37 Graphs

The Roy-Floyd-Warshall algorithm $[8,14,18]$ finds shortest paths in a weighted graph (with no cycle with strictly negative weight). It is an abstract interpretation of a fixpoint path finding algorithm. [$2,3,6,15$] are introductions to graph theory.

Contents

37.1 Graphs 457
37.2 Paths and cycles of a graph 457
37.3 Fixpoint characterization of the paths of a graph 458
37.4 Abstraction of the paths of a graph 459
37.5 Calculational design of the paths between any two vertices 460
37.6 Groups 462
37.7 Weighted graphs 462
37.8 Totally ordered groups 462
37.9 Minimal weight of a set of paths 463
37.10 Shortest distance along the graph paths 464
37.11 Calculational design of the shortest distances between any two vertices 464
37.12 Elementary paths and cycles 465
37.13 Calculational design of the elementary paths between any two vertices 466
37.14 Calculational design of the elementary paths between vertices of finite graphs 469
37.15 Calculational design of an over-approximation of the elementary paths between ver- tices of finite graphs 472
37.16 The Roy-Floyd-Warshall algorithm over-approximating the elementary paths of a finite graph 473
37.17 Calculational design of the Roy-Floyd-Warshall shortest path algorithm 473
37.18 Adjacency matrix 475
37.19 Conclusion 477
37.20 Answers to selected exercises 477

37.1 Graphs

A (directed) graph or digraph $G=\langle V, E\rangle$ is a pair of a set V of vertices (or nodes or points) and a set $E \in \wp(V \times V)$ of edges (or arcs). A (directed) edge $\langle x, y\rangle \in V$ has origin x and end y collectively called extremities (so the graphs we consider are always directed). Therefore E is a binary relation of Section 2.2.2 on V. Conversely, a binary relation can be understood as a graph on its field [15]. A graph is finite when the set of V of vertices (hence E) is finite.

Example 37.1

$$
G=\left[\begin{array}{rl}
V= & \{x, y, z\} \\
E= & \{\langle x, y\rangle,\langle x, z\rangle,\langle y, x\rangle, \quad \\
& \langle y, z\rangle,\langle z, z\rangle\}
\end{array} \quad \mathrm{G}=\left[\begin{array}{c|ccc}
& x & y & z \\
\hline x & 0 & 1 & 1 \\
y & 1 & 0 & 1 \\
z & 0 & 0 & 1
\end{array}\right]\right.
$$

37.2 Paths and cycles of a graph

A path π from y to z in a graph $G=\langle V, E\rangle$ is a finite sequence of vertices $\pi=x_{1} \ldots x_{n} \in V^{n}, n>1$, starting at origin $y=x_{1}$, finishing at end $z=x_{n}$, and linked by edges $\left\langle x_{i}, x_{i+1}\right\rangle \in E, i \in\left[1, n\left[{ }^{44}\right.\right.$. Let $V^{>1} \triangleq \bigcup_{n>1} V^{n}$ be the sequences of vertices of length at least 2. Formally the set $\Pi(G) \in \wp\left(V^{>1}\right)$ of all paths of a graph $G=\langle V, E\rangle$ is

$$
\begin{align*}
\Pi(G) & \triangleq \bigcup_{n>1} \Pi^{n}(G) \tag{37.2}\\
\Pi^{n}(G) & \triangleq\left\{x_{1} \ldots x_{n} \in V^{n} \mid \forall i \in\left[1, n\left[.\left\langle x_{i}, x_{i+1}\right\rangle \in E\right\} \quad(n>1)\right.\right.
\end{align*}
$$

The length $|\pi|$ of the path $\pi=x_{1} \ldots x_{n} \in V^{n}$ is the number of edges that is $n-1>0$. We do not consider the case $n=1$ of paths of length 0 with only one vertex since paths must have at least one edge. A subpath is forming a strict part of another path (which, being strict, is not equal to that path).

The vertices of a path $\pi=x_{1} \ldots x_{n} \in \Pi^{n}(G)$ of a graph G is the set $\mathrm{V}(\pi)=\left\{x_{1} \ldots x_{n}\right\}$ of vertices appearing in that path π.

A cycle is a path $x_{1} \ldots x_{n} \in \Pi^{n}(G)$ with $x_{n}=x_{1}, n>1$. Self-loops i.e. $\langle x, x\rangle \in E$ yield a cycle $x x$ of length 1 .

37.3 Fixpoint characterization of the paths of a graph

The concatenation of sets of finite paths is

$$
\begin{equation*}
P \bigcirc Q \triangleq\left\{x_{1} \ldots x_{n} y_{2} \ldots y_{m} \mid x_{1} \ldots x_{n} \in P \wedge x_{n} y_{2} \ldots y_{m} \in Q\right\} \tag{37.3}
\end{equation*}
$$

We have the following fixpoint characterization of the paths of a graph [4, Sect. 4], which is welldefined, by Tarski iterative fixpoint Theorem 13.18 .

[^0]Theorem 37.4 (Fixpoint characterization of the paths of a graph) The paths of a graph $G=$ $\langle V, E\rangle$ are

$$
\begin{align*}
& \Pi(G)=\mid f \mathrm{If}^{\subseteq} \overrightarrow{\boldsymbol{F}_{\Pi}}, \quad \overrightarrow{\mathscr{F}}_{\Pi}(X) \triangleq E \cup X \bigcirc E \tag{37.4.a}\\
& =\mid \mathrm{Ifp}^{\mathrm{s}} \overleftarrow{F}_{\Pi}, \quad \quad \overleftarrow{\mathscr{F}}_{\Pi}(X) \triangleq E \cup E \bigcirc X \tag{37.4.b}\\
& =1 \mathrm{fp}^{\mathrm{s}} \stackrel{\Im}{\mathscr{F}}_{\boldsymbol{\pi}}, \quad \overleftrightarrow{F}_{\Pi}(X) \triangleq E \cup X \bigcirc X \tag{37.4.c}\\
& =\mid \mathrm{fp}_{\mathrm{E}}^{\subseteq} \widehat{\mathscr{F}_{\Pi}}, \quad \widehat{\mathscr{F}_{\Pi}}(X) \triangleq X \cup X \bigcirc X \tag{37.4.d}
\end{align*}
$$

Proof of Theorem 37.4 We observe that $\bigcup_{i \in \Delta}\left(X_{i} \bigcirc E\right)=\bigcup_{i \in \Delta}\left\{\pi x y \mid \pi x \in X_{i} \wedge\langle x, y\rangle \in E\right\}=$ $\left\{\pi x y \mid \pi x \in \bigcup_{i \in \Delta} X_{i} \wedge\langle x, y\rangle \in E\right\}=\left(\bigcup_{i \in \Delta} X_{i}\right) \bigcirc E$ so that the transformer $\overrightarrow{\mathscr{F}}_{\Pi}$ preserves non-empty joins so is upper continuous. Same for $\overline{\mathscr{F}}_{\Pi}$.

Let $\left\langle X_{i}, i \in \mathbb{N}\right\rangle$ be a \subseteq-increasing chain of elements of $\wp\left(V^{>1}\right)$. © is componentwise increasing so $\bigcup_{i \in \mathbb{N}}\left(X_{i} \bigcirc X_{i}\right) \subseteq\left(\bigcup_{i \in \mathbb{N}} X_{i} \bigcirc \bigcup_{i \in \mathbb{N}} X_{i}\right)$. Conversely if $\pi \in\left(\bigcup_{i \in \mathbb{N}} X_{i} \bigcirc \bigcup_{i \in \mathbb{N}} X_{i}\right)$ then $\pi=\pi_{i} x \pi_{j}$ where $\pi_{i} x \in X_{i}$ and $x \pi_{j} \in X_{j}$. Assume $i \leqslant j$. Because $X_{i} \subseteq X_{j}, \pi_{i} x \in X_{j}$ so $\pi=\pi_{i} x \pi_{j} \in X_{j} \bigcirc X_{j} \subseteq$ $\bigcup_{k \in \mathbb{N}} X_{k} \bigcirc X_{k}$ proving that $\bigcup_{i \in \mathbb{N}}\left(X_{i} \bigcirc X_{i}\right) \supseteq\left(\bigcup_{i \in \mathbb{N}} X_{i} \bigcirc \bigcup_{i \in \mathbb{N}} X_{i}\right)$. We conclude, by antisymmetry, that ${\underset{F}{\Pi}}^{\infty}$ and $\stackrel{F}{\Pi}_{\Pi}$ are upper continuous.

It follows, by Kleene-Scott's fixpoint Theorem 13.23, that the least fixpoints do exist.
We consider case (37.4.c). By upper continuity, we can apply Theorem 16.20. Let us calculate the iterates $\left\langle\stackrel{\mathscr{F}}{\Pi}{ }^{k}, k \in \mathbb{N}\right\rangle$ of the fixpoint of transformer $\stackrel{\Im}{\mathscr{F}}_{\Pi}$ from \varnothing.
$\overleftrightarrow{\mathscr{F}}_{\Pi}{ }^{0}=\varnothing$, by def. of the iterates from \varnothing.
$\left.\stackrel{\mathscr{F}}{\Pi}^{1}=\stackrel{\mathscr{F}}{\Pi}^{\left(\stackrel{\mathscr{F}}{\Pi}^{0}\right.}\right)=E=\Pi^{2}(G)$ contains the paths of length 1 which are made of a single arc. If the graph has no paths longer than mere arcs, all paths are covered after 1 iteration.

Assume, by recurrence hypothesis on k, that $\stackrel{\mathscr{F}}{\Pi}{ }^{k}=\bigcup_{n=2}^{2^{k-1}} \Pi^{n}(G)$ contains exactly all paths of G of length less than or equal to 2^{k-1}. We have

$$
\begin{aligned}
& \left.=E \cup\left\{x_{1} \ldots x_{n} y_{2} \ldots y_{m} \mid x_{1} \ldots x_{n} \in \stackrel{\overparen{F}}{\Pi}^{k} \wedge x_{n} y_{2} \ldots y_{m} \in \stackrel{\rightharpoonup}{\mathscr{F}}_{\Pi}^{k-1}\right\} \quad \text { 2def. © }\right\} \\
& =E \cup\left\{x_{1} \ldots x_{n} y_{2} \ldots y_{m} \mid x_{1} \ldots x_{n} \in \bigcup_{n=2}^{2^{k-1}} \Pi^{n}(G) \wedge x_{n} y_{2} \ldots y_{m} \in \bigcup_{n=2}^{2^{k-1}} \Pi^{n}(G)\right\} \\
& =E \cup \bigcup_{n=3}^{2^{k}} \Pi^{n}(G) \\
& \text { 2(} \subseteq) \text { the concatenation of two path of length at least } 1 \text { and at most } 2^{k-1} \text { is at least of } \\
& \text { length } 2 \text { and at most of length } 2 \times 2^{k-1}=2^{k} \text {. } \\
& (\supseteq) \text { Conversely, any path of length at most } 2^{k} \text { has either length } 1 \text { in } E \text { or can be } \\
& \text { decomposed into two paths } \pi=x_{1} \ldots x_{n} \text { and } \pi^{\prime}=x_{n} y_{2} \ldots y_{m} \text { of length at most } \\
& 2^{k-1} \text {. By induction hypothesis, } \pi, \pi^{\prime} \in \bigcup_{n=2}^{2^{k-1}} \Pi^{n}(G) S
\end{aligned}
$$

By recurrence on k, for all $k \in \mathbb{N}^{+}, \overleftrightarrow{\mathscr{F}}_{\Pi}^{k}=\bigcup_{n=2}^{2^{k-1}} \Pi^{n}(G)$ contains exactly all paths from x to y of length
less than or equal to 2^{k-1}.
Finally, we must prove that the limit $\operatorname{lfp}{ }^{\mathrm{s}} \stackrel{\leftrightarrows}{\Pi}_{\Pi}=\bigcup_{k \in \mathbb{N}} \stackrel{\Im}{\mathscr{F}}^{k} k$ is $\Pi(G)$ that is contains exactly all paths of G.

Any path in $\Pi(G)$ has a length $n>0$ such that $n \leqslant 2^{n-1}$ so belongs to $\overleftrightarrow{\mathscr{F}}_{\Pi}^{n}(\varnothing)$ hence to the limit, proving $\Pi(G) \subseteq \operatorname{lfp} \subseteq \stackrel{\Im}{\mathscr{F}}_{\Pi}$.

Conversely any path in $\operatorname{Ifp}{ }^{\subseteq} \stackrel{\mathscr{F}}{\Pi}=\bigcup_{k \in \mathbb{N}} \overleftrightarrow{\mathscr{F}}_{\Pi}{ }^{k}$ belongs to some iterate ${\stackrel{\mathscr{F}_{\Pi}}{ }}^{k}$ which contains exactly all paths of length less than or equal to 2^{k} so belongs to $\Pi^{2^{k}}(G)$ hence to $\Pi(G)$, proving Ifp $\subseteq \overleftrightarrow{\mathscr{F}}_{\Pi} \subseteq$ $\Pi(G)$. By antisymmetry $\Pi(G)=I f \rho^{\subseteq} \stackrel{\overparen{F}}{\Pi}^{\boldsymbol{F}}$.

The equivalent form $\widehat{\mathscr{F}}_{\Pi}$ follows from Exercises 13.7 and 13.8. The proofs for (37.4.a,b) are similar.

