?

*** Yes
A = @, B = @˜, C = @.
--1> B=[1,2]?

*** Yes
A = [_A: 1,_B: 2|C], B = [_A,_B], C = @.

The call residuates (which is marked by the tilde ˜) until B is sufficiently instantiated. In the
following example execution of append2, the arguments are not instantiated at the call:

> append2(B,C,A)?

*** Yes
A = @, B = [], C = A.
--1> ;

*** Yes
A = [_A|C], B = [_A], C = @.
--1> ;

March 1994 Digital PRL

Wild LIFE Handbook 29

*** Yes
A = [_A,_B|C], B = [_A,_B], C = @.

In contrast to append1, append2 attempts to guess the right solution. It returns longer and
longer possible solutions on backtracking.

7 Constrained sorts

In Section 4.1.1 (page 8) we saw how to define a simple sort hierarchy. In practice, LIFE
has more to offer: it is possible to attach properties (attributes or arbitrary constraints) to sorts.
These properties are verified during execution and are inherited by subsorts.

Example 7.1 This example ensures that all terms with sort person have an age field whose
value is an integer.

> :: person(age => int).
> man <| person.
> A=man?

*** Yes
A = man(age => int).

The sort man is a subsort of person. It inherits all attributes of person.

Sorts, properties, and inheritance in LIFE resemble classes, class data, and inheritance in a
mainstream object-oriented language like C++. See Section 12.6 (page 82) for more details.

7.1 Defining constrained sorts

A sort that is given a sort declaration is called a declared sort. There are two independent
ways to declare a sort. First, it can be given a place in a hierarchy. Second, it can be given
properties to check.

By default, an uninterpreted identifier, i.e., a symbol that does not occur in a predicate,
function, or sort declaration, behaves like a sort whose only parent is @ and whose only child
is fg. It is also known as an undeclared sort. Predicates and quoted functions also behave in
this way.

7.1.1 Sort attributes

A sort is given a -term property with a sort attribute declaration. This is written as ::
Head where Head is an arbitrary -term. This attaches the property Head to the root sort of
Head. For example, :: person(age=>int) ensures that all instances of person have
the feature age whose value is an int.

Example 7.2 This example defines two sorts with attributes. All vehicles have a make which
is a string, and a number of wheels which is an integer:

Research Report Draft March 1994

30 Hassan Aı̈t-Kaci et al.

:: vehicle(make => string, wheels => int).

All cars have 4 wheels:

:: car(wheels => 4).

If the relation car <| vehicle is asserted then any properties attached to car must be
compatible with those attached to vehicle.

7.1.2 Constrained sorts

A sort is given an arbitrary predicate as property with a constrained sort declaration. This
is written as :: Head | Goal. For example, :: X:person | X.age=int adds
the property X.age=int to all instances of person. This has the same effect as ::
person(age=>int).

A sort attribute declaration is a special case of a constrained sort declaration. Both attribute
declarations and constrained sort declarations may contain functions. The resemblance between
a constrained sort definition and the built-in function such-that is intentional. Such-that attaches
a predicate to a function, and a constrained sort definition attaches a predicate to a sort.

Example 7.3 A rectangle has a length, width and area. A square is a rectangle with identical
length and width.

:: rectangle(length=>L:real, width=>W:real, area=>L*W).
:: square(length=>S, width=>S, side=>S).
square <| rectangle.

Here is an example query:

> R=rectangle(area => 16, width => 4)?

*** Yes
R = rectangle(area => 16,

length => 4,
width => 4).

--1> R=square?

*** Yes
R = square(area => 16,

length => _A: 4,
side => _A,
width => _A).

The system makes a distinction between a square and a rectangle with identical length and
width. The latter can be refined into the former.

March 1994 Digital PRL

Wild LIFE Handbook 31

Example 7.4 This example defines a subtype of list,int list, which defines lists that contain
only integers. This property is guaranteed to be true for an int list. This definition does
not interfere in any way with existing code using lists. An int list will work with existing
list-based routines.

int_list <| list.
int_cons <| cons.
int_nil <| nil.

:: int_cons(int,int_list).
int_cons <| int_list.
int_nil <| int_list.

Here is an example query:

> X=[1,2,3]? % X is a standard list

*** Yes
X = [1,2,3].
--1> X=int_list? % X is an int_list

*** Yes
X = int_cons(1,int_cons(2,int_cons(3,int_nil))).
----2> Y=length(X)? % Calculate the length of X

*** Yes
X = int_cons(1,int_cons(2,int_cons(3,int_nil))), Y = 3.

7.2 Executing constrained sorts

The Wild LIFE system guarantees that all instances of a sort are consistent with all decla-
rations of that sort. For the inheritance hierarchy this is guaranteed by -term unification (see
Section 4.1.3, page 10). Consistency with properties is guaranteed by a mechanism called sort
unfolding.

Sort unfolding makes a copy of the declaration and unifies it with the term. Each declaration
is checked at most once for a given sort instance. This performs a kind of memoization, i.e.,
the solution of an intermediate problem is remembered and reused when encountered again.
An arbitrarily complex proof can be attached to a sort. For a given variable, the proof will only
be executed once: when the variable is refined to have that sort or a lower sort. The fact that
the proof has been executed is immediately available by inspecting the value of the variable’s
root sort.

A recursive sort declaration is a declaration that has a compatible sort in a subterm. That is,
a declaration of s1 is recursive if it contains s2 such that glb(s1,s2)6=fg.

In the current implementation, a recursive sort definition such as :: person(spouse
=> person) will go into an infinite loop because the definition of person is expanded
indefinitely. To cope with such definitions, Wild LIFE uses the declaration delay check(A1 ,

Research Report Draft March 1994

32 Hassan Aı̈t-Kaci et al.

A2, ...) where A1, A2, etc., are sorts. This predicate is non-strict, i.e., it does not evaluate its
argument. delay check delays expanding a term until it has at least one attribute.

With this declaration, the above definition of person is:

delay_check(person)?
:: person(spouse => person).

This delays the expansion of a term with sort person until that term has at least one
attribute. The delay check declaration is propagated to all subsorts of person.

Example 7.5 This is an example of how to use delay check. Given the following declara-
tions:

:: P:person(best_friend => Q:person) | get_along(P,Q).
delay_check(person)?

cleopatra <| person.
:: cleopatra(nose => pretty, occupation => queen).

julius <| person.
:: julius(nose => big, last_name => caesar).

get_along(cleopatra,julius).
get_along(julius,cleopatra).

This explains the following behavior:

> A=person?

*** Yes
A = person.
--1> A=@(nose => pretty)?

*** Yes
A = cleopatra(best_friend => julius,

nose => pretty,
occupation => queen).

The constraints attached to cleopatra, by inheritance from person, are not checked until
an attribute becomes present. Having appeared as part of the structure of cleopatra as
a result of checking cleopatra’s constraints, julius, who is also a person, is left
unconstrained for the same reason.

Unfortunately, the delay check mechanism is not sufficient to guarantee completeness
and convergence in all cases. The LIFE compiler will have a consistent handling of recursive
sorts that does not need delay check. A complete and consistent algorithm to do lazy
attribute inheritance has been developed [9]. This algorithm takes an attribute constrained in a
sort definition into consideration only if it appears in the resolvent.

March 1994 Digital PRL

Wild LIFE Handbook 33

7.3 Constrained sorts as daemons

A constraint that is attached to a sort declaration is checked at run-time during unification. It
can be used very effectively as a data-driven daemon–code whose execution is triggered upon
access to an object.

Constrained sorts can be used to help debugging, for example by printing all -terms of a
given sort each time they have their constraints checked.

Example 7.6 This example shows how attaching a constraint to int lets one trace all integer
calculations.

> :: I:int | write(I," ").

*** Yes
> A=5*7?
5 7 35
*** Yes
A = 35.
--1> B=fact(5)?
5 1 4 1 3 1 2 1 1 1 0 1 1 2 6 24 120
*** Yes
A = 35, B = 120.

Example 7.7 This example shows how attaching a constraint to cons lets one trace all list
calculations.

> :: C:cons | write(C.1), nl.

*** Yes
> A=[a,b,c,d]?
d
c
b
a

*** Yes
A = [a,b,c,d].

8 Basic built-in routines

This section summarizes the basic built-in functions and predicates of Wild LIFE.

Research Report Draft March 1994

34 Hassan Aı̈t-Kaci et al.

8.1 Control flow

The following built-ins provide the ability to modify the execution flow of a program.� The predicate succeed always succeeds.� The predicate fail always fails.� The predicate (A,B) executes predicate A and then predicate B. It is a logical conjunc-
tion.� The predicate (A;B) creates a choice point and then executes predicate A. If on back-
tracking execution returns to the disjunction, then predicate B is executed. (A;B) is a
logical disjunction.� The function {A;B} creates a choice point and then returns A as its result. If on
backtracking execution returns to the disjunction, then B is returned as its result. {A;B}
is called a type disjunction or a disjunctive term. A “singleton” disjunctive term ftg is
equivalent to t. An empty disjunctive term fg is equivalent to the bottom sort and causes
an immediate failure.

Example 8.1 This example shows how disjunctive terms result in more compact code.� A=f1;2;3;4g? is equivalent to A=1;A=2;A=3;A=4?.� p(fa;b;cg). is equivalent to asserting p(a). p(b). p(c).

Unifying U:f1;2;3;4;5g with V:fint;2;4;6;8g results in the disjunctive term
U:V:f1;2;2;3;4;4;5g. In theory, the above ought to be U:V:f1;2;3;4;5g
rather than U:V:f1;2;2;3;4;4;5g since a unifier does not contain redundant in-
formation. To perform this correctly, unification of disjunctive terms should remove
any term in the resulting disjunction that is subsumed by another disjunct. Since this is
costly, Wild LIFE does not perform the complete operation.� The predicate “!” (pronounced “cut”) removes all choice points up to and including the
choice point that was created when entering the predicate in which the cut occurs. See
Section 5.3 for a discussion of cut.� The function cond(B,T,F) is a conditional that returns T or F depending on the result
of B. The conditional returns T if B evaluates to true and F if B evaluates to false.
If B is a predicate, then B is executed and the conditional returns T if B succeeds and F
if B fails. The conditional residuates otherwise. It does not evaluate its second or third
arguments until the first is known. At most one of the second and third arguments are
evaluated.

Example 8.2 This example defines an absolute value function using cond.

March 1994 Digital PRL

Wild LIFE Handbook 35

> absolute(V:real) -> cond(V>=0,V,-V).
> A=absolute(X)?

*** Yes
A = @, X = @˜.
--1> X= -34?

*** Yes
A = 34, X = -34.� The function E|P (called “such that”) takes an expression E and a goal P. It evaluates E

and proves P, and then returns the value of E as its result. No implicit cut is performed,
i.e., if either E or P returns more than one solution, then so will E|P. This is a bridge
between functions and predicates.

Example 8.3 This example shows how the concatenation of two difference lists may
be written as a function. We use the sort --, declared as an operator, to represent a
difference list.

> op(500,xfy,--)?
> diffappend(A1--A2,B1--B2) -> A1--B2 | A2=B1.

> A=[1,2|X]--X, B=[3,4|Y]--Y?

*** Yes
A = [1,2|X]--X, B = [3,4|Y]--Y, X = @, Y = @.
--1> C=diffappend(A,B)?

*** Yes
A = _A:[1,2|X]--X, B = X--Y, C = _A--Y, X = [3,4|Y],
Y = @.� The functioncall once(P) yieldstrue if the goal P can be proved (i.e., P succeeds),

and false if it cannot (P fails). The call call once(P) always succeeds. This is a
bridge between functions and predicates. This function returns exactly one solution, i.e.,
it performs an implicit cut to remove all choice points created during the execution of P.
This function residuates until P is different from @.

Example 8.4 This example illustrates call once.

Research Report Draft March 1994

36 Hassan Aı̈t-Kaci et al.

> p(1).
> p(2).
> A=call_once(p(X))?
*** Yes
A = true, X = 1.
--1> ;

*** No

The second solution, X=2, is not returned.� The function bagof(X,P) returns a list containing as many elements as there are
solutions to P. This function is non-strict, i.e., it does not evaluate its arguments. Each
element of the list is the value of X for one solution of P. Calls to bagof may be nested
to any level. There is no existential quantification such as in Prolog’s bagof.

Example 8.5 This example illustrates bagof.

> p(a).
> p(b).
> A=bagof(s(X),p(X))?

*** Yes
A = [s(b),s(a)], X = @.� The function bestof(X,Q,P) returns the largest value of X for all solutions of P

according to the total order Q. This function is non-strict, i.e., it does not evaluate
its arguments. Calls to bagof may be nested to any level. There is no existential
quantification.

Example 8.6 This example illustrates bestof.

> p({1;-2;3;-4;5}).

> A=bestof(X,>,p(X))?

*** Yes
A = 5, X = @.
--1> B=bestof(X,<,p(X))?

*** Yes
A = 5, B = -4, X = @.

March 1994 Digital PRL

Wild LIFE Handbook 37� The predicate residuate(X,P) attaches the predicate P to the term X. If X is touched
then P will be executed. P is executed only once.

Example 8.7 This example illustrates residuate.

> p(A) :- write(A), nl.
> residuate(A,p(A))?

*** Yes
A = @˜.
--1> A=B? % Touch A
@ % Write the value of A

*** Yes

The predicate residuate is helpful to set breakpoints on variables when debugging,
i.e., to perform an action when a variable is touched.� The predicate mresiduate(L:[X1,X2,...],P) attaches the predicate P to all the
terms in the list L. If one of the terms is touched, then P is executed. P is executed only
once, even if more than one of the terms is touched.

Example 8.8 This example illustrates mresiduate.

> p(A) :- write(A), nl.
> mresiduate([A,B],(p(A),p(B)))?

*** Yes
A = @˜, B = @˜.
--1> A=2? % Touch A
2
@

*** Yes
A = 2, B = @. % All residuations are gone
----2> <CR> % Go back to previous level

*** No
A = @˜, B = @˜. % Residuations reappear
--1> B=6? % Touch B
@
6

Research Report Draft March 1994

38 Hassan Aı̈t-Kaci et al.

*** Yes
A = @, B = 6. % All residuations are gone� The predicate implies(G) calls the goal G using matching on the heads of the clauses

defining G. If the calling argument implies the head of the clause, then the match succeeds
and the clause body is called. Otherwise, the match fails, and the next clause is called.
Backtracking to a successful implies call will fall through to the following clauses,
just like a standard predicate call. Execution is identical to that of a standard predicate
except that matching is used instead of unification to see whether a clause is entered.
See Section 12.10 for an illustration of the use of implies in the graphical interface
toolkit.

Example 8.9 This example illustrates implies.

> p(X:int) :- write(’X=’,X),nl.

*** Yes
> X={1;int;real}, implies(p(X)), fail?
X=1
X=int

*** No

8.2 Ψ-term manipulation

These functions are useful for explicitly building and taking apart -terms.� The predicate A=B unifies the two -terms A and B. It succeeds if the terms are unifiable
and fails if they are not. Writing X:s(: : :)=Y:s(: : :) amounts to the same as writing
the predicate call eq(X:s(: : :),Y:s(: : :)) if the predicate eq is declared by the
clause eq(U,U).� The functionA&Bunifies the two -terms A and B. It returns the unified value. It succeeds
if the terms are unifiable and fails if they are not. Writing X:s(: : :)&Y:s(: : :) amounts
to the same as writing the functional expression eqfun(X:s(: : :),Y:s(: : :)) if the
function eqfun is declared by the rule eqfun(U,V)-> U | U=V.� The function A.F (project) selects feature F of -term A. F may be passed as a string,
an integer, or a sort. This generalizes record field selection of imperative languages. If
the field does not exist, then it is created. If F is @, then the function residuates until the
field name appears.

March 1994 Digital PRL

Wild LIFE Handbook 39

Example 8.10 This example illustrates project.

> A=s(a,b)? % A has two fields named 1 and 2

*** Yes
A = s(a,b).
--1> B=A.2? % Select the field 2

*** Yes
A = s(a,B), B = b.
----2> C=A.B? % Create the field ’b’

*** Yes
A = s(a,B,b => C), B = b, C = @.� The function has feature(F,X) returns true if the term X has the feature F and

false otherwise. This function does not residuate and hence must be used with caution.
F may be passed as a string, an integer, or a sort.� The function features(X,M:string) returns a list containing all the features at-
tached to the root of term X which are visible in module M (see Section 10, page 66).
The order of the features is unspecified. The module name M may be omitted; in that
case the module in which the call to features textually occurs is taken. This function
does not residuate and hence must be used with caution.

Example 8.11 This example illustrates features.

> A=features(thing(a,b,c,
| next => computer,
| age => 16,
| apple => worms))?

*** Yes
A = [1,2,3,age,apple,next].� The function root sort(A) returns the root sort of the term A. The result is a copy

of A without arguments. This function does not residuate and hence must be used with
caution.

Example 8.12 This example illustrates root sort.

Research Report Draft March 1994

40 Hassan Aı̈t-Kaci et al.

> A=root_sort(abc(1,2,3)),B=root_sort([a,b,c]),
| C=root_sort(5.67)?

*** Yes
A = abc, B = cons, C = 5.67.

Lists are represented with the sorts cons and nil. The lists [A|B] and [] are parsed
identically to cons(A,B) and nil.� The function strip(X) yields a -term whose sort is @ and which has the attributes of
X. The result has the identically same attributes, i.e., the attributes are not copied. This
function does not residuate and hence must be used with caution.

Example 8.13 This example illustrates strip.

> A=strip(siren(noise => loud,
| sound => unpleasant,db => 120))?

*** Yes
A = @(db => 120,noise => loud,sound => unpleasant).

Example 8.14 This is an example that shows strip does not copy the arguments of the
stripped term.

> Y=strip(X:foo(2=>bar))?

*** Yes
Y = @(2 => _A: bar), X = foo(2 => _A).� The function copy pointer(X) yields a -term whose sort is root sort(X) and

which has the attributes of X. The result has the identically same attributes, i.e., the
attributes are not copied. This function does not residuate and hence must be used with
caution.� The function copy term(X) returns a copy of the -term X. The copy
has no subterms in common with X and has identical structure to X. So
copy term(X:f(X))=A:f(A). The copy is not persistent (see Section 9). This
function does not residuate and hence must be used with caution.

March 1994 Digital PRL

Wild LIFE Handbook 41� The functionX===Y (identity) yieldstrue if the arguments X and Y are the same term,
i.e., if they have been explicitly unified together. Otherwise it returns false. This
function does not residuate and hence must be used with caution.� The function X\===Y yields true if the arguments X and Y are different terms, i.e.,
if they have not been unified together. Otherwise it returns false. This function does
not residuate and hence must be used with caution.

8.3 Arithmetic

8.3.1 Arithmetic calculation

These functions coerce the sort of their arguments and results to real. Many of the
functions can be inverted. A local inversion is performed if the inversion is deterministic, i.e.,
if only one solution is possible. For example, executing the goal A=A/5 binds A to 0. The bit
manipulation functions (A/\B, A\/B, A>>B, A<<B, \(A)) are not invertible. Executing the
goal 25=A*A residuates since there are two solutions 5 and –5. Applying a function followed
by its inverse may not result in an identical value because of floating point roundoff error.� The function A+B returns the sum of A and B.� The function A-B returns the difference of A and B. The function may also be called

with a single argument as -(A) in which case it returns the negative of A. The function
does not curry in this case. The symbol - is defined as a unary operator which makes
parentheses unnecessary when called with a single argument.� The function A*B returns the product of A and B.� The function A/B returns A divided by B. This is a floating point division.� The function A//B returns the integer part of A divided by B, i.e., the integer between
0 and A=B that is closest to A=B. The arguments A and B must be integers.� The function floor(A) returns the largest integer less than or equal to A.� The function ceiling(A) returns the smallest integer greater than or equal to A.� The function A/\B returns the bitwise “and” of A and B. The arguments A and B must
be integers. The low word (32 bits) of the result is valid. This function is not invertible.� The function A\/B returns the bitwise “or” of A and B. The arguments A and B must
be integers. The low word (32 bits) of the result is valid. This function is not invertible.� The function A>>B returns the arithmetic (signed) right shift of A by B places. The
arguments A and B must be integers. The low word (32 bits) of the result is valid. This
function is not invertible.� The function A<<B returns the arithmetic (signed) left shift of A by B places. The
arguments A and B must be integers. The low word (32 bits) of the result is valid. This
function is not invertible.

Research Report Draft March 1994

42 Hassan Aı̈t-Kaci et al.� The function \A returns the bitwise negation of A. The argument A must be an integer.
The bitwise negation of the low word of A (32 bits) is taken and is sign-extended for the
result. This function is not invertible.� The function sqrt(A) returns the positive square root of A. It is invertible between the
domain]0;1[and the range]0;1[.� The function exp(A) returns eA where e is the base of the natural logarithms. It is
invertible between the domain]�1;1[and the range]0;1[.� The function log(A) returns the natural logarithm of A. It is the inverse of exp(A). It
is invertible between the domain]0;1[and the range]�1;1[.� The function sin(A) returns the sine of the angle A, where A is expressed in radians.
It is invertible between the domain [��=2; �=2] and the range [�1; 1].� The function cos(A) returns the cosine of the angle A, where A is expressed in radians.
It is invertible between the domain [0; �] and the range [�1; 1].� The functiontan(A) returns the tangent of the angle A, where A is expressed in radians.
It is invertible between the domain]��=2; �=2[and the range]�1;1[.� The function random(N:int) returns a pseudo-random integer in the range
0; 1; :::; (N � 1), where N is a positive integer. This function residuates if N is not
a specific integer.� The predicate initrandom(S:real) initializes the pseudo-random number genera-
tor with the seed S. This is useful when it is necessary to generate the same sequence of
pseudo-random numbers repeatedly. Upon system startup, the pseudo-random number
generator is initialized by calling initrandom with the current time.� The function genint returns a new nonnegative integer each time it is called. It is
guaranteed that all calls to genint during a run of Wild LIFE will return different
integers.

8.3.2 Arithmetic comparison

These functions narrow the sort of their arguments to real and the sort of their result to
bool. Their names are identical to Prolog’s arithmetic comparisons. They will residuate if
their arguments are not actual numbers in the sort hierarchy. They can be reversed in a few
simple cases.� The function A>B returns true if A is greater than B.� The function A>=B returns true if A is greater than or equal to B.� The function A<B returns true if A is less than B.� The function A=<B returns true if A is less than or equal to B.

March 1994 Digital PRL

Wild LIFE Handbook 43� The function A=:=B returns true if A is equal to B. This is different from = (the
unification predicate) or & (the unification function). The comparison =:= is an arith-
metic function which does not unify its arguments, always succeeds and returns true
or false. Nevertheless, constraint lifting entails that if (A=:=5)=true then A=5.� The function A=\=B returns true if A is not equal to B. This function unifies values
in one case: (A=\=5)=false, where A will be unified with 5.

8.3.3 Boolean arithmetic

These functions perform calculations on boolean terms, i.e., terms whose values are the sorts
true or false. The functions perform all possible local propagations. For example, calling
B=A and false will cause B to be unified with false and calling B=A and true will
cause B to be unified with A. The functions residuate if a unique result cannot be determined.� The function A and B returns the logical “and” of A and B.� The function A or B returns the logical “or” of A and B.� The function A xor B returns the logical “exclusive or” of A and B.� The function not A returns the logical “not” of A. It returns true if A is false and

false is A is true.

8.4 Sorts

8.4.1 Sort calculation

These routines provide the means to calculate with sorts in the sort hierarchy and to navigate
in the sort hierarchy. All functions that return sorts will return them in quoted form, so that
properties attached to them are not executed.� The function glb(A,B) returns the greatest lower bound of the root sorts of A and B

in the current sort hierarchy. This function does not residuate and hence must be used
with caution. See Section 4.1.3 for a full presentation of the glb operation.� The function lub(A,B) returns the least upper bound of the root sorts of A and B in
the current sort hierarchy. The lub is the dual operation to the glb. This function does
not residuate and hence must be used with caution.

Example 8.15 This example illustrates the glb and lub built-in functions. It shows that
both glb and lub create a disjunction if the result is a disjunctive sort.

> a <| c.
> a <| d.
> b <| c.
> b <| d.

> A=glb(c,d)? % Result is disjunctive sort {a;b}

Research Report Draft March 1994

44 Hassan Aı̈t-Kaci et al.

*** Yes
A = a. % First solution
--1> ;

*** Yes
A = b. % Second solution
--1> ;

*** No
> A=lub(a,b)? % Result is disjunctive sort {c;d}

*** Yes
A = c. % First solution
--1> ;

*** Yes
A = d. % Second solution
--1> ;

*** No� The predicate subsort(A,B) continuously enforces the relation A:=<B. It guarantees
that the root sort of A is less than or equal to the root sort of B. subsort checks the
relation when it is called, and then attaches itself as a residuation to B. Whenever the
sort of B is refined, it is checked to be not lower than A.� The function children(S) returns a list of the declared sorts that are immediately
below S in the current sort hierarchy. The order of the sorts in the list is unspecified.
Three built-in sorts (int, real, and string) have an infinite number of children.
These are not enumerated, i.e., children(int)=[], children(real)=[int],
and children(string)=[]. This function does not residuate and hence must be
used with caution.� The function parents(S) returns a list of the declared sorts that are immediately
above S in the current sort hierarchy. The order of the sorts in the list is unspecified.
This function does not residuate and hence must be used with caution.

Example 8.16 This example illustrates the parents and children built-in functions.

> a <| c.
> a <| d.
> b <| c.
> b <| d.

March 1994 Digital PRL

Wild LIFE Handbook 45

> X=parents(a), Y=children(c)?

*** Yes
X = [c,d], Y = [a,b].
--1>

*** No
> X=parents(c), Y=children(a)?

*** Yes
X = [@], Y = [].� The function least sorts returns a list of the sorts that are immediately above fg in

the current sort hierarchy. The order of the sorts in the list is unspecified.

8.4.2 Sort comparison

These functions perform sort comparisons and return true or false. The comparisons are
done with the root sorts of the arguments. Because the sort hierarchy is a mathematical lattice,
sort comparisons do not satisfy trichotomy (i.e., it is possible for none of A:<B, A:==B, and
A:>B to be true). As a result, there are more than six possible comparisons. Twelve of the 30
possible comparisons have been given a name.

The names of all sort comparisons start with a “:”. The names are consistent with the names
of the arithmetic comparisons, except for sort equality and nonequality which use == and \==
instead of =:= and =\=.

