
REASONING WITH TAXONOMIES

by

Andrew Fall

B�Sc� Simon Fraser University ����

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the School

of

Computing Science

c� Andrew Fall ����

SIMON FRASER UNIVERSITY

December ����

All rights reserved� This work may not be

reproduced in whole or in part� by photocopy

or other means� without the permission of the author�

APPROVAL

Name� Andrew Fall

Degree� Doctor of Philosophy

Title of thesis� Reasoning with Taxonomies

Examining Committee� Dr� David Fracchia

Chair

Dr� Veronica Dahl� Senior Supervisor

Dr� Ken Lertzman� Supervisor

Dr� Fred Popowich� Supervisor

Dr� Hassan A�	t
Kaci� SFU Examiner

Dr� Nick Cercone� External Examiner

Date Approved�

ii

Dedicated to Mom and Dad

Elizabeth Anne Fall and Stewart Temple Fall

iii

iv

Abstract

�We journey to learn� yet in travelling grow each day

further and further from where we began�

� Wade Davis

Taxonomies are prevalent in a multitude of �elds� including ecology� linguistics� programming languages� databases�

and arti�cial intelligence� In this thesis� we focus on several aspects of reasoning with taxonomies� including the

management of taxonomies in computers� extensions of partial orders to enhance the taxonomic information that

can be represented� and novel uses of taxonomies in several applications�

The �rst part of the thesis deals with theoretical and implementational aspects of representing� or encoding� tax

onomies� Our contributions include �i a formal abstraction of encoding that encompasses all current techniques� �ii

a generalization of the technique of modulation that enhances the e�ciency of this strategy for encoding and reduces

its brittleness for dynamic taxonomies� �iii the development of sparse logical terms as a universal implementation

for encoding that is supported by a theoretical and empirical analysis demonstrating their e�ciency and �exibility�

The second part explores our contributions to the application and extension of taxonomic reasoning in knowledge

representation� logic programming� conceptual structures and ecological modeling� We formalize extensions to partial

orders that increase the ability of systems to express taxonomic knowledge� We develop a generalization of equality

constraints among logic variables that induces a partial order among equivalence classes of variables� For graphic

knowledge representation formalisms� we develop techniques for organizing the derived hierarchy among graphs in

the knowledge base� Finally� we organize abstract models of landscapes in a taxonomy that provides a framework

for systematically cataloging and analyzing landscape patterns�

v

Acknowledgements

�No matter how much we seek� we never �nd anything but ourselves�

� Anatole France

My �rst thanks are to Marie
Ange� for tolerating my incessant drive to achieve my goals� for patiently listening to my

explanations in various dialects of martian� and for enduring many lonely times while I was away at conferences� Our

kitten Ash and my long
time companion lovebird Milk kept her company during my absences� One of my dreams

has been to make my parents proud of my achievements� Even if they are no longer here� they share their love in

my heart� They also live on in my brother Joseph� with whom I have been fortunate to have worked with on some

of my research�

I wish to express gratitude to my supervisor� Veronica Dahl� without whom I would not have had the courage to

let my ideas see the light of day� She has provided inspiration both professionally and personally during the course

of my degree� I would also like to thank my committee� Hassan A�	t
Kaci� Nick Cercone� Ken Lertzman and Fred

Popowich� as well as Paul Tarau� for many enlightening conversations� and for encouraging me to pursue some of

the routes I explored during my research� Thanks to all my friends and family� and to Mother Nature� who walked

beside me along my path� diverting my attention to other important aspects of life�

Support for this research was initially funded by NSERC PGS
A and PGS
B Postgraduate Scholarships� and

later by an ECO
Research Doctoral Fellowship� Additional support was made by Veronica�s NSERC Research Grant

��
������ and NSERC Infrastructure and Equipment Grant given to the Logic and Functional Programming Lab�

where this work was primarily developed� Thanks for the use of facilities are also due to the School of Computing

Science� and to the Forest Ecology Lab in the School of Resource and Environmental Management� at Simon Fraser

University�

vi

�The human race is challenged more than ever before to demonstrate

our mastery � not over nature � but of ourselves�

� Rachel Carson

It is the author�s wish that no military bene�t

be derived from any results in this thesis�

vii

Notation

�Once you miss the buttonhole you�ll never manage to button up�

� Goethe

Below are descriptions of the intended meaning of some of the symbols used in the thesis�

Partial order theory�

u meet �greatest lower bound and meet crest

t join �least upper bound and join base

��v�� partial order relations

Set theory�

��T intersection

��S union

� subset �which is also a partial order relation

� set membership

Predicate logic�

� conjunction

	 disjunction

 negation

� implication

� logical equivalence

viii

Contents

Abstract v

Acknowledgements vi

Notation viii

� Introduction �

��� Motivation and Summary of Thesis Results �

��� Organization of Thesis �

� Background and Mathematical Preliminaries �

��� Partial Order Theory �

����� Properties of ordered sets �

����� Lattices �

����� Order mappings and lattice completions �

����� Lattice completions ��

Part I� Taxonomic Encoding ��

� The Evolution of Taxonomic Encoding ��

��� Introduction ��

��� Encoding tree
shaped hierarchies ��

��� Extending trees to graphs ��

��� Characterizing term encodable hierarchies ��

��� Bit
vector encodings ��

��� Discussion ��

� The Foundations of Taxonomic Encoding ��

��� Setting the Stage ��

��� Spanning Sets ��

����� Taxonomic operations using spanning sets ��

����� Representation theory and encoding ��

��� E�cient Implementations of Component Mappings ��

����� Unordered implementations ��

����� Tree representations and code sharing ��

����� Logical terms ��

����� Sparse logical terms ��

����� Integer vectors ��

��� In�nite Suborders ��

��� Spanning Sets of Principal Down
sets and Up
sets ��

ix

����� All principal down
sets ��

����� Principal down
sets of meet irreducible elements ��

��� Spanning Sets of Prime Down
sets and Up
sets ��

��� Spanning Sets of Compound Down
sets and Up
sets ��

����� Finding a minimal subsumption preserving spanning set is NP
Hard � � � � � � � � � � � � � � � ��

����� Multiple occurrences of factors ��

��� Spanning Set Decomposition ��

����� Chain decomposition ��

����� Meet incompatible decomposition ��

����� Meet homogeneous decomposition ��

��� Constraints and Coreference ��

����� Types of constraints ��

����� Augmented spanning sets ��

����� Integrating spanning sets and constraints ��

����� Guarded constraints ��

����� Coreference ��

����� Coreference� decomposition and meet incompatibility constraints � � � � � � � � � � � � � � � � � ��

����� Encoding algorithms ��

����� Variations ��

���� Discussion and Conclusion ��

� Modulated Encoding ��

��� Order Intervals and Modules ��

��� Order partitions ��

��� Modulation ��

��� Extending modulation ��

����� Lower and Upper Semi
Modules ��

����� Generalized Modules ��

����� Non
overlapping Modulation ��

����� Overlapping Modulation ��

����� Extending Modulation Algorithms ��

��� Conclusion ��

� Encoding with Sparse Logical Terms ��

��� Introduction ��

��� Basic Sparse Terms ��

����� Space requirements ��

����� Uni�cation and Implementation ��

����� Variations ��

��� Generalizing Sparse Terms for Encoding ��

����� Explicit and canonical forms for sparse terms ��

����� Sparse term subsumption ��

��� Encoding with Sparse Terms ��

��� Sparse Term Encoding ��

��� Theoretical Justi�cation ��

��� Empirical Evidence ��

��� Conclusion ��

Part II� Applications and Extensions of Reasoning with Taxonomies 	

x

	 Extending Partial Orders for Sort Reasoning ��

��� Introduction ��

��� Background ��

��� Sort Reasoning ��

����� Generalizing sort reasoning ��

����� Clausal taxonomic speci�cation ��

����� De�nitional speci�cations ��

��� Sort Logic ��

����� Complexity of Sort Reasoning ��

��� Tractable subcases ��

����� Containing sort reasoning complexity ��

��� Implementing Conjunctive Sorts ��

��� Conclusion ��

� Reference Constraints in Logic Programming
�

��� Introduction ��

��� Background ��

��� Decoupling Coreference via Reference Constraints ��

����� Notational considerations ��

����� Maintaining and satisfying the reference order ��

����� Example ��

����� Comparison with sort hierarchies ��

����� Implementation ��

��� Individual Level Inheritance ��

��� Conclusion ��

 Organizing the Hierarchy of Conceptual Graphs

��� Background and Motivation ��

��� Cardinality Constraints ���

��� Normalization ���

��� Spanning Tree Normal Form ���

����� Pivoting ���

��� Representing the Generalization Hierarchy ���

����� Depth
�rst topological traversals ���

��� Conclusion ���

�� A Hierarchical Organization of Landscape Models ��	

���� Introduction ���

���� Background� Neutral models ���

���� Landscape Model Prototypes ���

������ Pattern constraints ���

���� A Hierarchy of Landscape Model Prototypes ���

���� Conclusion ���

Chapter Appendix� Formal Basis for Landscape Model Generators that Permit General Richness� LAR and