Exercise 37.5. Show that in cases (37.4.a) and (37.4.b), the k-iterate is $\bigcup_{n=2}^{k} \Pi^{n}(G)$.

37.4 Abstraction of the paths of a graph

A path problem in a graph $G=\langle V, E\rangle$ consists in specifying/computing an abstraction $\alpha(\Pi(G))$ of its paths $\Pi(G)$ defined by a Galois connection

$$
\left\langle\wp\left(V^{>1}\right), \subseteq, \cup\right\rangle \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\langle A, \sqsubseteq, \sqcup\rangle .
$$

A path problem can be solved by a fixpoint definition/computation.
Theorem 37.6 (Fixpoint characterization of a path problem) Let $G=\langle V, E\rangle$ be a graph with paths $\Pi(G)$ and $\left\langle\wp\left(V^{>1}\right), \subseteq, \cup\right\rangle \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\langle A, \sqsubseteq, \sqcup\rangle$.

$$
\begin{align*}
& \alpha(\Pi(G))=\mid \mathrm{Ifp}^{\sqsubseteq} \overrightarrow{\mathscr{F}}_{\Pi}^{\sharp}, \quad \quad \overrightarrow{\mathscr{F}}_{\Pi}^{\sharp}(X) \triangleq \alpha(E) \sqcup X \bar{@} \alpha(E) \tag{37.6.a}\\
& =\mid \mathrm{Ifp}^{巨} \overleftarrow{\mathscr{F}}_{\square}^{\sharp}, \quad \overleftarrow{\mathscr{F}}_{\square}^{\sharp}(X) \triangleq \alpha(E) \sqcup \alpha(E) \bar{\bigcirc} X \tag{37.6.b}\\
& =\mid \mathrm{fp}^{\sqsubseteq} \stackrel{\dddot{F}}{\Pi}_{\sharp}, \quad \quad \overleftrightarrow{\mathscr{F}}_{\Pi}^{\sharp}(X) \triangleq \alpha(E) \sqcup X \bar{\bigcirc} X \tag{37.6.c}\\
& =\operatorname{lfp}_{\alpha(E)}^{\llcorner } \widehat{\mathscr{F}_{\Pi}^{\ddagger}}, \quad \widehat{\mathscr{F}_{\Pi}^{\sharp}}(X) \triangleq X \sqcup X \bar{@} X \tag{37.6.d}
\end{align*}
$$

where $\alpha(X \bigcirc Y)=\alpha(X) \bar{\bigcirc} \alpha(Y)$.

Proof of Theorem 37.6 All cases are similar. Let us check the commutation for (37.6.c).

$$
\begin{aligned}
& \alpha\left(\stackrel{\mathscr{F}_{\Pi}}{ }(X)\right) \\
= & \alpha(E \cup X \bigcirc X) \\
= & \alpha(E) \sqcup \alpha(X \bigcirc X)
\end{aligned}
$$

2by Lemma 11.33, the abstraction of Galois connections preserves existing joins §
$=\alpha(E) \sqcup \alpha(X) \bar{\bigcirc} \alpha(X)$
2by hyp. ${ }^{\text {S }}$
$=\overleftrightarrow{\mathscr{F}}_{\Pi}^{\sharp}(\alpha(X))$
2def. (37.6.c) of $\stackrel{\Im}{\mathscr{F}}_{\Pi}^{\sharp}$)

We conclude by Theorem 37.4 and exact least fixpoint abstraction Theorem 16.17. The equivalent form $\widehat{\mathscr{F}_{\Pi}^{1}}$ follows from Exercises 13.7 and 13.8.

37.5 Calculational design of the paths between any two vertices

As a direct application of Theorem 37.6, let us consider the abstraction of all paths $\Pi(G)$ into the paths between any two vertices. This is $p \triangleq \alpha^{\infty 0}(\Pi(G))$ with the projection abstraction

$$
\alpha^{\infty}(X) \triangleq(y, z) \mapsto\left\{x_{1} \ldots x_{n} \in X \mid y=x_{1} \wedge x_{n}=z\right\}
$$

such that

$$
\begin{equation*}
\left\langle\wp\left(V^{>1}\right), \subseteq, \cup\right\rangle \underset{\alpha^{\infty}}{\stackrel{\gamma^{\infty}}{\leftrightarrows}}\left\langle V \times V \rightarrow \wp\left(V^{>1}\right), \subseteq \dot{\cup}\right\rangle \tag{37.7}
\end{equation*}
$$

By (37.2) and Lemma 11.33 on existing join preservation, we have

$$
\begin{align*}
\mathrm{p}(y, z) & \triangleq \bigcup_{n \in \mathbb{N}^{+}} \mathrm{p}^{n}(y, z) \tag{37.8}\\
\mathrm{p}^{n}(y, z) & \triangleq\left\{x_{1} \ldots x_{n} \in \Pi^{n}(G) \mid y=x_{1} \wedge x_{n}=z\right\} \\
& =\left\{x_{1} \ldots x_{n} \in V^{n} \mid y=x_{1} \wedge x_{n}=z \wedge \forall i \in\left[1, n\left[.\left\langle x_{i}, x_{i+1}\right\rangle \in E\right\}\right.\right.
\end{align*}
$$

$\mathrm{p}(x, x)$ is empty if and only if there is no cycle from x to x (which requires, in particular, that the graph has no self-loops i.e. $\forall x \in V .\langle x, x\rangle \notin E)$. We define the concatenation of finite paths

$$
\begin{align*}
x_{1} \ldots x_{n} \odot y_{1} y_{2} \ldots y_{m} & \triangleq x_{1} \ldots x_{n} y_{2} \ldots y_{m} & \text { if } x_{n}=y_{1} \tag{37.9}\\
& \triangleq \text { undefined } & \text { otherwise }
\end{align*}
$$

As a direct application of the path problem Theorem 37.6, we have the following fixpoint characterization of the paths of a graph between any two vertices [4, Sect. 5], which, by Tarski iterative fixpoint Theorem 13.18 and its variants yields an iterative algorithm (converging in finitely many iterations for graphs without infinite paths).

Theorem 37.10 (Fixpoint characterization of the paths of a graph between any two vertices) Let $G=\langle V, E\rangle$ be a graph. The paths between any two vertices of G are $\mathrm{p}=\Pi(G)$ such that

$$
\begin{align*}
& =\mid f p_{E}^{c} \widehat{\mathscr{F}_{\Pi}^{\infty}}, \quad \widehat{\mathscr{F}}_{\Pi}^{\infty}(p) \triangleq p \dot{p} p \stackrel{\circ}{\circ} p \tag{37.10.c}
\end{align*}
$$

where $\dot{E} \triangleq x, y \mapsto(E \cap\{\langle x, y\rangle\})$ and $\mathrm{p}_{1} \odot \stackrel{\circ}{\circ}^{\circ} \mathrm{p}_{2} \triangleq x, y \mapsto \bigcup_{z \in V} \mathrm{p}_{1}(x, z) \bigcirc \mathrm{p}_{2}(z, y)$.

Proof of Theorem 37.10 We apply Theorem 37.6 with $\alpha^{\circ o}(E)=x, y \mapsto(E \cap\{\langle x, y\rangle\})=\dot{E}$ and $\alpha^{\circ \circ}(X \bigcirc Y)$
$=(x, y) \mapsto\left\{z_{1} \ldots z_{n} \in X \bigcirc Y \mid x=z_{1} \wedge z_{n}=y\right\} \quad$ 2def. (37.7) of $\left.\alpha^{\infty \circ}\right\}$
$=(x, y) \mapsto\left\{z_{1} \ldots z_{n} \in\left\{x_{1} \ldots x_{k} y_{2} \ldots y_{m} \mid x_{1} \ldots x_{k} \in X \wedge x_{k} y_{2} \ldots y_{m} \in Y\right\} \mid x=z_{1} \wedge z_{n}=y\right\}$
2def. (37.3) of © \int
$=(x, y) \mapsto \bigcup_{z \in V}\left\{x x_{2} \ldots x_{k-1} z y_{2} \ldots, y_{m-1} y \mid x x_{2} \ldots x_{k-1} z \in X \wedge z y_{2} \ldots y_{m-1} y \in Y\right\}$ 2def. \in and \cup with $x=x_{1}, y_{m}=y$, and $z=x_{k} \delta$
$=(x, y) \mapsto \bigcup_{z \in V}\left\{x x_{2} \ldots x_{k-1} z \odot z y_{2} \ldots y_{m-1} y \mid x x_{2} \ldots x_{k-1} z \in X \wedge z y_{2} \ldots y_{m-1} y \in Y\right\}$
2def. (37.9) of $\odot \bigcirc$
$=(x, y) \mapsto \bigcup_{z \in V}\left\{p \odot p^{\prime} \mid p \in \alpha^{\infty}(X)(y, z) \wedge p^{\prime} \in \alpha^{\infty}(Y)(z, y)\right\}$
\{def. $\alpha^{\omega \circ}(X)$ with $p=x x_{2} \ldots x_{k-1} z$ and $\left.p^{\prime}=z y_{2} \ldots y_{m-1} y\right\}$
$=\alpha^{\alpha 0}(X) \stackrel{\circ}{\circ} \alpha^{\alpha 0}(Y)$
by defining $X \stackrel{\circ}{\circ} Y \triangleq(x, y) \mapsto \bigcup_{z \in V}\left\{p \odot p^{\prime} \mid p \in X(y, z) \wedge p^{\prime} \in Y(z, y)\right\}=(x, y) \mapsto \bigcup_{z \in V} X(y, z) \odot$ $Y(z, y)$ by (37.3) and (37.9).

We now equip graphs with weights e.g. to measure the distance between vertices.

37.6 Groups

A group $\langle\mathbb{G}, 0,+\rangle^{45}$ is a set \mathbb{G} with $0 \in \mathbb{G}$ and $+\in \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}$ such that

[^1]- $\forall a, b, c \in \mathbb{G} \cdot(a+b)+c=a+(b+c)$
(associativity)
- $\forall a \in \mathbb{G} \cdot 0+a=a+0=a$
(identity denoted 0)
- $\forall a \in \mathbb{G} . \exists b \in \mathbb{G} . a+b=0$
(inverse, b is denoted $-a$ or a^{-1}.)
For example the scalars $\langle\mathbb{F}, 0,+\rangle$ are a group where 0 is the null scalar and + is scalar addition. Integers modulo n are a group under addition.

37.7 Weighted graphs

Let $\langle\mathbb{G}, 0,+\rangle$ be a group. A (directed) graph $G=\langle V, E, \boldsymbol{\omega}\rangle$ weighted on the group \mathbb{G} is a finite graph $\langle V, E\rangle$ equipped with a weight $\boldsymbol{\omega} \in E \rightarrow \mathbb{G}$ mapping arcs to their weight.
Example 37.11 Continuing Example 37.1,

37.8 Totally ordered groups

A totally (or linearly) ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$ is a group $\langle\mathbb{G}, 0,+\rangle$ with a total order \leqslant on \mathbb{G} such that

- $\forall a, b, c \in \mathbb{G} .(a \leqslant b) \Rightarrow(a+c \leqslant b+c)$ (translation-invariance.)

An element $x \in \mathbb{G}$ of a totally ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$ is said to be strictly negative if and only if $x \leqslant 0 \wedge x \neq 0$.

Following Section 10.3, if $S \subseteq \mathbb{G}$ then we define $\min S$ to be the greatest lower bound of S in \mathbb{G} or $-\infty$:

$$
\begin{array}{rlrl}
\min S & =m & \Leftrightarrow m \in \mathbb{G} \wedge(\forall x \in S . m \leqslant x) \wedge(\forall y \in S . y \leqslant x \Rightarrow y \leqslant m) \\
& =-\infty & \Leftrightarrow \forall x \in S . \exists y \in S . y<x & \\
& =\infty & \Leftrightarrow S=\varnothing & (\text { where }-\infty \notin \mathbb{G}) \\
& & \text { where } \infty \notin \mathbb{G})
\end{array}
$$

So if \mathbb{G} has no infimum $\min \mathbb{G}=\max \varnothing=-\infty \notin \mathbb{G}$. Similarly, $\max S$ is the least upper bound of S in \mathbb{G}. if any, $-\infty$ otherwise, with $\max \mathbb{G}=\min \varnothing=\infty \notin \mathbb{G}$ when \mathbb{G} has no supremum.

Exercise 37.12 (min of a sum). Let $\langle\mathbb{G}, \leqslant, 0,+\rangle$ be a totally ordered group, $S_{1}, S_{2} \in \wp(\mathbb{G})$. Extend + with $x+\infty=\infty+x=\infty+\infty=\infty$. Prove that $\min \left\{x+y \mid x \in S_{1} \wedge y \in S_{2}\right\}=\min S_{1}+\min S_{2}$.