These functions do not residuate and hence must be used with caution. They can be made
order-independent by wrapping them in another function definition.� The function A:>B returns true if A is greater than B in the sort hierarchy.� The functionA:>=B returns true if A is greater than or equal to B in the sort hierarchy.� The function A:<B returns true if A is less than B in the sort hierarchy.� The function A:=<B returns true if A is less than or equal to B in the sort hierarchy.� The function A:==B returns true if A is equal to B in the sort hierarchy.� The function A:><B returns true if A is comparable to B in the sort hierarchy, i.e.,

their intersection is non-empty.� The function A:\>B returns true if A is not greater than B in the sort hierarchy.� The function A:\>=B returns true if A is not greater than or equal to B in the sort
hierarchy.� The function A:\<B returns true if A is not less than B in the sort hierarchy.

Research Report Draft March 1994

46 Hassan Aı̈t-Kaci et al.� The function A:\=<B returns true if A is not less than or equal to B in the sort
hierarchy.� The function A:\==B returns true if A is not equal to B in the sort hierarchy.� The function A:\><B returns true if A is not comparable to B in the sort hierarchy,
i.e., their intersection is empty.

8.5 Strings

A string is a sequence of characters. Strings are provided as a separate sort in Wild LIFE.
Compared to storing character sequences as root sorts of new -terms, strings use less memory
and they are not interned in the symbol table. The following built-ins are provided to manipulate
strings.

8.5.1 String calculation� The function strlen(S:string) returns the length of S. S must be a string. So
strlen("abcdef")=6. This function residuates on S, i.e., it waits until S is bound
to a specific string.� The function substr(S:string,P:int,N:int) (substring or string extraction)
extracts N characters from string S starting from the character at position P. So
substr("abcdef",2,4) yields "bcde". It truncates the output if it would go
beyond the end of S. So substr("abcdef",5,4)="ed". This function residuates
on S, P, and N.� The function strcon(S1:string,S2:string) (string concatenation) re-
turns the string obtained by appending S2 to the end of S1. So
strcon("abc","def")="abcdef". This function residuates on S1 and S2.� The function str2psi(S:string,M:string) (string to -term conversion) re-
turns the -term whose name consists of the same sequence of characters as S, and
which is current to module M (see Section 10, page 66). The module name M may
be omitted; in that case the module in which the call to str2psi textually occurs is
taken. So str2psi("foo")=foo and str2psi("34")=’34’. The latter is not
the integer 34, but a symbol. This function residuates on S.� The function psi2str(X) (-term to string conversion) returns the string whose name
consists of the same sequence of characters as the root sort of X. So psi2str(int)
= "int". This function never residuates. Hence, it is order-dependent and should
be used with caution. It can be made order-independent by wrapping it in an-
other function definition. The following definition waits until X:=<foo before firing:
psi2str foo(X:foo) -> psi2str(X).� The function asc(S:string) returns the ASCII code of the first character of the
string S. An error message is reported if S is not a string. This function residuates on S.

March 1994 Digital PRL

Wild LIFE Handbook 47� The function chr(I:int) returns a string of length one containing the character
whose ASCII code is I. An error message is reported if I is not an integer. This function
residuates on I.

8.5.2 String comparison

The following functions perform string comparisons and return true or false. They will
residuate if their arguments are not below string in the sort hierarchy. The names of all
string comparisons start with “$”. The names are consistent with the names of the arithmetic
comparisons, except for string equality and nonequality which use == and \== instead of =:=
and =\=.� The function A$>B returns true if A is greater than B.� The function A$>=B returns true if A is greater than or equal to B.� The function A$<B returns true if A is less than B.� The function A$=<B returns true if A is less than or equal to B.� The function A$==B returns true if A is equal to B.� The function A$\==B returns true if A is not equal to B.

8.6 Type checking

These boolean functions test whether an identifier is of a particular kind. These functions
never residuate. Hence, they are order-dependent and should be used with caution. They can
be made order-independent by wrapping them in another function definition.� The function is function(X) returns true if X is a function.� The function is predicate(X) returns true if X is a predicate.� The function is sort(X) returns true if X is a declared sort. A declared sort is one

that has occurred in a :: or <| declaration.� The function var(X) returns true if X is @ with no arguments.� The function nonvar(X) returns true if X is not @ or it has arguments, or both.� The function is persistent(X) returns true if X is a persistent term. See Sec-
tion 9.

8.7 Input/output

In Wild LIFE, as in Prolog, input and output operations are extra-logical in that they have
side-effects. Namely, Wild LIFE does not, upon backtracking, retrieve information that has
been sent to an output port, or put back characters read from an input stream. Therefore good
style dictates that input/output be avoided in the main body of a program.

Research Report Draft March 1994

48 Hassan Aı̈t-Kaci et al.

Unless explicitly set otherwise by the user, all reading and writing is done from and to
streams bound to the standard Unix I/O file descriptors stdin and stdout. We first describe
the built-ins for reading and writing on the currently selected I/O stream. Then we describe
how to modify the current stream.

8.7.1 Reading

The following built-ins are provided for reading from the current stream.� The predicate get(C) reads the next character off the current input stream and unifies its
ASCII code (an unsigned integer) with its argument C. If that next character is the end-of-
file character CTRL-D, then get unifies its argument with the symbol end of file.
Be mindful of the fact that if the argument passed has a sort other than @ then when the
end of file marker is reached, the predicate will simply fail (as end of file cannot
unify with string for instance).� The predicate read(X) reads a -term off the input stream, quotes it, and unifies it with
its argument X. The -term being read must be properly terminated. The -term being
read must be consistent with the current set of operator declarations. Variable names
appearing in the input stream are ignored.

Example 8.17 This example illustrates read.

> read(R)?
f(X,g(Y,X)). % Typed in by the user

*** Yes
R = f(_A,g(@,_A)).� The predicate read token(X) reads one syntactic token from the input stream, quotes

it, and unifies it with X. A token is either a symbol, a number, a string, a variable, any
non-alphanumeric built-in or declared operator, or delimiters (parenthesis,bracket, brace,
period, etc.). Variable names appearing in the input stream are ignored.

Example 8.18 This example illustrates read token.

> read_token(S)?
foo % Typed in by the user

*** Yes
S = foo.
--1> read_token(T)?
S % Typed in by the user

March 1994 Digital PRL

Wild LIFE Handbook 49

*** Yes
S = foo, T = @.� The predicate load(A1 , A2, ...) loads all the definitions in the files A1, A2, etc., in the

order they appear. This predicate is non-strict, i.e., it does not evaluate its arguments.
Queries appearing in the files being loaded are proved as they are encountered and
therefore take into account only definitions that textually occur before them. If one file
is not found, then the remaining files are not loaded, an error message is reported, and
the load fails. An error-free load always succeeds, even if queries in the loaded file fail.
If a query appearing in a file fails then the remainder of the file following it is loaded
anyway. A file being loaded may itself contain a load query. The outermost load is
then momentarily “set aside” and the nested one is executed in the context reached thus
far. If no error occurs, the outermost load is then resumed in the augmented context.
Cyclic loadings are ignored, i.e., a file is only loaded once during the scope of a load,
even if it occurs in more than one load query.� The function load path may be defined by the user to return a directory name or
a disjunctive term containing directory names. A directory name is given as a string,
e.g., "/usr/lib/include" is a valid directory name. During a load or import
command, the current directory is searched first, followed by the directories returned by
load path, followed by the Lib, Tools, and Examples directories.

8.7.2 Writing

The following built-ins are provided for writing to the current stream.� The predicate put(C:int) takes the integer ASCII code C of a character and outputs
it to the current output stream. It is a dual to the get predicate.� The predicates write(A1 , A2, ...) and pretty write(A1, A2, ...) print the -terms
A1, A2, etc., according to the current operator declarations. The arguments are printed
in lexicographical order of feature names, where all integer features are considered to
be less than all non-integer features. The difference between the two predicates is that
pretty write will break up and indent a -term if the output does not fit on a single
line.14 No line feed is issued after either of these two predicates.� The predicates writeq(A1 , A2, ...) and pretty writeq(A1 , A2, ...) print the -terms
A1, A2, etc., according to the current operator declarations. The -terms are printed with
all necessary single and double quotes so that the -terms may be read in again with
read.� The predicate write canonical(X) prints its arguments in a canonical form. with-
out operator declarations, and adding single and double quotes where necessary so that

14This makes pretty write run marginally slower and use more memory.

Research Report Draft March 1994

50 Hassan Aı̈t-Kaci et al.

the arguments may be read in again with read. This predicate is useful for infor-
mation interchange between programs that do not necessarily have the same operator
declarations.� The predicate nl goes to the beginning of the next line, i.e., it has the effect of printing
a carriage return and line feed.� The predicate page width(N) changes the default page width to N. By default,
the pretty-printer invoked by pretty write uses a constant page width set to 80
characters. This value is changed dynamically to the number of characters max(0;N).
The pretty-printer is also used by the user interface to show the bindings of variables
when a goal succeeds. N must be a nonnegative integer or an unbound variable. If N is
an unbound variable, it is bound to the current page width.� The predicate print depth(N) changes the default maximum print depth to N. Only
the first N levels of a -term will be printed entirely. The rest is printed as “...” (three
dots). N must be a nonnegative integer or an unbound variable. If N is an unbound
variable, it is bound to the current print depth.

Since a -term to be written may contain cycles, the Wild LIFE printer explores it entirely to
detect any cycles encountered. It then prints the term, generating new tag names to reference
identical terms which appear several times (and thus cycles, in particular). The tags generated
are local to each call of the printer and are of the form _� where � is a capital letter, or a
sequence of same, generated in alphabetical order; that is, _A, _B, _C, : : : , _Z, _AA, _AB, etc.

Example 8.19 This example illustrates page width.

> page_width(60)?

*** Yes
> big(one(abc,X:def,fgh(a,b,c,d),ijk,lmn(e,f,g(h,i,j),
| h,i(12,23,34,45)),[a,b,c,d],[a,b](3=>10000),[X|X])).

*** Yes
> big(A),nl,write(A),nl,nl,pretty_write(A),fail?

one(abc,_A:def,fgh(a,b,c,d),ijk,lmn(e,f,g(h,i,j),h,i(12,23,3
4,45)),[a,b,c,d],cons(a,[b],10000),[_A|_A])

one(abc,
_A:def,
fgh(a,b,c,d),
ijk,
lmn(e,f,g(h,i,j),h,i(12,23,34,45)),
[a,b,c,d],
cons(a,[b],10000),
[_A|_A])

*** No

March 1994 Digital PRL

Wild LIFE Handbook 51

Example 8.20 This example illustrates print depth.

> print_depth(0)?

*** Yes
> X=f(f(f(f(a))))?

*** Yes
X = f(...).
--1> print_depth(1)?

*** Yes
X = f(f(...)).
--1> print_depth(2)?

*** Yes
X = f(f(f(...))).
--1> print_depth(3)?

*** Yes
X = f(f(f(f(...)))).
--1> print_depth(4)?

*** Yes
X = f(f(f(f(a)))).

Example 8.21 This example illustrates the difference between write and writeq. The
former prints terms without quotes, the latter keeps all single and double quotes.

> write(’f o o’)?
f o o
*** Yes
> writeq(’f o o’)?
’f o o’
*** Yes
> write("f o o")?
f o o
*** Yes
> writeq("f o o")?
"f o o"
*** Yes

Research Report Draft March 1994

52 Hassan Aı̈t-Kaci et al.

Example 8.22 This is an example of a self-reproducing query. It uses writeq and write to
reproduce its input exactly.

> ’=X,writeq(X),write(X)?’=X,writeq(X),write(X)?
’=X,writeq(X),write(X)?’=X,writeq(X),write(X)?
*** Yes
X = ’=X,writeq(X),write(X)?’.

Example 8.23 This is a shorter self-reproducing query.

> X: (write(X), put(63))?
X: (write(X), put(63))?
*** Yes
X = (write(X), put(63)).

This works because the query is itself a -term, and hence may be cyclic. A question for the
reader: is an even shorter self-reproducing query possible? 15

8.7.3 Parsing a string

The function parse(S:string,X,V) returns the -term resulting from parsing the
string S according to the current operator declarations. It sets the flag X to either query,
declaration, or error depending on the status of the parse. It sets the flag V set
to true if the parsed form contains variables, and false otherwise. Parse never fails.
Variable names that appear in S are significant and interpreted in the current context. The call
parse("1+2.") returns the quoted -term 1+2. The string S must be properly terminated,
i.e., it must end with “?” or “.”.

Example 8.24 This example illustrates parse.

> X=1?

*** Yes
X = 1.
--1> F=parse("X+3.",S), G=eval(F)?

15The answer is yes; find it!

March 1994 Digital PRL

Wild LIFE Handbook 53

*** Yes
F = X + 3, G = 4, S = declaration, X = 1.
----2>

*** No
X = 1.
--1> F=parse("X+3",S,V)?

*** Yes
F = X + 3, S = error, V = true, X = 1.

The first call to parse correctly returns the -term 1+3. In the second call to parse, the
binding S=error is due to the missing period at the end of the string "X+3". That is, parse
reports a syntactic error, not a semantic one.

8.7.4 Operator declarations

In the same manner as Prolog, Wild LIFE allows run-time modification of input/output
syntax through operator declarations. The predicate op(P,K,N) declares that the operator
named N exists with precedence P and kind K. This predicate is non-strict, i.e., it does not
evaluate its arguments. The precedence must be an integer from 1 to 1200. The kind must be
one of xf, yf, fx, fy, xfx, xfy, and yfx. This predicate may be used to inspect or to create
new operators. See appendix B (page 102) for a list of all predefined operators in the system.
The predefined operators are as compatible with ISO Standard Prolog as the language allows.

Example 8.25 This example illustrates user-defined operators.

> op(1000,fx,if)?
> op(900,xfx,then)?
> op(500,fx,go)?
> op(600,fx,the)?
> op(700,xfx,is)?
> op(1200,xf,quickly)?

> write(if the weather is nice then go swimming quickly)?
if the weather is nice then go swimming quickly
*** Yes

Example 8.26 Return the list of all operators whose precedence is less than the precedence of
*, i.e., which bind tighter than *.

> A=bagof(Z,(op(X,3=>(*)),op(Y,3=>Z),Y<X))?

*** Yes
A = [ˆ,&,mod,‘,:,.], X = @, Y = @, Z = @.

Research Report Draft March 1994

54 Hassan Aı̈t-Kaci et al.ggs s The op predicate recognizes keywords, and therefore the
three calls op(X,Y,Z), op(precedence => X, kind => Y, functor => Z),
andop(X,Y,Z,precedence => X, kind => Y, functor => Z) are equivalent.
Because the head is a -term, any mixed or incomplete list of arguments may be specified, even
op(precedence => X, 3 => Z). In addition, unlike Prolog’s op, which is a declara-
tion, Wild LIFE’s op can be dually, and indifferently, used in both assertion and query mode.
Thus, op(precedence => X, kind => xfy, functor => Z) will successively
bind X and Y to all pairs of precedence weights and functor symbols of kind xfy. This is
quite handy to define new operators’ precedences relatively to known ones as functions (or
constrained by) the defined values, all without being aware of their actual specific (and often
arbitrary) values.

8.7.5 Files and streams

File I/O operations in Wild LIFE are reduced to a simple form: files may be opened in either
read or write mode and closed. It is possible to open several files for input and/or output with
open in and open out, and to switch between them with set input and set output.

For consistency, all trace messages are always output to "stdout", all errors and warnings
to "stderr", and all program output to the stream selected by the user. The default initial
selections are "stdin" for input and "stdout" for output.

The following built-in predicates provide file I/O operations.� The predicate exists file(F) succeeds if and only if the file F can be opened for
input. This is quiet and so can be used for testing the presence of a file.� The predicateopen in(F,S:stream) opens the fileF for input and selects the stream
S as current input. The argument S is set to a -term whose root sort symbol is stream
containing all information relative to the status of reading from this file. This predicate
fails with an error message if file F cannot be opened.� The predicate open out(F,S:stream) opens the file F for output and selects the
stream S as current output. The argument S is set to a -term containing all information
relative to the status of writing into this file. This predicate fails with an error message
if file F cannot be opened.� The predicate set input(S:stream) sets the input stream to S. The stream S must
have been initialized by open in.� The predicate set output(S:stream) sets the output stream to S. The stream S
must have been initialized by open out.� The predicateclose(S:stream) closes the streamSwhich must have been initialized
by open in or open out. It also flushes the corresponding I/O buffer. If S was an
input stream, close(S) automatically selects stdin as current input stream. It
behaves analogously for output streams and stdout. All streams are closed on normal
termination of Wild LIFE.

March 1994 Digital PRL

Wild LIFE Handbook 55

All file handling built-ins (load, import, open in, open out, exists file)
require a string as filename argument.

Example 8.27 This example gives a short program for copying files.

copy_file(F1,F2) :-
open_in(F1,S1), % Open file F1

% Select it for input
open_out(F2,S2), % Open the target file
open_out(stdout,S3), % Set output stream to stdout
write("Copying from """,F1,""" to """,F2,""" ... "),
set_output(S2), % Set the output to file F2
repeat,
get(X), % Read a character
(X=end_of_file, % If end of file F1 is reached
close(S1), close(S2), % then close both files
write("done."), % (output is reset to stdout)
! % and cut out the repeat loop

; % else
put(X), % output the character
fail

). % and fail to repeat loop

Here is an example of its use.

> copy_file(xxxooo,junk)?
Copying from ’xxxooo’ to ’junk’ ... done.
*** Yes

8.8 System-related built-ins

8.8.1 The Wild LIFE system

This section summarizes the built-ins that allow inspection and modification of Wild LIFE
system-related properties.� The predicatelisting(A1 , A2, ...) lists the definitions of the identifiers A1, A2, etc.. This

predicate is non-strict, i.e., it does not evaluate its arguments. This built-in is quite useful
to inspect a loaded program. It knows about functions, sorts (including the sort hierarchy),
predicates, and global variables. For example, try the query listing(23)?.� The predicate verbose toggles the Wild LIFE interpreter between two modes, quiet
and verbose. The interpreter starts up in quiet mode. Verbose mode gives execution
time statistics about each query and shows the garbage collections when they occur. The
statistics given in verbose mode are the following.

Research Report Draft March 1994

56 Hassan Aı̈t-Kaci et al.

Name Meaning
cpu CPU time of the query in seconds.
goals Number of internal goals executed by the query.
stack Size of backtrackable stack in bytes.
heap Size of nonbacktrackable stack in bytes.
goals Number of internal goals on goal stack.
choice points Number of entries on choice point stack.
trail entries Number of entries on trail stack.

Example 8.28 This example shows how to declare a function with variable arity, i.e., the
number of arguments is determined by each call.

> X:sum -> sum_all(features(X),X).
> sum_all([F|FL],X) -> X.F+sum_all(FL,X).
> sum_all([]) -> 0.

*** Yes
> verbose, A=sum(1,2,3,4,5)?
*** Verbose mode is turned on.

*** Yes [0.000s cpu, 80 goals, 7916 stack, 196624 heap]
*** Stack depths [0 goals, 0 choice points, 1 trail entry]
A = 15.� The predicate statistics prints information about the current memory usage of the

system.� The predicate trace(X) is used to enter and exit trace mode. In trace mode, all internal
goals are printed to stdout. If X is false then trace mode is disabled. This is the default.
If X is true then trace mode is enabled. If X does not exist, then trace mode is toggled.� The predicate step(X) is used to enter and exit single-step mode. In single-step mode,
an internal goal is printed and then the system waits for user input to continue. PressinghCRi will execute one internal goal. Pressing an integer N followed by hCRiwill execute
N internal goals. If X is false then single-step mode is disabled. This is the default. If
X is true then single-step mode is enabled. If X does not exist, then single-step mode
is toggled. In single-step mode, type h to get online help.� The predicate abort forces an immediate return to the Wild LIFE top level.� The predicate halt forces an immediate termination of the Wild LIFE process.� The predicate gc forces an immediate garbage collection. No messages are printed
unless verbose mode is active.

March 1994 Digital PRL

Wild LIFE Handbook 57

8.8.2 The Unix system

This section summarizes the built-ins that allow Wild LIFE to interact with the Unix operating
system.� The function system(S:string) executes the command S under the shell sh and

returns the resulting exit code. The function fails with an error message if a shell could
not be created or if S is not a string.� The function getenv(S:string) returns a string that contains the value of the
environment variable S. The function fails if and only if the environment variable does
not exist. The function fails with an error message if S is not a string.

Example 8.29 This example illustrates system.

> A=system("ls")?
DEMOS_README dictionary.lf flowers.lf prime.lf
Flowers.doc display_terms.lf gauss.lf queens.lf
Gauss.doc flo_README hamming.c schedule.lf
Schedule.doc flo_custom.lf hamming.lf simple.lf
SuperLint/ flo_flowerdef.lf machine.lf soap.lf
all_demos.lf flo_gram.lf magic.lf solve.lf
boxes.lf flo_utils.lf nl.lf xxxooo.lf
dictionary.c flo_xtools.lf palette.lf

*** Yes
A = 0.
--1>

*** No
> A=system("core")?
sh: core: cannot execute

*** Yes
A = 256.� The function argv returns a list of the command line arguments given as strings.

Example 8.30 This example illustrates argv.

% wild_life apple pie
Wild_Life Interpreter Version 1.0
Copyright (C) 1991-93 DEC Paris Research Laboratory
No customizing file loaded.

Research Report Draft March 1994

58 Hassan Aı̈t-Kaci et al.

> A=argv?

*** Yes
A = ["/udir/rmeyer/LIFE/MODULE/wild_life","apple","pie"].

8.8.3 Timekeeping

The following functions provide an interface to the flow of time.� The function cpu time returns the amount of user CPU time in seconds that the Wild
LIFE process has used so far.� The function real time returns the amount of wall clock time (in seconds) that has
elapsed since a particular moment of time in the past. The location of this moment
of time is fixed for any given Unix system. The date of this moment depends on the
particular Unix system.� The function local time returns a -term that represents the local time. For ex-
ample, the goal write(local time) will write time(day => 14,hour =>
18,minute => 9,month => 10,second =>
35,weekday => 3,year => 1992) if the date is Wednesday, Oct. 14, 1992,
6:09:35 pm. The month field ranges from 0 to 11, where 0 represents January. The day
field gives the day of the month and ranges from 1 to 31. The weekday field ranges from
0 to 6, with 0 representing Sunday. The hour field ranges from 0 to 23 (24-hour clock),
where 0 represents midnight. The minute and second fields range from 0 to 59. This
function is based on the underlying Unix date and time library.

8.9 Loading files with term expansion

The standard way in Wild LIFE to run a preprocessor on program rules is to define the
preprocessor as a predicate. Program rules are written as queries to the preprocessor. For
example, a DCG (Definite Clause Grammar) expander could be written by defining a predicate
named -->, declaring it as an operator, and then writing clauses as calls to -->, namely as
queries Head --> Body?.16

Because it is awkward to treat program rules as queries in this way, Wild LIFE provides
a term expansion facility. It generalizes the similarly named facility of Prolog. Term
expansion is useful to expand terms into facts without having to write these terms as queries
and without having to define their main functor as a predicate or a function. Term expansion
is done only when loading files.

Example 8.31 This example illustrates how to use term expansion to provide a simple tracing
facility.

16A preprocessor that does DCG expansion and much more is included in the system and described in appendix F.

March 1994 Digital PRL

Wild LIFE Handbook 59

> expand_load(true)?
> term_expansion((H:-B), (H:-write(root_sort(H)),nl,B)) :- !.
> load("/tmp/x")?
*** Loading File "/tmp/x.lf"

> listing(third)?

third(_A,_B) :-
write(third),
nl,
_A = [@,@,_B|@].

*** Yes

This will trace the execution of third. The file /tmp/x.lf contains the single clause:

third(L, X) :- L=[_,_,X|_].

8.9.1 Defining term expansion clauses

The predicate term_expansion(A,B) expands the term A into the term or list of terms
B. The term A may be anything at all, including a predicate declaration, a function declaration,
or a sort declaration. The predicate term_expansion is dynamic and may be extended by
the programmer.

Example 8.32 This example shows the initial definition of term expansion.

Wild_Life Interpreter Version 1.0
Copyright (C) 1991-93 DEC Paris Research Laboratory
No customizing file loaded.
> listing(term_expansion)?

dynamic(term_expansion)?
% ’term_expansion’ is a user-defined predicate
with an empty definition.

*** Yes

8.9.2 Using term expansion when loading files

The predicate expand load(A,W) modifies the behavior of the load command with
respect to term expansion. The default is not to do term expansion. expand load has no
effect on interactive input. The options A and W have the following effect:� If the option A is true, then expand the terms and assert them. If A is true or false,

the first option is set to the value of A. If A is a free variable then it is bound to the current
value of the option.

Research Report Draft March 1994

60 Hassan Aı̈t-Kaci et al.� If the option W is true, then write the expanded rules and queries in a file with suffix
“.exp”. This file can later be loaded to avoid re-expanding all the rules. If W is true
or false, the second option is set to the value of W. If W is a free variable then it is
bound to the current value of the option.

These options are recursive: if file1 is loaded with some options, and loads file2,
then file2 will be loaded with the same options. If the second option is set, the
load(file2) query in file1 will be rewritten as load_exp("file2.exp") in
file1.exp. load_exp never does term expansion.

9 Global variables, persistent terms, and destructive assignment

This section covers three new concepts: global variables, persistent terms, and destructive
assignment. These concepts are designed to provide clean and efficient replacements for most
uses of assert and retract.

Global and persistent variable names are part of the name space that contains predicates,
functions, and sorts. The same symbol cannot denote both a predicate and a global variable.

9.1 Global variables

A global variable is a logical variable whose name is visible throughout the program. To
be precise, it is visible from all clauses within its defining module or any module to which it
is exported. A global variable behaves exactly as if it were an extra parameter passed to all
predicates, functions, and sorts. Global variables must be declared.

Example 9.1 This example illustrates global variables.

> global(warfare)? % Declare a global variable

*** Yes
> warfare=34? % Unify the variable with 34

*** Yes
--1> write(warfare)? % Write the value
34
*** Yes
----2> .
> write(warfare)? % Backtracking undoes the unification
@
*** Yes

Global variables are essentially syntactic sugar and a programming convenience. They
should be used sparsely as program maintainability may suffer otherwise. Other than having a
larger scope for its name, a global variable acts exactly like a local variable.

March 1994 Digital PRL

Wild LIFE Handbook 61

A good example of the use of a global variable (possibly combined with backtrackable
destructive assignment) is to keep track of the reasoning used in some expert system, without
having to explicitly pass an extra parameter around to all the predicates or functions used.

9.2 Persistent terms

A persistent term is a -term that does not change its value on backtracking. It is “read-only.”
It may not be modified through unification and functions may not residuate on it. It can be
modified only through explicit calls to nonbacktrackable assignment <<- (see Section 9.4.2).
This can be viewed as having a global database (a set of graphs) with named entry points on
certain nodes. All subterms of a persistent term are also persistent. Information may be shared
between persistent terms.