Contagion Constraints ���

�� Conclusion ��

���� Signi�cance of Research ���

���� Future Research Directions ���

Bibliography ���

xi

List of Tables

��� Assigning bits to elements from Figure ��� ��

��� Characterization of encoding schemes in terms of spanning set of down
sets � � � � � � � � � � � � � � � ��

��� Asymptotic encoding results for theoretical orders ��

��� Empirical results �in bits for chess learning system ���� ��

��� Empirical results �in bits for medical ontology ��

xii

List of Figures

��� Research overview �

��� Sample ordered sets �

��� Example ordered set �

��� Example order mappings� The �rst �centre mapping is order
preserving and the second �right
hand

mapping is an order
embedding� ��

��� Example lattice mappings� Both mappings are f���g
homomorphisms and the second �right
hand
mapping is also order
embedding� ��

��� Minimal completion of the ordered set in Figure ��� ��

��� A tree
shaped hierarchy ��

��� Taxonomy showing tree pre�x ��

��� Logical term encoding of a tree
shaped hierarchy ��

��� Encoding of type hierarchy in Figure ��� ��

��� Bottom
up bit
vector encoding of taxonomy in Figure ��� ��

��� Compact bit
vector encoding of taxonomy in Figure ��� ��

��� A modulated taxonomy and its encoding ��

��� A subsumption only encoding ��

��� Diamond lattice and two spanning sets ��

��� Tree representation ��

��� Chain partition of the ordered set in Figure ��� ��

��� Meet incompatible anti
chain partition of the ordered set in Figure ��� � � � � � � � � � � � � � � � � � � ��

��� Principal down
set encoding ��

��� Cover tree� preorder numbering and interval encoding for the lattice in Figure ��� � � � � � � � � � � � � ��

��� Meet irreducible encoding ��

��� Principal up
set and prime down
set encodings ��

��� Elements that cannot be in the same down
set ��

���� Subsumption preserving encoding ��

���� Transformation of a graph to a lattice ��

���� Subsumption preserving encoding ��

���� Violation of subsumption ��

���� Example encodings that discriminate non
meet irreducible elements ��

���� Distributed virtual time encoding ��

���� Meet incompatible decomposition ��

���� Logical term implementation of meet incompatible decomposition ��

���� Transformation of a graph to a lattice ��

���� Meet homogeneous decomposition ��

���� Term encoding for diamond and cube lattices ��

���� Lattice for which no augmented spanning set of down
sets can preserve meets and joins � � � � � � � � ��

xiii

��� Types of modules ��

��� A modulated lattice and its containment tree ��

��� Lower semi
modules ��

��� Generalized modulation� Lower surrogates �left are fa� e� lg and upper surrogates �centre are fb� e� f� ng� ��

��� Encoding implementations� sparse terms generalize other techniques ��

��� Sparse logical terms ��

��� Binding arity in sparse terms ��

��� Anonymous functors in sparse terms ��

��� Attribute
value matrix using sparse terms ��

��� Chain and anti
chain encodings ��

��� Binary tree encoding ��

��� Square lattice transitive closure and compact encodings ��

��� Transitive closure encoding of a crown S� ��

��� Relation between taxonomic and set operations ��

��� Venn diagrams of clausal taxonomy speci�cation ��

��� Aggregate speci�cations ��

��� Using sort de�nitions to represent an instance of �
SAT� f � c� � � ck� where ci � li�� 	 li�� 	 li���
� � i � k ��

��� State of the reference order at various points in a predicate evaluation � � � � � � � � � � � � � � � � � � ��

��� Reference order for separating the contexts for a person named John ��

��� Reference order for ambiguous parses of �Jack saw a dog on his way home� � � � � � � � � � � � � � � � ��

��� Reference order during parse of the sentence �When Sherry saw the chair� she shook her hand� � � � � ��

��� Reference constraints for default reasoning ��

��� Conceptual graph representing �a cat sitting on a mat� ���

��� Spanning tree normal form ���

��� A cyclic graph and a tree representation ���

��� A woman eating a dinner cooked by her husband ���

��� Examples of pivoting the graph in Figure ���

���� Example neutral models� Each instance was generated on a �� � �� grid �m���� with varying
proportions of the white feature �p � ���� ��� and ���� ���

���� Instances of landscape model prototypes produced on a ���� ��� grid� Each model has four features
with equal landscape area ratios �i�e� equal relative proportions� The value of contagion di�ers for

each model instance� taking on the values ���� ��� and ����� respectively� The prototype for instance