37.9 Minimal weight of a set of paths

The weight of a path is

$$
\begin{equation*}
\boldsymbol{\omega}\left(x_{1} \ldots x_{n}\right) \triangleq \sum_{i=1}^{n-1} \boldsymbol{\omega}\left(\left\langle x_{i}, x_{i+1}\right\rangle\right) \tag{37.13}
\end{equation*}
$$

which is 0 when $n \leqslant 1$ and $\boldsymbol{\omega}\left(\left\langle x_{1}, x_{2}\right\rangle\right)+\sum_{i=2}^{n-1} \boldsymbol{\omega}\left(\left\langle x_{i}, x_{i+1}\right\rangle\right)$ when $n>1$. The (minimal) weight of a set of paths is

$$
\begin{equation*}
\boldsymbol{\omega}(P) \triangleq \min \{\boldsymbol{\omega}(\pi) \mid \pi \in P\} \tag{37.14}
\end{equation*}
$$

We have $\boldsymbol{\omega}\left(\bigcup_{i \in \Delta} P_{i}\right)=\min _{i \in \Delta} \boldsymbol{\omega}\left(P_{i}\right)$ so a Galois connection

$$
\left\langle\wp\left(\bigcup_{n \in \mathbb{N}^{+}} V^{n}\right), \subseteq\right\rangle \underset{\omega}{\leftrightarrows}\langle\mathbb{G} \cup\{-\infty, \infty\}, \geqslant\rangle
$$

and the complete lattice $\langle\mathbb{G} \cup\{-\infty, \infty\}, \geqslant, \infty,-\infty, \min , \max \rangle$.
Extending pointwise to $V \times V \rightarrow \wp\left(\bigcup_{n \in \mathbb{N}^{+}} V^{n}\right)$ with $\dot{\boldsymbol{\omega}}(\mathrm{p})\langle x, y\rangle \triangleq \boldsymbol{\omega}(\mathrm{p}(x, y)), \mathrm{d} \leqslant \mathrm{d}^{\prime} \triangleq \forall x, y$. $\mathrm{d}\langle x, y\rangle \leqslant \mathrm{d}^{\prime}\langle x, y\rangle$, and \geqslant is the inverse of \leqslant, we have

$$
\begin{equation*}
\left\langle V \times V \rightarrow \wp\left(\bigcup_{n \in \mathbb{N}^{+}} V^{n}\right), \dot{\subseteq}\right\rangle \underset{\dot{\omega}}{\rightleftarrows}\langle V \times V \rightarrow \mathbb{G} \cup\{-\infty, \infty\}, \dot{\geqslant}\rangle . \tag{37.15}
\end{equation*}
$$

Example 37.16 (Graph with cycle of strictly negative weight) The following graph

has a cycle x, y, x of weight $-1, x, y, x, y, x$ of weight $-2, x, y, x, y, x, y, x$ of weight -3 , etc. so that the minimum distance between x and y is $-\infty$.

37.10 Shortest distance along the graph paths

The distance $\mathrm{d}(x, y)$ between an origin $x \in V$ and an extremity $y \in V$ of a weighted finite graph $G=\langle V, E, \boldsymbol{\omega}\rangle$ on a totally ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$ is the length $\boldsymbol{\omega}(\mathrm{p}(x, y))$ of the shortest path between these vertices

$$
\mathrm{d} \triangleq \dot{\boldsymbol{\omega}}(\mathrm{p})
$$

where p has a fixpoint characterization given by Theorem 37.10.

37.11 Calculational design of the shortest distances between any two vertices

The shortest distance between vertices of a weighted graph is a path problem solved by Theorem 37.6, the composition of the abstractions and (37.15) and (37.7), and the path abstraction Theorem 37.6. Theorem 37.17 is based on (37.6.d), (37.6.a-c) provide three other solutions.

Theorem 37.17 (Fixpoint characterization of the shortest distances of a graph) Let $G=\langle V$, $E, \boldsymbol{\omega}\rangle$ be a graph weighted on the totally ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$. Then the distances between any two vertices are

$$
\begin{align*}
\mathrm{d}= & \dot{\boldsymbol{\omega}}(\mathrm{p})=\operatorname{gfp}_{\mathrm{E}^{\omega}}^{\vdots} \widehat{\mathscr{F}}_{G}^{\delta} \quad \text { where } \tag{37.17}\\
& E^{\boldsymbol{\omega}} \triangleq(x, y) \mapsto \llbracket\langle x, y\rangle \in E \text { \& } \boldsymbol{\omega}(x, y) \circ \infty \downarrow \\
& \widehat{\mathscr{F}}_{\mathrm{G}}^{\delta}(X) \triangleq(x, y) \mapsto \min \left\{X(x, y), \min _{z \in V}\{X(x, z)+X(z, y)\}\right\}
\end{align*}
$$

Proof of Theorem 37.17 We apply Theorem 37.6 with abstraction $\dot{\boldsymbol{\omega}} \circ \alpha^{\alpha o}$ so that we have to abstract the transformers in Theorem 37.10 using an exact fixpoint abstraction of Theorem 16.17. The initialization and commutation condition yield the transformers by calculational design.

$$
\begin{aligned}
& \text { - } \quad \dot{\boldsymbol{\omega}} \circ \alpha^{\circ \circ}(E)(x, y) \\
& =\boldsymbol{\omega}(E \cap\{\langle x, y\rangle\}) \\
& =\llbracket\langle x, y\rangle \in E \text { ? } \boldsymbol{\omega}(x, y) \therefore \min \varnothing \rrbracket \\
& \text { \{as proved for Theorem } 37.10 \text { and def. } \boldsymbol{\omega}\} \\
& =\llbracket\langle x, y\rangle \in E \text { \& } \boldsymbol{\omega}(x, y): \infty \rrbracket \\
& \text { ¿def. } \cap \text {, conditional, and } \boldsymbol{\omega} \text { \} } \\
& \text { (def. min) } \\
& -\quad \dot{\boldsymbol{\omega}} \circ \alpha^{\circ}(X \bigcirc Y)(x, y) \\
& =\dot{\boldsymbol{\omega}}\left(\alpha^{\infty-}(X) \varrho_{0}^{\circ} \alpha^{\infty-}(Y)\right)(x, y) \quad \text { (as proved for Theorem 37.10 } \\
& \left.\left.=\boldsymbol{\omega}\left(\alpha^{\infty \circ}(X) \stackrel{\circ}{\circ} \alpha^{\infty \circ}(Y)\right)(x, y)\right) \quad \text { 2pointwise def. (37.15) of } \dot{\boldsymbol{\omega}}\right\} \\
& \left.=\boldsymbol{\omega}\left(\bigcup_{z \in V} \alpha^{\infty-}(X)(x, z) \bigcirc \alpha^{\infty-}(Y)(z, y)\right)\right) \quad \text { (def. ©ْ in Theorem 37.10 }{ }^{\circ} \\
& \left.=\min _{z \in V} \boldsymbol{\omega}\left(\alpha^{\infty 0}(X)(x, z) \bigcirc \alpha^{\infty-}(Y)(z, y)\right)\right) \quad \text { 2Galois connection (37.14)S } \\
& =\min _{z \in V} \boldsymbol{\omega}\left(\left\{x_{1} \ldots x_{n} y_{2} \ldots y_{m} \mid x_{1} \ldots x_{n} \in \alpha^{\infty \circ}(X)(x, z) \wedge x_{n} y_{2} \ldots y_{m} \in \alpha^{\infty \rho}(Y)(z, y)\right\}\right) \\
& \text { 2def. (37.3) of © } \bigcirc \\
& \left.=\min _{z \in V}\left\{\boldsymbol{\omega}\left(x_{1} \ldots x_{n} y_{2} \ldots y_{m}\right) \mid x_{1} \ldots x_{n} \in \alpha^{\infty \rho}(X)(x, z) \wedge x_{n} y_{2} \ldots y_{m} \in \alpha^{\infty \rho}(Y)(z, y)\right\}\right) \\
& \text { 2def. (37.14) of } \boldsymbol{\omega} \text {) } \\
& \left.=\min _{z \in V}\left\{\boldsymbol{\omega}\left(x_{1} \ldots x_{n}\right)+\boldsymbol{\omega}\left(x_{n} y_{2} \ldots y_{m}\right) \mid x_{1} \ldots x_{n} \in \alpha^{\infty \varrho}(X)(x, z) \wedge x_{n} y_{2} \ldots y_{m} \in \alpha^{\omega \circ}(Y)(z, y)\right\}\right) \\
& \text { 2def. (37.13) of } \boldsymbol{\omega} \text {) } \\
& \left.=\min _{z \in V}\left\{\boldsymbol{\omega}\left(x_{1} \ldots x_{n}\right)+\boldsymbol{\omega}\left(y_{1} y_{2} \ldots y_{m}\right) \mid x_{1} \ldots x_{n} \in \alpha^{\infty \rho}(X)(x, z) \wedge y_{1} y_{2} \ldots y_{m} \in \alpha^{\omega \rho}(Y)(z, y)\right\}\right) \\
& \text { \{def. } \left.\alpha^{o-\infty} \text { so that } x_{1}=x, x_{n}=y_{1}=z \text {, and } y_{m}=y\right\} \\
& =\min _{z \in V} \min \left\{\boldsymbol{\omega}\left(x_{1} \ldots x_{n}\right) \quad \mid \quad x_{1} \ldots x_{n} \in \alpha^{\infty-}(X)(x, z)\right\}+\min \left\{\boldsymbol{\omega}\left(y_{1} y_{2} \ldots y_{m}\right) \quad \mid \quad y_{1} y_{2} \ldots y_{m} \in\right. \\
& \left.\alpha^{\omega 0}(Y)(z, y)\right\} \quad \text { 2min of a sum in Exercise } 37.12 \int \\
& =\min _{z \in V} \min \left\{\boldsymbol{\omega}\left(\pi_{1}\right) \mid \pi_{1} \in \alpha^{\rho o}(X)(x, z)\right\}+\min \left\{\boldsymbol{\omega}\left(\pi_{2}\right) \mid \pi_{2} \in \alpha^{\infty \rho}(Y)(z, y)\right\} \\
& \text { \{letting } \left.\pi_{1}=x_{1} \ldots x_{n} \text { and } \pi_{2}=y_{1} y_{2} \ldots y_{m}\right\}
\end{aligned}
$$

$=\min _{z \in V} \boldsymbol{\omega}\left(\alpha^{0-}(X)(x, z)\right)+\boldsymbol{\omega}\left(\alpha^{00}(Y)(z, y)\right)$
2def. (37.14) of $\boldsymbol{\omega}\}$
$=\min _{z \in V} \dot{\boldsymbol{\omega}} \circ \alpha^{\omega-}(X)(x, z)+\dot{\boldsymbol{\omega}} \circ \alpha^{\omega \circ}(Y)(z, y)$
2pointwise def. (37.15) of $\dot{\boldsymbol{\omega}}\}$
By Theorem 37.6 and (37.10.d), we get the transformer $\widehat{\mathscr{F}_{G}^{\delta}}$.
Of course the greatest fixpoint in Theorem 37.17 is not computable for infinite graphs.
Exercise 37.18. Calculate shortest distances between vertices of the infinite weighted graph $\langle\mathbb{N}$, $\{\langle n, n+1\rangle \mid n \in \mathbb{N}\},\langle n, m\rangle \mapsto 1\rangle$.

For finite graphs, there is a problem with cycles with strictly negative weights. As shown by Example 37.16, the minimal distance between the extremities x and y of the cycle $x y x$ is $-\infty$. It is obtained as the limit of an infinite iteration for the greatest fixpoint in Theorem 37.17. Following Roy-Floyd-Warshall, we will assume that the graph has no cycle with negative weight in which case the iterative computation of the greatest fixpoint in Theorem 37.17 does converge to the shortest distance between any two vertices.

For a finite graph of n vertices, the computation of $\operatorname{gfp}_{E^{\omega}}^{\vdots} \widehat{\mathscr{F}}_{G}^{\delta}$ in (37.17) has to consider all pairs of vertices in n^{2}, for each such pair $\langle x, y\rangle$ the n vertices $z \in V$, and n iterations may be necessary to converge along a path going through all vertices, so would be in $O\left(n^{4}\right)$.

However, the iteration in Roy-Floyd-Warshall algorithm is much more efficient in $O\left(n^{3}\right)$, since it does not consider all paths in the graph but only simple paths that over-approximate paths with no cycles (called elementary paths). Let us design the Roy-Floyd-Warshall algorithm by calculus.

37.12 Elementary paths and cycles

A cycle is elementary if and only if it contains no internal subcycle (i.e. subpath which is a cycle). A path is elementary if and only if it contains no subpath which is an internal cycle (so an elementary cycle is an elementary path). The only vertices that can have two occurrences in an elementary path are its extremities in which case it is an elementary cycle.
Example 37.19 In Example 37.1, $x y z$ and $x z$ are elementary paths ($z z$ is a path of length 1). The path $x y x$ is an elementary cycle ($z z$ is a cycle of length 1). The paths $x y z z$ and $x y x y x z$ and the cycles $y x y x y$ and $z z z$ are not elementary. We do not consider infinite paths such as $x y x y x \ldots$.
[Lemma 37.20 (elementary path) A path $x_{1} \ldots x_{n} \in \Pi^{n}(G)$ is elementary if and only if

$$
\begin{aligned}
\text { elem } ?\left(x_{1} \ldots x_{n}\right) \triangleq & \left(\forall i, j \in[1, n] .(i \neq j) \Rightarrow\left(x_{i} \neq x_{j}\right)\right) \vee \\
& \left(x_{1}=x_{n} \wedge \text { elem } ?\left(x_{1} \ldots x_{n-1}\right)\right)
\end{aligned} \quad \text { (case of a cycle) } \quad \text {) }
$$

is true.