Persistent terms are stored on the heap, just like clauses (see Section 8.8.1). Persistent terms
cannot be unified together. They can be modified only through destructive assignment. All
interaction between local terms and persistent terms is through matching. An error is reported
if the match fails. Any attempt at unifying two persistent terms yields an error.

A persistent term may be stored in a standard variable. Modifications of the term are
unaffected by backtracking. Access to the term through the standard variable is affected by
backtracking: if one backtracks before the point in which the standard variable obtains access
to the persistent term, then the standard variable gets its original value back and the persistent
term becomes inaccessible. Its space is recovered by garbage collection.

9.3 Persistent variables

A persistent term may be stored in a global variable. The variable is then called a persistent
variable. In this case, the value never becomes inaccessible. Parts of persistent terms may
be shared between variables. Persistent variables must be declared. The listing predicate
knows about global variables, but it does not (currently) differentiate between persistent and
global variables.

Example 9.2 This example illustrates persistent variables.

> persistent(trouble)? % Declare a persistent variable

*** Yes
> trouble <<- with_harry? % Assign a value to the variable

% with destructive assignment
*** Yes
--1> write(trouble)? % Write the value
with_harry
*** Yes
----2> .
> write(trouble)? % Backtracking has no effect
with_harry
*** Yes

Research Report Draft March 1994

62 Hassan Aı̈t-Kaci et al.ggs sThe following commands:

> global(tactics)?
> tactics <<- retreat?

are not sufficient to make tactics a persistent variable because when backtracking beyond
the point wheretacticswas bound to the persistent term the binding will be lost (in particular
when returning to the top-level command line).

9.4 Destructive assignment

Wild LIFE provides a clean integration of destructive assignment in a single-assignment
language. The integration is based on two kinds of terms: normal and persistent terms. The
former are backtrackable, i.e., they regain their former values on backtracking. The latter are
nonbacktrackable, i.e., changes to them are not undone on backtracking. Normal and persistent
terms may be matched together. This results in a flow of information from the persistent to
the normal term, never in the other direction. Any attempt to modify a persistent term except
through its destructive assignment operation results in failure.

Normal and persistent terms each have their own destructive assignment operation. Therefore
there are two kinds of destructive assignment: backtrackable and nonbacktrackable. Both of
these are useful in real programs. See Section 12.7 (page 83) for a non-trivial example of the
correct use of these two built-ins.

9.4.1 Backtrackable destructive assignment

The predicate X<-Y overwrites X with Y. X and Y are standard (backtrackable) -terms.
Backtracking past this statement will restore the original value of X. For example:

> X=5, (X<-6; X<-7; succeed), write(X), nl, fail?
6
7
5

*** No

This predicate is very useful for building “black boxes” that have clean logical behavior when
viewed from the outside but that need destructive assignment to be implemented efficiently.

9.4.2 Nonbacktrackable destructive assignment

The predicate X<<-Y overwrites X with a persistent copy of Y. Modifications to X after it
has been made persistent are not backtrackable. If you backtrack to a point before X is made
persistent, then X is restored to its original (backtrackable) value. For example:

> X=5?

*** Yes
X = 5.
--1> X <<- 10? % Make X persistent, with value 10

*** Yes

March 1994 Digital PRL

Wild LIFE Handbook 63

X = 10.
----2> X <<- 20? % X gets value 20, nonbacktrackably

*** Yes
X = 20.
------3> % Type <CR> to go back

*** No
X = 20.
----2> % X is nonbacktrackably 20!

*** No
X = 5. % X is restored to backtrackable 5ggs s It is important not to confuse <- and <<-. The former can be used on the standard data

structures in a program. The latter creates a special kind of data structure, the persistent term,
which is useful for managing information that must not go away on backtracking. For example,
the implementation of bagof uses persistent terms. Attempting to use <- on persistent terms
results in an error.

The use ofA <<- Bwhere A is a local variable allows the creation of “temporary” persistent
terms. They are temporary because the binding to them is lost on backtracking before the instant
in which the variable became persistent.

Example 9.3 This example illustrates nonbacktrackable destructive assignment.

> persistent(this)?
> p :- write(this). % ’this’ is ’@’ when ’p’ is defined
> this <<- q(a,b,c)? % Assign a value to ’this’
> p? % Call ’p’
q(a,b,c) % which prints the value of ’this’
*** Yes

> this=q(D,E,F)? % Unify the persistent term ’q(a,b,c)’
*** Yes % with the local term ’q(D:@,E:@,F:@)’
D = a, E = b, F = c, this = q(D,E,F).

% Succeeds since ’q(a,b,c) <| q(@,@,@)’
% D, E and F contain persistent terms

Example 9.4 This example illustrates that subterms of a persistent term are persistent.

> persistent(that)?
> that <<- thing(int)?
> that=thing(5)?
*** No % Fails since ’int |> 5’

Research Report Draft March 1994

64 Hassan Aı̈t-Kaci et al.

> that=thing(X)?
*** Yes % Succeeds since ’int <| @’
X = int, that = thing(X).

--1> X=5?
*** No % Subterm ’int’ of persistent term

% is persistent and ’int |> 5’

Example 9.5 This example defines an efficient version of bagof using <<-. It is efficient
because <<- does incremental copying to the heap. That is, parts of the term that are already
on the heap are not copied.

non_strict(local_bagof)?

local_bagof(X,G) -> M |
L<<-[],
(evalin(G), % Prove G
L<<-[evalin(X)|copy_pointer(L)], % Record X binding
fail % Force backtracking

;
M<-copy_term(L) % Copy persistent term

). % Back onto the stack

Both bagof and local bagof execute in linear time.

Example 9.6 This example illustrates that on a persistent term, the function “.” (project) will
nonbacktrackably create a new feature if the required one was not present.

> persistent(this)?
> this<<-q(a,b,c), write(this)?
q(a,b,c)
*** Yes
--1> this.2=B?

*** Yes
B = b. % B is bound to a persistent term
----2>

*** No
--1> this.new=B, write(this)? % ’new’ feature is added
q(a,b,c,new => @)
*** Yes
B = @, this = q(a,b,c,new => B).

March 1994 Digital PRL

Wild LIFE Handbook 65

----2> % B is bound to a persistent term

*** No
--1> write(this)?
q(a,b,c,new => @) % B no longer exists, but the

% ’new’ feature still does

9.5 Quoting

Global and persistent variables can be quoted like functions (see Section 6.5, page 26). A
quoted variable is not dereferenced. This allows global and persistent variables to be part of
asserted predicates and functions.

Example 9.7 This example illustrates the use of quoting global variables when asserting a
clause.

> global(it)?
> it=one_two_three, P=p(it), Q=q(‘it),
| assert(P), assert(Q)?

*** Yes
P = p(one_two_three), Q = q(it).
--1>

*** No % Now ’it’ is worth ’@’
> p(X),q(Y),Z=it?

*** Yes
X = one_two_three, Y = @, Z = Y.

A listing shows the difference:

> listing(p,q)?

p(one_two_three) :- succeed.

q(it) :- succeed.

The same applies for persistent variables. Of course, for the difference to be obvious their
value must be changed, and this can only be done with <<-.

9.6 Summary of built-ins

The following built-ins are provided for global variables and persistent terms.

Research Report Draft March 1994

66 Hassan Aı̈t-Kaci et al.� The predicate global(A1 , A2, ...) declares A1, A2, etc., as global variables. This
predicate is non-strict, i.e., it does not evaluate its arguments. Each argument Ai is either
an uninterpreted identifier or a -term of the form V <- E where V is an uninterpreted
identifier and E an expression. The latter form initializes V with the evaluated result of
E. If there is an error in any Ai then none of the Ai are declared. This predicate should
be used only as a declaration, i.e., in a query and not in a definition.� The predicate persistent(A1 , A2, ...) declares A1, A2, etc., as persistent variables.
This predicate is non-strict, i.e., it does not evaluate its arguments. Each argument Ai

must be an uninterpreted identifier. If there is an error in any Ai then none of the Ai are
declared. This predicate should be used only as a declaration, i.e., in a query and not in
a definition.� The predicates A<-B and A<<-B implement backtrackable and nonbacktrackable de-
structive assignment.� The function is persistent(X) returns true if X is a persistent term and false
if X is a normal term, i.e., X is backtrackable.� The predicate display persistent(X) is used to enter and exit a mode in which
persistent terms are displayed differently from normal terms. This built-in is intended
for debugging purposes. If X is false then persistent terms are displayed in the same
manner as normal terms. This is the default. If X is true then persistent terms are
preceded by a dollar sign “$”. If X does not exist, then the display mode is toggled.

10 Modules

The module system creates an entirely separate set of symbols for each module. By symbol
we mean any identifier (i.e., a predicate, function, or sort) or feature name. The symbol name
space is partitioned into three subspaces for predicate, function, and sort names. Feature names
are in an independent space: a symbol may always be used as a feature name.

By current module we mean the module that determines the scope of the symbols at a
particular time during execution. A current moduleexists at all times during program execution,
both interactively and in a program.

A mechanism is provided which allows symbols to be accessed across modules. For a
symbol to be visible outside of its defining module, it must be declared public in the module.

The syntax for an explicit reference to a given symbol defined in another module is
module#symbol. Following standard terminology, we call this a qualified reference. For
example, the syntax built_ins#write is legal if you are within module "built ins",
or if write is declared public in module "built ins" (which it is). If the symbol contains
non-alphanumeric characters, then the reference becomes ’module#symbol’.

It is not necessary to specify the module if the symbol you want to access is known in the
current module. The standard way of doing this is to open the module you are interested in,
with the built-in open. At that point, all public symbols appearing in the module are visible
in your current module.

March 1994 Digital PRL

Wild LIFE Handbook 67

10.1 Standard modules

Four standard modules are defined:� Module "built ins". This defines all built-in operations, including predicates, func-
tions, and sorts.� Module "syntax". This defines the minimal symbols required for parsing LIFE
files. This comprises operator declarations, the operator symbols themselves, and all
non-alphabetic symbols related to parsing (such as [,], {, }, ?, and so forth).� Module "x". This contains all of the built-ins related to the X interface. A program
using the X interface must first load and open it with the command import("x"). For
an example of its use, see the X toolkit presented in appendix H.� Module "user". This is the current module at system startup. It is the default module
for interactive input to the system.

Currently the modules "syntax" and "built ins" are always open, so their symbols may
be accessed without specifying a module name. There is no means to override this.

10.2 Using features

To make things easier for the LIFE programmer, features are public by default. If you
want to have private features, then the predicate private feature can be used in the same
way as private. It is possible (but unwise) to define a feature as being private while the
corresponding symbol is public.

The function features will only return those features which are visible from within the
module the call appears in.

Example 10.1

> module("secret")?
> public(prison)?
> private_feature(entrance)?
> prison(entrance => tunnel).

> module("user")?
> open("secret")?

> P:prison(door => guarded)?

*** Yes
P = prison(door => guarded,entrance => tunnel).
--1> display_modules(true)?

*** Yes
P = secret#prison(door => user#guarded,

secret#entrance => secret#tunnel).

Research Report Draft March 1994

68 Hassan Aı̈t-Kaci et al.

--1> F=features(P)?

*** Yes
F = [user#door],
P = secret#prison(door => user#guarded,

secret#entrance => secret#tunnel).

The feature entrance is private to secret and so when in module user the function
features only sees the door. This is true for all built-ins that manipulate features.

10.3 Overloading

The module system allows symbols to be overloaded. This works because modules allow
the distinction to be made between the new symbol and the old (typically built-in) definition.

Example 10.2

Wild_Life Interpreter Version 1.0
Copyright (C) 1991-93 DEC Paris Research Laboratory
No customizing file loaded.
> private(+)?
*** Warning: local definition of ’+’

overrides ’syntax#+’

> op(X,Y,’syntax#+’),op(X,Y,+)?
> A:list + B:list -> append(A,B).
> A:string + B:string -> strcon(A,B).
> A:real + B:real -> A ’syntax#+’ B.

*** Yes
> write([a,b,c]+[d,e,f]),nl?
[a,b,c,d,e,f]

*** Yes
> write("abc"+"def"),nl?
abcdef

*** Yes
> write(3+4),nl?
7

*** Yes

This works but is only usable from within a single module. If you try to export the overloaded
definition of +, a clash results between syntax#+ and the exported +.

March 1994 Digital PRL

Wild LIFE Handbook 69

The following technique gets around the problem:

Example 10.3

> module("overload")?
> public(+)?
(and so forth)

> module("charley")? % Also opens ’syntax’ and ’built_in’
> private(+)? % Override ’syntax#+’ locally
> open(overload)?
> alias(+,’overload#+’)?

10.4 Summary of built-ins� The predicate module(M:string) sets the current module to M. The argument M
must be a string.17 Typically, this predicate is put at the beginning of a file to create
a new module. Setting the current module to the same module twice (or more) has no
further effect. Whenever a file is loaded which switches to a different module, the current
module reverts to what it used to be once the file is closed. This predicate should be used
only as a declaration, i.e., in a query and not in a definition.� The function current module returns the name of the current module. Upon startup,
the current module is "user".

Example 10.4

> X=current_module?

*** Yes
X = "user".
--1> .
> module("charley")?

*** Yes
charley> X=current_module?

*** Yes
X = "charley".
charley--1> module("user")?

*** Yes
X = "charley".

17There is a good reason for this: if the argument were allowed to be any symbol, then the symbol is created in
the module which was previously current. This is undesired behavior.

Research Report Draft March 1994

70 Hassan Aı̈t-Kaci et al.

The prompt always shows the name of the current module, except if this module is
"user".� The predicate import(A1 , A2, ...) loads and opens the modules A1, A2, etc., which
are assumed to be in the files of the same name (modulo suffix and search path). This
predicate is non-strict, i.e., it does not evaluate its arguments. The arguments must be
strings.18 For example, import works correctly if the file is called "/tmp/foo.lf"
and the module is called "foo". If one of the files or modules does not exist, then the
remaining files are not loaded, an error message is reported, and import fails. Cyclic
loadings are ignored, i.e., a file is only loaded once during the scope of an import, even
if it occurs in more than one import query. This predicate should be used only as a
declaration, i.e., in a query and not in a definition.� The predicate public(A1 , A2, ...) declares the symbols A1, A2, etc., as public. This
predicate is non-strict, i.e., it does not evaluate its arguments. They may then be accessed
by other modules, either by a qualified reference (as module#symbol) or, if opened
in the other module, simply as symbol. Typically, the public declarations are placed
just after the module declaration, at the beginning of a module. This predicate should
be used only as a declaration, i.e., in a query and not in a definition.ggs s It is not possible to tamper with another module’s private components. The call
public(built ins#very private part)? from within module user results
in an error message.� The predicate private(A1 , A2, ...) declares the symbols A1, A2, etc., as private. That
is, from now on they are only accessible by qualified reference (as module#symbol).
The private declaration is typically used to implement overloading (see Section 10.3).
This predicate should be used only as a declaration, i.e., in a query and not in a definition.� The predicate private feature(A1 , A2, ...) declares the feature names A1, A2, etc.,
as private. This is important because feature names are public by default. This predicate
should be used only as a declaration, i.e., in a query and not in a definition.� The predicate open(A1, A2, ...) makes all the public symbols from the modules A1, A2,
etc., visible from within the current module without having to explicitly qualify them.
The arguments must strings.

Example 10.5 This example illustrates opening a module.

> open("built_ins")?
> write("hello")?
hello
*** Yes

18This is necessary to prevent the filename symbol from being defined in more than one module.

March 1994 Digital PRL

Wild LIFE Handbook 71

Here the symbol write references built ins#write.� The predicate display modules(X) toggles or switches the module display mode.
If X is false then terms are displayed without module names. in the same manner
as normal terms. This is the default. If X is true then terms are displayed with their
module names. The system will then display module#xxx instead of xxx. This is
very useful for debugging Wild LIFE programs, using the listing predicate. If X
does not exist, then the module display mode is toggled.

Example 10.6 This example illustrates display modules.

> display_modules(true), A=hello?

*** Yes
A = user#hello.

11 Rule-base management

The predicates in this section have been added for compatibility with Prolog. They may
not be supported in the compiler. They should be used only when it is necessary to create or
modify a program during execution. They should not be used for storing data (i.e., -terms).
They should not be used if the program requires a global name to store a term, and/or if it is
required that a term continue to exist on backtracking. Section 9 provides better solutions for
both of these cases.

It is strongly discouraged to modify a routine during that routine’s execution. The current
release of Wild LIFE provides for immediate update semantics in certain cases (as given below).
It does not implement the defensible semantics of [11].

11.1 Adding rules

The built-in predicates assert(C) and asserta(C) add the clause C to the program.
The argument C may be of two forms, (Head :- Body) or simply Head, the latter be-
ing equivalent to (Head :- succeed). The Head must be a dynamic predicate. With
assert, the clause C will be added as the last rule to be tried for that predicate. With
asserta, it is added as the first rule.

Example 11.1 This example illustrates assert.

> assert(q :- write(rule1)),assert(q :- write(rule2))?

Research Report Draft March 1994

72 Hassan Aı̈t-Kaci et al.

*** Yes
> q?
rule1
*** Yes
--1> ;
rule2
*** Yes

When the last rule for a goal is being used, Wild LIFE does not create a choice-point for that
goal, so if you add a new clause, it will not take effect, this is shown in the following example:

> p(1).

*** Yes
> p(A),write(A),assert(p(2)),fail?
1
*** No

The alternative, p(2), was not considered because when the rule p(1) was used, there was
no alternative clause at that time.

11.2 Deleting rules

The predicate retract(C) removes the first clause which unifies with C. If there are more
than one, then backtracking will successively remove the others.

Example 11.2 It is possible to write the function genint which returns a new distinct symbol
each time it is called in the following manner:

genint_counter(0).

:: genint(N) | retract(genint_counter(N)), M=N+1,
assert(genint_counter(M)).

This is not the best way to write genint. A better way is to use a persistent term:

persistent(genint_counter)?
genint_counter<<-0?
genint -> copy_term(genint_counter) |
genint_counter<<-genint_counter+1.

Example 11.3 Wild LIFE supports immediate update semantics. If you retract a clause which
is currently being used then any currently active clause (one which is in the process of being
executed or one which is reachable by backtracking) will not see the clause.

March 1994 Digital PRL

Wild LIFE Handbook 73

> p :- write(aha), retract(p:-B), retract(p:-C).
> p :- write(boo).
> p?
aha
*** Yes
--1> ; % There are no further solutions to p

*** No

11.3 Inspecting rules

The predicate clause(C) unifies C with the first clause in the program that is unifiable
with C. On backtracking, it will be unified with all successive clauses that are unifiable with
C.

Example 11.4

> p(1).

*** Yes
> p(2) :- write(hello).

*** Yes
> clause(A:p :- B)?

*** Yes
A = p(1), B = succeed.
--1> ;

*** Yes
A = p(2), B = write(hello).
--1> ;

*** No

11.4 Function definitions

It is possible to use the above predicates (assert, retract, and clause) with function
declarations. The argument is of the form (Head -> Result). Again you have to be
careful with choice-points, and new definitions will not modify previously existing -terms
which had already been evaluated.

Example 11.5

Research Report Draft March 1994

74 Hassan Aı̈t-Kaci et al.

> A=f,assert(f->sdsd),B=f?

*** Yes
A = f, B = f.

The fact that predicates and functions are represented with -terms makes it easy to write
meta-interpreters. But the differences between various possible implementations of assert
and retract are just a reminder of the inherent pitfalls of using self-modifying code. This
code is very difficult to debug and is compiled much less efficiently. If you use these predicates
often, you will find that Wild LIFE will spend quite a lot of its time collecting garbage.

11.5 Summary of built-ins� The predicate dynamic(A1 , A2, ...) makes the routines A1, A2, etc., dynamic, i.e., they
may be modified during execution. This predicate should be used only as a declaration,
i.e., in a query and not in a definition. This predicate is non-strict, i.e., it does not evaluate
its argument.

Example 11.6 Attempting to prove a goal of a predicate without clause definitions results
in an error, unless the predicate has been declared dynamic, in which case it simply
fails.

> foo?
*** Error: ’foo’ is not a predicate or a function.

*** Abort
> dynamic(foo)?

*** Yes
> foo?

*** No� The predicate static(A1 , A2, ...) makes the routines A1, A2, etc., static, i.e., they may
not be modified during execution. Any attempt to do so results in an error. To modify
them, they must be made dynamic with a dynamic declaration. This predicate should
be used only as a declaration, i.e., in a query and not in a definition. This predicate is
non-strict, i.e., it does not evaluate its argument.� The predicate assert(C) asserts the clause C (of the form (H:-B) or H) or the
function rule C (of the form (H->B)) at the end of the current definition. H should be
instantiated to a legal function or predicate name.

March 1994 Digital PRL

Wild LIFE Handbook 75� The predicate asserta(C) asserts C at the beginning of the current definition. Other-
wise it behaves identically to assert.� The predicate clause(C) unifies C with the first rule or clause that is unifiable with
it. On backtracking, unify C with the successive rules or clauses that unify with it. C
should have root sort -> or :-.� The predicate retract(C) unifies C with the first rule or clause that is unifiable with
it. Remove this item from the program database. On backtracking, unify and remove
with the successive rules or clauses that unify with C.� The predicate setq(H,E) replaces the definition of function H by a function containing
the single rule H->V where V is the result of evaluating the expression E. If H is a
predicate name or a declared sort then an error message is given.ggs s setq is obsolete and will not be supported in the compiler. Persistent variables
provide the same ability in a cleaner fashion and should be used instead (see Section 9,
page 60).

12 Example programs and programming techniques

This section illustrates programming techniques in LIFE through interesting example pro-
grams. For many more examples, look at the Examples and Tools directories in the Wild LIFE
1.0 release package.

12.1 Generating prime numbers

Enumerating all positive integers can be done in an elegant manner by using the definition
natural -> f0;1+naturalg. Defining prime numbers can be done by declaring a sort
prime and attaching a prime-testing routine to the sort. This allows the fact of being prime
to be remembered by the number itself. This is a good illustration of the expressive power of
the sort hierarchy.

prime := I:int | length(factors(I))=1.

factors(N:int) -> cond(N<0,
{},
factorize(N,2)).

factorize(N,P) -> cond(P*P>N,
[N],
cond(R:(N/P)=:=floor(R),

[P|factorize(R,P)],
factorize(N,P+1))).

The first rule reads as: “a prime is an integer, I, such as the number of dividers of I is 1”. The
function “factors” yields a list containing the factorization of its argument. Let’s have a look
at what this program does:

Research Report Draft March 1994

76 Hassan Aı̈t-Kaci et al.

> write(factors(6450)),nl,write(factors(127))?
[2,3,_A:5,_A,43]
[127]
*** Yes
> 6=prime?

*** No
> 43=prime?

*** Yes
> P=prime?

*** Yes
P = prime˜.
--1> P=29?

*** Yes
P = 29: prime.

--2> repeat,write(prime&natural," "),fail?
0:prime 1:prime 2:prime 3:prime 5:prime 7:prime 11:prime
13:prime 17:prime 19:prime 23:prime 29:prime 31:prime
37:prime 41:prime 43:prime 47:prime 53:prime ...

A number of sort prime will not be checked twice. As P:prime has no value, the function
factors residuates, which causes length to residuate too, then the instant an integer with
a value is unified with P, these two expressions are released, and succeed or fail. By coupling
prime and natural it is possible to generate all prime numbers.

12.2 PERT scheduling

This section presents an algorithm for PERT scheduling that illustrates the advantages of
out-of-order execution and of object-orientation. The program calls the functions that calculate
the scheduling information before their arguments are known. The functions are attached to
the declared sort task, providing for a clean data encapsulation.

PERT (Program Evaluation and Review Technique) is a methodology for planning big
projects. In particular, it is used to schedule subtasks that comprise a bigger task. For example,
the big task of building a house can be divided up into many smaller tasks: architectural
design, buying a plot of land, contracting for the building, the plumbing, the electricity, interior
decorating, and so forth. Each of these subtasks is dependent on a given set of other subtasks
to start. Each of the subtasks has a duration. An important problem is to find the earliest and
latest starting times of each task such that the big task is completed as soon as possible. If
there is no limit on the number of tasks that may be done in parallel, then this problem has a
linear-time solution. A Wild LIFE program to solve this problem can be written as follows.
This program is one of the examples provided with the release. First, define a sort task that
represents the information relevant to a task:

:: A:task(duration => D:real,
earlyStart => earlyCalc(R),

March 1994 Digital PRL

Wild LIFE Handbook 77

lateStart => {1e500;real},
prerequisites => R:{[];list})

| !, lateCalc(A,R).

This sort has attached to it the functions earlyCalc and lateCalc to do the calculations.
Function earlyCalc determines the earliest time that task A can start:

earlyCalc([]) -> 0.
earlyCalc([B|ListOfActs]) ->

max(B.earlyStart+B.duration,earlyCalc(ListOfActs)).

Function lateCalc determines the latest time that A’s prerequisites can start and still finish
before A starts:

lateCalc(A,[]) -> succeed.
lateCalc(A,[B:task|ListOfActs]) ->

lateCalc(A,ListOfActs) |
assign(LSB:(B.lateStart),

min(LSB, A.earlyStart-B.duration)).

% Wait until B is an integer before doing the assignment:
assign(A,B:int) -> succeed | A<-B.

Taken together, the above definitions form a self-contained program. This program does all
the calculation necessary to determine the earliest and latest start time of each task, given the
dependencies and the durations. For example, a possible session is:

> import("schedule")?
*** File "schedule.lf" loaded

*** Yes
> A1=task(duration=>10),
| A2=task(duration=>20),
| A3=task(duration=>30, prerequisites=>[A1,A2])?

*** Yes
A1 = task(duration => 10,

earlyStart => 0,
lateStart => 10,
prerequisites => []),

A2 = task(duration => 20,
earlyStart => 0,
lateStart => 0,
prerequisites => []),

A3 = task(duration => 30,
earlyStart => 20,
lateStart => Infinity,
prerequisites => [A1,A2]).

This says that task A3 can start the earliest at time 20. Activity A1 has a slack of 10: it can
start as early as time 0 and as late as time 10 without slowing down the project. Activity A2
must start at time 0; it cannot start later without slowing down the project.

Research Report Draft March 1994

78 Hassan Aı̈t-Kaci et al.

The problem may be described mathematically as follows. Given n tasks numbered 1, 2,
..., n. For each task i its duration is denoted di (duration) its earliest and latest start times
are denoted ei and li (earlyStart and lateStart), and the set of tasks it depends on is
denoted Pi (prerequisites). Given are all values of di and Pi. The problem is to calculate
the values of ei and li. This reduces to the following set of equations:

ei = maxj�Pi(ej + dj) (1 � i � n)
li = mini�Pj(ej � di) (1 � i � n)

Both the maximum and the minimum operations run over all values of j that satisfy their
condition. The first equation means that task i cannot start until all the tasks that it depends on
have finished. The second equation means that task i must end before the earliest start time of
all the tasks that depend on it.