�a is therefore fLAR � ������ ����� ����� ����� size � ���� ���� richness � ��� ��� contagion � ���g� � ���
���� Geometric view of an instance of a landscape model prototype with spatial constraints� The instance

is overlaid on the elevation model used to create it� The model size of this instance is ��� � ����
and the number of features is �� The underlying elevation model provides a context in which spatial

constraints� in the form of elevation responses� a�ect pattern generation� Thus� the prototype for

instance �a is fsize � ���� ���� richness � ��� ��� spatial responses to elevationg� � � � � � � � � � � � ���

���� Instance of a landscape model prototype �b generated using stochastic temporal constraints and input

pattern �a� The model size is ��� ��� and richness is �� The prototype for instance �b is therefore
fsize � ��� ��� richness � �� temporal responsesg� ���

���� Sample fragment of the hierarchy of landscape model prototypes� Each node represents a prototype

that consists of the constraints labeling the node and all higher nodes in the hierarchy� � � � � � � � � � ���

���� Sample fragment of the hierarchy of landscape model generators� Each node represents a generator

that permits speci�cation of the constraints labeling the node and all higher nodes in the hierarchy� � ���

xiv

Chapter �

Introduction

�In all things of nature� there is something of the marvelous�

� Aristotle

The drive to categorize and organize knowledge has been ubiquitous throughout human intellectual development�

Taxonomic knowledge was �rst formalized by Aristotle� who proposed to de�ne the intention of a complex concept in

terms of its genus� or general type� and di�erentia� or speci�c properties� It is therefore natural that a large portion

of current knowledge is taxonomically related� and that taxonomies are prevalent in a multitude of �elds�

In this thesis� we are concerned with research on the e�cient representation and use of taxonomies� extend

ing partial orders for taxonomic knowledge representation and reasoning� and applying taxonomies to a variety of

applications� Central to this research is the partial order �Figure ����

Taxonomies

and Applications

Theory and Taxonomic
Encoding

Logic Ecological
Modeling

Conceptual
Structures

(Partial Orders)

Implementation

Programming

Representation:

Extensions

Modulated
Encoding

Sparse Logical
Term Encoding

Extended
Partial Orders

Figure ���� Research overview

The motivation for this thesis is based on the following observation�

Observation Taxonomic knowledge is a useful artifact for organizing many aspects of human thought� much of

which can be captured in a mathematically elegant way with partial orders� The capability of automated systems

depends on the identi�cation� application and e�cient organization of taxonomic information�

�

CHAPTER �� INTRODUCTION �

Due to the multi
disciplinary nature of this thesis� we pose a number of speci�c theses to explore this observation�

Thesis � Taxonomic encoding� � There exists a formal characterization for the representation� or encoding� of

partial orders in computers as the expression of certain aspects of taxonomic information that is distinct from the

manner in which that information is implemented�

Thesis � Modulation� � Concepts naturally group into related� but not necessarily independent� partitions� and

this can be exploited to decompose large taxonomies into manageable units�

Thesis � Sparse term encoding� � There exists a universal encoding implementation that combines the advan�

tages of other implementation techniques�

Thesis � Extending partial orders� � Partial orders can be extended with taxonomic information beyond sub�

sumption� and this can enrich the expressive power and consistency of a taxonomic reasoner�

Thesis � Reference constraints� � The symmetry of equality constraints can be decoupled into two asymmetric

reference constraints that induce a novel and practical hierarchy on equivalence classes of logical variables�

Thesis � Conceptual graph generalization hierarchy� � Knowledge�bases of

graphs that exhibit a derived hierarchical structure can be organized as a spanning tree that permits improved traversal

e�ciency for operations on that hierarchy�

Thesis 	 Landscape ecology� hierarchy of landscape models� �

Generators of landscape models can be viewed as imposing sets of constraints on pattern generation� These sets of

constraints induce a hierarchy on landscape models that serves as an organizational framework for model generators

and for the analysis of landscape patterns�

��� Motivation and Summary of Thesis Results

We motivate the thesis by discussing a number of open problems that we focused our research e�orts on� and some

of the signi�cant results that we obtained� This thesis crosses a number of disciplinary boundaries� and advances the

state of the art in several di�erent �elds� The list below follows somewhat the structure of this thesis�

�� Encoding� Mellish ����� studied the use of logical terms for encoding lattices� He characterized the classes of

lattices for which term encodings were possible for di�erent forms of terms �e�g� �at terms� However� no

algorithm was presented� and so no constructive solution to the problem of encoding was proposed�

On the other hand� researchers advocating the use of bit
vectors and related approaches have applied encoding

in real applications �e�g� object
oriented programming ����� operating systems ����� However� these approaches

have been ad hoc� and no formal apparatus has emerged to permit objective comparison and evaluation of the

di�erent techniques�

We develop a formal apparatus for objectively characterizing all encoding algorithms� Our framework permits

the separation of the informational content of an encoding from its implementational details� and allows com

parison at an abstract level of di�erent encoding techniques� Furthermore� the advantages and disadvantages

of various approaches for implementing encodings can be analyzed for their e�ect on space and time e�ciency�

and their dynamic behaviour�

�� Modulation� Modulation is a well
known technique for the analysis of partial orders in discrete mathematics

�e�g� ����� but it wasn�t until the seminal work of A�	t
Kaci et al� ��� that its use for encoding was proposed� The

algorithm proposed in this paper produces an approximate modulation in a time e�cient manner� Researchers

on partial order theory� on the other hand� have worked on exact modulation algorithms� but it was only

recently that an e�cient �linear algorithm was developed ����� Even with the ability to decompose taxonomies

CHAPTER �� INTRODUCTION �

into modules� however� the ability to take advantage of modulated taxonomies has received limited attention

beyond the proposal in ����

An additional issue� and perhaps more important� is that modules are rigidly de�ned constructs� Even if

adequate modulations are possible in real taxonomies� dynamic updates have the potential to invalidate much

of the work involved in modulation� Prior to our research� no proposal had been made to address this serious

issue that undermines the potential advantages of modulated encoding by making modules too brittle for real

applications�

Taking advantage of the decomposition tree of a modulation� we develop a technique for modulated encoding

that reduces the size of codes� and the time to compute taxonomic operations� beyond that proposed in ����

Furthermore� our abstract treatment of modulation permits a direct generalization to a relaxed de�nition of

modules that degrade gracefully under dynamic updates� We design algorithms for operations on generalized

modules� which we prove to be correct�

�� Logical term encoding� The viewpoint taken in the analysis of Mellish ����� ���� is� given a technique for

implementing encodings� what forms of taxonomies can be encoded� We feel that� for real
world problems�

this viewpoint is �awed� In applications that require encoding� we may not have the luxury to restrict the

form of a taxonomy to encode� Thus� we believe that a better viewpoint is� given a taxonomy� what is the best

approach to encode this taxonomy� This stance makes it easier for people to describe things naturally� and

does not overly constrain their expressive power� We highlight �best�� since there are a number of criteria by

which we may evaluate encoding� The most prevalent criterion is the size of the resulting codes� although we

discuss others later�

Due to the structural potential and �exibility of logical terms� we feel that term encodings are the most

promising form of implementation� For example� logical terms may permit dynamic updates to a portion of a

taxonomy without requiring a full re
encoding� while any change to the length of a bit
vector encoding requires

updating every code� However� prior to research conducted for this thesis� no algorithms for encoding with

logical terms had been proposed�

Our early attempts at logical term encoding using Prolog terms were unsuccessful due to the vast number of

anonymous variables that produced excessively large terms� For this reason� we developed and implemented

sparse logical terms for the speci�c task of logical term encoding� although we later found other uses for them�

Sparse terms vastly improved our term encoding results� but we later discovered how the bene�ts of encoding

with logical terms� integer vectors and interval sets could be integrated into an extended form of sparse term�

In this thesis� we propose these extended sparse terms as a universal encoding implementation that encompasses

�in terms of e�ciency most other approaches to implementing encodings� and we devise and implement the �rst

published logical term encoding algorithms� This claim is backed up by theoretical comparisons of sparse terms

with other approaches to encoding� as well as an empirical comparison between bit
vectors and sparse terms

for encoding two medium size taxonomies from existing applications� Even though each item of information

in a sparse term uses more space in an absolute sense �i�e� one atom vs� one bit� sparse terms outperformed

bit
vectors by nearly an order of magnitude� This result is strengthened by the improved �exibility obtained

by the use of logical terms over more rigid implementations such as bit
vectors�

�� Extending partial orders� The maintenance of taxonomic knowledge has been polarized� At one extreme�

systems use mathematically pure� but limited� partial orders for representing taxonomic information� At the

other extreme� terminological systems provide rich formalisms for specifying knowledge� and taxonomic infor

mation is derived through the expensive �and potentially intractable operation of classi�cation ���� ��� �����

In order to gain e�ciency� some terminological systems limit expressive power to obtain tractable classi�cation�

However� there has been no corresponding push in the other direction� namely to embellish partial orders with

further power to incorporate additional forms of taxonomic knowledge other than simple subset information�

One of the dangers of this situation is that taxonomic operations� such as meets� have been interpreted as equiv

alent to conceptual� or set
theoretic operations� such as intersection� Although this correspondence appears

CHAPTER �� INTRODUCTION �

natural� it may lead to invalid inferences� as pointed out in ���� in the context of many
sorted logic�

The solution to this problem suggested in ���� is to embed the taxonomy in a special Boolean lattice that

provides consistent inferences� This is adequate for logic� but inadequate for applications that must reason

e�ciently with taxonomic knowledge� due to a potentially exponential increase in space� We analyze sort

reasoning as a distinct reasoning task� and suggest the inclusion of a sort reasoner in applications that utilize

taxonomic knowledge� By developing a sound and complete sort logic �not a sorted logic for reasoning with

sorts� but a logic for reasoning about sorts� we clearly identify the task required as the sort reasoning problem�

We prove that this problem is NP
Hard� but analyze the sources of intractability� By limiting certain forms of

taxonomic declarations and queries� we show that intractability can be bounded� resulting in a sort reasoning

procedure that only requires polynomial time�

�� Reference constraints� During the development of a constraint based view of encoding� we identi�ed the utility

of constructing a hierarchy of logical variables �actually� of equivalence classes of variables� In this way�

uni�cation can be split into two uni
directional components that allows� for example� updates to a variable X

to be automatically uni�ed with variable Y � but not vice versa� This form of relation among logical variables

has not been previously proposed�

We develop a formal description of reference constraints� and show how they may be speci�ed in a logic

program� We also explain how the resulting hierarchy of equivalence classes is maintained and satis�ed during

the processing of a logic program� Finally� we discuss how reference constraints can be implemented� and

propose potential modi�cations to the control strategy of logic programming languages that may take fuller

advantage of this new form of constraint�

While working out the details of reference constraints among logical variables� we identi�ed a broad area of

application in hypothetical reasoning systems� Reference constraints naturally lead to the notion of individual�

level inheritance� The classical notion of inheritance involves inheritance of properties among classes �e�g� the

class cat inherits properties from the class mammal and from classes to individuals �e�g� the cat Ash inherits

properties from the class cat� Individual
level inheritance is a novel and distinct form of inheritance among

individuals� which are approximated by terms in logic programming� If individual A inherits from individual

B� then the term that approximates A must be more fully speci�ed than the term that approximates B� This

notion has applications in systems that reason with uncertainty� to separate� but relate� hypothetical from

known information in a given context�

�� Conceptual structures� Conceptual structures is a graph
based formalism for knowledge representation that

relies heavily on taxonomies� The type and relation lattices are declarational structures to which encoding

techniques are directly applicable� The generalization hierarchy� however� is a partial order formed by graphs

using the complex operation of projection� which is akin to classi�cation in terminological representations such

as KL
ONE ����� Essentially� one graph subsumes another if the former contains a subset of the information of

the latter� However� the computation of this derived taxonomy is expensive� and the taxonomy itself is highly

dynamic as changes to the knowledge base transpire� To organize this hierarchy� a number of techniques�

including encoding ����� have been proposed� although research on this problem is ongoing�

We develop a solution that takes advantage of the information content of graphs to organize the generalization

hierarchy� Graphs are preprocessed using some normalization techniques to produce a standard form� called

spanning tree normal form due to the representation of a graph as a tree with coreference links� The generaliza

tion hierarchy itself is also organized as a tree� and graphs are further normalized into generalization hierarchy

normal form as they are inserted into the tree� The advantage of this tree form is that the projection operation

between a node and its parent in the tree is greatly simpli�ed� so traversals down branches are less costly than

general traversals in the hierarchy� Furthermore� in ���� it is argued that the most e�cient traversals of the

generalization hierarchy are topological� We show that� given a spanning tree produced from a left
to
right

depth �rst traversal of a partial order� a right
to
left depth �rst traversal of this tree corresponds to a depth

�rst topological traversal of the partial order�

CHAPTER �� INTRODUCTION �

	� Landscape ecology� model generation Work on theoretical models of landscapes� known as neutral models�

has proceeded steadily over the last few years �e�g� ���� ��� ��� ����� but is now rapidly expanding� as the

number of presentations that focused on neutral models at a recent landscape ecology symposium testi�es