Proof of Lemma 37.20 - The necessary condition $\left(x_{1} \ldots x_{n} \in \Pi^{n}(G)\right.$ is elementary implies that elem? $\left.\left(x_{1} \ldots x_{n}\right)\right)$ is proved contrapositively.

$$
\begin{array}{rlrl}
& \neg\left(\operatorname{elem} ?\left(x_{1} \ldots x_{n}\right)\right) & & \\
= & \neg\left(\left(\forall i, j \in[1, n] .(i \neq j) \Rightarrow\left(x_{i} \neq x_{j}\right)\right) \vee\left(x_{1}=x_{n} \wedge \text { elem? }\left(x_{1} \ldots x_{n}\right)\right)\right) & \text { 2def. elem? } \int \\
= & \left(\exists i, j \in[1, n] . i \neq j \wedge x_{i}=x_{j}\right) \wedge\left((x _ { 1 } = x _ { n }) \Rightarrow \left(\exists i, j \in\left[1, n\left[. i \neq j \wedge x_{i} \neq x_{j}\right)\right)\right.\right. &
\end{array}
$$

2De Morgan laws)
By $\exists i, j \in[1, n] . i \neq j \wedge x_{i}=x_{j}$ the path $x_{1} \ldots x_{n}$ must have a cycle, but this is not forbidden if $x_{1}=x_{n}$. In that case, the second condition $\left(x_{1}=x_{n}\right) \Rightarrow\left(\exists i, j \in\left[1, n\left[. i \neq j \wedge x_{i} \neq x_{j}\right)\right.\right.$ implies that there is a subcycle within $x_{1} \ldots x_{n-1}$, so the cycle $x_{1} \ldots x_{n-1} x_{1}$ is not elementary.

- Conversely, the sufficient condition (elem? $\left(x_{1} \ldots x_{n}\right) \Rightarrow x_{1} \ldots x_{n} \in \Pi^{n}(G)$ is elementary) is proved by reductio ad absurdum. Assume elem? $\left(x_{1} \ldots x_{n}\right)$ and $x_{1} \ldots x_{n} \in \Pi^{n}(G)$ is not elementary so has an internal subcycle.
- If $x_{1}=x_{n}$, the internal subcycle is $x_{1} \ldots x_{n-1}=\pi_{1} a \pi_{2} a \pi_{3}$ so $\exists i, j \in\left[1, n\left[. i \neq j \wedge x_{i} \neq x_{j}\right.\right.$ in contradiction with elem? $\left(x_{1} \ldots x_{n}\right)$.
- Otherwise $x_{1} \neq x_{n}$ and the internal subcycle has the form $x_{1} \ldots x_{n}=\pi_{1} a \pi_{2} a \pi_{3}$ where, possibly $\pi_{1} a=x_{1}$ or $a \pi_{3}=x_{n}$, but not both, so $\exists i, j \in[1, n] . i \neq j \wedge x_{i} \neq x_{j}$ in contradiction with elem? $\left(x_{1} \ldots x_{n}\right)$.

37.13 Calculational design of the elementary paths between any two vertices

Restricting paths to elementary ones is the abstraction

$$
\alpha^{\partial}(P) \triangleq\{\pi \in P \mid \operatorname{elem} ?(\pi)\}
$$

Notice that, by (37.20), cycles (such as x, x for a self-loop $\langle x, x\rangle \in E$) are not excluded, provided it is through the path extremities. By Exercise 11.2, this exclusion abstraction is a Galois connection.

$$
\left\langle\wp\left(V^{>1}\right), \subseteq\right\rangle \underset{\alpha^{2}}{\stackrel{\gamma^{2}}{\leftrightarrows}}\left\langle\wp\left(V^{>1}\right), \subseteq\right\rangle
$$

which extends pointwise to

$$
\left\langle V \times V \rightarrow \wp\left(V^{>1}\right), \dot{\subseteq}\right\rangle \underset{\dot{\alpha}^{\partial}}{\stackrel{\dot{\gamma}^{2}}{\leftrightarrows}}\left\langle V \times V \rightarrow \wp\left(V^{>1}\right), \dot{\subseteq}\right\rangle
$$

The following Lemma 37.21 provides a necessary and sufficient condition for the concatenation of two elementary paths to be elementary.

Lemma 37.21 (concatenation of elementary paths) If $x \pi_{1} z$ and $z \pi_{2} y$ are elementary paths then their concatenation $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y$ is elementary if and only if

$$
\begin{align*}
\text { elem-conc? }\left(x \pi_{1} z, z \pi_{2} y\right) \triangleq & \left(\vee\left(x \pi_{1} z\right) \cap \bigvee\left(\pi_{2} y\right)=\varnothing\right) \vee \tag{37.21}\\
& \left(x=y \neq z \wedge \bigvee\left(\pi_{1} z\right) \cap \bigvee\left(\pi_{2}\right)=\varnothing\right)
\end{align*}
$$

is true.

Example 37.22 Assume x, y, z, a, and b are all different vertices. $x a z \odot z b x=x a z b x$ of the form $x \pi_{1} z \odot z \pi_{2} y$ with $x=y \neq z \wedge \mathrm{~V}(a z) \cap \mathrm{V}(b)=\varnothing$ is elementary. $x y z \odot z a y=x y z a y$ with $x \neq y \wedge \mathrm{~V}(x y z) \cap \mathrm{V}(a y)=\{y\} \neq \varnothing$ is not elementary. $x x \odot x x=x x x$ and $x a x \odot x b x=x a x b x$ of the form $x \pi_{1} z \odot z \pi_{2} y$ with $x=z=y$ are not elementary. $x z \odot z z=x z z$ of the form $x \pi_{1} z \odot z \pi_{2} y$ with $y=z$ is not.

Proof of Lemma 37.21 Assuming $x \pi_{1} z$ and $z \pi_{2} y$ to be elementary, we must prove that elem-conc? $\left(\pi_{1}\right.$, $\left.\pi_{2}\right)$ is true $\Leftrightarrow \pi_{1} \odot \pi_{2}$ is elementary.

- We prove the necessary condition $\left(\pi_{1} \odot \pi_{2}\right.$ is elementary \Rightarrow elem-conc? $\left.\left(\pi_{1}, \pi_{2}\right)\right)$ by contraposition (ᄀelem-conc? $\left(\pi_{1}, \pi_{2}\right) \Rightarrow \pi_{1} \odot \pi_{2}$ has an internal cycle). We have

$$
\neg\left(\left(\mathrm{V}\left(x \pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2} y\right)=\varnothing\right) \vee\left(x=y \wedge x \neq z \wedge y \neq z \wedge \mathrm{~V}\left(\pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2}\right)=\varnothing\right)\right)
$$

$=\left(\left(\mathrm{V}\left(x \pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2} y\right) \neq \varnothing\right) \wedge\left(x \neq y \vee x=z \vee y=z \vee \mathrm{~V}\left(\pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2}\right) \neq \varnothing\right)\right)$ 2de Morgan laws \int

- If $x=y$ then $x \in\left(\mathrm{~V}\left(x \pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2} y\right)\right) \neq \varnothing$ so
- Either $x=z$ or $y=z$ and $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y=x \pi_{1} x \pi_{2} x$ has two internal cycles $x \pi_{1} x$ and $x \pi_{2} x$ so, by (37.20), is not elementary;
- $\operatorname{Or} \mathrm{V}\left(\pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2}\right) \neq \varnothing$ with
- either $\mathrm{V}\left(\pi_{1}\right) \cap \mathrm{V}\left(\pi_{2}\right) \neq \varnothing$ so $\pi_{1}=\pi_{1}^{\prime} a \pi_{1}^{\prime \prime}$ and $\pi_{2}=\pi_{2}^{\prime} a \pi_{2}^{\prime \prime}$ and therefore $\pi_{1} \odot \pi_{2}=$ $x \pi_{1} z \pi_{2} y=x \pi_{1}^{\prime} a \pi_{1}^{\prime \prime} z \pi_{2}^{\prime} a \pi_{2}^{\prime \prime} x$ has an internal cycle $a \pi_{1}^{\prime \prime} z \pi_{2}^{\prime} a$,
- or $z \in \mathrm{~V}\left(\pi_{2}\right)$ so $\pi_{2}=\pi_{2}^{\prime} z \pi_{2}^{\prime \prime}$ and therefore $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y=x \pi_{1} z \pi_{2}^{\prime} z \pi_{2}^{\prime \prime} x$ has an internal cycle $z \pi_{2}^{\prime} z$;
- Otherwise $x \neq y$ and we have $\mathrm{V}\left(x \pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2} y\right) \neq \varnothing$. By cases.
- If x appears in $\pi_{2} y$ that is in π_{2} since $x \neq y$ we have $\pi_{2}=\pi_{2}^{\prime} x \pi_{2}^{\prime \prime}$ and then $\pi_{1} \odot \pi_{2}=$ $x \pi_{1} z \pi_{2} y=x \pi_{1} z \pi_{2}^{\prime} x \pi_{2}^{\prime \prime} y$ has an internal cycle $x \pi_{1} z \pi_{2}^{\prime} x$;
- Else, if $\mathrm{V}\left(\pi_{1}\right) \cap \mathrm{V}\left(\pi_{2} y\right) \neq \varnothing$ then
- Either $\mathrm{V}\left(\pi_{1}\right) \cap \mathrm{V}\left(\pi_{2}\right) \neq \varnothing$ so $\pi_{1}=\pi_{1}^{\prime} a \pi_{1}^{\prime \prime}$ and $\pi_{2}=\pi_{2}^{\prime} a \pi_{2}^{\prime \prime}$ and therefore $\pi_{1} \odot \pi_{2}=$ $x \pi_{1} z \pi_{2} y=x \pi_{1}^{\prime} a \pi_{1}^{\prime \prime} z \pi_{2}^{\prime} a \pi_{2}^{\prime \prime} x$ has an internal cycle $a \pi_{1}^{\prime \prime} z \pi_{2}^{\prime} a$,
- Or $y \in \mathrm{~V}\left(\pi_{1}\right)$ so $\pi_{1}=\pi_{1}^{\prime} y \pi_{1}^{\prime \prime}$ and then $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y=x \pi_{1}^{\prime} y \pi_{1}^{\prime \prime} z \pi_{2} y$ has an internal cycle $y \pi_{1}^{\prime \prime} z \pi_{2} y$;
- Otherwise, $z \in \mathrm{~V}\left(\pi_{2} y\right) \neq \varnothing$ and then
- Either $z \in \mathrm{~V}\left(\pi_{2}\right)$ so $\pi_{2}=\pi_{2}^{\prime} z \pi_{2}^{\prime \prime}$ and $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y=x \pi_{1} z \pi_{2}^{\prime} z \pi_{2}^{\prime \prime} y$ has an internal cycle $z \pi_{2}^{\prime} z$,
- Or $z=y$ and $\pi_{1} \odot \pi_{2}=x \pi_{1} z \pi_{2} y=x \pi_{1} z \pi_{2} z$ has an internal cycle $z \pi_{2} z$.
- We prove that the condition is sufficient (elem-conc? $\left(\pi_{1}, \pi_{2}\right) \Rightarrow \pi_{1} \odot \pi_{2}$ is elementary) by reductio ad absurdum. Assume $x \pi_{1} z$, and $z \pi_{2} y$ are elementary, elem-conc? $\left(x \pi_{1} z, z \pi_{2} y\right)$ holds, but that $x \pi_{1} z \odot z \pi_{2} y=x \pi_{1} z \pi_{2} y$ is not elementary. By hypothesis, the internal cycle can neither be in $x \pi_{1} z$ nor in $z \pi_{2} y$ so $\mathrm{V}\left(x \pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2} y\right) \neq \varnothing$. Since elem-conc? $\left(\pi_{1}, \pi_{2}\right)$ holds, it follows that
$x=y \neq z \wedge \mathrm{~V}\left(\pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2}\right)=\varnothing$ in contradiction with the existence of an internal cycle $a \pi^{\prime \prime} \pi_{2}^{\prime} a$ requiring $\pi_{1} z=\pi^{\prime} a \pi^{\prime \prime}$ and $\pi_{2}=\pi_{2}^{\prime} a \pi_{2}^{\prime \prime}$ so $a \in \mathrm{~V}\left(\pi^{\prime} a \pi^{\prime \prime}\right) \cap \mathrm{V}\left(\pi_{2}^{\prime} a \pi_{2}^{\prime \prime}\right)=\mathrm{V}\left(\pi_{1} z\right) \cap \mathrm{V}\left(\pi_{2}\right) \neq \varnothing$.

We have the following fixpoint characterization of the elementary paths of a graph (converging in finitely many iterations for graphs without infinite paths).

Theorem 37.23 (Fixpoint characterization of the elementary paths of a graph) Let $G=\langle V$, $E\rangle$ be a graph. The elementary paths between any two vertices of G are $\mathrm{p}^{ə} \triangleq \alpha^{\infty} \circ \alpha^{ə}(\Pi(G))$ such that

$$
\begin{align*}
& =\mid f p^{\underline{E}} \overleftarrow{\mathscr{F}}_{\Pi}^{\partial}, \quad \overleftarrow{\mathscr{F}}_{\Pi}^{\partial}(\mathrm{p}) \triangleq \dot{E} \dot{\cup} \dot{E} \dot{O}^{2} \mathrm{p} \tag{37.23.a}
\end{align*}
$$

$$
\begin{align*}
& =\mid f p_{\dot{E}}^{\vdots} \widehat{\mathscr{F}_{\Pi}^{\partial}}, \quad \widehat{\mathscr{F}}{ }_{\Pi}^{\partial}(p) \triangleq p \dot{U} p \dot{O}^{\partial} p \tag{37.23.c}
\end{align*}
$$

where $\mathrm{p}_{1} \bigcirc^{\partial} \mathrm{p}_{2} \triangleq x, y \mapsto \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \mathrm{p}_{1}(x, z) \wedge \pi_{2} \in \mathrm{p}_{2}(z, y) \wedge\right.$ elem-conc? $\left.\left(\pi_{1}, \pi_{2}\right)\right\}$.