A great advantage of writing the program in LIFE is the order-independence. The program
can be written in a straightforward way by exactly following the equations. The given informa-
tion (values of di and Pi) may be given in any order. If sufficient information is given to solve
the equations, the result will always be correct. Since each function invocation is calculated
only once, the result is calculated in linear time, regardless of the amount of sharing in the
dependency graph. It is in general difficult to predict when the different calculations will be
done, but this is irrelevant because it is not necessary.

12.3 Cryptarithmetic: SEND+MORE=MONEY

This example shows an efficient way of solving the standard benchmark test
“SEND+MORE=MONEY” where each letter codes one digit and no two letters code the
same digit. The algorithm is based on test-and-generate. That is, a series of function calls is
done which all suspend. Then the variables are instantiated to all possible digits. The sus-
pended functions act as passive constraints to prune the search. The computation terminates
successfully only when an assignment of digits to variables is found that is consistent with all
the passive constraints.

solve :-
% Solutions with M=0 are uninteresting:
M=1,

% The arithmetic constraints:
C3 + S + M = O + 10*M,
C2 + E + O = N + 10*C3,
C1 + N + R = E + 10*C2,

D + E = Y + 10*C1,

% The all-distinct constraints:
diff_list([S,E,N,D,M,O,R,Y]),

% Generating binary digits:
C1=carry, C2=carry, C3=carry,

% Generating decimal digits:

March 1994 Digital PRL

Wild LIFE Handbook 79

S=decimal, E=decimal, N=decimal, D=decimal,
O=decimal, R=decimal, Y=decimal,

% Print the result:
nl,
write(’ SEND ’,S,E,N,D),nl,
write(’+MORE +’,M,O,R,E),nl,
write(’----- -----’),nl,
write(’MONEY ’,M,O,N,E,Y),nl,
nl, fail.

decimal -> {0;1;2;3;4;5;6;7;8;9}.
carry -> {0;1}.

diff_list([]).
diff_list([H|T]) :-

generate_diffs(H,T), diff_list(T), H=<9, H>=0.

generate_diffs(H,[]).
generate_diffs(H,[A|T]) :- generate_diffs(H,T), A=\=H.

This program solves the problem very quickly, despite the fact that Wild LIFE is only an
interpreter. It is interesting that this solution is of the same order of efficiency as one based on
finite domains.19

> import("solve")?
*** File "solve.lf" loaded

*** Yes
> solve?

SEND 9567
+MORE +1085
----- -----
MONEY 10652

*** No

In less than a second on a DECstation 3100,20 Wild LIFE prints a solution and proves it is
unique. Just to get an idea of the power of constraints, we wrote a program in C which solves
the same problem using a generate and test method. It has seven nested loops in which the
program explicitly tests the difference constraints by marking those digits already used. On
the same machine, its CPU time is 1.0 seconds.

Notice also that Wild LIFE does no special preprocessing of constraints or static analysis
(other than sort encoding which isn’t used here) except for local propagation.21

19There are presently no finite domains in Wild LIFE as such, although sorts allow a similar kind of filtering.
20A DECstation 3100 has speed similar to a SPARCstation 1.
21See Section 12.11.

Research Report Draft March 1994

80 Hassan Aı̈t-Kaci et al.

12.4 Concurrent programming

Here is a little program that shows how a committed-choice programming style can be
imitated in Wild LIFE. The program is transliterated from an FCP (Flat Concurrent Prolog)
example in Shapiro’s survey article on concurrent logic programming [18].

LIFE’s function suspension mechanism (i.e., residuation) is used to communicate between
functions. In the terminology of concurrency: a recursive function acts like a process. Com-
munication between processes is done through unification of shared variables. Synchronization
is done through residuation. Task switching is completely data-driven and hence the scheduling
policy is non-fair.

Here is a sample session:

> A=nsift([2,3,4,5|L])?

*** Yes
A = [2,3,5|@], L = @˜. % The system waits on L
--1> L=[6,7,8,9|L2]? % Refining L resumes

% the computation
*** Yes
A = [2,3,5,_A:7|@], L = [6,_A,8,9|L2], L2 = @˜.

% Now it waits on L2
----2> L2=[10,11,12,13|L3]? % Refining L2 resumes

% the computation
*** Yes
A = [2,3,5,_A:7,_B:11,_C:13|@],
L = [6,_A,8,9|L2],
L2 = [10,_B,12,_C|L3],
L3 = @˜. % Now it is waiting on L3

The list A contains only prime numbers. Shared objects are given system-generated names;
e.g., the variable A that marks the instance of 7 which occurs in both the lists A and L. The
function nprimes passes a list of integers to nsift:

> A=nprimes(100)?

*** Yes
A = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,
73,79,83,89,97].

Since the complete list is passed to nprimes (see its definition), a complete answer can be
generated. Here is the source code of nsift.

nprimes(N) -> nsift(integers(2,N)).

% Create a stream of integers:
integers(From,To) -> cond(From > To,

[],
[From | integers(From+1,To)]).

March 1994 Digital PRL

Wild LIFE Handbook 81

% Remove multiples of P:
filter([]) -> [].
filter([X|In],P) -> cond((X mod P =\= 0),

[X | filter(In,P)],
filter(In,P)).

% Filter out multiples of each element:
nsift([]) -> [].
nsift([P|Ns]) -> [P|nsift(filter(Ns,P))].

As an optimization, here is a modified version that passes a maximum sift value equal to the
square root of the maximum input. This is much more efficient than the first version.

primes(N) -> sift(integers(2,N),sqrt(N)).

% Filter out multiples of each element:
sift([]) -> [].
sift([P|Ns],Max) -> [P | sift(cond(P =< Max,

filter(Ns,P),Ns),
Max)].

12.5 Encapsulated programming

This example shows how you can create a routine that behaves like a process with encapsu-
lated data. The caller cannot access the routine’s local data except through the access functions
(“methods”) provided by the routine.

% Encapsulated object-oriented process without streams

% Initialization:
new_counter(C) :- counter(C,0).

% Access predicate:
access(X,C) :- C=[X|C2], C<-C2.

% The counter:
counter([inc|S], V) -> counter(S,V+1).
counter([set(X)|S],V) -> counter(S,X).
counter([see(X)|S],V) -> counter(S,V) | X=V.
counter([stop|S], V) ->

true | write("Counter closed with stop."), nl.
counter([_|S], V) ->

counter(S,V) | write("Message not understood."), nl.
counter([], V) ->

true | write("Counter closed with end-of-stream.").

This defines a counter process. Access to the process is by the variable C. The internal
state of the process is the value of the counter, which is held in V, the second argument of
counter. The use of backtrackable destructive assignment is essential. What happens is
that counter creates a new object (the residuated recursive call) through its execution, and

Research Report Draft March 1994

82 Hassan Aı̈t-Kaci et al.

backtrackable destructive assignment gives this object the same name as the original object
which has disappeared. This is very close to Actor semantics. Here is an example of its use:

> new_counter(C)? % Initialize new counter object

*** Yes
C = @˜.
--1> access(inc,C)? % Increment the counter

*** Yes
C = @˜.
----2> access(inc,C)? % Increment the counter

*** Yes
C = @˜.
------3> access(see(X),C)? % Get the counter’s value

*** Yes
C = @˜, X = 2.

This creates a new counter object (with initial value 0) which is accessed through C. The
counter is incremented twice and then its value is accessed.

12.6 Classes and instances

To teach LIFE to non-LIFE users or even non-Prolog users, it is very important to tie its
concepts to concepts that are widely known. Two such concepts “class” and “instance”, which
are common in object-oriented languages such as C++ and Smalltalk. The declaration and use
of sorts can be described precisely in terms of the latter two concepts by the following rules:

1. A class corresponds to a sort. Classes are declared by sort definitions, of which the two
basic ones are:

% Like a ’struct’,
% this adds fields to a class definition:
:: class(field1=>value1, field2=>value2, ...).

% Class1 inherits all properties of class2:
class1 <| class2.

2. Instances are created by mentioning the class name during execution. For example,
executing:

> X=int?

will create an instance of the class int. Each mention of int creates a fresh instance.
Therefore, executing:

> X=int, Y=int?

March 1994 Digital PRL

Wild LIFE Handbook 83

creates two different instances of the class int in X and Y. We can do:

> X=int, Y=int, X=56, Y=23?

We can refine X to 56 and Y to 23. Obviously, this would not be possible if X and Y
were the same instance.

3. The Wild LIFE system assumes that mentioning a class name during execution always
creates a fresh instance that is different from all other instances of the class. For example:

> X=23, Y=23?

creates two different instances of the class 23. With the function f defined as:

> f(A,A) -> 1.

the call f(X,Y) will not fire, since X and Y are different instances. To make it fire, X
and Y must be the same instance. In Wild LIFE, the only way to do this is to unify them
explicitly by doing X=Y. For example:

> X=23, Y=23, X=Y, write(f(X,Y))?

will write 1, i.e., the function f will fire.

4. Sometimes it would be useful to have classes that only have one instance. For example,
it would be nice if all the instances of the class ‘23’ were the same integer 23, i.e., if the
class 23 had a unique instance 23. This is not possible in Wild LIFE 1.0.

12.7 Using destructive assignment to calculate term size

This section defines the function term size(T) which calculates the size of a -term.
The algorithm for calculating the size is a good example of the correct use of destructive
assignment. It demonstrates the use of both backtrackable and nonbacktrackable destructive
assignment (<- and <<-). See Section 9.4 for a discussion of these two built-ins.

The size of a -term is defined as the number of nodes it contains. The algorithm counts
the nodes by traversing the -term and using backtrackable destructive assignment to mark
nodes that have already been visited. The mark is the -term Seen, which is created locally
to term size, and hence is guaranteed not to occur in the term being explored.

After the traversal is finished, the algorithm backtracks to unmark all the marked nodes
and to recover all memory used during the traversal. The result is retained by storing it in
an anonymous persistent term with nonbacktrackable destructive assignment. The persistent
term is created before the choice point so that it is unaffected by the backtracking.

% Return a list containing the values of all features of X:
feature_values(X) -> map(project(2=>X),features(X)).

% Sum all the elements in a list:

Research Report Draft March 1994

84 Hassan Aı̈t-Kaci et al.

sum([V|Vs]) -> V+sum(Vs).
sum([]) -> 0.

term_size(X) -> N |
V<<-@, % Create an anonymous persistent

% term for the result
(V<<-term_explore(X,Seen), % Calculate the size
fail % Remove effects of calculation

;
N=copy_term(V) % Copy the result back to

). % a normal logical term

term_explore(X,Seen) -> V |
(X===Seen, % Skip already-counted nodes
!,
V=0

;
FV=feature_values(X), % Get the features of X
X<-Seen, % Mark X as having been counted
V=1+sum(map(term_explore(2=>Seen),FV))

).

Here is a sample execution:

> A=term_size(p(a,b,c,d))?

*** Yes
A = 5.
--1>

*** No
> A=term_size(B:[a,b|B])?

*** Yes
A = 4, B = [a,b|B].

12.8 Using a -term as an array

This section presents a Sieve of Eratosthenes program that calculates the sequence of primes
up to a given limit. It uses a -term as an array to store the primality information. The features
of the -term are the integers whose primality are being checked.

global(sieve)?
global(limit)?

main :-
write("N=?"),
read_token(limit & int),
next_prime(2),
nl.

March 1994 Digital PRL

Wild LIFE Handbook 85

remove_multiples(P,M) :-
cond(M<limit,

(sieve.M<-multiple_of(P),remove_multiples(P,M+P))).

next_prime(P) :-
P<limit,
!,
SP=sieve.P,
(SP=prime(P),

!,
write(P,’ ’),
remove_multiples(P,2*P)

;
succeed

),
next_prime(P+1).

next_prime(P).

Here is a sample execution:

> main,nl,nl,pretty_writeq(sieve)?
N=?20
2 3 5 7 11 13 17 19

@(2 => prime(_A: 2),
3 => prime(_B: 3),
4 => multiple_of(_A),
5 => prime(_C: 5),
6 => multiple_of(_B),
7 => prime(_D: 7),
8 => multiple_of(_A),
9 => multiple_of(_B),
10 => multiple_of(_C),
11 => prime(11),
12 => multiple_of(_B),
13 => prime(13),
14 => multiple_of(_D),
15 => multiple_of(_C),
16 => multiple_of(_A),
17 => prime(17),
18 => multiple_of(_B),
19 => prime(19))

*** Yes

12.9 Memoization

This example shows how asserta may be used to implement an efficient way of finding
the list of moves needed to solve the Hanoi towers problem. This example is adapted from
“The Art of Prolog” [19].

Research Report Draft March 1994

86 Hassan Aı̈t-Kaci et al.

hanoi(1,A,B,C,[[A,B]]).

hanoi(N:int,A,B,C,Moves:append(Moves1,[[A,B]|Moves2])) :-
N>1,
hanoi(N-1,A,C,B,Moves1),
hanoi(N-1,C,B,A,Moves2),
asserta(hanoi(N,A,B,C,Moves) :- !),
write("Solved problem for N = ",N),
nl.

The effect of using asserta is that solutions of intermediate problems are remembered.
This technique is often called “memoization”.

> hanoi(3,_,_,_,M)?
Solved problem for N = 2
Solved problem for N = 3

*** Yes
M = [[_A,_B],[_A,_C],[_B,_C],[_A,_B],[_C,_A],

[_C,_B],[_A,_B]].
--1> ;

*** No
> listing(hanoi)?

hanoi(3,_A,_B,_C,
[[_A,_B],[_A,_C],[_B,_C],[_A,_B],[_C,_A],
[_C,_B],[_A,_B]]) :-

!.
hanoi(2,_A,_B,_C,[[_A,_C],[_A,_B],[_C,_B]]) :-

!.
hanoi(1,_A,_B,@,[[_A,_B]]) :-

succeed.
hanoi(_A: int,_B,_C,_D,_E: append(_F,[[_B,_C]|_G])) :-

_A > 1,
hanoi(_A - 1,_B,_D,_C,_F),
hanoi(_A - 1,_D,_C,_B,_G),
asserta((hanoi(_A,_B,_C,_D,_E) :- !)),
write("Solved problem for N = ",_A),
nl.

*** Yes

Because hanoi is first called with “ ” (the most general sort) for the tower names, it stores
the most general solution for each value of N.

12.10 Method inheritance in the graphical interface toolkit

In the graphical interface toolkit supplied with Wild LIFE (see appendix H), implies is
used to perform “method inheritance”. Consider the following sort hierarchy:

March 1994 Digital PRL

Wild LIFE Handbook 87

f <| d.
f <| e.

d <| c.
e <| c.

c <| a.
b <| a.

and a predicate p which has one definition per sort:

p(X:a) :- pa(X). % pa is a method of sort a
p(X:b) :- pb(X). % pb is a method of sort b
p(X:c) :- pc(X). % pc is a method of sort c
...

With implies we can call all methods of p that are supersorts of the argument X. This is
done by means of the following predicate:

all_p(X) :-
(p(X),

fail
;
succeed

).

For any X, all p(X)will execute all the clauses of p defined for supersorts of X. For instance,
all p(X:e) will execute pa(X), pc(X), pe(X). In the terminology of the graphical
interface toolkit, imagine now that the sorts are look sorts, and p is a drawing routine, and you
see how looks are inherited. In the toolkit, the inheritance from boxes, looks, and constructors
(i.e., multiple inheritance) is handled using this technique.

12.11 Structural constraints and arithmetic constraints

Wild LIFE does not do any global constraint solving. It does purely local constraint solving.
In that sense, it is more like Prolog than like CLP(R). Calling a function adds a matching
(implication) constraint, and calling a predicate adds a unification (equality) constraint.

Arithmetic functions in Wild LIFE do local propagation. That is, they handle all cases where
the value of one or more arguments can be determined uniquely from the others. For example:

> 23=10+X?

*** Yes
X = 13.

Another example:

> A=A+C?

*** Yes
A = real, C = 0.

Research Report Draft March 1994

88 Hassan Aı̈t-Kaci et al.

This example residuates (i.e., suspends):

> A=A*B?

*** Yes
A = real˜, B = real˜.

(note the tildes) since there are two solutions: A=0 or B=1.
For real numbers CLP(R) does more: in addition to local propagation, it does global con-

straint solving with linear equalities and linear inequalities on real numbers (using incremental
Gaussian elimination and incremental Simplex, based on Fourier elimination). On the other
hand, Wild LIFE does local constraint solving on -terms, which are rooted graphs that live in a
hierarchy. So for example, Wild LIFE can check structural constraints like graph subsumption,
which CLP(R) cannot.

Example 12.1 This example illustrates the use of graph subsumption as a constraint.

> f(X:s(a=>t(b=>X))) -> true. % Define a function

*** Yes
> A=f(G)? % Check if graph G implies

% the cyclic graph X:s(a=>t(b=>X))
*** Yes
A = @, G = @˜.
--1> G=s(a=>t(b=>X))? % Make G an acyclic graph

% It doesn’t fire yet!
*** Yes
A = @, G = s(a => t(b => X))˜, X= @˜.

----2> G=X? % Adding the cycle fires the function
% (The function result is A = true)

*** Yes
A = true, G = s(a => t(b => G)), X = G.

13 Fine points for would-be wizards

13.1 Functional variables and apply

When a functional expression F(A) is evaluated whose function symbol is a variable F,
it looks as if the expression’s root sort is a variable and applied to the arguments. In fact,
this is not what happens in Wild LIFE. The syntax F(a,b,c) is simply syntactic sugar for
apply(functor => F,1 => a,2 => b,3 => c). It is converted into this internal
form by the parser. If the feature functor occurs in F it is ignored. The function apply
is transparent to the user. But you should virtually never need to resort to using it explicitly.
Only in rare cases is it unavoidable to use it, as shown in the following example.

March 1994 Digital PRL

Wild LIFE Handbook 89

Example 13.1 Let us define a function mapkey that is similar to map except that it does not
apply the mapped function on its first argument but on a specified position label. As Wild LIFE
stands now, there is no way to do this without explicitly using apply as follows.

mapkey(A,F,[]) -> [].
mapkey(A,F,[H|T]) ->

[FAH:apply(functor => F)|mapkey(A,F,T)]
| H = FAH.A.

We can use this to compute the values of an integer (say, 10) in cyclic groups ZZ=pZZ where the
values of p are given in a list:

> L=mapkey(2,mod(10),[1,2,3,4,5,6,7,8,9])?

*** Yes
L = [0,0,1,2,0,4,3,2,1].

13.2 Query levels

The observant user will notice that the query level (shown by the prompt) is not always
systematically incremented after every query extension. In fact, the specific rule for increasing
the query level is the following: if the query extension (1) contains at least one variable or
creates a choice-point or creates an X window, and (2) succeeds, then the level is increased.
Otherwise, the level stays the same (viz., if the query extension fails, or contains no variable
and succeeds with no choice-point). Each time interaction goes back to a previous query level,
the variable bindings corresponding to that level are displayed.

Example 13.2 This example illustrates the fine points of query level incrementing.

> X=a?

*** Yes
X = a.

The query level is incremented because X appears in the query.

--1> a=a?

*** Yes
X = a.

Despite success, the query level is unchanged because no variable appears in the query and no
choice point is created.

--1> a=a ; b=b?

*** Yes
X = a.

Research Report Draft March 1994

90 Hassan Aı̈t-Kaci et al.

The query level is incremented because a choice-point was created proving this query extension.

----2> ;

*** Yes
X = a.

The level goes back to 1 because the second disjunct b=b succeeds without containing a
variable nor creating a choice-point.

--1> a=a ; b=b ; c=c?

*** Yes
X = a.

The query level is incremented because a choice-point was created proving this query extension.

----2> ;

*** Yes
X = a.

Level stays at 2 because the second disjunct b=b;c=c succeeds but creates a choice-point.
Finally, we type . to pop to top level.

----2> .
>

13.3 Predicate and function positions

Wild LIFE makes a syntactic distinction between a predicate position and a function position.
A predicate position is any place in a program where the interpreter expects to find a predicate.
This includes at the query prompt, in a clause body, and certain arguments of the built-ins
call once, | (such-that), and cond. Similarly, a function position is where the interpreter
expects to find a function. This includes all arguments of predicates and functions and all
function bodies.

In the simplest case, predicates are used only in predicate positions and functions are used
only in function positions.

In general, a predicate position may contain any term that will eventually be bound to a
predicate or to one of the sorts true or false. When the term is bound to a predicate, then
that predicate is executed. When the term is bound to true then execution succeeds. When
the term is bound to false then execution fails. If the term is incompatible with these three
possibilities, then an error is reported. If the term is compatible with these three possibilities,
but it is not yet known which holds, then the predicate position residuates. It follows that
predicate execution is order-independent: the same result is obtained for a pure program that
terminates no matter in what order the predicates in its predicate positions become known.

March 1994 Digital PRL

Wild LIFE Handbook 91

Example 13.3 This example illustrates that the same result is obtained no matter when the
predicate is known in a predicate position.

> p(a). % Define a single fact

> Q=p(X),Q? % The predicate is known immediately

*** Yes
Q = p(X), X = a.
--1>

*** No
> Q,Q=p(X)? % The predicate is known with a delay

*** Yes
Q = p(X), X = a.
--1>

In general, a function position may contain any term. If the term is a function, then the term
is evaluated. If the term is a predicate, then the term is considered as a sort with only parent
@ and only child fg. If the term is a -term, then it is left unchanged. The arguments of a
term are considered to be function positions, and hence are evaluated if they themselves are
functions.

A predicate position may contain a predicate itself, a function that eventually returns a
predicate, or a term that is eventually bound to a predicate. The predicate position does not
have to be bound immediately.

Example 13.4 This examples illustrates a function in a predicate position.

> f(A:int) -> write(A). % Wait until A is an integer

> f(23)? % Write 23
23
*** Yes
> X,X=f(Y),Y=23? % Write 23
23
*** Yes
X = write(Y), Y = 23.

The order of predicate evaluation, function evaluation, and unification makes no difference; in
a pure program that terminates the result is always the same.

A function in a function position is always evaluated unless the function position is non-strict,
in which case the function is returned unchanged. A predicate or function can be declared to
have non-strict arguments through the non strict declaration.

Research Report Draft March 1994

92 Hassan Aı̈t-Kaci et al.

13.4 Compact sort definitions

A complete facility for sort declarations must allow any combination of:� Attaching attributes to a sort. This is declared with the operator ::.� Declaring single or multiple inheritance relationships from supersorts. This is declared
with the operator <|. Multiple inheritance from several supersorts is specified by using
more than one declaration or by writing the supersorts as a disjunction.� Attaching a constraint to a sort. This is declared with the such-that operator |.

The above comprise the base primitives that allow all sort declarations possible in Wild LIFE.
A sort that is declared with one of these primitives is called a declared sort. In this section
we introduce the built-in := that often permits declarations with a suggestive relationship
to mathematical notation. This built-in provides no additional expressive power. It is pure
syntactic sugar.

Table 2 summarizes all the possible combinations of sort declarations allowed in Wild LIFE.
Notation: t, u, v, w denote sort symbols; (attr) following a sort denotes either a non
empty attribute list or nothing (i.e., not () but simply absence of an attribute list altogether);
const represents a constraint of the same form as is allowed in the body of a definite clause.

The declaration marked (8) is syntactic sugar for:

:: t(attr) | const.
t <| u.
t <| v.
t <| w.

The declaration marked (10) is syntactic sugar for:

:: u(attr1) | const.
:: v(attr2) | const.
:: w(attr3) | const.
u <| t.
v <| t.
w <| t.ggs s Please note the asymmetry of behavior of :=. On one hand, t := u. declares t as a

subsort of u; but on the other hand, t := fu;v;wg. declares t as a supersort of u, v, and
w. An annoying consequence of this is that t := fug. is equivalent to u <| t., whereas
t := u. is equivalent to t <| u.. Similarly, while t := u. means the same as t <|
u., it is not the case that t := fu;v;wg. means t <| fu;v;wg., but instead means u
<| t. v <| t. w <| t.. We are aware that these anomalies may not be palatable to
all (not even to some of us!). However, one can systematically use the consistently behaving
<| and avoid ever using :=. Nevertheless, := still offers a conveniently simple shorthand to
define such sorts such as:

tree := { leaf ; node(left => tree, right => tree) }.

which declares that a tree is a leaf or a node whose left is a tree, and whose right is a tree. Some
may indeed argue that this looks like a more direct and natural translation than writing:

March 1994 Digital PRL

Wild LIFE Handbook 93

(1) :: t(attr).
(2) :: t(attr) | const.

(3) t(attr) <| u.
(4) t(attr) <| u | const.

(5) t := u(attr).
(6) t := u(attr) | const.

(7) t(attr) <| {u;v;w}.
(8) t(attr) <| {u;v;w} | const.

(9) t := {u(attr1);v(attr2);w(attr3)}.
(10) t := {u(attr1);v(attr2);w(attr3)} | const.

(1) [attributes]
(2) [attributes,] constraint

(3) [attributes,] inheritance
(4) [attributes,] inheritance, constraint

(5) same meaning as (3)
(6) same meaning as (4)

(7) [attributes,] multiple inheritance
(8) [attributes,] multiple inheritance , constraint

(9) [attributes,] multiple inheritance
(10) [attributes,] multiple inheritance , constraint

Table 2: Possible sort declarations

Research Report Draft March 1994

94 Hassan Aı̈t-Kaci et al.

leaf <| tree.
node <| tree.
:: node(left => tree, right => tree).

or even the equivalent shorter form:

leaf <| tree.
node(left => tree, right => tree) <| tree.

Be that as it may, we leave it to your taste to choose what fits you best.

13.5 Sort encoding

Wild LIFE uses a special binary encoding of the declared sorts so that a glb can be quickly and
efficiently calculated even if the hierarchy contains a very large number of sort definitions [1].
Each declared sort is assigned one bit vector with a value that reflects its place in the hierarchy.
The value of the bit vectors is irrelevant to the programmer, but for the curious, the query
print_codes? will show them.22 The upshot of this is that there is an encoding phase
which can be likened to compilation. This is invisible to the user.

A constant without any definitions (i.e., an uninterpreted identifier) is considered to be alone
in its class, i.e., it can only be unified with @ or itself. It is not encoded.

13.6 Printing convention

Wild LIFE uses a systematic convention for printing the arguments in the body of a term.
First the arguments of numeric positions are printed using the natural number ordering, then the
arguments corresponding to word attributes using the lexicographic ordering on the attribute
labels. All symbolic attribute labels are printed explicitly. A numeric position is printed only
if necessary. Namely, position 1 is never printed explicitly; and any other position is printed
explicitly only if a lower position is missing.

Example 13.5

> X=f(2=>t2,a=>ta,t1,@,4=>t4,b=>tb,ab=>tab)?