Proof of Theorem 37.23 We apply Theorem 37.6 with abstraction $\dot{\alpha}^{\partial} \circ \alpha^{\omega 0}$ so that we have to abstract the transformers in Theorem 37.10 using an exact fixpoint abstraction of Theorem 16.17. The commutation condition yields the transformers by calculational design.

$$
\begin{aligned}
& \dot{\alpha}^{2}\left(\mathrm{p}_{1} \stackrel{\circ}{\circ} \mathrm{p}_{2}\right) \\
& =\dot{\alpha}^{\partial}\left(x, y \mapsto \bigcup \mathrm{p}_{1}(x, z) \bigcirc \mathrm{p}_{2}(z, y)\right) \quad \text { 2def. } \odot \circ \text { in Theorem 37.10S } \\
& =x, y \mapsto \alpha^{\partial}\left(\bigcup_{z \in V}^{z \in V} \mathrm{p}_{1}(x, z) \bigcirc \mathrm{p}_{2}(z, y)\right) \quad \text { 2pointwise def. } \dot{\alpha}^{2} S \\
& =x, y \mapsto \bigcup_{z \in V} \alpha^{\partial}\left(\mathrm{p}_{1}(x, z) \bigcirc \mathrm{p}_{2}(z, y)\right) \text { 2join preservation of the abstraction in a Galois connection } \int \\
& \left.=x, y \mapsto \bigcup_{z \in V}^{z \in V} \alpha^{\supset}\left(\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \mathrm{p}_{1}(x, z) \wedge \pi_{2} \in \mathrm{p}_{2}(z, y)\right\}\right) \quad \text { 2def. (37.3) of } \bigcirc \text { and (37.9) of } \odot\right\} \\
& =x, y \mapsto \bigcup_{z \in V}^{z \in V} \alpha^{\curvearrowright}\left(\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \alpha^{\curvearrowright}\left(\mathrm{p}_{1}(x, z)\right) \wedge \pi_{2} \in \alpha^{\curvearrowright}\left(\mathrm{p}_{2}(z, y)\right)\right\}\right) \\
& \text { 2since if } \pi_{1} \text { or } \pi_{2} \text { are not elementary so is their concatenation } \pi_{1} \odot \pi_{2} \rho \\
& =x, y \mapsto \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \alpha^{\partial}\left(\mathrm{p}_{1}(x, z)\right) \wedge \pi_{2} \in \alpha^{\partial}\left(\mathrm{p}_{2}(z, y)\right) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right)\right\} \\
& \text { 2since, by Lemma 37.21, } \pi_{1} \text { and } \pi_{2} \text { being elementary, their concatenation } \pi_{1} \odot \pi_{2} \text { is ele- } \\
& \text { mentary if and only if elem-conc? }\left(\pi_{1}, \pi_{2}\right) \text { is true } \int \\
& =x, y \mapsto \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \dot{\alpha}^{\partial}\left(\mathrm{p}_{1}\right)(x, z) \wedge \pi_{2} \in \dot{\alpha}^{\partial}\left(\mathrm{p}_{2}\right)(z, y) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right)\right\} \\
& \text { 2pointwise def. } \dot{\alpha}^{\partial} \text { S } \\
& =\dot{\alpha}^{\partial}\left(\mathrm{p}_{1}\right) \dot{O}{ }^{\beth} \dot{\alpha}^{\partial}\left(\mathrm{p}_{2}\right) \\
& \text { 2def. }{ }^{\circ} \text { in Theorem 37.23 }
\end{aligned}
$$

37.14 Calculational design of the elementary paths between vertices of finite graphs

In finite graphs $G=\langle V, E\rangle$ with $|V|=n\rangle 0$ vertices, elementary paths in are of length at most $n+1$ (for a cycle that would go through all vertices of the graph). This ensures that the fixpoint iterates in Theorem 37.23 starting from $\dot{\varnothing}$ do converge in at most $n+2$ iterates.
Moreover, if $V=\left\{z_{1} \ldots z_{n}\right\}$ is finite, then the elementary paths of the $k+2^{\text {nd }}$ iterate can be restricted to $\left\{z_{1}, \ldots, z_{k}\right\}$. This yields an iterative algorithm by application of the exact iterates multiabstraction Theorem 16.27 with ${ }^{46}$

$$
\begin{array}{lll}
\alpha_{0}^{\partial}(\mathrm{p}) \triangleq \mathrm{p} & \tag{37.24}\\
\alpha_{k}^{\partial}(\mathrm{p}) \triangleq x, y \mapsto\left\{\pi \in \mathrm{p}(x, y) \mid \mathrm{V}(\pi) \subseteq\left\{z_{1}, \ldots, z_{k}\right\} \cup\{x, y\}\right\}, & k \in[1, n] \\
\alpha_{k}^{\partial}(\mathrm{p}) \triangleq \mathrm{p}, & k>n
\end{array}
$$

By the exclusion abstraction of Exercise 11.2 and pointwise extension of Exercise 11.17, these are Galois connections

$$
\begin{equation*}
\left\langle V \times V \rightarrow \wp\left(V^{>1}\right), \dot{\subseteq}\right\rangle \underset{\alpha_{k}^{\gtrdot}}{\stackrel{\gamma_{k}^{จ}}{\leftrightarrows}}\left\langle V \times V \rightarrow \bigcup_{k=2}^{n+1} V^{k}, \dot{\subseteq}\right\rangle . \tag{37.25}
\end{equation*}
$$

Applying Theorem 16.27, we get the following iterative characterization of the elementary paths of a finite graph. Notice that Θ_{z} in (37.26.a) and (37.26.b) does not require to test that the concatenation of two elementary paths is elementary while \bigcirc_{z}^{∂} in (37.26.c) and (37.26.d) definitely does (since the concatenated elementary paths may have vertices in common). Notice also that the iteration $\left\langle\overrightarrow{\mathscr{F}}_{\pi}{ }_{\pi}^{k}\right.$, $k \in[0, n+2]\rangle$ in (37.26.a) is not the same as the iterates $\left\langle\overrightarrow{\mathscr{F}}_{\Pi}^{2 k}(\dot{\varnothing}), k \in \mathbb{N}\right\rangle$ of $\overrightarrow{\mathscr{F}}_{\Pi}^{a}$ from $\dot{\varnothing}$, since using $\dot{@}_{z}$ or $\dot{@}_{z}^{\partial}$ instead of $\dot{@}^{\partial}$ is the key to efficiency. This is also the case for (37.26.b-d).

Theorem 37.26 (Iterative characterization of the elementary paths of a finite graph) Let $G=\langle V, E\rangle$ be a finite graph with $V=\left\{z_{1}, \ldots, z_{n}\right\}, n>0$. Then

$$
\begin{aligned}
& \mathrm{p}^{\partial}=\mid \mathrm{If}{ }^{\underline{\varepsilon}} \overrightarrow{\mathscr{F}}_{\Pi}^{\partial}=\overrightarrow{\mathscr{F}}_{\pi}^{a n+2} \\
& \text { where } \quad \overrightarrow{\mathscr{F}}_{\pi}^{30} \triangleq \dot{\varnothing}, \quad \overrightarrow{\mathscr{F}}_{\pi}^{a 1} \triangleq \dot{E}, \quad \overrightarrow{\mathscr{F}}_{\pi}^{a k+2} \triangleq \dot{E} \dot{\cup} \overrightarrow{\mathscr{F}}_{\pi}^{a k+1} \dot{Ð}_{z_{k+1}} \dot{E}, \quad k \in[0, n] \\
& \overrightarrow{\mathscr{F}}_{\pi}^{3 k+1}=\overrightarrow{\mathscr{F}}_{\pi}^{3}, \quad k \geqslant n+2 \\
& =\mid f p^{\dot{s}} \overleftarrow{\mathscr{F}}_{\Pi}^{\partial}=\overleftarrow{\mathscr{F}}_{\Pi}^{\partial n+2} \\
& \text { where } \quad \overleftarrow{\mathscr{F}}_{\pi}^{30} \triangleq \dot{\varnothing}, \quad \overleftarrow{\mathscr{F}}_{\pi}^{a} \triangleq \dot{E}, \quad \overleftarrow{\mathscr{F}}_{\pi}^{a k+2} \triangleq \dot{E} \dot{\cup} \dot{E} \dot{O}_{z_{k+1}} \overleftarrow{\mathscr{F}}_{\pi}^{a k+1}, \quad k \in[0, n] \\
& \overleftarrow{\mathscr{F}}_{\pi}^{2 k+1}=\overleftarrow{\mathscr{F}}_{\pi}^{2 k}, \quad k \geqslant n+2
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
& =1 \mathrm{fp} \mathrm{p}^{\dot{s}} \overrightarrow{\mathscr{F}}_{\Pi}^{a}=\overleftrightarrow{\mathscr{F}}_{\pi}^{a n+2}
\end{aligned}
$$
\]

$$
\begin{aligned}
& =\operatorname{Ifp} \widehat{\mathscr{E}}_{\Pi}^{\stackrel{c}{\dot{F}}}=\widehat{\mathscr{F}}_{\pi}^{\partial n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\mathscr{F}}_{\pi}^{\partial}{ }^{k+1}=\widehat{\mathscr{F}}_{\pi}^{a}, \quad k \geqslant n+2 \\
& \mathrm{p}_{1} \dot{○}_{z} \mathrm{p}_{2} \triangleq x, y \mapsto\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \mathrm{p}_{1}(x, z) \wedge \pi_{2} \in \mathrm{p}_{2}(z, y) \wedge z \notin\{x, y\}\right\} \text {, and } \mathrm{p}_{1} \dot{○}_{z}^{\partial} \mathrm{p}_{2} \triangleq \\
& x, y \mapsto\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \mathrm{p}_{1}(x, z) \wedge \pi_{2} \in \mathrm{p}_{2}(z, y) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right)\right\} \text {. }
\end{aligned}
$$

Proof of Theorem 37.26 - The proofs in cases (37.26.c) and (37.26.d) are similar. Let us consider (37.26.d). Assume $V=\left\{z_{1} \ldots z_{n}\right\}$ and let $\widehat{\mathscr{F}}_{\Pi}^{\partial k+1}=\widehat{\mathscr{F}}_{\Pi}^{\partial}\left(\widehat{\mathscr{F}}_{\Pi}^{\partial k}\right)$ be the iterates of $\widehat{\mathscr{F}}_{\Pi}^{a}$ from $\widehat{\mathscr{F}}_{\Pi}^{20}=$ \dot{E} in (37.23.d). To apply Theorem 16.27, we consider the concrete cpo $\langle\mathcal{C}, \subseteq \subseteq$ and the abstract cpo $\langle\mathcal{A}$, $\dot{\subseteq}\rangle$ to be $\langle C, \dot{\subseteq}, \dot{E}, \dot{U}\rangle$ with $C \triangleq x \in V \times y \in V \rightarrow\left\{x \pi y \mid x \pi y \in E \cup \bigcup_{k=3}^{n+1} V^{k} \wedge x \pi y\right.$ is elementary $\}$, and the functions $\mathscr{\mathscr { F }}_{\pi k}^{\partial}(X) \triangleq X \dot{U} X \dot{○}_{z_{k+1}}^{\partial} X, k \in[1, n]$, and $\mathscr{\mathscr { F }}_{\pi k}^{\partial}(X) \triangleq X, k=0$ or $k>n$ which iterates from the infimum \dot{E} are precisely $\left\langle\widetilde{\mathscr{F}}_{\pi}^{\partial} k, i \in \mathbb{Z} \cup\{\omega\}\right\rangle$ where $\widehat{\mathscr{F}}_{\pi}^{\partial \omega}=\bigcup_{i \in \mathbb{Z}} \widehat{\mathscr{F}}_{\pi}^{2 i}=\widehat{\mathscr{F}}_{\pi}^{\partial n+1}=\widehat{\mathscr{F}}_{\pi}^{\partial k}$, $k>n$.

- For the infimum $\widehat{\mathscr{F}}_{\pi 0}^{\partial}=\dot{E}$ which paths $x \pi y \in \dot{E}(x, y)$ are elementary and have all intermediate states of π in $\varnothing=\left\{z_{1}, \ldots, z_{0}\right\}$ since π is empty.
- For the commutation, the case $k>n$ is trivial. Otherwise let $X \in \mathcal{A}$ so $x \pi y \in X(x, y)$ is elementary and has all states of π in $\left\{z_{1}, \ldots, z_{k}\right\}$

$$
\alpha_{k+1}^{\partial}\left(\widehat{\mathscr{F}}_{\Pi}^{\partial}(X)\right)
$$

$=\alpha_{k+1}^{\partial}\left(X \dot{\cup} X \dot{O}^{\partial} X\right) \quad$ 2def. (37.23.d) of $\widehat{\mathscr{F}}{ }_{\Pi}^{\partial} \mathrm{S}$
$=\alpha_{k+1}^{\supset}(X) \dot{\cup} \alpha_{k+1}^{\ni}\left(X \dot{\circ}^{\supset} X\right) \quad \quad 2 \alpha_{k+1}^{\ni}$ preserves joins in (37.25) S
$=\alpha_{k}^{\gtrdot}(X) \dot{\cup} \alpha_{k+1}^{\ni}\left(X \dot{O}^{\supset} X\right)$
2def. (37.24) of α_{k+1}^{∂} and hypothesis that all paths in X have all intermediate states in $\left.\left\{z_{1}, \ldots, z_{k}\right\}\right\}$
$=\alpha_{k}^{\partial}(X) \dot{\cup} x, y \mapsto\left\{\pi \in X \dot{O}^{\partial} X(x, y) \mid \mathrm{V}(\pi) \subseteq\left\{z_{1}, \ldots, z_{k+1}\right\} \cup\{x, y\}\right\} \quad$ 2def. α_{k+1}^{∂} in (37.24) $\}$
$=\alpha_{k}^{\not}(X) \dot{\cup} x, y \mapsto\left\{\pi \in \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in X(x, z) \wedge \pi_{2} \in X(z, y) \wedge\right.\right.$ elem-conc? $\left.\left(\pi_{1}, \pi_{2}\right)\right\} \mid \vee(\pi) \subseteq$ $\left.\left\{z_{1}, \ldots, z_{k+1}\right\} \cup\{x, y\}\right\}$

2def. ${ }^{\circ}{ }^{2}$ in Theorem 37.23 \int
$=\alpha_{k}^{\gtrdot}(X) \dot{\cup} x, y \mapsto \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in X(x, z) \wedge \pi_{2} \in X(z, y) \wedge\right.$ elem-conc? $\left(\pi_{1}, \pi_{2}\right) \wedge \vee\left(\pi_{1} \odot \pi_{2}\right) \subseteq$ $\left.\left\{z_{1}, \ldots, z_{k+1}\right\} \cup\{x, y\}\right\}$ 2def. $\in\}$

```
\(=\alpha_{k}^{?}(X) \cup \dot{\cup} x, y \mapsto \bigcup_{z \in V}\left\{x \pi_{1} z \pi_{2} y \mid x \pi_{1} z \in X(x, z) \wedge z \pi_{2} y \in X(z, y) \wedge\right.\) elem-conc? \(\left(x \pi_{1} z, z \pi_{2} y\right) \wedge\)
    \(\left.\mathrm{V}\left(\pi_{1}\right) \cup \mathrm{V}\left(\pi_{2}\right) \cup\{z\} \subseteq\left\{z_{1}, \ldots, z_{k+1}\right\} \cup\{x, y\}\right\} \quad\) \{def. \(\odot, \mathrm{V}\), and ind. hyp. \(S\)
\(=\alpha_{k}^{\ni}(X)\) نे \(x, y \mapsto\left\{x \pi_{1} z_{k+1} \pi_{2} y \mid x \pi_{1} z_{k+1} \in \alpha_{k}^{\ni}(X)\left(x, z_{k+1}\right) \wedge z_{k+1} \pi_{2} y \in \alpha_{k}^{\ni}(X)\left(z_{k+1}, y\right) \wedge\right.\)
    elem-conc? \(\left.\left(x \pi_{1} z_{k+1}, z_{k+1} \pi_{2} y\right)\right\}\)
```

२(き) follows from taking $z=z_{k+1}$;
(؟) For $z \in\left\{z_{1}, \ldots, z_{k}\right\}$, the paths in $\alpha_{k}^{\partial}(X)$ are elementary through $\left\{z_{1}, \ldots, z_{k}\right\}$, so if there exist paths $x \pi_{1} z \in X(x, z)$ and $z \pi_{2} y \in X(z, y)$ then either $x \pi_{1} z \pi_{2} x$ is also elementary through $\left\{z_{1}, \ldots, z_{k}\right\}$ and already therefore belongs to $\alpha_{k}^{2}(X)$ or it is not elementary and then does not pass the test elem-conc? $\left(x \pi_{1} z_{k+1}, z_{k+1} \pi_{2} y\right)$; Otherwise, if $z \in\left\{z_{k+2}, \ldots, z_{n}\right\}$, then the path $x \pi_{1} z_{k+1} \pi_{2} y$ is eliminated by $\mathrm{V}\left(\pi_{1}\right) \cup \vee\left(\pi_{2}\right) \cup\{z\} \subseteq\left\{z_{1}, \ldots, z_{k+1}\right\} \cup\{x, y\} ;$
Finally, the only possibility is $z=z_{k+1}$, in which case all paths have the form $x \pi_{1} z_{k+1} \pi_{2} y$, are elementary, and with $\bigvee(\pi) \subseteq\left\{z_{1}, \ldots, z_{k+1}\right\}$, as required by the def. of \mathcal{A}. It also holds for $\alpha_{k}^{\ni}(X)$ which is equal to $\alpha_{k+1}^{\ni}(X)$. \int

$$
\begin{aligned}
& =\alpha_{k}^{\partial}(X) \dot{\cup} x, y \mapsto\left\{x \pi_{1} z_{k+1} \odot z_{k+1} \pi_{2} y \mid x \pi_{1} z_{k+1} \in \alpha_{k}^{\partial}(X)\left(x, z_{k+1}\right) \wedge z_{k+1} \pi_{2} y \in \alpha_{k}^{\gtrdot}(X)\left(z_{k+1}, y\right) \wedge\right. \\
& \text { elem-conc? } \left.\left(x \pi_{1} z_{k+1}, z_{k+1} \pi_{2} y\right)\right\} \\
& \text { 2def. } \odot S \\
& =\alpha_{k}^{\ni}(X) \text { ن́ } x, y \mapsto\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in \alpha_{k}^{\supsetneq}(X)\left(x, z_{k+1}\right) \wedge \pi_{2} \in \alpha_{k}^{\ni}(X)\left(z_{k+1}, y\right) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right)\right\}
\end{aligned}
$$

2by ind. hyp. all paths in $X(x, y)$ have the form $x \pi y \delta$
$=\alpha_{k}^{\ni}(X) \dot{\cup} \alpha_{k}^{?}(X) \dot{O}_{z_{k+1}}^{\partial} \alpha_{k}^{?}(X)$
$=\widehat{\mathscr{F}}_{\pi k}^{a}\left(\alpha_{k}^{\gtrless}(X)\right)$
2def. $\oplus_{\tilde{z}_{k+1}}^{\partial}$ in (37.26.d) $)$

We conclude by Corollary 16.28.

- In cases (37.26.a) and (37.26.b), $\dot{\varrho}_{z_{k+1}}^{\partial}$ can be replaced by $\dot{\varrho}_{z_{k+1}}$ since in this cases the paths are elementary by construction. To see this, observe that for (37.26.a), the iterates $\left\langle\mathscr{F}_{\pi}^{3 k}(\dot{\varnothing}), k \in\right.$ $\mathbb{N} \cup\{\omega\}\rangle$ are those of the functions $\widetilde{\mathscr{F}}_{\pi 0}(X) \triangleq \dot{\varnothing}, \widetilde{\mathscr{F}}_{\pi 1}^{\partial}(X) \triangleq \dot{E}$, and $\widetilde{\mathcal{F}}_{\pi k}(X) \triangleq \dot{E} \dot{\cup} X \dot{@}_{z_{k-1}}^{\partial} \dot{E}$, $k \in[2, n+2]$, and $\widetilde{\mathscr{F}}_{\pi k}(X) \triangleq X, k>n$, so that we can consider the iterates from 1 to apply Theorem 16.27.
- By (37.23.a), the initialization is $\mathscr{\mathscr { F }}_{\Pi}^{\top}(\dot{\varnothing}) \triangleq \dot{E} \dot{\cup} \dot{\varnothing} \dot{O}^{2} \dot{E}=\dot{E}$ such that all paths $x \pi y$ in $\dot{E}(x, y)$ are elementary with π empty so $\mathrm{V}(\pi) \subseteq \varnothing=\left\{z_{1}, \ldots, z_{0}\right\}$.
- For the commutation, let $X \in \mathcal{A}$ such that all $x \pi y \in X(x, y)$ are elementary and have all states of π in $\left\{z_{1}, \ldots, z_{k}\right\}$. Then
$\alpha_{k+2}^{\exists}\left(\overrightarrow{\mathscr{F}}_{\Pi}^{2}(X)\right) \quad$ 2def. iteratess
$=\alpha_{k+2}^{a}\left(\dot{E} \dot{\cup} X \dot{O}^{2} \dot{E}\right) \quad$ 2def. (37.23.a) of $\overrightarrow{\mathscr{F}}_{\square}^{\top} S$
$=\alpha_{k+2}^{\ni}(\dot{E}) \dot{\cup} \alpha_{k+2}^{\ni}\left(X \dot{O}^{2} \dot{E}\right) \quad \quad \quad \alpha_{k+2}^{\ni}$ preserves joins in (37.25)S

$$
\begin{aligned}
& =\dot{E} \dot{\cup} x, y \mapsto\left\{\pi \in X \dot{O}^{\partial} \dot{E} \mid \mathrm{V}(\pi) \subseteq\left\{z_{1}, \ldots, z_{k+2}\right\} \cup\{x, y\}\right\} \quad \text { 2def. } \alpha_{k+2}^{ə} \text { in (37.24)S } \\
& =\dot{E} \dot{U} x, y \mapsto\left\{\pi \in \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in X(x, z) \wedge \pi_{2} \in \dot{E}(z, y) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right)\right\} \mid \mathrm{V}(\pi) \subseteq\right. \\
& \left.\left\{z_{1}, \ldots, z_{k+2}\right\} \cup\{x, y\}\right\} \\
& \text { 2def. }{ }^{2}{ }^{2} \text { in Theorem 37.23 } \int \\
& =\dot{E} \dot{U} x, y \mapsto \bigcup_{z \in V}\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in X(x, z) \wedge \pi_{2} \in \dot{E}(z, y) \wedge \text { elem-conc? }\left(\pi_{1}, \pi_{2}\right) \wedge \vee\left(\pi_{1} \odot \pi_{2}\right) \subseteq\right. \\
& \left.\left\{z_{1}, \ldots, z_{k+2}\right\} \cup\{x, y\}\right\} \quad \text { def. } \in S \\
& =\dot{E} \cup \dot{\cup}, y \mapsto \bigcup_{z \in V}\left\{x \pi_{1} z y \mid x \pi_{1} z \in X(x, z) \wedge z y \in \dot{E}(z, y) \wedge \text { elem-conc? }\left(x \pi_{1} z, z y\right) \wedge \vee\left(\pi_{1}\right) \cup\{z\} \subseteq\right. \\
& \left.\left\{z_{1}, \ldots, z_{k+2}\right\} \cup\{x, y\}\right\} \quad \text { 2def. } \odot, \vee, \dot{E} \text { in Theorem 37.10, and ind. hyp. } \int \\
& =\dot{E} \dot{U} x, y \mapsto\left\{x \pi_{1} z_{k+2} \odot z_{k+2} \pi_{2} y \mid x \pi_{1} z_{k+2} \in \alpha_{k+1}^{\partial}(X)\left(x, z_{k+2}\right) \wedge z_{k+2} \pi_{2} y \in \dot{E}\left(z_{k+2}, y\right) \wedge\right. \\
& \text { elem-conc? } \left.\left(x \pi_{1} z_{k+2}, z_{k+2} \pi_{2} y\right)\right\} \quad \text { 2by an argument similar to (37.27) } \int \\
& =\dot{E} \dot{\cup} x, y \mapsto\left\{x \pi_{1} z_{k+2} \odot z_{k+2} y \quad \mid x \pi_{1} z_{k+2} \in \alpha_{k+1}^{ə}(X)\left(x, z_{k+2}\right) \wedge\left\langle z_{k+2}, y\right\rangle \in E \wedge\right. \\
& \text { elem-conc? } \left.\left(x \pi_{1} z_{k+2}, z_{k+2} y\right)\right\} \quad \text { 2def. (37.24) of } \alpha_{k+1}^{\partial} \text { and } \dot{E} \text { in Theorem 37.10S } \\
& =\dot{E} \dot{U} x, y \mapsto\left\{x \pi_{1} z_{k+2} \odot z_{k+2} y \mid x \pi_{1} z_{k+2} \in \alpha_{k+1}^{\partial}(X)\left(x, z_{k+2}\right) \wedge\left\langle z_{k+2}, y\right\rangle \in E\right\} \\
& \text { } \text { since } z_{k+2} \notin \mathrm{~V}\left(\pi_{1}\right) \text { by induction hypothesis path so that the path } x \pi_{1} z_{k+2} y \text { is elementary } \int \\
& =\dot{E} \dot{U} \alpha_{k+1}^{\partial}(X) \dot{O}_{z_{k+2}} \dot{E} \quad \text { 2def. } \dot{O}_{z_{k+2}}^{2} \text { in Theorem 37.26) } \\
& =\overrightarrow{\mathscr{F}}_{\pi k+2}^{\partial}\left(\alpha_{k+1}^{\partial}(X)\right) \\
& \text { 2(37.26.a) }\}
\end{aligned}
$$

37.15 Calculational design of an over-approximation of the elementary paths between vertices of finite graphs

Since shortest paths are necessarily elementary, one could expect that Roy-Floyd-Warshall algorithm simply abstracts the elementary paths by their length. This is not the case, because the iterations in (37.26.c) and (37.26.d) for elementary paths are too expensive. They require to check elem-conc? in © ${ }^{2}$ to make sure that the concatenation of elementary paths does yield an elementary path. But we can over-approximate by replacing \mathfrak{O}^{2} by $\dot{0}$ since the length of the shortest paths in the graph is the same as the length of the shortest paths in any subset of the graph paths provided this subset contains all elementary paths.