*** Yes
X = f(t1,t2,4 => t4,a => ta,ab => tab,b => tb).

Other important points if you are interested in parsing input are that:� parentheses are removed from expressions wherever they are unnecessary,� a op bwhere op is an infix operator is syntactic sugar for op(1 => a, 2 => b),� op a where op is a prefix operator is syntactic sugar for op(1 => a),

22For example, execute the query import("x"),print codes?.

March 1994 Digital PRL

Wild LIFE Handbook 95� likewise a op where op is a postfix operator is syntactic sugar for op(1 => a).

Infix notation is respected by the printer if the term has exactly two subterms. Otherwise,
prefix notation is used. Prefix notation can always be used, even for infix or postfix sort
symbols.

14 Hints to write more efficient programs

14.1 Garbage collection

Garbage collection is expensive. The best way to write a program is certainly to avoid using
it, which means that memory should be recovered automatically when possible.

Using backtracking enables the program to recover memory space without garbage collec-
tion, simply because nearly all the space used between the creation of the choice-point and the
failure that causes the backtrack is recovered.

Consider the following example:

foo(0) :- !.
foo(X) :-

X > 0,
foo(R:(X-1)), foo(R), foo(R), foo(R).

foo(N)? % Computes foo(0) 4ˆN times

During the query foo(7)? Wild LIFE will garbage collect several times before succeeding.
A way to avoid garbage collection is to force backtracking:

foo2(0) :- !.
foo2(X) :-

X > 0,
(foo2(R:(X-1)), foo2(R), foo2(R), foo2(R), fail
; succeed
).

The modified predicate foo2(7) does not need garbage collection and runs 30% faster.
This technique may be used if there is no need to keep track of what has been done between the
creation of a choice point and the failure. Nonbacktrackable assignment to persistent variables
can be used to keep information while backtracking. For example, we could compute 4N with
the following program:

persistent(result)?

foo3(0) :- result<<-result+1.
foo3(X) :-

X > 0,
(foo3(R:(X-1)), foo3(R), foo3(R), foo3(R), fail
; succeed
).

power3(N) :- result<<-0, foo3(N), X=result, write(X).

Research Report Draft March 1994

96 Hassan Aı̈t-Kaci et al.

Calling power3(8) writes 65536. The remaining garbage collections can be avoided if
<<- is used less often. The following program uses <<- four times less often than the previous
one, and runs about 45% faster:

persistent(result)?

foo4(0,Counter,X,X+1) :- !.
foo4(N,0,_,Y) :- !,

N > 0,
(foo4(R:(N-1),3,result,X1),
foo4(R,3,X1,X2),
foo4(R,3,X2,X3),
foo4(R,3,X3,X4),
result<<-X4,
fail

; Y=result
).

foo4(N,P,X,Y) :-
N > 0,
foo4(R:(N-1),C:(P-1),X,X1),
foo4(R,C,X1,X2),
foo4(R,C,X2,X3),
foo4(R,C,X3,Y).

power4(N) :- result<<-0, foo4(N,_,0,X), write(X).

This technique can always be used when the program’s result is given through nonbacktrackable
operations (such as writing, drawing, or asserting).

14.2 Residuation

Residuation is a very useful tool to write efficient programs when a kind of coroutining
behavior is expected. In many “generate and test” programs (such as eight queens), residuation
enables the programmer to put the test predicates before the generation predicates: this means
that all constraints are set before any generation is done, and thus the satisfaction of the
constraints is checked at every generation step. This greatly decreases the complexity of the
program.

Residuation can be used to mimic the behavior of delaying primitives such as when or wait
declarations and freeze. Here again, residuation is used to increase efficiency or to avoid the
non-termination of programs.

Nevertheless, residuation should be avoided when possible, since it is a complex and ex-
pensive operation. In many cases, the programmer knows quite accurately how the variables
in a rule are instantiated, and can rewrite these so as to avoid as many useless residuations as
possible. For example:

z(V1+V2*2ˆ(-L)) :- r(V1),p(V2,L)?

should be rewritten:

z(V) :- r(V1), p(V2,L), V = V1+V2*2ˆ(-L).

March 1994 Digital PRL

Wild LIFE Handbook 97

if you know that the values of V1, V2 and L are computed by r and p.

14.3 Partial evaluation

In programs where functions are used to denote constants, it is sometimes possible to do a
bit of partial evaluation, to avoid computing these constants at runtime. For example:

charHeightLogo -> 60.
y0 -> 0.
cellHeight -> 20.
yLogo -> y0+charHeightLogo.
yTitle -> yLogo+2*cellHeight
unit -> 10.
scale(X) -> X*unit.
side -> scale(50).

should be rewritten:

setConst(X,Y) :- assert(X->Y).

charHeightLogo -> 60.
y0 -> 0.
cellHeight -> 20.
setConst(yLogo, y0+charHeightLogo)?
setConst(yTitle, yLogo+2*cellHeight)?
unit -> 10.
scale(X) -> X*unit.
setConst(side, scale(50))?

In this way, the values of yLogo, yTitle, and side are computed at load time, and will
not have to be recomputed at runtime. This technique can of course not be used with dynamic
“constants,” but may be really useful if the evaluated constants are used often.

15 Compatibility with Prolog

It is but a small step for a Prolog programmer to start programming in LIFE. If he stays in
the Prolog-like subset of LIFE, then he can start immediately. The following is a complete list
of the differences that can cause problems porting Prolog programs to LIFE.� Ψ-terms have no arity. They can have an arbitrary number of arguments and arguments

may be added at will at run-time. Therefore arity can not be used to distinguish predicates.
In Prolog, a functor is a pair F/N, where F is the functor name and N is the arity. In
Prolog, two functors are unifiable if and only if they have both the same name and the
same arity. Many Prolog programmers take advantage of this and use the same symbol
with different arities to name distinct predicates. Clearly, this practice is no longer valid
in Wild LIFE.23 Indeed, two -terms with the same principal sort symbol but different
numbers of arguments, or with different subterm attributes altogether, can very well

23This is not a very serious limitation of compatibility as this practice is generally considered a bad one by serious
Prolog programmers, and Prolog programs can usually be rewritten in a straightforward way to avoid it.

Research Report Draft March 1994

98 Hassan Aı̈t-Kaci et al.

unify. In fact, they may unify even with distinct root sorts, as long as these have a
non-bottom glb, and a -term may acquire new attributes as a problem is solved (i.e., as
more information is learned about the object).

Example 15.1 Consider the following predicate definition:

pred(A,B,C) :- write(A), write(B), write(C).

This is how Prolog and Wild LIFE behave when confronted with the same queries: In
SICStus Prolog:

?- pred(1,2,3).
123
?- pred(A,B,C).
_26_60_94
?- pred(A,B,C,D).
WARNING: predicate ’pred/4’ undefined.
?- pred(A,B).
WARNING: predicate ’pred/2’ undefined.

In Wild LIFE:

> pred(1,2,3)?
123
*** Yes
> pred(A,B,C)?
@@@
*** Yes
A = @, B = @, C = @.
--1> .
> pred(A,B,C,D)?
@@@
*** Yes
A = @, B = @, C = @, D = @.
--1> .
> pred(A,B)?
@@@
*** Yes
A = @, B = @.
--1> .
> pred?
@@@
*** Yes

March 1994 Digital PRL

Wild LIFE Handbook 99� Terms may be cyclic. LIFE’s -terms may be cyclic (they are rational trees). They
are unified correctly, matched correctly, read correctly, written correctly, and asserted
correctly. Terms are read and written as linear text using the operator “:” to represent
sharing and cycles.� The interactive user interface is different. Additions to the rule-base are terminated with
“.” and queries are terminated with “?”. There is no dummy user file. Queries may
be extended incrementally. See Section 3.2 (page 3) for an example.� Symbols that represent functions behave differently from Prolog. For example, A=(+)
in Prolog will bind A to the atom ’+’. In Wild LIFE it will create the curried function
’+’. To use ’+’ as an uninterpreted symbol in Wild LIFE it must be quoted, e.g., as
A=‘(+) (with backquote). When manipulating arbitrary sequences of characters, for
example, textual output, one should use a string instead of a single-quoted symbol. For
example, call write("+") to write the character +.� Strings are represented differently. In Prolog, a string is a short-hand for a list of integer
ASCII codes. In Wild LIFE, a string is sort in its own right. All strings are subsorts of
the built-in sort string. This allows a representation for strings in Wild LIFE that uses
much less space.� Some built-ins are different. See the chapters on built-in predicates and functions for a
full list of Wild LIFE’s built-ins. Here is a short list of the important differences.� functor/3 and arg/3 do not exist. The latter is replaced by “.”, which is

called “project”. For more information see Section 8.2 (page 38).� is/2 does not exist because it has become superfluous. The LIFE query A=B+4
is more flexible than the Prolog version A is B+4. The LIFE version works with
any instantiation pattern of its arguments.� Prolog uses true/0 and fail/0 to represent success and failure. Wild LIFE
makes a more consistent choice by using succeed and fail for success and
failure, and reserving true and false for the boolean sorts returned as values of
boolean functions.� The standard order comparisons ==/2, \==/2, @</2, @=</2, @>/2 and @>=/2
do not exist. These are made obsolete by -terms.� The “univ” built-in =../2 does not exist. It is made obsolete by -terms.� bagof in Wild LIFE does no existential quantification and setof is not imple-
mented. See Section 8.1 (page 36).� write/1 and writeq/1 may have any number of arguments in Wild LIFE.� Lists are represented with the sort cons instead of the dot functor ./2. The dot is a

built-in function used for field selection. For example, A.foo accesses the field foo of
the term A.� There is no if-then-else operator ->/2. It is replaced by the cond function. See Section
8.1 (page 34). The symbol -> is used to define function rules.

Research Report Draft March 1994

100 Hassan Aı̈t-Kaci et al.� Operator declarations are kept as compatible as possible with the ISO standard for Prolog
(see appendix B, page 102). The following differences exist. The operator precedence
for -> is 1200 (instead of 1050) since it is used to declare function rules. The operator
precedence for arithmetic comparisons is 600 (instead of 700) since comparisons occur
in expressions. No operator declarations are given for is, \=, =.., **, ?-, rem and
the standard order comparisons (==, \==, @<, @=<, @> and @>=).� Disjunctions are the same as in Prolog. In addition to these, there is also a kind of
disjunction, the type disjunction, which returns a value. Type disjunctions may be used
inside terms. They allow compacter code. They are written with braces f and g instead
of parentheses. For example, the following two queries are equivalent:

> (A=[1|_]; A=[2|_]; A=[3|_]; A=[4|_]; A=[5|_])?

> A=[{1;2;3;4;5}|_]?� Negation-as-failure does not work exactly as you might expect if functions are involved.
See Section 5.3.3 (page 16).� DCG expansion in Wild LIFE adds arguments with labels in dcg and out dcg. See
appendix F (page 109).

16 Conclusion: the experience of Wild LIFE

We hope that this short handbook will incite readers to program in LIFE. The interpreter we
describe, Wild LIFE version 1.0, has been stable for almost a year in its present state. It has
been used and tested extensively, and we are confident of its robustness and usefulness. It has
most of the functionality of the complete language.

Getting to grips with LIFE is not hard if you are familiar with Prolog. For Prolog program-
mers, the extra power of -terms, sorts and functions is a welcome addition that often makes
programs more readable, more concise and more efficient.

We are using the Wild LIFE interpreter as a foundation to build a compiled system. The
emphasis in the compiler is twofold: efficiency and scalability. We are building a streamlined
and powerful system that will make LIFE into a language that is every bit as fast and usable
as the best existing implementations of Prolog [12]. To help us in this endeavor, please send
us your comments and your Wild LIFE programs, so we can use them as fuel for the compiler
design.

March 1994 Digital PRL

Wild LIFE Handbook 101

A LIFE versus Prolog

It is our experience that once you have used LIFE you will not feel like ever using Prolog
again. The reason is simple: LIFE provides clean and elegant solutions to a number of Prolog’s
most glaring deficiencies. Here is a list:

1. Functions, including correct arithmetic

2. Object-orientation

3. C-like records

4. Expandable data-structures: arrays and hash-tables

5. Types and multiple inheritance

6. Correct manipulation of cyclic structures

7. Coroutining and constraints

8. Global variables

9. Clean destructive assignment

10. Persistent data structures

Semantically, most of the above features are consequences of the two ways in which LIFE
extends Prolog:� Herbrand terms are replaced by -terms.� Call-by-matching is added (Prolog only has call-by-unification).

Most Prolog programs can be easily converted to run under LIFE. Section 15 (page 97) lists
the differences between Prolog and LIFE.

Research Report Draft March 1994

102 Hassan Aı̈t-Kaci et al.

B Predefined operators

This section lists all the predefined operator declarations in Wild LIFE 1.0. As far as possible,
the declarations have been kept compatible with the ISO Prolog standard, which is substantially
embodied in most current Edinburgh-style Prolog systems.

Precedence Kind Operators
1200 xfx <| :- -> :=
1200 fx ::
1150 xfx |
1100 xfy ;
1000 xfy ,

900 fy \+
700 xfx = <- <<-
675 yfx xor or
650 yfx and
625 fy not
600 xfx < =< > >= =:= =\= === \=== $< $=< $> $>= $==

$\== :< :=< :> :>= :== :>< :\< :\=< :\> :\>=
:\== :\><

500 yfx + - \/ /\
400 yfx mod * / // << >>
200 xfy ˆ
200 fy - \
150 yfx .
100 xfy &
75 fy ‘ (backquote)
50 xfy :

March 1994 Digital PRL

Wild LIFE Handbook 103

C Glossary� Attribute An attribute is a pair consisting of a label (or field name or feature) and an
associated -term. See Section 4.2 (page 11).� Bottom The sort that denotes the empty set. The occurrence of bottom in a calculation
causes an immediate failure and backtracking to the most recent choice point. It is
written as fg.� Class See declared sort.� Constrained sort A declared sort that has a routine attached to it. This routine behaves
as a daemon or dynamic constraint. See Section 7.1.2 (page 30).� Constraint A constraint is a relation between variables. For example, A=B+4 is a nu-
meric constraint between A and B, and A=person(age=>B) is a structural constraint
between A and B. The semantics of LIFE can be explained simply in terms of primitive
constraints [6].� Declaration See definition.� Declared sort A sort that has been defined in a :: or <| declaration. This declaration
corresponds to a class definition in an object-oriented language. Declared sorts have data
and/or routines attached to them and they are part of a hierarchy.� Definition An assertion that is added to the program. It is terminated with a period “.”.
Also known as a declaration. Assertions are predicate clauses, function rules, or sort
declarations.� Directive A query that occurs in a file.� Dynamic routine A routine that may be modified during program execution. The use
of dynamic routines should be extremely rare. In most cases, persistent terms should
be used instead. For more information on persistent terms see Section 9 (page 60). For
more information on dynamic routines see Section 11 (page 71).� Feature A feature is the field name of an attribute. For example, in the -term
person(age=>25), age is a feature. See Section 4.2 (page 11).� Function A routine that is called by matching and that returns a value. Functions do
not guess their answer; they wait until their arguments are sufficiently instantiated to
execute. See also matching and Section 6 (page 17).� Hierarchy See inheritance hierarchy.� Identifier An identifier is any integer or floating point number or character sequence.
The character sequence must be surrounded by single quotes if it does not start with
a lower-case letter or if it contains non-alphanumeric characters other than underscore.
The character sequence may be surrounded by double quotes. A quote character inside
a quoted sequence is represented by two quotes. An identifier is either a declared
sort, a function, a predicate, or an uninterpreted identifier. The first definition of an
uninterpreted identifier as function, declared sort, or predicate, means that identifier will
always be in that category.� Inheritance hierarchy The partially ordered set of all sorts. It corresponds to the
inheritance hierarchy in an object-oriented language. It has a top element (which
represents the set of all possible objects) and a bottom element (which represents the

Research Report Draft March 1994

104 Hassan Aı̈t-Kaci et al.

empty set).� Label See feature.� LIFE (Logic, Inheritance, Functions, Equations) A programming language that uses -terms as its basic data structure and unification and matching as its basic operations.� Matching Checking whether one object implies the other. For example,
woman(age=>25) implies woman, so the match succeeds. Matching corresponds
to logical implication. See Section 6.2 (page 19).� Predicate A routine that is called by unification and does not return a value. Predicates
may guess an answer; if this answer is incorrect later on, control flow will return to the
predicate (by backtracking) and it may produce other answers. See Section 5 (page 14).� Ψ-term The basic data structure of LIFE. Ψ-terms are generalized Prolog terms. They are
extensible records that are part of a hierarchy. They have a root sort (which corresponds
to the type of the record) and attributes (fields with values which themselves are -
terms). Fields may be added at will and the record’s root sort may be refined at will. See
Section 4 (page 7).� Query A question that is asked of the system. It ends with a question mark “?”. Unless
a routine with side effects is called, this does not modify the program.� Residuation What happens with a function call when there is not enough information in
the arguments to fire the function nor to fail. The function suspends, or residuates, until
there is enough information to decide one way or the other.� Root sort The principal sort of a -term. For example, the root sort of
woman(age=>25) is woman. It corresponds to the main functor in Prolog.� Routine A function or a predicate.� Sort An identifier that represents a set of objects. A sort corresponds intuitively to a
type or class. Sorts may be refined, for example real may be refined to int. See also
declared sort, undeclared sort and Sections 4.1 (page 8) and 7 (page 29).� Static routine A routine that cannot be modified during program execution. Attempting
to do so results in an error. See Section 11 (page 71).� Symbol See identifier.� Top The sort that denotes the set of all records. It corresponds to an unbound variable
in Prolog. It is written as @.� Type See sort.� Undeclared sort An identifier that is an uninterpreted identifier, a predicate, or a
quoted function. It is treated as a sort whose only parent is top and whose only child is
bottom (see also inheritance hierarchy).� Unification Making two objects equal by restricting the values of each. For example, the
unification of person(age=>25) and woman is woman(age=>25). Unification
corresponds to logical equality. See Section 4.4 (page 12).� Uninterpreted identifier An identifier that is not a function, predicate, or declared
sort. It is treated as a sort whose only parent is top and whose only child is bottom (see
also inheritance hierarchy).

March 1994 Digital PRL

Wild LIFE Handbook 105

D Practical information about Wild LIFE 1.0

The system is available by anonymous ftp from gatekeeper.dec.com. After logging in, enter
the command cd pub/plan, and then the command bin to enable binary transfer mode.
Then enter the command get Life1.0.tar.Z to get the system. Uncompress and untar
this file to obtain the Life1.0 directory. See the README file for further instructions.

The Wild LIFE 1.0 system release contains the following.� The license agreement.� The C and LIFE source code of Wild LIFE 1.0.� Documentation. This includes this handbook, a manpage, and documentation files for
the tools and example programs. It also includes a list of known bugs and information
about porting Wild LIFE 1.0 to various platforms.� A set of tools written in LIFE. This includes the X interface, the graphical interface
toolkit, the accumulator preprocessor, a debugger, a profiler, an extended user interface
shell, and a LIFE tokenizer and parser.� A set of libraries written in LIFE. This provides collections of useful routines that are
organized in modules to be imported when needed.� A set of example programs written in LIFE. This includes SuperLint, a lint-like checker
for C with user-customizable checking rules, a flower drawing program with an extensive
X interface, an incremental Gaussian equation solver, a program to graphically display -terms, and a simulator of the PRL snack machine. It also includes various smaller
programs (queens, boxes, PERT scheduler, Hamming problem, magic squares, natural
language parsing, etc.), some of which use the X interface.� A test suite. This is a set of more than three hundred programs containing more than 30000
lines of LIFE code. These programs contain exhaustive tests of the capabilities of Wild
LIFE along with code fragments from real programs. The programs are accompanied
with their inputs and correct outputs and two scripts, check and check_all, which
can be used to test the correctness of the implementation.

The following email addresses are relevant to the LIFE language and the Wild LIFE system:� life-users@prl.dec.com. This is a mailing list of people using LIFE or interested
in specific aspects of LIFE, whether theory, implementation, or applications. It is meant
as a public forum to answer questions and share programs and ideas. It is not meant to
report bugs, although it may be used to ask public opinions about surprising behavior of
Wild LIFE that may turn out to be a bug and to warn others against confirmed bugs.� life-request@prl.dec.com or life-users-request@prl.dec.com.
These addresses are used to request to be put on, or removed from, the life-users mailing
list.� life-bugs@prl.dec.com. When you strongly suspect a bug (i.e., after reading the
handbook and polling life-users’s opinion about the symptoms), try to find the smallest
self-contained program that illustrates the bug and mail it to this address together with a
script that shows the bug.

Research Report Draft March 1994

106 Hassan Aı̈t-Kaci et al.

E Manpage

wild_life(1)
NAME

wild_life - interpreter for the LIFE language

SYNTAX
wild_life [options] [arguments]

DESCRIPTION
LIFE (Logic, Inheritance, Functions, Equations) is an experimental
programming language with a powerful facility for structured type
inheritance. LIFE reconciles styles from Functional Programming
and Logic Programming by implicitly delegating control to an
automatic suspension mechanism. This allows interleaving
interpretation of relational and functional expressions which
specify structural dependencies on objects.

The Wild_Life interpreter is a fully functional implementation of
the LIFE language. It has a comfortable user interface with
incremental query extension ability. It contains an extensive set
of built-in operations as well as an X Windows interface.

The Wild_Life interpreter is especially suited for rapid prototyping
of applications dealing with complex data. It contains a tool for
rapid building of interactive window-based interfaces and a powerful
preprocessor. The Wild_Life interpreter was originally developed as
part of the Paradise project at the DEC Paris Research Laboratory.
Its development is continuing in the Proteus project.

OPTIONS

-q Quiet mode. Forces completely silent operation, i.e., no user
interface information (prompts, variable values, Yes/No
messages, startup banner, exit banner) will be printed. This
allows Wild_Life to be used as an element of a Unix pipe with
minimal hassle. Errors, warnings, trace messages, program
output (with the write statement etc.), and file I/O are still
output. As always, errors and warnings are output to stderr,
trace information to stdout. In ’verbose’ mode the quiet mode
is disabled, which allows the user to inspect a misbehaving
Wild_Life when it is being used as a pipe element.

-memoryN
-memory=N

Start up the system with N words of available memory. This
memory is shared between data and programs. Virtual memory
usage is close to 2*N because of the half-space garbage

March 1994 Digital PRL

Wild LIFE Handbook 107

collection algorithm used. The default value of N is 2000000.

arguments
All command line arguments are available to the LIFE program.
The function argv returns a list of strings, where each string
is one command line argument. For example, if the system is
started with "wild_life -q foo" then argv returns the list
["wild_life", "-q", "foo"].

FILES
Life1.0/Doc (documentation)
Life1.0/Examples (example programs)
Life1.0/Lib (libraries)
Life1.0/Tools (programming tools)
Life1.0/CLife (wild_life as C library)
Life1.0/Tests (test suite)
Life1.0/Source (source code)

EXAMPLES
The directory Life1.0/Examples contains a set of example programs.
Each of these programs is in its own module and can be loaded
directly into the interpreter with the ’import’ command.

The following example shows how to run a program that solves the
SEND+MORE=MONEY puzzle:

% wild_life
Wild_Life Interpreter Version 1.0
Copyright (C) 1991-93 DEC Paris Research Laboratory
No customizing file loaded.
> import("solve")?
*** File "/udir/rmeyer/LIFE/PUBLIC/Examples/solve.lf" loaded

*** Yes
> solve?

SEND 9567
+MORE +1085
----- -----
MONEY 10652

*** No
> listing(solve#solve)? % In module "solve", list predicate ’solve’.

solve :-
_A = 1,
_B + _C + _A = _D + 10 * _A,
_E + _F + _D = _G + 10 * _B,
_H + _G + _I = _F + 10 * _E,
_J + _F = _K + 10 * _H,

Research Report Draft March 1994

108 Hassan Aı̈t-Kaci et al.

diff_list([_C,_F,_G,_J,_A,_D,_I,_K]),
_H = carry,
_E = carry,
_B = carry,
_C = decimal,
_F = decimal,
_G = decimal,
_J = decimal,
_D = decimal,
_I = decimal,
_K = decimal,
nl,
write(" SEND ",_C,_F,_G,_J),
nl,
write("+MORE +",_A,_D,_I,_F),
nl,
write("----- -----"),
nl,
write("MONEY ",_A,_D,_G,_F,_K),
nl,
nl,
fail.

*** Yes
> halt?

*** Exiting Wild_Life [1.850s cpu, 0.000s gc (0.0%)]
%

BUGS
See the installation’s README file for a list of known bugs.

CURRENT OWNERS
rmeyer@prl.dec.com (Richard Meyer)
vanroy@prl.dec.com (Peter Van Roy)

AUTHORS OF OBJECT
Richard Meyer
Peter Van Roy
Bruno Dumant (grammar preprocessor, graphical interface toolkit)
Jean-Claude Herve (X Windows interface)
Hassan Ait-Kaci, Seth Copen Goldstein, Abder Aggoun (contributions)

AUTHORS OF DOCUMENTATION
Hassan Ait-Kaci
Bruno Dumant
Richard Meyer
Andreas Podelski
Peter Van Roy

March 1994 Digital PRL

Wild LIFE Handbook 109

F The accumulator preprocessor

The accumulator preprocessor is a powerful tool to simplify the development of large pro-
grams. The preprocessor does a source-to-source transformation that adds accumulators to
predicates. An accumulator provides a means of calculating a value incrementally. For exam-
ple, the incremental calculation could be the building of a list. Implementing an accumulator
consists in adding two arguments to each predicate and chaining the arguments between goals
inside each clause. This passes the intermediate values around during the calculation. The
preprocessor can also expand single arguments (called “passed arguments” below) which is
useful to pass global information to procedures.

To speed up Wild LIFE’s start up time, the preprocessor is not loaded by default. Any
program using it must first import (i.e., load and open) the preprocessor module with the
command import("accumulators").

Example F.1 This example shows how to use the accumulator preprocessor to write a program
main(N,L) that takes an input N and generates a list L of integers from 1 to N. The
accumulator myacc is used to accumulate the elements of the list. This example is shown here
in its entirety to show how to use the preprocessor and to give a flavor of its the abilities.

> import("accumulators")?
*** Loading File "Tools/accumulators.lf"
*** Loading File "Tools/std_expander.lf"
*** Loading File "Tools/acc_declarations.lf"

> acc_info(myacc,X,In,Out,acc_pred=>(Out=[X|In]))?
> pred_info(loop,myacc)?

> loop(0) :-- !?
> loop(N) :-- N+myacc, loop(N-1)?
> main(N,L) :-- loop(N) with myacc([],L)?

> listing(loop,main)?

loop(0, in_myacc=>A, out_myacc=>A) :- !, succeed.
loop(A, in_myacc=>B, out_myacc=>C) :- D=[A|B],

loop(A-1, in_myacc=>D, out_myacc=>C).

main(A,B) :- loop(A, in_myacc=>[], out_myacc=>B).

> main(10,L)?

*** Yes
L = [1,2,3,4,5,6,7,8,9,10].

The declaration acc info declares the accumulator myacc. The declaration pred info
declares that predicate loop uses myacc. The predicates loop and main are defined using

Research Report Draft March 1994

110 Hassan Aı̈t-Kaci et al.

queries with root :-- (i.e., terminated with ?) instead of definitions with root :-. The listing
of loop and main shows how the accumulator myacc is added. Complete explanations of
all these items are given below.

The accumulator preprocessor does a generalization of the DCG (Definite Clause Grammar)
expansion of Prolog. Definite Clause Grammars (DCGs) are the standard example of a
preprocessor for a single accumulator, which is in this case a difference list. This is a standard
technique, described in Prolog textbooks, for example in Sterling and Shapiro’s Art of Prolog
[19]. The Wild LIFE preprocessor replaces Prolog terms by -terms.

The generalized technique, called EDCG (Extended Definite Clause Grammar), was devel-
oped and implemented for the Aquarius compiler [16, 17]. It has proven extremely useful
in the development of large Prolog programs. It has been used by the authors and others to
develop various compilers, simulators, analyzers and test generators.

The Wild LIFE preprocessor jointly developed by Dumant and Van Roy provides much extra
functionality over the EDCG preprocessor. It is being used in the development of the LIFE
compiler.

F.1 Accumulators

F.1.1 Basic examples and syntax

The rules to be expanded are written:

Head :-- Body?

Head is like any clause head; Body is like any predicate definition body except that some
special symbols may appear in predicate places (see below: accumulation and other features).

The predicates occurring in the rule are expanded according to the pred info declarations
attached to them, that tell the preprocessor which arguments have to be added.

pred_info(p,castor)?

This declaration states that the accumulator castor should be expanded when p is encoun-
tered. The arguments of pred info may also be lists, to relate a set of predicates and a set
of accumulators.ggs s If you use named features, be careful that there are no conflicts with the features added by
the preprocessor. These features always start with in or out .

Example F.2 (adapted from Van Roy)

pred_info([p,q],[castor,pollux])?
pred_info(r,castor)?

The clause p :-- p, q, r, s? is translated into:

p(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => D) :-

March 1994 Digital PRL

Wild LIFE Handbook 111

p(in_castor => A,in_pollux => B,
out_castor => E,out_pollux => F),

q(in_castor => E,in_pollux => F,
out_castor => G,out_pollux => D),

r(in_castor => G,out_castor => C),
s.

F.1.2 Accumulation

The principal operation performed by an accumulator is to accumulate! The way accumula-
tion is performed for a given accumulator is specified through acc info declarations. These
declarations usually contain a predicate (or a sequence of predicates) used for accumulation,
that may take three external arguments:� the two terms implementing the accumulator (In,Out);� the data to be accumulated (X).

An acc info declaration contains the name of the accumulator, references to these three
terms, and the accumulation predicate:

acc info(AccName,X,In,Out,acc pred => AccPred)?

There are also other optional arguments to acc info declarations which will be introduced
later. The syntax for accumulation in a rule is the following:

X + Acc: accumulate X in accumulator Acc.

Example F.3

acc_info(fwd,X,In,Out,acc_pred => (Out = [X|In]))?
pred_info(foo,fwd)?

foo :-- 4+fwd, foo?

is translated into:

foo(in_fwd => A,out_fwd => B) :-
C = [4|A],
foo(in_fwd => C,out_fwd => B).

The expression in acc pred just replaces the X + Acc goal, with the proper arguments
instantiated.

Research Report Draft March 1994

112 Hassan Aı̈t-Kaci et al.

F.1.3 Other features� Initialization.

An accumulator that has to be expanded and doesn’t appear in the head of the clause, is
initialized (this happens when with is used, see below). Initialization information may
be given in the acc info declaration (in start and out start features).

Example F.4

acc_info(einstein, in_start=>mc2, out_start=>energy)?
pred_info(t,einstein)?

s :-- t?

is translated into:

s :- t(in_einstein => mc2,out_einstein => energy).

as einstein doesn’t appear in the head.ggs s If acc info is used several times to define the same accumulator, only the last
declaration is taken into account. The system gives a warning.� X is Acc unifies X with the current value of the accumulator Acc.

Example F.5 (with the previous declarations)

p :-- p, X is castor, write(X), Y is pollux, write(Y), p?

The obtained clause is:

p(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => D) :-
p(in_castor => A,in_pollux => B,
out_castor => E,out_pollux => F),

G = E,
write(G),
H = F,
write(H),
p(in_castor => E,in_pollux => F,
out_castor => C,out_pollux => D).

March 1994 Digital PRL

Wild LIFE Handbook 113

It is also possible to write:

– Acc is X: same meaning as X is Acc

– Acc1 is Acc2: unify current value of Acc1 with current value of Acc2

Warning: the expansion fails if none of the arguments of is is an accumulator supposed
to be expanded.� insert(X,Y,Acc) inserts X and Y in the chain implementing Acc. This primitive is
provided as an escape to standard LIFE code. It should not be needed in most cases.

Example F.6 (with the previous declarations)

r :-- r, insert(a,b,castor), r?

The obtained clause is:

r(in_castor => A,out_castor => B) :-
r(in_castor => A,out_castor => C),
a = C,
b = D,
r(in_castor => D,out_castor => B).� cond and disjunctions.

Expansion is performed inside cond and disjunctions.� Code insertion.

The preprocessor may be told not to expand a piece of code by inserting it between
brackets.

Example F.7 (with the previous declarations)

p :-- q , {p}?

The obtained clause is:

p(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => D) :-
q(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => D),

p.

Research Report Draft March 1994

114 Hassan Aı̈t-Kaci et al.� Use of cut.

Cuts may be used anywhere and are never expanded. “!” is in fact syntactic sugar for
“{!}”.� Meta-programming.

Variables may be used as symbols in the body of the rules:

Example F.8 (with the declarations above)

p(X) :-- X?

is translated into:

p(X,
in_castor => B,in_pollux => C,
out_castor => D,out_pollux => E) :-
interpret_symbols(X,

@(castor => B,pollux => C),
@(castor => D,pollux => E),
@,
cname => default_C,
gram => false).

The features of interpret symbols contain the necessary information to interpret
X when it gets bound; interpret symbols will residuate until X is no longer @.
This way, if X is instantiated to some symbol foo, the first rule will behave exactly like:

p :-- foo?

A warning is given at expansion time to indicate that variables are expanded using
interpret symbols.ggs sinterpret symbols is a non-strict predicate.� Changing the argument names.

If you want special names to be given to the arguments implementing an accumulator,
you may specify them in the acc info declaration:

acc_info(box,in_name => "input",out_name => "output")

With this declaration, box will be expanded using input and output instead of
in box and out box.

March 1994 Digital PRL

Wild LIFE Handbook 115

F.2 Operations on accumulators

F.2.1 Context of an expansion

The tools we have described above don’t give good answers to some practical questions such
as: � How can we specify rules like:

head :- body1(in => In,out => Inter),
body2(in => Inter,out => Out).

The problem here is that the accumulator is not expanded in the head of the clause.� How can we link different accumulators together? There is no reason why different
accumulators always have to be isolated from each other.

In fact, the accumulators expanded in the head of the clause are very important in the expan-
sion of the clause, because only these accumulators are linked (the others are just initialized).
The with operator has been designed to let other sets of accumulators play the same role.

An expansion is characterized by two concepts:� Its scope: the set of terms affected by the expansion.� Its context: the set of accumulators that will be linked together during the expansion.

Until now, the scope of an expansion was always the whole clause, and its context the set of
accumulators expanded in the head. With enables the programmer to define the scope and the
context of an expansion. With is defined as an infix operator of precedence 800 and kind xfy,
i.e., it binds tighter than the control operators used in clauses (“,”, “;”, “:-”, and so on), but
looser than functional expressions.

Example F.9 Let us consider the following program:

pred_info([head,body1,body2],acc1)?
pred_info([body1,body2,body3],acc2)?

head :-- body1, (body2,body3) with acc2.

The initial scope of the expansion is the whole clause, with context facc1g: This means
that acc1 will be expanded and linked in head,body1,body2.
With defines a new context, facc2g, with scope (body2,body3): this means that

acc2 will be expanded and linked in body2 and body3, but not linked with the arguments
of body1 since body1 doesn’t belong to the scope of this expansion.

This may be represented this way: The scopes are represented by the big rectangles, with the
corresponding contexts on their upper edge. Each pair of expanded arguments is represented
by a term acc(,) where the first argument is the input, and the second the output. The
arrows represent the unified arguments.

Research Report Draft March 1994

116 Hassan Aı̈t-Kaci et al.

body1 acc1(_ , _) acc2(_ , _)

head acc1(_ , _)

body2 acc1(_ , _) acc2(_ , _) body3 acc2(_ , _)

acc2(_ , _)

The clause is thus expanded to:

head(in_acc1=>A,out_acc1=>B) :-
body1(in_acc1=>A,out_acc1=>C,in_acc2=>@,out_acc2=>@),
body2(in_acc1=>C,out_acc1=>B,in_acc2=>@,out_acc2=>D),
body3(in_acc2=>D,out_acc2=>@).

When an accumulator appears in the right hand side of a with and in the parent context, the
expansion of the accumulator inside and outside the scope of the with are totally independent:
arguments appearing inside the scope of the with won’t be linked with arguments appearing
outside.

Example F.10

p :-- r, q with castor?

is translated into:

p(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => D) :-
r(in_castor => A,out_castor => C),
q(in_castor => E,in_pollux => B,
out_castor => F,out_pollux => D).

The arguments implementing the accumulator castor in q are not linked with the others.
pollux is regularly expanded.

F.2.2 Operations

The notion of context gives the possibility to perform operations on accumulators. In a
context, an accumulator is represented by a pair of arguments (In,Out). In the example
above, the castor accumulator is represented by the pair (A,C) in the head context, and the
pair (E,F) in the context defined by the with operator.

We define three operations on these pairs of arguments: composition, inversion, equality.

March 1994 Digital PRL

Wild LIFE Handbook 117� Composition: =>

(A,B) => (C,D) returns (A,D); B and C are unified.� Inversion: inv

inv((A,B)) returns (B,A)� Equality: =

(A,B) = (C,D) unifies A and C, and B and D.

Moreover, direct access to the pairs of arguments is given, which allows the accumulators to
be initialized in a convenient way.

The right hand side of the with operator contains a conjunction of constraints to be applied
to the new context: either simple constraints meaning: “expand this accumulator locally” or
more complex like: “compose these two accumulators”, or “make these accumulators equal”.
What follows is a set of example clauses and their translations.� s :-- q with castor([],[1,2,3])?

When arguments are given to accumulators in a scope of a with, the first one is unified
with the input of the accumulator, the second with the output. The above clause is
translated into:

s :- q(in_castor => [],in_pollux => @,
out_castor => [1,2,3],out_pollux => @).

This may be represented graphically by:

q castor(_ , _) pollux(_ , _)

s

castor([] , [1,2,3]) � s :-- q with castor => pollux?

“=>” is the composition operator. It links the output of its left hand side with the input
of its right hand side:

s :- q(in_castor => @,out_castor => A,
in_pollux => A,out_pollux => @).

The same clause could have been specified in the following way:

s :-- q with (castor(_,X),pollux(X,_)).

Research Report Draft March 1994

118 Hassan Aı̈t-Kaci et al.

Graphically:

q castor(_ , _) pollux(_ , _)

s

castor(_ , _) pollux(_ , _)

The constraints imposed by the right argument are represented by solid arrows, the other
links by dashed arrows.� s :-- q with inv(castor) => pollux?

“inv” inverts input and output arguments. In this example, you may notice that both
inputs are linked together.

s :- q(in_castor => A,in_pollux => A,
out_castor => @,out_pollux => @).� s :-- q with castor = pollux?

Equality of accumulators means unification of both input and output.

s :- q(in_castor => A,in_pollux => A,
out_castor => B,out_pollux => B).� p :-- q with glob(castor) = castor => pollux?

glob(castor) is a reference to the castor accumulator appearing in the parent
context.

p(in_castor => A,in_pollux => B,
out_castor => C,out_pollux => B) :-
q(in_castor => A,in_pollux => D,
out_castor => D,out_pollux => C).

Graphically:

March 1994 Digital PRL

Wild LIFE Handbook 119

q castor(_ , _) pollux(_ , _)

p castor(_ , _) pollux(_ , _)

castor(_ , _) pollux(_ , _) � All these things may be used together.

p :-- (q, r, s)
with inv(glob(castor)) =

castor(begin) => pollux(2 => end)?

is translated into:

p(in_castor => A: end,in_pollux => B,
out_castor => C: begin,out_pollux => B) :-

q(in_castor => C,in_pollux => D,
out_castor => E,out_pollux => A),

r(in_castor => E,out_castor => D),
s.� Initialization may also be performed at the context level.

The initialization rule given above should be rewritten: An accumulator is initialized if
it doesn’t appear in the context of the expansion. But it is possible to force initialization,
using init.

acc_info(einstein,in_start=>mc2,out_start=>energy)?
pred_info(t,einstein)?

s :-- t with init(einstein)?

is translated into:

s :- t(in_einstein => mc2,out_einstein => energy).

You may specify which argument has to be initialized by giving a second argument to
init: in or out. For example, this clause:

s :-- t with init(einstein,in)?

is translated into:

Research Report Draft March 1994

120 Hassan Aı̈t-Kaci et al.

s :- t(in_einstein => mc2,out_einstein => @).

This clause:

s :-- t with init(einstein,out)?

is translated into:

s :- t(in_einstein => @,out_einstein => energy).

If the second argument of init isn’t in or out, then both are initialized.

F.3 The DCG accumulator

The accumulator preprocessor provides built-in definitions that mimic Prolog’s DCG trans-
lation. There are a few differences with Prolog DCGs, mainly due to the use of -terms
instead of Herbrand terms. The main differences are that the arguments added have features
in dcg and out dcg and that declarations given interactively must be terminated with ?. If
expand load(true) is called, then declarations in a file may be terminated with “.”.

Example F.11 This example shows how to use DCGs in Wild LIFE.

> import("accumulators")?
*** Loading File "Tools/accumulators.lf"
*** Loading File "Tools/std_expander.lf"
*** Loading File "Tools/acc_declarations.lf"

> a --> b, c?

> listing(a)?

a(in_dcg => _A, out_dcg => _B) :-
b(in_dcg => _A, out_dcg => _C),
c(in_dcg => _C, out_dcg => _B).

*** Yes

F.3.1 Definition

The DCG accumulator is predefined as follows:

acc info(dcg, Term, Xs, Ys, acc pred => ’C’(Term,false,Xs,Ys))?

The ’C’(Terms,FoldOk,Xs,Ys) function is used for accumulation. Its arguments
have the following meaning:

March 1994 Digital PRL

Wild LIFE Handbook 121� Terms: the list representing the non-terminals to be recognized;� FoldOk : a boolean telling whether Terms may be folded into the program or not;� Xs: the input stream of non-terminals;� Ys: the output stream of non-terminals.

You may replace the ’C’ function by your own version:

set_C(my_C)?

’C’ is only used during the expansion of your grammar in LIFE clauses, so you can (and
should) reset its value to the default after translation (with the query reset C?) The tokenizer
and parser written in LIFE (see Tools directory) redefine ’C’ for their own needs.

F.3.2 DCG syntax

The standard DCG syntax is supported by this preprocessor:

Head --> Body?

will expand the DCG accumulator in all predicates of Head and Body even if there is
no pred info declaration. The other accumulators will be expanded according to the
declarations.

Accumulation in the DCG may be specified either with the above notation (X + dcg), or
using the standard list notation of DCGs:

foo --> [3], bar?

is translated into:

foo(in_dcg => [3|A],out_dcg => B) :-
bar(in_dcg => A,out_dcg => B).

F.3.3 Implementation notes� Folding Terminals.

The DCG accumulator has been optimized to allow the folding of terminals (i.e., terms
to be accumulated in the DCG accumulator).

A translation of: foo --> bar, [1]? could be:

foo(in_dcg => A,out_dcg => B) :-
bar(in_dcg => A,out_dcg => C),
C = [1|B].

The last statement may be folded into the bar predicate, yielding:

foo(in_dcg => A,out_dcg => B) :-
bar(in_dcg => A,out_dcg => [1|B]).

Research Report Draft March 1994

122 Hassan Aı̈t-Kaci et al.

This translation is more efficient than the previous one, and the meaning of the two
clauses are identical, as long as the bar predicate does not contain things like destructive
assignments on its out dcg feature.

When code is inserted — for instance a cut — we have to make sure that this folding
does not bind variables occurring before the insertion. Consider the following clause:

foo --> !, [1]?

This first translation of it (with folding):

foo(in_dcg => [1|A],out_dcg => A) :-
!.

does not have the same behavior as this one (without folding):

foo(in_dcg => A,out_dcg => B) :-
!,
A = [1|B].

The first translation is not correct w.r.t. the usual meaning of cut. The translator we
propose here deals with this in a very simple way: no folding is performed after a cut or
a code insertion. FoldOk is the variable used in the translator telling whether folding is
authorized or not .� Code Insertion.

There are two ways of translating a rule like:

foo --> {pred}?

Either as:

foo(in_dcg => A,out_dcg => B) :- pred, A = B.

or as:

foo(in_dcg => A,out_dcg => A) :- pred.

In most cases, those two translations will have exactly the same behavior, but if some
side-effect is expected from pred, they may differ. This is the case if pred is a cut for
instance. The translation used here is the second one, namely:

foo --> {pred}?

is equivalent to:

foo --> [], {pred}?

The other alternative may be obtained by writing:

foo --> {pred}, []?

March 1994 Digital PRL

Wild LIFE Handbook 123

F.4 Passed arguments

A passed argument is just an extra feature added to a predicate, according to some
pred info declaration. The use of passed arguments is less interesting since the intro-
duction of global variables in LIFE.

pass_info(ball)?

declares ball as a passed argument. There are other optional arguments to this declaration
that will be explained later.

To declare that a predicate uses this argument, just add ball to the list in pred info.
pred info(basket,[ball])?
The expansion will add a ball feature to all occurrences of basket. If it is not present in

the head of the definition, it may be initialized: if the pass info has a start feature, its
value will be used to initialize the passed argument.

Example F.12

pass_info(kick,start => quick)?
pass_info(ball)?

pred_info(foot,[ball,kick])?
pred_info(basket,ball)?

basket :-- foot, basket?

is translated into:

basket(ball => A) :-
foot(ball => A,kick => quick),
basket(ball => A).

All rules related to expansion of disjunctions, cond, cuts, and insertion of code still hold.
The is primitive may be also used with passed arguments. Passed arguments may be used
in the left hand side of with operators, but no operations may be performed on them. Their
value may be initialized by giving them an argument, but not (yet) using init.
pass info declaration may also specify an “accumulation” predicate. This predicate

can of course only take two arguments, the value to accumulate, and the value of the passed
argument.

Example F.13

pass_info(hash,X,Pass,acc_pred => (Pass.X = true))?
pred_info(store,hash)?

store(X) :-- X+hash?

Research Report Draft March 1994

124 Hassan Aı̈t-Kaci et al.

is translated into

store(A,hash => B) :-
B.A = true.

F.5 Common problems and debugging

Debugging a program written using the accumulator expander is not an easy task. One of
the most common mistakes is to forget the expansion of facts or to type :- instead of :--.
To help the programmer, a directive may be added to the programs so that warnings are given
each time a predicate with an associated pred info declaration occurs in a non expanded
rule. This directive is

check_expansion?

It only works with expand load(true), and for rules ending with a period.

Example F.14 Consider a file with the following declarations:

acc_info(acc)?
pred_info(pred,acc)?

pred :-- pred.
pred.
pred :- pred.
other_pred :- pred.

A warning will be generated for each of the last three clauses.

Example F.15 This example illustrates a common problem when mixing DCG predicates with
non-DCG predicates. The problem occurs when the predicates contain other accumulators in
addition to the DCG accumulator. The problem is solved through judicious use of the with
operator. Consider the following definition of predicates a and c:

> import("accumulators")?
> acc_info(acc)?
> pred_info([a,b,c,d],acc)?

> c :-- r,s,t? % Non-DCG predicate

> a --> b,c,d? % DCG predicate

The expansion of a adds the two DCG arguments to b, c, and d:

March 1994 Digital PRL

Wild LIFE Handbook 125

> listing(a)?

a(in_acc => _A, in_dcg => _B,
out_acc => _C,out_dcg => _D) :-

b(in_acc => _A, in_dcg => _B,
out_acc => _E,out_dcg => _F),

c(in_acc => _E, in_dcg => _F,
out_acc => _G,out_dcg => _H),

d(in_acc => _G, in_dcg => _H,
out_acc => _C,out_dcg => _D).

The problem is that c is not a DCG predicate, hence it does not know what to do with the two
DCG arguments! The fix is to insulate c from the DCG accumulator by using with:

> a --> b, c with dcg, d? % Correct definition
> listing(a)?

a(in_acc => _A, in_dcg => _B,
out_acc => _C,out_dcg => _D) :-

b(in_acc => _A, in_dcg => _B,
out_acc => _E,out_dcg => _F),

c(in_acc => _E, in_dcg => @, % c is bypassed
out_acc => _G,out_dcg => @),

d(in_acc => _G, in_dcg => _F,
out_acc => _C,out_dcg => _D).

The DCG arguments are now correctly chained between b and d, bypassing c.

F.6 Term expansion

The preprocessor includes term expansion clauses for :--, -->, pred info, acc info
and pass info. This means that if you execute expand load(true), then all rules
loaded from files may be written as definitions instead of as queries, i.e., ending with a period
instead of a question mark.

Research Report Draft March 1994

126 Hassan Aı̈t-Kaci et al.

G The X interface

Wild LIFE provides an X interface that allows programming X applications at the LIFE
level. To speed up Wild LIFE’s start up time, the X library is not loaded by default. Any
program using X must first import (load and open) the X interface module with the command
import("x"). For examples of how these routines are used, look at the sample programs
provided with the Wild LIFE release.

A “+” before a variable name means the field is an input, and a “-” means it is an output.
Arguments mentioned as default may be left out; in that case the default values are used.
Certain arguments may not be changed by the LIFE programmer; they may only be created by
X routines and passed into X routines. This includes the Display, Window, and Font arguments.
A few arguments must be strings; these are indicated by the notation “:string”.

For additional functionality that makes it very easy to create interactive window-based
applications (with buttons, menus, and so on) the graphical interface toolkit should be imported.
See appendix H for more information.

G.1 Event mask values

The named event mask types are:

xNoEventMask, xKeyPressMask, xKeyReleaseMask,
xButtonPressMask, xButtonReleaseMask, xEnterWindowMask,
xLeaveWindowMask, xPointerMotionMask, xPointerMotionHintMask,
xButton1MotionMask, xButton2MotionMask, xButton3MotionMask,
xButton4MotionMask, xButton5MotionMask, xButtonMotionMask,
xKeymapStateMask, xExposureMask, xVisibilityChangeMask,
xStructureNotifyMask, xResizeRedirectMask,
xSubstructureNotifyMask, xSubstructureRedirectMask,
xFocusChangeMask, xPropertyChangeMask, xColormapChangeMask,
xOwnerGrabButtonMask.

G.2 Primitive control operations� xOpenConnection (-Display, +Screen:string)

Open an X connection on the specified screen. The default value of Screen is the
contents of the environment variable DISPLAY. The field containing this value may be
omitted.� xCloseConnection (+Display)

Close the connection opened by a xOpenConnection.� xCreateWindow (+Display, +X, +Y, +Width, +Height,
-Window, color => +Color, windowtitle => +WindowTitle,
icontitle => +IconTitle, eventmask => +EventMask)

Open a window on the specified display at (X,Y) with the given width
and height, and with the given background color. EventMask contains

March 1994 Digital PRL

Wild LIFE Handbook 127

a bitwise or of the accepted events. The default values are Color:
xWhite, WindowTitle: "Life", IconTitle: "Life", eventmask:
xKeyPressMask\/xButtonPressMask\/xExposureMask (where \/ is the
bitwise or function). The fields containing these values may be omitted.� xShowWindow (+Window)

Show the window. There are no default values.� xHideWindow (+Window)

Hide the window. There are no default values.� xRefreshWindow (+Window)

Refresh the window. There are no default values.� xPostScriptWindow (+Window, +Filename:string)

Output the window in a PostScript file. The default value of Filename is "X.ps".� xGetWindowGeometry (+Window, -X0, -Y0, -Width, -Height)

Return the geometry of the window. There are no default values.� xSetWindowGeometry (+Window, +X0, +Y0, +Width, +Height)

Modify the geometry of the window. There are no default values.� xSetWindowColor (+Window, +Color)

Modify the background color of the window. There are no default values.� xDestroyWindow (+Window)

Destroy the window. There are no default values.� xRequestColor (+Window, +Red, +Green, +Blue, -Color)

Return a color entry in the color map of the window with the closest RGB. The arguments
Red, Green, and Blue must be integers in the range 0 through 255. There are no default
values.� xRequestNamedColor (+Window, +Name, -Color)

Return the color entry in the color map of the window of the named color. The argument
Name must be a string recognized by the X system; a list of these is given through the
interactive X command xco.� xFreeColor (+Window, +Color)

Free a color allocated by xRequestColor or xRequestNamedColor. There are
no default values.

Research Report Draft March 1994

128 Hassan Aı̈t-Kaci et al.

G.3 Primitive drawing operations� xDrawLine (+Window, +X0, +Y0, +X1, +Y1, function =>
+Function, color => +Color, linewidth => +LineWidth)

Draw the line from(X0,Y0) to(X1,Y1) on the window with the given function, color,
and linewidth. The default values are Function: xCopy, Color: xBlack, and
LineWidth: xThinLine. The possible values of Function are: xClear, xAnd,
xAndReverse, xCopy, xAndInverted, xNoop, xXor, xOr,xNor, xEquiv,
xInvert, xOrReverse, xCopyInverted, xOrInverted, xNand, xSet.� xDrawRectangle (+Window, +X0, +Y0, +Width, +Height,
function => +Function, color => +Color, linewidth =>
+LineWidth)

Draw the rectangle starting at upper-left corner (X0,Y0) of specified width and height
on the window. The default values and possible values are the same as for xDrawLine.� xDrawArc (+Window, +X0, +Y0, +Width, +Height,
+StartAngle, +ArcAngle, function => +Function, color =>
+Color, linewidth => +LineWidth)

Draw an arc in the rectangle (X0,Y0,Width,Height), starting at angle
StartAngle relative to the 3-o’clock position and extent ArcAngle, angles given in
degrees. The default values and possible values are the same as for xDrawLine.� xDrawOval (+Window, +X0, +Y0, +Width, +Height, function
=> +Function, color => +Color, linewidth => +LineWidth)

Draw an oval in the rectangle (X0,Y0,Width,Height) on the window. The default
values and possible values are the same as for xDrawLine.� xFillRectangle (+Window, +X0, +Y0, +Width, +Height,
function => +Function, color => +Color)

Same as xDrawRectangle but filled with a given color.� xFillArc (+Window, +X0, +Y0, +Width, +Height,
+StartAngle, +ArcAngle, function => +Function, color =>
+Color)

Same as xDrawArc but filled with a given color.� xFillOval (+Window, +X0, +Y0, +Width, +Height, function
=> +Function, color => +Color)

Same as xDrawOval but filled with a given color.� xFillPolygon (+Window, +PointsList, +Function, +Color)

Fill a polygon described by a list of points (e.g., [(100,100), (200,300),
(300,100)]). The polygon is closed automatically if the last point of the list does not
coincide with the first point.