Corollary 37.28 (Iterative characterization of an over-approximation of the elementary paths of a finite graph) Let $G=\langle V, E\rangle$ be a finite graph with $V=\left\{z_{1}, \ldots, z_{n}\right\}, n>0$. Then

$$
\begin{align*}
& p^{\partial}=\operatorname{Ifp}{ }^{\underline{\varepsilon}} \stackrel{\mathscr{F}}{\Pi}_{\partial}^{\subseteq} \stackrel{\mathscr{F}}{\pi}_{n+2} \tag{37.28.c}\\
& \text { where } \overleftrightarrow{\mathscr{F}}_{\pi}^{0} \triangleq \dot{\varnothing}, \quad \overleftrightarrow{\mathscr{F}}_{\pi}^{1} \triangleq \dot{E}, \quad \overleftrightarrow{\mathscr{F}}_{\pi}^{k+2} \triangleq \dot{E} \dot{\cup} \overleftrightarrow{\mathscr{F}}_{\pi}^{k+1} \dot{○}_{z_{k+1}} \overleftrightarrow{\mathscr{F}}_{\pi}^{k+1} \\
& =\operatorname{Ifp}_{\dot{E}}^{\stackrel{\iota}{\mathscr{F}}}{ }_{\Pi}^{\partial} \subseteq \widehat{\mathscr{F}}_{\pi}^{n+1} \tag{37.28.d}\\
& \text { where } \quad \widehat{\mathscr{F}}_{\pi}^{0} \triangleq \dot{E}, \quad \widehat{\mathscr{F}}_{\pi}^{k+1} \triangleq \widehat{\mathscr{F}}_{\pi}^{k} \dot{\cup} \widehat{\mathscr{F}}_{\pi}^{k} \dot{\bigcirc}_{z_{k}} \widehat{\mathscr{F}}_{\pi}^{k}
\end{align*}
$$

Proof of Corollary 37.28 Obviously $\dot{@}_{z}^{\partial} \subseteq \dot{@}_{z}$ so the iterates $\left\langle\stackrel{\mathscr{F}}{\pi}_{k}^{k}, k \in[0, n+2]\right\rangle$ of (37.28.c) over-approximate those $\left\langle\overleftrightarrow{\mathscr{F}}_{\pi}^{2} k, k \in[0, n+2]\right\rangle$ of (37.26.c). Same for (37.26.d).

Exercise 37.29. Show that in (37.28.d), the subset inclusion can be strict.

37.16 The Roy-Floyd-Warshall algorithm over-approximating the elementary paths of a finite graph

The Roy-Floyd-Warshall algorithm does not computes elementary paths in (37.26.d) but the overapproximation of the set of elementary paths in (37.28.d), thus avoiding the potentially costly test in Theorem 37.26 that the concatenation of elementary paths in $\dot{@}_{z}^{\partial}$ is elementary.

Proof of Algorithm ?? The first for iteration computes $\widehat{\mathscr{F}}_{\pi}^{0} \triangleq \dot{E}$ in (37.28.d). Then, the second for iteration should compute $\widehat{\mathscr{F}}_{\pi}^{k+1} \triangleq \widehat{\mathscr{F}}_{\pi}^{k} \dot{\cup} \widehat{\mathscr{F}}_{\pi}^{k} \dot{\varrho}_{z_{k}} \widehat{\mathscr{F}}_{\pi}^{k}$ in (37.28.d) since $\mathrm{p}_{1} \dot{@}_{z} \mathrm{p}_{2}=\dot{\varnothing}$ in (37.26.d) when $z \in\{x, y\}$, in which case, $\widehat{\mathscr{F}}_{\pi}^{k+1}=\widehat{\mathscr{F}}_{\pi}^{k}$, which is similar to the Jacobi iterative method in Section 20.2. However, similar to the Gauss-Seidel iteration method in Section 20.2, we reuse the last computed $\mathrm{p}(x, z)$ and $\mathrm{p}(z, y)$, not necessarily those of the previous iterate. For the convergence of the first n iterates of the second for iteration of the algorithm, the justification is similar to the convergence Corollary 20.6 for chaotic iterations in Definition 20.2.

37.17 Calculational design of the Roy-Floyd-Warshall shortest path algorithm

The shortest path algorithm of Bernard Roy [14], Bob Floyd [8], and Steve Warshall [18] for finite graphs is based on the assumption that the graph has no cycles with strictly negative weights i.e. $\forall x \in V . \forall \pi \in \mathrm{p}(x, x) . \boldsymbol{\omega}(\pi) \geqslant 0$. In that case the shortest paths are all elementary since adding a cycle of weight 0 leaves the distance unchanged while a cycle of positive weight would strictly increase the distance on the path. Otherwise, as shown by Example 37.16, if the graph has cycle
with strictly negative weights, the convergence between two vertices containing a cycle with strictly negative weights is infinite to the limit $-\infty$.
The essential consequence is that we don't have to consider all paths as in Theorem 37.10 but instead we can consider any subset provided that it contains all elementary paths. Therefore we can base the design of the shortest path algorithm on Corollary 37.28. Observe that, although p may contain paths that are not elementary, d is precisely the minimal path lengths and not some strict over-approximation since

- p contains all elementary paths (so non-elementary paths are longer than the elementary path between their extremities), and
- no arc has a strictly negative weight (so path lengths are always positive and therefore the elementary paths are the shortest ones).
We derive the Roy-Floyd-Warshall algorithm by a calculation design applying Exercise ?? for finite iterates to (37.28.d) with the abstraction $\dot{\boldsymbol{\omega}}$ (or a variant when considering (37.28.c)).
- for the infimum \dot{E} in (37.28.d), we have

$$
=\boldsymbol{\omega}(\dot{E}(x, y)) \quad \text { 2pointwise def. } \dot{\boldsymbol{\omega}} \int
$$

$$
\text { 2def. } \dot{E} \text { in Theorem } 37.10 \int
$$

$$
\text { \{def. conditional }\}
$$

- for the commutation with $\widehat{\mathscr{F}}_{\pi k+1}(X) \triangleq X \dot{\cup} X \dot{\bigodot}_{z_{k}} X$, we have

$$
\begin{align*}
& \dot{\boldsymbol{\omega}}\left(\widehat{\mathscr{F}}_{\pi k+1}(X)\right)\langle x, y\rangle \\
= & \dot{\boldsymbol{\omega}}\left(X \dot{\cup} X \dot{\varrho}_{z_{k}} X\right)\langle x, y\rangle \tag{37.28.d}\\
= & \min \left(\dot{\boldsymbol{\omega}}(X)\langle x, y\rangle, \dot{\boldsymbol{\omega}}\left(X \dot{\varrho}_{z_{k}} X\right)\langle x, y\rangle\right)
\end{align*}
$$

\{the abstraction $\dot{\boldsymbol{\omega}}$ of Galois connection (37.15) preserves existing joins $\}$
Let us evaluate

$$
\begin{array}{rlr}
& \dot{\boldsymbol{\omega}}\left(X \dot{O}_{z_{k}} X\right)\langle x, y\rangle & \\
= & \boldsymbol{\omega}\left(\left(X \dot{O}_{z_{k}} X\right)(x, y)\right) & \text { 2pointwise def. } \dot{\boldsymbol{\omega}}\} \\
= & \boldsymbol{\omega}\left(\left\{\pi_{1} \odot \pi_{2} \mid \pi_{1} \in X\left(x, z_{k}\right) \wedge \pi_{2} \in X\left(z_{k}, y\right) \wedge z_{k} \notin\{x, y\}\right\}\right) & \text { 2def. © } \left.z_{k} \text { in Theorem 37.26 }\right\} \\
= & \min \left\{\boldsymbol{\omega}\left(\pi_{1} \odot \pi_{2}\right) \mid \pi_{1} \in X\left(x, z_{k}\right) \wedge \pi_{2} \in X\left(z_{k}, y\right) \wedge z_{k} \notin\{x, y\}\right\} & \text { (37.14) }) \tag{37.14}\\
= & \min \left\{\boldsymbol{\omega}\left(\pi_{1}\right)+\boldsymbol{\omega}\left(\pi_{2}\right) \mid \pi_{1} \in X\left(x, z_{k}\right) \wedge \pi_{2} \in X\left(z_{k}, y\right) \wedge z_{k} \notin\{x, y\}\right\} & \text { 2def. (37.13) of } \boldsymbol{\omega}\}
\end{array}
$$

$$
\begin{align*}
& \dot{\boldsymbol{\omega}}(\dot{E})\langle x, y\rangle \\
& =\boldsymbol{\omega}(\{\langle x, y\rangle \in E \text { ? }\{\langle x, y\rangle\} \circ \varnothing \rrbracket) \\
& =\llbracket\langle x, y\rangle \in E \text { § } \boldsymbol{\omega}(\{\langle x, y\rangle\}) \circ \boldsymbol{\omega}(\varnothing) \rrbracket \\
& =\{\langle x, y\rangle \in E \text { ? } \min \{\boldsymbol{\omega}(\pi) \mid \pi \in\{\langle x, y\rangle\}\}: \infty \rrbracket \tag{37.14}\\
& =\llbracket\langle x, y\rangle \in E \text { ? } \boldsymbol{\omega}(x, y): \infty \rrbracket
\end{align*}
$$

```
\(=\backslash z_{k} \in\{x, y\}\) る \(\infty \circ \min \left\{\boldsymbol{\omega}\left(\pi_{1}\right) \mid \pi_{1} \in X\left(x, z_{k}\right)\right\}+\min \left\{\boldsymbol{\omega}\left(\pi_{2}\right) \mid \pi_{1} \in X\left(x, z_{k}\right) \wedge \pi_{2} \in X\left(z_{k}, y\right)\right\} \downarrow\)
    (def. min)
\(=\left\{z_{k} \in\{x, y\}\right.\) ว \(\left.\infty \therefore \min \left(\dot{\boldsymbol{\omega}}(X)\left(x, z_{k}\right)\right)+\min \left(\dot{\boldsymbol{\omega}}(X)\left(z_{k}, y\right)\right)\right\rangle \quad\) (37.14) and pointwise def. \(\left.\dot{\boldsymbol{\omega}}\right\}\)
so that \(\dot{\boldsymbol{\omega}}\left(\widehat{\mathscr{F}}_{\pi k+1}(X)\right)=\widehat{\mathscr{F}}_{\delta k}(\dot{\boldsymbol{\omega}}(X))\) with \(\widehat{\mathscr{F}}_{\delta k}(X)(x, y) \triangleq \llbracket z_{k} \in\{x, y\}\) \& \(X(x, y) \circ \min (X(x, y)\),
\(\left.\left.X\left(x, z_{k}\right)+X\left(z_{k}, y\right)\right)\right\rangle\).
```

We have proved
Theorem 37.30 （Iterative characterization of the shortest path length of a graph）Let $G=$ $\langle V, E, \boldsymbol{\omega}\rangle$ be a finite graph with $V=\left\{z_{1}, \ldots, z_{n}\right\}, n>0$ weighted on the totally ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$ with no strictly negative weight．Then the distances between any two vertices are
$\mathrm{d}=\dot{\boldsymbol{\omega}}(\mathrm{p})=\widehat{\mathscr{F}}_{\delta}^{n+1} \quad$ where

$$
\begin{align*}
& \widehat{\mathscr{F}}_{\delta}^{0}(x, y) \triangleq \llbracket\langle x, y\rangle \in E \text { ? } \boldsymbol{\omega}(x, y): \infty \rrbracket, \tag{37.30}\\
& \widehat{\mathscr{F}}_{\delta}^{k+1}(x, y) \triangleq \llbracket z_{k} \in\{x, y\} \text { る } \widehat{\mathscr{F}}_{\delta}^{k}(x, y): \min \left(\widehat{\mathscr{F}}_{\delta}^{k}(x, y), \widehat{\mathscr{F}}_{\delta}^{k}\left(x, z_{k}\right)+\widehat{\mathscr{F}}_{\delta}^{k}\left(z_{k}, y\right)\right) \downarrow
\end{align*}
$$

\square
and directly get the Roy－Floyd－Warshall distances algorithm．

Proof of Algorithm ？？Instead of calculating the next iterate $\widehat{\mathscr{F}}_{\delta}^{k+1}$ as a function of the previous one $\widehat{\mathscr{F}}_{\delta}^{k}$（à la Jacobi），we reuse the latest assigned values（à la Gauss－Seidel），as authorized by the chaotic iteration Corollary 20．6．

Exercise 37．31．Show that the Roy－Floyd－Warshall would be incorrect for the longest elementary path length of a graph．Which elementary path fixpoint computation would you recommend for this problem？Design the algorithm by calculus．