March 1994 Digital PRL

Wild LIFE Handbook 129� xLoadFont (+Display, -Font, +FontName:string)

Load the specified font name. Valid font names are system-dependent. They may be
found in /usr/lib/X11/fonts. The default font name is "9x15".� xDrawString (+Window, +X0, +Y0, +String, font => +Font,
function => +Function, color => +Color)

Draw a string at (X0,Y0) with the specified font on the window. The font has to be
loaded with xLoadFont. This function does not affect the background pixels of the
bounding box of the string. Note: (X0,Y0) is the lower left coordinates of the string.
The default values and possible values are the same as for xDrawLine.� xDrawImageString (+Window, +X0, +Y0, +String, font =>
+Font, function => +Function, color => +Color)

Draw a string at (X0,Y0) with the specified font on the window. The font has to be
loaded with xLoadFont. The background pixels of the bounding box of the string
are filled with the background color of the window. Again, (X0,Y0) is the lower left
coordinates of the string. The default values and possible values are the same as for
xDrawLine.� Event = xGetEvent (+Window, eventmask => +EventMask)

Return an event in the window which matches the given mask. The currently implemented
events are mouse_event, keyboard_event, and expose_event such that:

E: mouse_button button => B:bool, x=>X:int, y=>Y:int)
E: keyboard_event (keycode=>K, char=>C:int)
E: expose_event

For a list of the default values and possible values of EventMask see xCreateWindow.
If there is no event available, the function residuates (waits) until one is. Multiple calls
to xGetEvent, on the same window and/or on multiple windows, may be pending at
the same time.

Research Report Draft March 1994

130 Hassan Aı̈t-Kaci et al.

H The graphical interface toolkit

H.1 Introduction

xtools is a simple toolkit to build interactive window-based X applications in Wild LIFE.
It provides the user with the basic functionality of bigger toolkits, in short the ability to
use buttons, text fields, menus, and sliders. Composite objects containing these primitives
can be created arbitrarily at run-time. The toolkit is built on top of the basic X interface
described in the previous section. The toolkit module is loaded and opened with the command
import("xtools").

The toolkit is organized around three concepts, namely boxes, looks, and constructors.� boxes are used to compute the sizes and positions of objects on the screen. All screen
objects manipulated by the toolkit are subsorts of box.� constructors are used to build and initialize screen objects. All objects that have a
behavior (i.e. not simple graphical objects, but real widgets) inherit from one constructor
type. Ten of them are predefined.� looks are used to describe the appearance of screen objects. An object may be a subsort
of several look types (four such subsorts are predefined), and will inherit the appearance
of these “looks”.

These three concepts are defined as sorts and are organized in the following inheritance
hierarchy (multiple inheritance is possible from looks):

Looks Constructors

Boxes

Objects

The next sections give details about boxes, constructors, looks, and the predefined objects in-
heriting from these. An example program is provided with the system (in file ex_tools.lf)
and should help the user to get started.

H.2 Boxes and their placement constraints

All the objects manipulated by the toolkit are boxes. A box is defined by the following type
declaration:

:: box(X,Y,width => DX,height => DY,

March 1994 Digital PRL

Wild LIFE Handbook 131

border => B,
mother => M).

X and Y are integers giving the coordinates of the top left corner of the box, DX and DY
are integers giving the dimensions of the box. Boxes may contain other boxes: the mother
feature of a box points to the box that contains it, if any. The border feature is the width of
reserved space on each side of a box. It has a default value d_border.

The following sections list the placement constraints on boxes that are implemented in
the toolkit. These constraints may be accumulated and imposed in any order. The local
constraint propagation of Wild LIFE guarantees that if the constraints are consistent and
enough information exists to determine a placing, it will be determined. If the constraints are
inconsistent, then they will fail and cause backtracking.

H.2.1 Boxes used as padding

Some boxes are only used to reserve space between objects:� h_box(W) is a function that returns a box of width W.� v_box(H) is a function that returns a box of height H.� null_box is a box of zero size. It is the sort:

null_box <| box.
:: null_box(width => 0,height => 0).

The values in h_box(W) and v_box(H) may be negative.

H.2.2 Positioning� Relative positioning

The toolkit offers a number of primitives to place boxes:

l above c above r above
l below c below r below
t left of c left of b left of
t right of c right of b right of

The letter prefixes have the following meaning: l stands for left, r for right, t for top,
b for bottom, and c for center.

Each of these primitives is a function returning the smallest box containing its two
arguments; for instance, Box1 l_above Box2 returns the smallest box containing
Box1 and Box2, such that:

– Box1 is above Box2, and

– their left sides are aligned.

These primitives will set and try to resolve the placement constraints.

Research Report Draft March 1994

132 Hassan Aı̈t-Kaci et al.� Containment

The toolkit offers two primitives to express that one box contains another:

contains containing

Syntax:

Box1 contains Box2
Box = Box1 containing Box2

Both of these primitives express the same containment constraint. The difference is that
contains is a predicate and containing a function. If no size is specified for Box1,
it will be given the same size as that of Box2. The function call containing returns
the containing box, in this case Box1.

If Box1 has a border feature worth Border (in pixels), it will be used to reserve a
space of that width around the box. In this case, Box1 will be larger than Box2.� Refined positioning

There are also some primitives that set finer constraints:

ll aligned lr aligned lc aligned rr aligned rc aligned
tt aligned tb aligned tc aligned bb aligned bc aligned
cc v aligned cc h aligned

These are predicates. The first letter of the predicate name applies to the first argument,
the second to the second argument. As before, l stands for left, r for right, t for top, b
for bottom, and c for center.

For instance:

Box1 lr_aligned Box2

will force the left side of Box1 to be aligned with the right side of Box2.

Box1 cc_v_aligned Box2

will force the centers of Box1 and Box2 to be vertically (v) aligned.

H.2.3 Lists

Lists are just syntactic sugar to express the vertical or horizontal alignment of boxes. The
following list-handling primitives are provided:

vl list vc list vr list
ht list hc list hb list
menu list

All these functions are defined as prefix operators. The call vl_list List_of_Boxes
returns the box containing all the boxes of the list, such that each of them is l_above the next
one in the list. As before, l stands for left, r for right, t for top, b for bottom, and c for center.
The call menu_list List_of_Boxes first constrains all the boxes of the list to be of the
same size, then returns vl_list List_of_Boxes. It is very easy to make your own kind
of list, using the implementation of these as an inspiration.

March 1994 Digital PRL

Wild LIFE Handbook 133

H.2.4 Sizes of boxes

A very useful constraint predicate is same_size. same_size(List_of_Boxes)
will force all the boxes of the list to have the same height and width. In the same way,
same_height(List_of_Boxes) will force all the boxes of the list to have the same
height, and same_width(List_of_Boxes) will force all the boxes of the list to have the
same width.

Sizes of boxes are computed on the fly, using a subsort of box: t_box. It has the following
features:

t_box(h_space => HSpace,
v_space => VSpace,
text => Text,
font_id => Fid)

Text The text appearing in the box.
VSpace The total amount of vertical space reserved around the text.
HSpace The total amount of horizontal space reserved around the text.
Fid The font ID used. Default is bold (see below for an explanation of font

IDs).
If no size is already given for a box, and if it is a subtype of t_box, then its size is computed

according to Text, Fid, VSpace and HSpace.

H.2.5 Creating a box

In order to be displayed and to work, a box has to be created.
create_box(Box) calls the constructor of Box (if it is a subsort of a constructor) and the

drawing routine (if the box is a subsort of a look sort). If a box contains other boxes, you only
need to call create_box for the parent box: the call is propagated to the boxes’ children.
create_box must be called only after all positioning constraints have been declared. It

is in fact possible to separate completely the positioning and the creation. create_box may
be called several times with the same argument. Later calls than the first will have no effect.

H.3 Main constructors

H.3.1 Panels� panel_c

A panel_c consists of a top-level window containing widgets.

Features: (optional)

panel_c(title => Title)

Title: title of the window and icon

Beware: the positions of top-level windows are usually modified by the window manager.� sub_panel_c

A simple sub-window that deals with refresh events. It is used by slide bars.

Research Report Draft March 1994

134 Hassan Aı̈t-Kaci et al.

H.3.2 Buttons

The following button types are provided, listed with the relevant features:

push_c(action => Action)
on_off_c(on => On, action => Action)
text_field_c(action => Action)
menu_button_c(menu => Menu)

Action Buttons of sort on_off_c, push_c, text_field_c have a feature
action that describes the action activated by the button. The default
action is succeed. If the button is an on_off_c or a push_c, the action
is activated each time the mouse is pressed and released inside the button.
If the button is a text_field_c, the action is activated each time the
return key is pressed and the button active.

On Buttons of type on_off_c have a boolean feature on that describes their
state. On is a persistent term.

Menu A menu_button has a feature menu that must contain a term of sort
menu_panel_c.

To distinguish between the mouse buttons, a persistent variable button_pressed is
modified each time a mouse button is pressed. Its value is 1 for the first button, 2 for the second
button, etc.

H.3.3 Menus� menu_panel_c

A menu_panel_c is essentially a panel_c with a different kind of window. A menu
panel is always positioned under its associated menu button. In fact, a menu panel may
contain any object, exactly like a panel.� item_c

Features:

item_c(action => Action)

Action The action associated with the item.

H.3.4 Sliders

A slider is just a moving button. It may move either vertically (v_slider_c) or horizontally
(h_slider_c), inside the box that contains it.

Features:

*_slider_c(min => Min,max => Max,value => Value,action => Action)

Min,Max,Value The position of the slider is associated with a real value that is
constrained to stay between Min and Max. Min and Max must be
given by the user. Value is a persistent term.

Action Each time the value of the slider is updated by moving the slider,
Action is executed.

March 1994 Digital PRL

Wild LIFE Handbook 135

H.4 Looks

H.4.1 Look types� text_box

A text_box appears as text. text_box is of course a subsort of t_box.

Features:

text_box(text => Text,
text_state => State,
text_color_id => Tid,
true_text_color_id => TTid,
font_id => Fid,
offset => Offset).

(a text_box also has the features of t_box)

Text The text appearing in the box.
Offset Default value is d_offset.
Offset = 0 The text is centered in the box.
Offset > 0 The text is flushed left, and Offset is the distance between the

left border of the box and the beginning of the text.
Offset < 0 The text is flushed right, and Offset is the distance between the

right border of the box and the end of the text.
State A boolean describing the state of the button. State is a persistent

term.
Tid The color ID used when State is false. The color value is found in

main_colors (see Colors below). Default value is d_text.
TTid The color ID used when State is true. Default value is d_text.
Fid The font ID used. Default is bold.� frame

A frame corresponds to the 3D border of a button.

Features:

frame(frame_state => State,
flat => Flat,
color_id => Cid)

State If State is true, the frame is sunken, otherwise it is raised. State is a
persistent term.

Flat If Flat is true, then there is no raised position: When State is false, the
frame appears flat.

Cid The color ID used. The actual color values are found in the persistent
variables highlight_colors and shade_colors.

Research Report Draft March 1994

136 Hassan Aı̈t-Kaci et al.� field

A field is a colored rectangle.

Features:

field(field_state => State,
color_id => Cid,
true_field_color_id => TFid)

State A boolean describing the state of the button. State is a persistent term.
Cid The color ID used when State is false. The color value is found in

main_colors (see Colors below). Default is d_field.
TFid The color ID used whenState is true. Default is d_selected_field.� led

An led is just like an LED, i.e., it is a small light that can be on or off.

Features:

led(led_state => State,
led_on_color_id => LedOn,
led_off_color_id => LedOff)

State A boolean describing the state of the led. State is a persistent term.
LedOn The color ID used when State is true. The color values are found in

main_colors, highlight_colors and shade_colors, depend-
ing on the part of the led (see Colors below). Default is d_led_on.

LedOff The color ID used when State is false. Default is d_led_off .

H.4.2 Inheritance of looks

Looks are inherited through subtyping. For instance, on_off_button is a subsort of
text_box, led and frame. Note that the color_id feature appears in frame and
field. Therefore, they should be compatible.

H.4.3 Colors and fonts

Colors and fonts are stored in tables. There are three tables for colors (main_colors,
highlight_colors, shade_colors) and one table for fonts. Colors and fonts are
accessed through identifiers that may be any atom. All objects have default colors (stored in
xtools_constants). To change the color of an object, you have to:� Store a color in the appropriate table, with the ID you have chosen, using the predicate

def_color(Table,Id,Color) (for a font: def_font(Id,Font)).� Set the appropriate color ID of the object to Id.

Example H.1 To have a class of text boxes with red text:

March 1994 Digital PRL

Wild LIFE Handbook 137

def_color(main_colors,my_id,red)?

my_txt <| text_box.
:: my_txt(text_color_id => my_id)

As the same color_id feature appears in field and frame, if a color is defined for the
IDI inmain_colors, then the corresponding colors (for the same ID I) inshade_colors
and highlight_colors should be respectively a dark and light version of the same color.

To load a new color, use new_color:

Example H.2 To add to the color table, the color with RGB values 180,190,190, type:

X = new_color(180,190,190)?

new_color returns the color corresponding to the RGB values.

Example H.3 To load a new font, use new_font:

X = new_font("helvetica_bold18")?

new_font returns the font corresponding to the string. The string must be one of the names
obtained by typing xlsfonts (Unix command).

All widgets (objects with their own window, in short all subsorts of constructors) have a
color_id feature to set the background color of the window.

Two font IDs are predefined:

bold : "-*-helvetica-bold-r-*-*-14-*-*-*-*-*-*-*"
medium: "-*-helvetica-medium-r-*-*-14-*-*-*-*-*-*-*"

The following colors are loaded by default:

aquamarine, black, blue, ’blue violet’, brown, ’cadet blue’,
coral, ’cornflower blue’, cyan, ’dark green’, ’dark olive green’
’dark orchid’, ’dark slate blue’, ’dark slate grey’,
’dark turquoise’, ’dim grey’, firebrick, ’forest green’,gold,
goldenrod, green, ’green yellow’, grey, ’indian red’, khaki,
’light blue’, ’light grey’, ’light steel blue’, ’lime green’,
magenta, maroon, ’medium aquamarine’, ’medium blue’, ’medium orchid’,
’medium sea green’, ’medium slate blue’, ’medium spring green’,
’medium turquoise’, ’medium violet red’, ’midnight blue’,
’navy blue’, orange, ’orange red’, ’orchid’, ’pale green’, pink,
plum, red, salmon, ’sea green’, sienna, ’sky blue’, ’slate blue’,
’spring green’, ’steel blue’, ’light brown’, thistle, turquoise,
violet, ’violet red’, wheat, white, yellow, ’yellow green’.

Research Report Draft March 1994

138 Hassan Aı̈t-Kaci et al.

These are loaded when the X toolkit is loaded, and may be used wherever a Color parameter
is indicated.

H.5 The hierarchy of graphical interface objects

Here is the object hierarchy of the graphical interface toolkit.� Panels:

panel <| panel_c.
panel <| frame.

menu_panel <| menu_panel_c.
menu_panel <| frame.

slide_bar <| sub_panel_c.
slide_bar <| frame.

v_slide_bar <| sub_panel_c.
v_slide_bar <| v_slide_l.

h_slide_bar <| sub_panel_c.
h_slide_bar <| h_slide_l.� Buttons:

push_button <| push_c.
push_button <| text_box.
push_button <| frame.

on_off_button <| on_off_c.
on_off_button <| led.
on_off_button <| text_box.
on_off_button <| frame.

text_field_button <| text_field_c.
text_field_button <| field.
text_field_button <| frame.
text_field_button <| text_box.

menu_button <| menu_button_c.
menu_button <| frame.
menu_button <| text_box.

menu_item <| item_c.
menu_item <| frame.
menu_item <| text_box.

The complete definition is in Tools/xtools.lf.

March 1994 Digital PRL

Wild LIFE Handbook 139

H.6 Screen objects

The screen objects manipulated by the X toolkit are subsorts of looks and/or constructors.
They usually have an additional feature that stipulates how the states of the look and that of the
constructor are linked (change_state).

Research Report Draft March 1994

140 Hassan Aı̈t-Kaci et al.

I The C-LIFE interface

I.1 Description

This interface provides a simple but powerful means of calling the Wild LIFE interpreter
from within C programs. Routines are provided to:� state facts,� issue queries,� recover results,� extract data from -terms,� manipulate the current query status of Wild LIFE:� generate more solutions,� reset the system.
The interface behaves in pretty much the same way as the top-level of the Wild LIFE interpreter,
so being familiar with the interpreter (and needless to say, the LIFE programming language)
is necessary. This also makes the interface very easy to use. No means are provided to build -terms directly other than through successive queries.

I.2 A simple example

The following is a simple C program that calls Wild LIFE to print "Hello World!!".

#include "c_life.h"

main(int argc, char *argv[])
{

WFInit(argc,argv);
WFProve("write(\"Hello World!!\")?");

}

One can compile it with:

> cc -o hello hello.c c_life.a -lm -lX11

and execute it:

> hello
Hello World!!

I.3 Summary of functions and prototypes� Initialize Wild LIFE
void WFInit(int argc,char *argv[])� Submit a query:
int WFInput(char *query);� Get a variable’s value:
PsiTerm WFGetVar(char *name);� Get the type of a -term:
char *WFType(PsiTerm psi);

March 1994 Digital PRL

Wild LIFE Handbook 141� Get the value of a -term if it’s a double:
double WFGetDouble(PsiTerm psi, int *ok);� Get the value of a -term if it’s a string:
char *WFGetString(PsiTerm psi, int *ok);� Count the features of a -term:
int WFFeatureCount(PsiTerm psi);� Get the value of a feature:
PsiTerm WFGetFeature(PsiTerm psi, char *featureName);� Get all the feature names as a NULL-terminated array of strings:
char **WFFeatures(PsiTerm psi);� Prove a goal and report an error (to stderr) on failure:
WFProve(char *goal);

I.4 Memory management

As LIFE is a non-deterministic programming language, it is best to view it as a coroutine
running in tandem with the C program, and which is queried by the C program. Its execution
state may be very different from the calling C program.

Wild LIFE uses its own memory management scheme (with garbage collection). At each
call to WFInput the interpreter changes state, and may completely re-map its memory layout,
thus rendering obsolete any C variables pointing into the LIFE memory space. Here is an
example of dangerous programming:

PsiTerm a;
double n;
WFProve("A=123?");
a=WFGetVar("A");
WFProve("B=fact(A)?"); /* Might cause a call to the GC */
n=WFGetDouble(a,NULL); /* Random results-might even crash */

To avoid this problem, do not keep values of type PsiTerm in C variables across calls to Wild
LIFE.

The other side of the coin is that thanks to the garbage collector, it is not necessary for the
C program to worry about freeing memory in LIFE’s memory space (in fact, doing so would
corrupt the integrity of the system). Currently the only function requiring the C programmer to
free memory is WFFeatures which allocates a string array with malloc. The array has to
be freed with free. The strings within it should be left alone since they are in LIFE’s space.

I.5 An exhaustive example

The following example displays the correct (and short-cut) use of all the current features of
the interface. Read it carefully as some of these are not documented elsewhere.

The program generates the following output:

> cc -g -o demo demo.c /udir/rmeyer/LIFE/MODULE/c_life.a -lm -lX11
> demo
Welcome to Wild-LIFE!!
WFInput succeeded and there may be more answers
true=false? failed (demo.c, line 51)
C=4

Research Report Draft March 1994

142 Hassan Aı̈t-Kaci et al.

1
2
3
4
; failed (demo.c, line 69)
6
7
message(three+four,equals => 7)
The type of A is user#message
A has 2 features
sum=7
the first feature is: ’three+four’
feature 1 => built_in#string
feature equals => built_in#int
Linking X library...
ok
% Here it runs the ’queens’ program...

The program is in the file "demo.c", here is a listing:

/* Example C program calling Wild-LIFE */
#include "../Source/c_life.h"

main(argc,argv)
int argc;
char *argv[];
{
int ans;

PsiTerm a;
PsiTerm sum;
char **features;
int i;
double value;
int ok;

/*** Initialize Wild-LIFE ***/
WFInit(argc,argv); /* Currently doesn’t use the arguments */

/*** Submit a query ***/
/* \042 is a quote sign (") */
ans=WFInput("write(\042Welcome to Wild-LIFE!!\042),nl?");

/* Deal with Wild-LIFE response */
switch(ans) {

case WFno:
printf("WFInput failed\n");
break;

case WFyes :

March 1994 Digital PRL

Wild LIFE Handbook 143

printf("WFInput succeeded\n");
break;

case WFmore:
printf("WFInput succeeded and there may be more answers\n");
break;

}

/*** This query fails and so prints an error message ***/
WFProve("true=false?");

/*** Solve a simple constraint ***/
WFProve("A=B+C?");
WFProve("B=1?");
WFProve("A=5?");
WFProve("write(’C=’,C),nl?");
WFProve(".");

/*** Backtrack over 4 solutions ***/
WFProve("A={1;2;3;4},write(A),nl?");
WFProve(";");
WFProve(";");
WFProve(";");
WFProve(";"); /* No more at this point */

/*** Backtrack over only the first 2 solutions ***/
WFProve("A={6;7;8},write(A),nl?");
WFProve(";");
WFProve("."); /* Return to top level */

/*** Build a psi-term and query it ***/
WFProve(
"A=message(\042three+four\042,equals=>3+4),write(A),nl?");

/* Read the variable ’A’ */
a=WFGetVar("A");
if(!a) { /* Error checking, here for demonstration only */
fprintf(stderr,"Couldn’t read variable ’A’\n");
exit(1);

}

/* Print the type of ’A’ */
printf("The type of A is %s\n",WFType(a));

/* Get the number of features of ’A’ */
printf("A has %d features\n",WFFeatureCount(a));

/* Get the feature ’equals’ */
sum=WFGetFeature(a,"equals");
if(!sum) { /* Error checking, here for demonstration only */

Research Report Draft March 1994

144 Hassan Aı̈t-Kaci et al.

fprintf(stderr,"Couldn’t read feature ’equals’\n");
exit(1);

}

/* Get the value of ’sum’ */
value=WFGetDouble(sum,&ok);
if(!ok) { /* Error checking, here for demonstration only */
fprintf(stderr,"’sum’ is not a real number\n");
exit(1);

}
printf("sum=%lg\n",value);

/* Get the first feature */
/* You can use NULL in WFGetDouble and WFGetString if you are */
/* sure the psi-term contains a value of the correct type. */
printf("the first feature is: ’%s’\n",

WFGetString(WFGetFeature(a,"1"),NULL));

/* Get the features as a NULL terminated string array */
features=WFFeatures(a);
if(features) {
for(i=0;features[i];i++) {
printf("feature %s => %s\n",

features[i],
WFType(WFGetFeature(a,features[i])));

}
free(features); /* Recommended */

}
else { /* Error checking, here for demonstration only */
fprintf(stderr,"’A’ has no features\n");
exit(1);

}

/* Run the queens program */
WFProve("import(\042queens\042)?");
WFProve("queens?");

/* Loop over each solution */
do {
sleep(1);
printf("retrying\n");
ans=WFInput(";");
printf("ans=%d\n",ans);

} while(ans);
}

March 1994 Digital PRL

Wild LIFE Handbook 145

References

1. Hassan Aı̈t-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementa-
tion of lattice operations. ACM Transactions on Programming Languages and Systems,
11(1):115–146 (January 1989).

2. Hassan Aı̈t-Kaci and Jacques Garrigue. Label-selective �-calculus. PRL Research Re-
port 31, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (1993).

3. Hassan Aı̈t-Kaci and Patrick Lincoln. LIFE—A natural language for natural language.
T.A. Informations, 30(1–2):37–67 (1989). Association pour le Traitement Automatique
des Langues, Paris, France.

4. Hassan Aı̈t-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3:185–215 (1986).

5. Hassan Aı̈t-Kaci and Roger Nasr. Integrating logic and functional programming. Lisp and
Symbolic Computation, 2:51–89 (1989).

6. Hassan Aı̈t-Kaci and Andreas Podelski. Functions as passive constraints in LIFE. PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Malmaison, France (1991).

7. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. PRL Research
Report 11, Digital Equipment Corporation, Paris Research Laboratory, Rueil-Malmaison,
France (1991).

8. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszyński
and Martin Wirsing, editors, Proceedings of the 3rd International Symposium on Pro-
gramming Language Implementation and Logic Programming (Passau, Germany), pages
255–274. Springer-Verlag, LNCS 528 (August 1991).

9. Hassan Aı̈t-Kaci and Andreas Podelski. Order-sorted feature theory unification. PRL
Research Report 32, Digital Equipment Corporation, Paris Research Laboratory, Rueil-
Malmaison, France (May 1993).

10. William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer-Verlag,
Berlin, Germany, 2nd edition (1984).

11. Tim Lindholm and Richard A. O’Keefe. Efficient implementation of a defensible semantics
for dynamic Prolog code. In Proceedings of the Fourth International Conference on Logic
Programming, pages 21–39. MIT Press (May 1987).

12. Richard Meyer. Compiling LIFE. Technical Report 8, Digital Equipment Corporation,
Paris Research Laboratory (September 1993).

Research Report Draft March 1994

146 Hassan Aı̈t-Kaci et al.

13. Lee Naish. Negation and Control in Prolog. Springer-Verlag, LNCS 238 (1986).

14. Lee Naish. Negation and quantifiers in NU-Prolog. In Proceedings of the 3rd International
Symposium on Logic Programming, pages 624–634. Springer-Verlag, LNCS 225 (July
1986).

15. Richard O’Keefe. The Craft of Prolog. MIT Press, Cambridge, MA (1990).

16. Peter Van Roy. A useful extension to Prolog’s Definite Clause Grammar notation. ACM
SIGPLAN Notices, pages 132–134 (November 1989).

17. Peter Van Roy. Can Logic Programming Execute as Fast as Imperative Programming?
PhD thesis, Department of Computer Science, University of California at Berkeley (De-
cember 1990).

18. Ehud Shapiro. The family of concurrent logic programming languages. ACM Computing
Surveys, 21(3):412–510 (1989).

19. Leon Sterling and Ehud Shapiro. The Art of Prolog. Series in Logic Programming. MIT
Press, Cambridge, MA (1986).

March 1994 Digital PRL

Wild LIFE Handbook 147

Index� (built-in function), 41��> (see accumulator), 121�> (function definition), 17< (built-in function), 42<� (built-in predicate), 66<< (built-in function), 41<<� (built-in predicate), 66<j (inheritance declaration), 8> (built-in function), 42>> (built-in function), 41>= (built-in function), 42n (built-in function), 41n+ (built-in predicate), 16n/ (built-in function), 41n=== (built-in function), 41? (bottom sort), 9�-calculus, 24j (constrained sort), 30j (such-that), 27, 35> (top sort), 9
* (built-in function), 41
+ (built-in function), 41
, (conjunction), 34
. (project), 38
. (projection), 64
.wild life file, 3
/ (built-in function), 41
/n (built-in function), 41
// (built-in function), 41
: (variable tag), 11
:� (predicate definition), 14
:< (built-in function), 45
:> (built-in function), 45
:>< (built-in function), 45
:>= (built-in function), 45
:n< (built-in function), 45
:n> (built-in function), 45
:n>< (built-in function), 46
:n>= (built-in function), 45
:n=< (built-in function), 45
:n== (built-in function), 46
:– (accumulator clause), 110
:: (attribute definition), 29

:=< (built-in function), 45
:== (built-in function), 45
; (disjunction), 34
; (type disjunction), 34
= (see accumulator), 117
= (unification predicate), 38
=< (built-in function), 42
=> (see accumulator), 117
=n= (built-in function), 43
=../2 built-in (Prolog), 99
=:= (built-in function), 43
=== (built-in function), 40
$< (built-in function), 47
$> (built-in function), 47
$>= (built-in function), 47
$n== (built-in function), 47
$=< (built-in function), 47
$== (built-in function), 47
& (unification function), 38fg (built-in sort), 9
! (built-in predicate), 15, 34 -term, 7

aliasing, 7
arity, 97
as array, 84
as hash table, 11, 13
attribute, 11
canonical form, 49
coreference, 7
cycles, 12
directed graph, 12
feature, 7
flexible record, 7
label, 7, 11
matching, 21
normal term, 62, 66
persistent term, 61, 62
record, 7
sharing, 12
tag (:), 7, 11
unification, 12
variable, 7, 11

Research Report Draft March 1994

148 Hassan Aı̈t-Kaci et al.

(tilde), 20
@ (built-in sort), 9
‘ (backquote built-in), 26

abort (built-in predicate), 56
acc info declaration, 111
accumulator, 109

acc info declaration, 111
clause (:–), 110
composition (=>), 117
context, 115
DCG, 100, 120
declaration, 110, 123
EDCG, 110
equality (=), 117
example program, 109
initialization, 112, 119
interpret symbols, 114
inversion (inv), 117
meta-programming, 114
pass info declaration, 123
passed argument, 123
pred info declaration, 110
preprocessor, 109
primitive

init, 119
insert, 113
is, 112
with, 115

rule (��>), 121
scope, 115
use of term expansion, 125

Actor semantics, 82
addition (+), 41
aliasing, 7
and (built-in function), 43
appending two lists (example program), 27
apply (built-in function), 88
Aquarius compiler, 110
argv (built-in function), 57
arithmetic

calculation
addition (+), 41
bitwise and (/n), 41

bitwise not (n), 41
bitwise or (n/), 41
floating point division (/), 41
integer division (//), 41
lower integer part (floor), 41
multiplication (*), 41
right shift (<<), 41
right shift (>>), 41
subtraction (�), 41
upper integer part (ceiling), 41

comparison
equal (=:=), 43
greater than (>), 42
greater than or equal (>=), 42
less than (<), 42
less than or equal (=<), 42
not equal (=n=), 43

invertibility, 19, 87
arity, 97
array, 84
asc (built-in function), 46
ASCII code, 46, 48, 49
assert (built-in predicate), 74
asserta (built-in predicate), 74
attribute, 11
attribute label

name space, 18

backquote (‘), 26
backtrackable destructive assignment, 62
backtracking, 14, 34
bagof (built-in function), 36
bagof (example program), 64
bestof (built-in function), 36
bool (built-in sort), 9
boolean arithmetic, 43
boolean function, 18
boolean functions<, 42>, 42>=, 42n===, 41

:<, 45
:>, 45

March 1994 Digital PRL

Wild LIFE Handbook 149

:><, 45
:>=, 45
:n<, 45
:n>, 45
:n><, 46
:n>=, 45
:n=<, 45
:n==, 46
:=<, 45
:==, 45
=<, 42
=n=, 43
=:=, 43
===, 40
$<, 47
$>, 47
$>=, 47
$n==, 47
$=<, 47
$==, 47
and, 43
call once, 35
has feature, 39
is function, 47
is persistent, 47, 66
is predicate, 47
is sort, 47
nonvar, 47
not, 43
or, 43
var, 47
xor, 43

bottom sort (fg), 9
box (see graphical interface toolkit), 130
breakpoints, 37
built-in routines�, 41�> (function definition), 17<, 42<�, 66<<, 41<<�, 66<j (inheritance declaration), 8>, 42

>>, 41>=, 42n, 41n+, 16n/, 41n===, 41j (such-that), 27, 35
*, 41
+, 41
, (conjunction), 34
. (project), 38
. (projection), 64
/, 41
/n, 41
//, 41
:� (predicate definition), 14
:<, 45
:>, 45
:><, 45
:>=, 45
:n<, 45
:n>, 45
:n><, 46
:n>=, 45
:n=<, 45
:n==, 46
:: (attribute definition), 29
:=<, 45
:==, 45
; (disjunction), 34
; (type disjunction), 34
=, 38
=<, 42
=n=, 43
=:=, 43
===, 40
$<, 47
$>, 47
$>=, 47
$n==, 47
$=<, 47
$==, 47
&, 38
!, 15, 34

Research Report Draft March 1994

150 Hassan Aı̈t-Kaci et al.

‘ (backquote), 26
abort, 56
and, 43
apply, 88
argv, 57
asc, 46
assert, 74
asserta, 74
bagof, 36
bestof, 36
call once, 35
ceiling, 41
children, 44
chr, 46
clause, 75
close, 54
cond, 34
copy pointer, 40
copy term, 40
cos, 42
cpu time, 58
current module, 69
delay check, 31
display modules, 71
display persistent, 66
dynamic, 74
eval, 26
evalin, 27
exists file, 54
exp, 42
expand load, 59
fail, 34
features, 39
floor, 41
gc, 56
genint, 42
get, 48
getenv, 57
glb, 43
global, 65
halt, 56
has feature, 39
implies, 38
import, 6, 70

initrandom, 42
is function, 47
is persistent, 47, 66
is predicate, 47
is sort, 47
least sorts, 45
listing, 55
load, 6, 49
load path, 49
local time, 58
log, 42
lub, 43
map, 24
module, 66, 69
mresiduate, 37
nl, 50
non strict, 27
nonvar, 47
not, 43
op, 53
open, 70
open in, 54
open out, 54
or, 43
page width, 50
parents, 44
parse, 52
persistent, 66
pretty write, 49
pretty writeq, 49
print codes, 94
print depth, 50
private, 70
private feature, 70
psi2str, 46
public, 70
put, 49
random, 42
read, 48
read token, 48
real time, 58
residuate, 37
retract, 75
root sort, 39

March 1994 Digital PRL

Wild LIFE Handbook 151

set input, 54
set output, 54
setq, 75
sin, 42
sqrt, 42
static, 74
statistics, 56
step, 56
str2psi, 46
strcon, 46
strip, 40
strlen, 46
subsort, 44
substr, 46
succeed, 34
system, 57
tan, 42
term expansion, 59
trace, 56
var, 47
verbose, 55
write, 49
write canonical, 49
writeq, 49
xCloseConnection, 126
xCreateWindow, 126
xDrawArc, 128
xDrawImageString, 129
xDrawLine, 128
xDrawOval, 128
xDrawRectangle, 128
xDrawString, 129
xFillArc, 128
xFillOval, 128
xFillPolygon, 128
xFillRectangle, 128
xFreeColor, 127
xGetEvent, 129
xGetWindowGeometry, 127
xHideWindow, 127
xLoadFont, 129
xOpenConnection, 126
xor, 43
xPostScriptWindow, 127

xRefreshWindow, 127
xRequestNamedColor, 127
xSetWindowColor, 127
xSetWindowGeometry, 127
xShowWindow, 127

built-in sort hierarchy, 10
built in (built-in sort), 9
button (see graphical interface toolkit), 134

C language, 15
interface, 140

memory management, 141
C++ language, 29, 82
call once (built-in function), 35
canonical form, 49
ceiling (built-in function), 41
children (built-in function), 44
chr (built-in function), 46
class, 8

example program, 82
clause, 14
clause (built-in predicate), 75
clause declaration, 14
close (built-in predicate), 54
CLP(R) language, 87
colors, 137
committed-choice, 19
compatibility with Prolog, 97
compiler (for LIFE), 1, 16, 32, 100, 110

compatibility with Wild LIFE 1.0, 1,
25, 71, 75

self-modifying code, 74
concurrent programming, 17
concurrent programming (example pro-

gram), 80
cond (built-in function), 34
conjunction, 34
cons (built-in sort), 9
consistent sort ordering, 9
constrained sort

definition, 30
example, 76
resemblance to such-that, 30

Research Report Draft March 1994

152 Hassan Aı̈t-Kaci et al.

constructor (see graphical interface toolkit),
133

context
accumulator, 115
variable-binding, 4, 52

copy pointer (built-in function), 40
copy term (built-in function), 40
coreference, 7
coroutining, 17
cos (built-in function), 42
cosine, 42
cpu time (built-in function), 58
cryptarithmetic, 78
current module, 66
current module (built-in predicate), 69
currying, 17, 22

argument consumption, 24
difference with residuation, 23

customization file, 3
cut (!), 15, 34

green cut, 15
scope, 15

cycles (in term), 12
cyclic hierarchy, 9

daemon, 17, 33
data-driven programming, 17
DCG accumulator, 100, 120
debugging

abort to top level, 6, 56
accumulators, 124
breakpoints, 37
debugger (tool in version 1.0), 105
incremental query, 4
interrupting execution, 6
listing a program, 55
pitfalls of self-modifying code, 74
run-time statistics, 56
single-stepping, 6, 56
tracing execution, 6, 54, 56
use of constrained sorts, 33
use of daemons, 33
use of display modules, 71
use of display persistent, 66

use of residuate, 37
verbose mode, 55

declarative language, 1
declared sort, 14, 29, 47, 92, 94

name space, 18
Definite Clause Grammar (DCG), 58, 110
Definite Clause Grammar (example pro-

gram), 120
definition

compact sort definition (:=), 92
constrained sort (j), 30
function rule (�>), 17
predicate clause (:�), 14
sort attribute (::), 29
sort inheritance (<j), 8

delay check (built-in predicate), 31
destructive assignment, 62

backtrackable, 62
example program, 83
nonbacktrackable, 62
normal term, 62
persistent term, 62
use in memory management, 95

determinate computation, 19
difference (�), 41
difference list, 35, 110
directed graph, 12
directive, 6
disjunction, 34
disjunctive sort, 10, 43
disjunctive term, 34

interaction with cut, 16
redundancy, 34

display modules (built-in predicate), 71
display persistent (built-in predicate), 66
division

floating point (/), 41
integer (//), 41

dynamic (built-in predicate), 74

Edinburgh syntax, 102
email addresses

life-bugs, 105
life-request, 105

March 1994 Digital PRL

Wild LIFE Handbook 153

life-users, 105
encapsulated programming (example pro-

gram), 81
error, 4, 54, 90
eval (built-in function), 26
evalin (built-in function), 27
event handling, 129
event mask, 126
example programs

accumulator preprocessor, 109
appending two lists, 27
bagof, 64
class, 82
concurrent programming, 80

communication, 80
process, 80
synchronization, 80

Definite Clause Grammar (DCG), 120
destructive assignment, 83
encapsulated programming, 81
Hanoi, towers of, 85
instance, 82
matching and unification, 27
memoization, 86
method inheritance, 86
multiple inheritance, 87
PERT scheduling, 76
prime numbers, 75
SEND+MORE=MONEY, 78
sieve of Eratosthenes, 84
subtyping of lists, 30
term size calculation, 83
using a persistent term, 83

exclusive or, 43
execution order, 19
exists file (built-in predicate), 54
exp (built-in function), 42
expand load (built-in predicate), 59
expander (see accumulator), 109
exponential, 42
expose event, 129
Extended DCG (EDCG), 110
extending built-in sorts, 10
eyes (ggs s), 1

factorial, 18
fail (built-in predicate), 34
false (built-in sort), 9
FCP (Flat Concurrent Prolog), 80
feature, 7

name space, 18
selection, 38

features (built-in function), 39
finite domains, 79
first-order term, 7
flexible record, 7
floor (built-in function), 41
freeze, 17, 96
function, 17

actual arguments, 18
boolean function, 18
currying, 22
definition, 17
formal arguments, 18
in a predicate position, 18
matching, 21
missing arguments, 22
modify calling arguments, 27
name space, 18, 60, 66
operational semantics, 19
passive constraint, 78
position, 90
programming style, 25
quoting, 26

use as sort, 29
result is a predicate, 18
rule, 17
variable-arity, 56

functional expression, 18
functional variable, 88

garbage collection, 56, 61, 74, 95
Gaussian elimination, 88
gc (built-in predicate), 56
generate-and-test, 17
genint (built-in function), 42
get (built-in predicate), 48
getenv (built-in function), 57
glb (built-in function), 43

Research Report Draft March 1994

154 Hassan Aı̈t-Kaci et al.

global (built-in predicate), 65
global constraint solving, 87
global variable, 60

quoting, 65
glossary, 103
grammar, 58, 110
graph subsumption, 88
graphical interface toolkit, 130

box, 130
button, 134
colors, 137
constructor, 133
example file (ex tools.lf), 130
look, 135
menu, 134
object hierarchy, 138
panel, 133
slider, 134
widget, 137

greatest lower bound (glb), 10, 43, 94
green cut, 15

halt (built-in predicate), 56
Hanoi, towers of (example program), 85
has feature (built-in function), 39
hash table, 11, 13
Herbrand term, 7, 14, 101, 120
heresy, 17
hierarchy, 8

consistency, 9
cyclic, 9
of built-in sorts, 10
of graphical interface objects, 138

highlighting (ggs s), 1

immediate update (with assert), 71, 72
implicit position, 11
implies (built-in predicate), 38
import (built-in predicate), 6, 70
incompatible sorts, 10
incremental query, 4
inheritance, 8, 92

multiple, 8, 87, 92, 130
init (see accumulator), 119
initialization file, 3

initrandom (built-in predicate), 42
insert (see accumulator), 113
instance (example program), 82
int (built-in sort), 9
integer part (floor), 41
interpret symbols (see accumulator), 114
interrupting execution, 6
inv (see accumulator), 117
invertibility of functions, 19, 87
is (see accumulator), 112
is/2 built-in (Prolog), 17
is function (built-in function), 47
is persistent (built-in function), 47, 66
is predicate (built-in function), 47
is sort (built-in function), 47
ISO standard Prolog

operators, 53, 99, 102
syntax, 3

keyboard event, 129

label, 7, 11
name space, 18

language
C, 15
C++, 29, 82
CLP(R), 87
Lisp, 26
Login, 7
MU-Prolog, 17
NU-Prolog, 17
Prolog, 1, 7, 13, 14, 100
Prolog II, 17
Smalltalk, 82

lattice, 45
least upper bound (lub), 43
least sorts (built-in function), 45
LIFE language

compatibility between compiler and
interpreter, 1, 25, 71, 75

compatibility with Prolog, 97
compiler, 1, 16, 32, 71, 100, 110
Edinburgh syntax, 102
history, 1

life-bugs email address, 105

March 1994 Digital PRL

Wild LIFE Handbook 155

life-request email address, 105
life-users mailing list, 105
Lisp language, 26
list (built-in sort), 9
listing (built-in predicate), 55
load (built-in predicate), 6, 49
load exp (internal built-in), 60
load path (built-in function), 49
loading, 6
local propagation, 19, 43, 79, 87
local time (built-in function), 58
log (built-in function), 42
logarithm, 42
Login language, 7
look (see graphical interface toolkit), 135
lower integer part (floor), 41
lub (built-in function), 43

mailing list, 105
manpage, 106
map (built-in function), 24
matching, 21

choosing between matching and unifi-
cation, 27

matching and unification (example pro-
gram), 27

memoization, 31
example program, 86

memory management, 56, 95, 141
menu (see graphical interface toolkit), 134
meta-programming

with accumulators, 114
method inheritance (example program), 86
methods, 81
module (built-in predicate), 66, 69
modules (standard)

"built ins", 67
"syntax", 67
"user", 67
"x", 67

mouse event, 129
mresiduate (built-in predicate), 37
MU-Prolog language, 17
multiple inheritance, 8, 92, 130

example program, 87
multiplication (*), 41

name space, 18, 60, 66
narrowing, 19
natural logarithm, 42
navigating the sort hierarchy, 43
negation-as-failure, 16
nil (built-in sort), 9
nl (built-in predicate), 50
non-interned symbol, 9, 46
non-strict built-in routines

‘ (backquote), 26
bagof, 36
bestof, 36
delay check, 31
dynamic, 74
global, 65
import, 70
listing, 55
load, 49
non strict, 27
op, 53
persistent, 66
public, 70
static, 74

non strict (built-in predicate), 27
nonbacktrackable destructive assignment,

62
nonvar (built-in function), 47
normal term, 62, 66
not (built-in function), 43
NU-Prolog language, 17

object-orientation, 76
object-oriented, 29, 81, 103
op (built-in predicate), 53
open (built-in predicate), 70
open in (built-in predicate), 54
open out (built-in predicate), 54
operator

declaration, 53
predefined, 102

or (built-in function), 43
order of execution, 19

Research Report Draft March 1994

156 Hassan Aı̈t-Kaci et al.

order relation, 8
order-independent execution, 17, 78, 90
out-of-order execution, 76
overloading, 68

page width, 50
page width (built-in predicate), 50
panel (see graphical interface toolkit), 133
parents (built-in function), 44
parse (built-in function), 52
parser, 105

curried expression, 24
partial evaluation, 97
partial order, 8
pass info declaration, 123
passed argument, 123
passive constraint, 78
persistent (built-in predicate), 66
persistent term, 61, 62

example program, 83
persistent variable, 61

quoting, 65
PERT scheduling (example program), 76
position

function, 90
predicate, 90

pred info declaration, 110
predefined sort hierarchy, 10
predicate, 14

definition, 14
name space, 18, 60, 66
operational semantics, 14
position, 18, 90
unification, 12
use as sort, 29
use of cut (!), 15

preprocessor (see accumulator), 109
pretty write (built-in predicate), 49
pretty writeq, 49
prime numbers (example program), 75
principal sort, 8
print depth, 50
print codes (built-in predicate), 94
print depth (built-in predicate), 50

private (built-in predicate), 70
private feature (built-in predicate), 70
product (*), 41
profiler (tool in version 1.0), 105
program file, 6
project, 38
projection, 64
Prolog II language, 17
Prolog language, 1, 7, 13, 14, 100

compatibility with LIFE, 97
Edinburgh syntax, 102
is/2 built-in, 17
ISO standard operators, 53, 99, 102
ISO standard syntax, 3
standard order comparisons, 99
univ built-in (=../2), 99

pseudo-random numbers, 42
psi-term (see -term), 7
psi2str (built-in function), 46
public (built-in predicate), 70
put (built-in predicate), 49

qualified reference, 66
query, 3

execution, 14
extension, 4
level, 4, 89
self-reproducing, 52

quoting
functions, 26
global variables, 65
persistent variables, 65

random (built-in function), 42
random numbers, 42
rational tree, 99
read (built-in predicate), 48
read token (built-in predicate), 48
real (built-in sort), 9
real time (built-in function), 58
record, 7
recursive sort, 31
redundancy, 34
residuate (built-in predicate), 37
residuation, 17, 96

March 1994 Digital PRL

Wild LIFE Handbook 157

difference with currying, 23
example, 76
passive constraint, 78
use in debugging, 37
variable, 19

residuation variable, 19
resolution, 14
resolvent, 14
retract (built-in predicate), 75
root sort, 8
root sort (built-in function), 39
roundoff error, 41
routine

variable-arity, 56
rule, 17
rule declaration, 17
rule-base management, 71

scope (see accumulator), 115
self-modifying code, 71
self-reproducing query, 52
SEND+MORE=MONEY (example pro-

gram), 78
set input (built-in predicate), 54
set output (built-in predicate), 54
setq (built-in predicate), 75
sh (Unix shell), 57
sharing (in term), 12
sieve of Eratosthenes (example program),

84
Simplex algorithm, 88
sin (built-in function), 42
sine, 42
single-stepping, 6, 56
SLD-resolution, 14
slider (see graphical interface toolkit), 134
Smalltalk language, 82
sort, 7, 8, 29

bottom (fg), 9
built-infg (bottom), 9

@ (top), 9
bool, 9
built in, 9

cons, 9
false, 9
int, 9
list, 9
nil, 9
real, 9
string, 9
true, 9

calculation
children, 44
greatest lower bound (glb), 43
least upper bound (lub), 43
least sorts, 45
parents, 44
subsort, 44

class, 8, 82
comparison

comparable (:><), 45
equal (:==), 45
greater than (:>), 45
greater than or equal (:>=), 45
less than (:<), 45
less than or equal (:=<), 45
not comparable (:n><), 46
not equal (:n==), 46
not greater than (:n>), 45
not greater than or equal (:n>=), 45
not less than (:n<), 45
not less than or equal (:n=<), 45

consistency, 9
constrained, 30, 76
declared sort, 14, 29, 47, 92, 94
definition

attribute, 29
inheritance, 8

disjunctive sort, 10, 43
encoding, 94
extending built-in sorts, 10
greatest lower bound (glb), 10, 94
hierarchy, 10
incompatibility, 10
inheritance, 8
name space, 18, 60, 66
navigating the hierarchy, 43

Research Report Draft March 1994

158 Hassan Aı̈t-Kaci et al.

property, 29
recursive, 31
syntax, 8, 29
top (@), 9
type, 8
undeclared, 29

sound negation, 16
sqrt (built-in function), 42
square root, 42
standard order comparisons, 99
static (built-in predicate), 74
statistics (built-in predicate), 56
step (built-in predicate), 56
str2psi (built-in function), 46
strcon (built-in function), 46
string

calculation
concatenation (strcon), 46
conversion from -term (psi2str), 46
conversion from ASCII (chr), 46
conversion to -term (str2psi), 46
conversion to ASCII (asc), 46
extraction (substr), 46
length (strlen), 46
parsing (parse), 52

comparison
equal ($==), 47
greater than ($>), 47
greater than or equal ($>=), 47
less than ($<), 47
less than or equal ($=<), 47
not equal ($n==), 47

string (built-in sort), 9
strip (built-in function), 40
strlen (built-in function), 46
subsort (built-in predicate), 44
substr (built-in function), 46
substring extraction, 46
subtraction (�), 41
subtyping of lists (example program), 30
succeed (built-in predicate), 34
such-that, 27, 35

resemblance to constrained sort defini-
tion, 30

sum (+), 41
suspension, 17
symbol, 66
synchronization, 17
syntax error, 6
system (built-in function), 57

tag (:), 7, 11
tan (built-in function), 42
tangent, 42
term (see -term), 7
term expansion (use in preprocessor), 125
term size calculation (example program),

83
term expansion (built-in predicate), 59
test suite, 105
test-and-generate, 17, 78
tilde (), 20
time measurement, 58
tokenizer, 105
top sort (@), 9
top-level interface, 4
trace (built-in predicate), 56
tracing execution, 6
trichotomy, 45
true (built-in sort), 9
type, 8
type disjunction, 34

undeclared sort, 29
undocumented built-ins, 1
unification, 12

built-in function (&), 38
built-in predicate (=), 38
choosing between matching and unifi-

cation, 27
unification function, 38
unification predicate, 38
uninterpreted identifier, 29, 94
unique integer generation, 42
univ built-in (Prolog), 99
Unix built-ins

argv, 57
getenv, 57
system, 57

March 1994 Digital PRL

Wild LIFE Handbook 159

upper integer part (ceiling), 41

var (built-in function), 47
variable, 7, 11

binding context, 4, 52
global, 60
persistent, 61

variable-arity routine, 56
verbose (built-in predicate), 55

wait declaration (MU-Prolog), 17, 96
warning, 4, 54
watchful eyes (ggs s), 1
when declaration (NU-Prolog), 17, 96
widget (see graphical interface toolkit), 137
Wild LIFE 1.0 system

C interface, 140
compatibility with compiler, 1, 25, 71,

75
how to get the system, 105
undocumented built-ins, 1

with (see accumulator), 115
write (built-in predicate), 49
write canonical (built-in predicate), 49
writeq (built-in predicate), 49

X event, 126
X interface, 126
xCloseConnection (built-in predicate), 126
xco (X command), 127
xCreateWindow (built-in predicate), 126
xDrawArc (built-in predicate), 128
xDrawImageString (built-in predicate), 129
xDrawLine (built-in predicate), 128
xDrawOval (built-in predicate), 128
xDrawRectangle (built-in predicate), 128
xDrawString (built-in predicate), 129
xFillArc (built-in predicate), 128
xFillOval (built-in predicate), 128
xFillPolygon (built-in predicate), 128
xFillRectangle (built-in predicate), 128
xFreeColor (built-in predicate), 127
xGetEvent (built-in function), 129
xGetWindowGeometry (built-in predicate),

127

xHideWindow (built-in predicate), 127
xLoadFont (built-in predicate), 129
xOpenConnection (built-in predicate), 126
xor (built-in function), 43
xPostScriptWindow (built-in predicate),

127
xRefreshWindow (built-in predicate), 127
xRequestNamedColor (built-in predicate),

127
xSetWindowColor (built-in predicate), 127
xSetWindowGeometry (built-in predicate),

127
xShowWindow (built-in predicate), 127
xtools (graphical interface toolkit), 130

Research Report Draft March 1994

0 The Wild LIFE Handbook (prepublication edition)
Hassan Aı̈t-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and Peter Van Roy

d
ig

i
t

a
l

PA
R

IS
R

E
S

E
A

R
C

H
L

A
B

O
R

A
TO

R
Y

85
,A

ve
nu

e
V

ic
to

rH
ug

o
92

56
3

R
U

E
IL

M
A

LM
A

IS
O

N
C

E
D

E
X

F
R

A
N

C
E