Exercise 37.32 （Irreflexive transitive closure）．Consider the abstraction $\alpha_{+}(P) \triangleq \bigcup\left\{\langle x, y\rangle \in V^{2} \mid\right.$ $\left.\exists n \in \mathbb{N} . \exists z_{1} \ldots z_{n} \in V^{n} . x, z_{1} \ldots z_{n}, y \in P\right\}$ ．Define $E^{+} \triangleq \alpha_{+}(\bigcup\{p(x, y) \mid\langle x, y\rangle \in V\})$ ．Prove that $E^{+}=\mid \mathrm{If}{ }^{\varsigma} X \mapsto E \cup X ; ~ X$ using Theorem 37.10 and Theorem 16．17．

Exercise 37.33 （Reflexive transitive closure）．Continuing Exercise 37.32 prove that the reflexive transitive closure is $E^{*} \triangleq \alpha_{*}\left(E^{+}\right)=\operatorname{Ifp}^{\varsigma} X \mapsto \mathbb{1}_{V} \cup E \cup X ; X$ where $\alpha_{*}(R) \triangleq \mathbb{1}_{V} \cup R$ and $\mathbb{1}_{V}$ is the identity relation on V ．

37．18 Adjacency matrix

The boolean adjacency matrix of a finite graph $G=\langle[1, n], E\rangle, n \in \mathbb{N}^{+}$is $G \triangleq(\mathbb{Q}\langle i, j\rangle \in E$ ？ 1 。 $0 D)_{\substack{i=1, n \\ j=1, n}} \in\{0,1\}^{n \times n}$ ，see Example 37．1．

For a graph $G=\langle V, E, \boldsymbol{\omega}\rangle$ weighted on the group \mathbb{G}, the adjacency matrix is $\mathbf{G}=(\{\langle i, j\rangle \in E$? $\boldsymbol{\omega}(i, j) \circ \infty \rrbracket)_{\substack{i=1, n \\ j=1, n}}^{\substack{i,}}(\mathbb{G} \cup\{\infty\})^{n \times n}$, see Example 37.11.
The infimum is the empty graph $\langle\varnothing, \varnothing\rangle$ encoded with the empty matrix \varnothing. The supremum is ($\infty)_{\substack{i=1, n \\ j=1, n}}$.

There is a Galois isomorphism between G and $\langle i, j\rangle \mapsto \boldsymbol{\omega}(E \cap\{\langle i, j\rangle\})$ and similarly the distance d can be encoded, up to an isomorphism into $\mathbf{D}=(\mathrm{d}(i, j))_{\substack{i=1, n \\ j=1, n}} \in(\mathbb{G} \cup\{\infty\})^{n \times n}$, so that by an abstraction of (37.23.c) similar to Theorem 37.17, it follows that
[Corollary 37.34 (Shortest distances in a weighted graph with adjacency matrix) Let $G=\langle V$, $E, \boldsymbol{\omega}\rangle$ be a finite graph weighted on the totally ordered group $\langle\mathbb{G}, \leqslant, 0,+\rangle$. Then the matrix of distances between any two vertices is $\mathbf{D}=\mid \mathrm{fp} \geqslant \mathscr{F}_{\mu}=\mathrm{gfp} \mathscr{F}_{\mu}$ where $\mathscr{F}_{\mu}^{\mathrm{G}}(\mathrm{D})_{i j} \triangleq$ $\min \left(\mathrm{G}_{i j}, \min _{k \in[1, n]}\left(\mathrm{D}_{i k}+\mathrm{D}_{k j}\right)\right)$.

Example 37.35 The iterates for Example 37.11 starting from G are $\mathscr{F}_{\mu}^{1}=\left[\begin{array}{ccc}\infty & 1 & 2 \\ -1 & \infty & 2 \\ \infty & \infty & 1\end{array}\right], \mathscr{F}_{\mu}^{2}=$ $\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & 1 \\ \infty & \infty & 1\end{array}\right]=\mathscr{F}_{\mu}^{3}=\mathrm{D}$.

Example 37.36 (Graph with cycle of strictly negative weight) Continuing Example 37.16, the iterates of Corollary 37.34 starting from G are $\mathscr{F}_{\mu}^{0}=\left[\begin{array}{ccc}\infty & 0 & 2 \\ -1 & \infty & 2 \\ \infty & \infty & 1\end{array}\right], \mathscr{F}_{\mu}^{1}=\left[\begin{array}{ccc}-1 & 0 & 2 \\ -1 & -1 & 1 \\ \infty & \infty & 1\end{array}\right]$, $\mathscr{F}_{\mu}^{2}=\left[\begin{array}{ccc}-2 & -1 & 1 \\ -2 & -2 & 0 \\ \infty & \infty & 1\end{array}\right], \mathscr{F}_{\mu}^{3}=\left[\begin{array}{ccc}-3 & -3 & -1 \\ -4 & -4 & -2 \\ \infty & \infty & 1\end{array}\right], \mathscr{F}_{\mu}^{4}=\left[\begin{array}{ccc}-7 & -7 & -5 \\ -8 & -8 & -6 \\ \infty & \infty & 1\end{array}\right], \ldots$, and passing to the limit, $\mathscr{F}_{\mu}^{\omega}=\left[\begin{array}{ccc}-\infty & -\infty & -\infty \\ -\infty & -\infty & -\infty \\ \infty & \infty & 1\end{array}\right]$.
An efficient iteration is obtained by abstracting (37.28.d).
[Corollary 37.37 (Shortest distances in a weighted graph with adjacency matrix iteration)
Let $G=\langle V, E, \boldsymbol{\omega}\rangle$ be a finite graph with $V=\left\{z_{1}, \ldots, z_{n}\right\}, n>0$ weighted on the totally ordered $\operatorname{group}\langle\mathbb{G}, \leqslant, 0,+\rangle$ with no strictly negative weight. Then the matrix of distances between any two vertices is $\mathrm{D}=\mathscr{F}_{\mu}^{n+1}$ where $\mathscr{F}_{\mu}^{0}=\mathrm{G}$ and $\mathscr{F}_{\mu i j}^{\ell+1}=\min \left(\mathscr{F}_{\mu i j}^{\ell}, \min _{k \in[1, n]}\left(\mathscr{F}_{\mu i k}^{\ell}+\mathscr{F}_{\mu k j}^{\ell}\right)\right)$.

Exercise 37.38. Continue Exercise 37.32 using the boolean adjacency matrix of the finite graph (to get the original Roy-Warshall iterative algorithm [14, 18]).

Exercise 37.39. Program the Roy-Floyd-Warshall algorithm of Exercise 37.38 in the programming language of your choice.

37.19 Conclusion

Graph theory originates from Leonhard Euler's work on the so-called "Seven Bridges of Königsberg" problem [7]. Graphs are used to model many types of relations and processes in physical, biological, social, and information systems.
$[1,5,9,12,13]$ observed that various path algorithms can be designed and proved correct based on a common algebraic structure and then instantiated to various path problems up to homomorphisms. The explanation of this observation originates from the fixpoint characterization of graph paths in Theorem 37.4 based on the primitives E, \cup and © on sets of paths. Then Theorem 37.6 shows that any path problem formalized by an abstraction α can be expressed in terms of abstract operations $\alpha(E)$, \sqcup, and $\bar{\bigcirc}$ derived from the primitives E, \cup and \bigcirc by calculational design. This is the case for the shortest path problem for which the composition of successive abstractions (which is not an homomorphism) allows us to formally derive the classical Roy-Floyd-Warshall algorithm (which therefore need not be postulated out of similarity observations, e.g. [13, Sect. 1] and [3, Ch. 3]). The derivation of Roy-Floyd-Warshall algorithm was tricky since it is based on the abstraction of an over-approximation of the elementary paths which is an under-approximation of all graph paths.

For comments on the Roy-Floyd-Warshall algorithm, see [10, p. 26-29], [11] and [16, p. 129]. The calculational design of the transitive closure by abstraction of a fixpoint path semantics is in [4]. See [17] for the calculational design of dominance and shortest graph algorithms by abstract interpretation (based on exact abstractions of (37.4.a)).

37.20 Answers to selected exercises

Answer of exercise 37.29. Consider the following graph $13 \in \widehat{\mathscr{F}}_{\pi}^{0}(1,3)$ and $21 \in \widehat{\mathscr{F}}_{\pi}^{0}(2,1)$. The next iterate is identical since there is no path through 0 . The next iterate through $1 \notin\{2,3\}$ adds $21 \odot 13=213 \in \widehat{\mathscr{F}}_{\pi}^{2}(2,3)$. The next iterate through $2 \notin\{1,3\}$ adds $12 \odot 213=1213 \in \widehat{\mathscr{F}}_{\pi}^{3}(1,3)$ which is not elementary and so does not belong to $p^{2}(1,3)$.

Answer of exercise 37.39.

```
$ cat rfw.c
#include <limits.h>
#include <stdio.h>
int main () {
#define N 3
#define INF INT_MAX
    int D[N][N] = {{INF, 1, 2}, {-1, INF, 2}, {INF, INF, 1}};
```

```
    int i,j,k,dikj,negativecycle;
    for (i=0; i<N; i++) { D[i][i] = 0; }
    for (k=0; k<N; k++)
        for (i=0; i<N; i++)
            for (j=0; j<N; j++) {
                dikj = (D[i][k]==INF | D[k][j]==INF ? INF : D[i][k]+D[k][j]);
                    if (dikj < D[i][j])
                        D[i][j] = dikj;
            }
    negativecycle = 0;
    for (i=0; i<N; i++) {
        if (D[i][i]<0) negativecycle = 1;
    }
    if (negativecycle) printf("cycle of strictly negative length"); else
        for (i=0; i<N; i++) {
            for (j=0; j<N; j++)
                (D[i][j]==INF ? printf("oo ") : printf("%i ", D[i][j]));
            printf ("\n");
        }
}
$ gcc rfw.c
$ ./a.out
0 1 2
-1 $0$ 1
oo oo $0$
```


37.21 Bibliography

[1] Claude Berge. Théorie des graphes et ses applications. Dunod, 1958.
[2] Claude Berge. Graphs and Hypergraphs. North-Holland Publishing Company, 1973.
[3] Bernard Carré. Graphs and Networks. Clarendon Press, Oxford, 1979. url: https : / / archive.org/details/GraphsAndNetworks.
[4] Patrick Cousot and Radhia Cousot. "Basic Concepts of Abstract Interpretation". In: René Jacquard, ed. Building the Information Society. Springer, 2004, pp. 359-366.
[5] Jean-Claude Derniame and Claude Pair. Problèmes de cheminement dans les graphes. Dunod, 1971.
[6] Reinhard Diestel. Graph Theory. 5th ed. Graduate Texts in Mathematics. Springer, 2017.
[7] Leonhard Euler. "Solutio problematis ad geometriam situs pertinentis". Commentarii academiae scientiarum Petropolitanae 8 (1736, published 1741), pp. 128-140.
[8] Robert W. Floyd. "Algorithm 97: Shortest path". Commun. ACM 5.6 (1962), p. 345.
[9] Michel Gondran. "Algèbre linéaire et cheminement dans un graphe". Revue française d’automatique, informatique, recherche opérationnelle (R.A.I.R.O.) Recherche opérationnelle, tome 9.V1 (1975), pp. 77-99.
[10] Pierre Hansen and Dominique de Werra. "Connectivity, Transitivity and Chromaticity: The Pioneering Work of Bernard Roy in Graph Theory". In: Aiding Decisions with Multiple Criteria: Essays in Honor of Bernard Roy. Springer, 2002, pp. 23-44.
[11] Peter Naur. "Proof versus formalization". BIT Numerical Mathematics 34.1 (1994), pp. 148164.
[12] Claude Pair. "Sur des algorithmes pour les problèmes de cheminement dans les graphes finis". In: Théorie des graphes. Journées internationales détude. Centre International de calcul, Rome. Dunod Paris, Gordon and Breach, New York, July 1966, pp. 271-300.
[13] Claude Pair. "Mille et un algorithmes pour les problèmes de cheminement dans les graphes". Revue Française d'Informatique et de Recherche opérationnelle (R.I.R.O.) B-3 (1970), pp. 125143.
[14] Bernard Roy. "Transitivité et connexité". C. R. Acad. Sci. Paris 249 (1959), pp. 216-218.
[15] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs. Discrete Mathematics for Computer Scientists. Springer, 2012.
[16] Alexander Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Vol. 24. Algorithms and Combinatorics. Springer, 2003.
[17] Ilya Sergey, Jan Midtgaard, and Dave Clarke. "Calculating Graph Algorithms for Dominance and Shortest Path". In: MPC. Vol. 7342. Lecture Notes in Computer Science. Springer, 2012, pp. 132-156.
[18] Stephen Warshall. "A Theorem on Boolean Matrices". J. ACM 9.1 (1962), pp. 11-12.

[^0]: ${ }^{44}$ In order to consider infinite paths, we would have to introduce limits as in Section 7.2.

[^1]: ${ }^{45}$ We call group both the algebraic structure $\langle\mathbb{G}, 0,+\rangle$ and its support \mathbb{G}.

[^2]: ${ }^{46}$ This is for case (37.26.d). For cases $(a-c)$, we also have $\alpha_{1}^{\partial}(p) \triangleq p$ while the second definition is for $k \in[2, n+2]$.