�e�g� ���� ��� ��� ���� ����� However� although the development and use of neutral models and neutral model

generators has proliferated� no unifying framework for organizing and categorizing models has emerged�

By de�ning the general notion of a landscape model prototype� we provide a formal framework for describing

and comparing theoretical landscape models and model generators� A landscape model prototype describes an

expected pattern in the absence of additional ecological information� and so de�nes a distribution of landscape

patterns in a multi
dimensional space of possibilities� Using this notion� a hierarchy of prototypes is induced�

near the top are general prototypes that correspond to neutral models� while lower down are more predictive

models� Overall� the hierarchy clari�es gradients of neutrality in landscape models� and can be used to aid

selection of existing landscape model generators� in guiding the development of new model generators� and for

analyzing data sets of landscape models with respect to the degree of neutrality�

��� Organization of Thesis

The thesis is divided into two major parts� In Part I we look at some theoretical and implementational issues for

representing taxonomies� while part II considers several applications and extensions of reasoning with taxonomies�

The following chapter provides relevant background information for the thesis� In particular� some basic partial order

theory is presented as well as deviations from standard theory that we found important for our research� Due to the

diversity of topics covered� each chapter will also present background material and related work important to the

chapter�

Part I� taxonomic encoding� is divided into four chapters that contain research on various aspects of this topic�

Historical developments in taxonomic encoding are described in Chapter �� In Chapter �� we provide an in
depth

study of encoding and develop our framework for formalizing encoding� We describe our generalizations of modulation

in Chapter �� In Chapter � we develop sparse logical terms as a universal encoding implementation� Theoretical and

empirical evidence is presented to support this position�

Part II is divided into four chapters pertaining to research on extensions to� or applications of� reasoning with

taxonomies� In Chapter �� we present results on extending the mathematical notion of a partial order to enhance

the ability to represent taxonomic knowledge� In chapter �� we describe an application of partial orders in logic

programming for generalizing equality constraints among logical variables� We present the use of taxonomies in

conceptual structures in Chapter �� In particular� we focus on techniques for organizing the generalization hierarchy

induced by conceptual graphs� including graph normalization and a spanning tree representation of this hierarchy�

Finally� we show in Chapter �� how a partial order can be de�ned among abstract models of landscapes in order

to enhance the organization and speci�cation of generators of landscape models� and the analysis of data sets of

landscape models�

Chapter �

Background and Mathematical

Preliminaries

�From here on down� it�s uphill all the way�

� Walt Kelly

The cohesive theme of this thesis is the partial order� a simple yet elegant and powerful mathematical concept to which

a lot of attention has been devoted �e�g� ���� ��� ����� Partial orders underlie central aspects of many domains� such

as mathematical logic ������ sorted logic ���� ��� ��� and logic programming ��� �� ���� type systems ������ natural

language processing �e�g� typed feature structures ���� ��� ����� systemic networks ���� ����� object
orientation

�e�g� databases ���� languages ����� knowledge representation �e�g� conceptual structures ���� ����� knowledge bases

����� description logics ���� ��� ����� default inheritance and non
monotonic reasoning ���� ��� ���� ����� machine

learning �e�g� description identi�cation ����� and concept learning ����� ���� ����� formal concept analysis ����� �����

distributed systems ����� and ecology and ecological modeling ��� ��� ��� ��� �����

As the size of partial orders increases� it becomes important to �nd representations that are both space e�cient�

and support fast execution of desired operations �e�g� greatest lower bounds� Suitable encoding techniques will

depend on the nature of these partial orders �e�g� whether they can change dynamically� whether certain properties

such as distributivity or bounded width are satis�ed and the operations to be supported� Research on taxonomic

encoding has explored a variety of possibilities �e�g� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� �����

In order to empower logical terms for encoding� we developed sparse terms ����� based on an analogy to sparse

matrices� There are many similarities� but also some important di�erences� between sparse terms and �
terms in

LIFE ���� as well as sorted feature structures ���� �����

Although mathematically clean� partial orders limit the representation of taxonomic knowledge to subsort

supersort �or isa relationships� We cannot� for example� directly state that two sorts are incompatible or de�ne

one sort as the intersection of a set of other sorts� This poses problems for specifying more complete taxonomic

relationships as well as for denotational semantics in sorted logic ����� Research on many sorted logics has addressed

this issue by expanding the expressive power of relationships among sorts� In simple many sorted logics the sorts

simply partition the domain of discourse� while more complicated logics permit much more expression �����

The potential applications in which we could explore reasoning with taxonomies are many� We choose to focus on

logic programming� conceptual structures and ecological modeling� An important application that we only explore

super�cially is natural language processing� where important uses of taxonomies include lexical speci�cation and

typed feature structures �e�g� ���� ����� We have also used taxonomies in the resolution of anaphora and co

speci�cation in discourse processing ���� �synthesizing and extending research in ��� ��� ����� and for hypothetical

reasoning �����

Equality constraints partition logical variables into coreference classes� each of which denotes an individual �which

may be unspeci�ed or partially speci�ed in a domain of discourse� These constraints form a basis for a number of

logic programming languages� such as Prolog ����� and LIFE ���� However� the resulting classes are unrelated to each

other� Our application is the exploration of a generalization of equality constraints that induces a partial ordering

�

CHAPTER �� BACKGROUND AND MATHEMATICAL PRELIMINARIES �

among coreference classes�

Conceptual structures ����� is a rich application for taxonomies� Taxonomic encoding has been proposed for the

type lattice ����� and for the generalization hierarchy of graphs ���� ���� Other research has analyzed normalization

techniques for conceptual graphs ����� ����� Our focus is on the use of normalization techniques for a novel and

e�cient organization of the generalization hierarchy�

Landscape ecology ���� and ecological modeling are also prime application areas for taxonomies� particularly

for spatially explicit population models ����� ethology �animal behaviour models ����� individual
based modeling

���� ��� ����� and intelligent simulation ����� ���� ���� ����� Our focus is on spatially explicit models of landscapes

���� ���� ����� Work on theoretical landscapes has shown that models which contain no or very little ecological

information� known as neutral models� provide a null hypothesis for landscape pattern and change ���� ��� ���� ����

���� ���� ����� We have extended this notion to provide an incremental path from neutral models to landscape

models that incorporate ecological information� and possibly real data �e�g� from a GIS� inducing a partial ordering

among landscape models ���� ����

��� Partial Order Theory

Since the core of this thesis revolves around the partial order� it is important to have a clear understanding of the

underlying mathematics upon which much of this research rests� In this section� we present some basic partial order

theory� as can be found in ����� or any other lattice theory text� De�nitions and theorems that introduce our additions

to� or deviations from� standard theory will be followed by an asterisk�

A 	partially
 ordered set is a pair �P�� where P is a set and � is a re�exive� transitive and anti
symmetric binary
relation de�ned on P � Often� we leave � implicit and simply call P an ordered set� We call � subsumption� and use

subscripts �e�g �P to disambiguate di�erent orders� If x � y or y � x� then we say that x and y are comparable�

We denote that x and y are incomparable by xjjy� If x � y but x �� y� we write x � y� We say that x is covered by y�

or y covers x� if x � y and x � z � y implies that x � z� Genealogical terms are also used� if x � y� then we say x

is a descendant of y� or y is an ancestor of x� If x is covered by y� then we say x is a child of y� or y is a parent of x�

An ordered set P is a chain �or total order if �x� y � P either x � y or y � x� P is an anti�chain if �x� y � P

x � y implies that x � y �i�e� if x �� y then xjjy� Any subset Q of P is a suborder if� for any x� y � Q� x �Q y if and

only if x �P y�

Examples of ordered sets include families of subsets of some domain X ordered by set inclusion �i�e� A � B if

and only if A � B� sets of integers ordered by divisibility �i�e� x � y if and only if x is a factor of y� and logical

term spaces ordered by term instantiation� An example of a total order is the set of integers ordered by relative

magnitude� Ordered sets can be shown diagrammatically �in Hasse diagrams by placing subsuming elements above

subsumed elements and only drawing arcs in the transitive reduction� as shown in the samples below�

{}

{a} {b} {c}

{a,b} {a,c} {b,c}

{a,b,c} 12

6

23

4

1 1

2

3

..

.
n

Figure ���� Sample ordered sets

����� Properties of ordered sets

We de�ne the dual P � of an ordered set P by reversing �� We similarly de�ne the dual of a statement regarding
ordered sets� The Duality Principle allows us to deduce the dual of a statement once the statement itself is proven�

Suppose we have a subset Q of an ordered set P � Then q � Q is a maximal element of Q if q � x � Q implies

that q � x� and q is the greatest �or maximum element of Q if q � x for every x � Q� Minimal and least elements

are de�ned dually� The set of maximal �minimal elements of a set Q is denoted as dQe �bQc� If P has a greatest

CHAPTER �� BACKGROUND AND MATHEMATICAL PRELIMINARIES �

�least element� we call it top �bottom� denoted by � ��� If P has both � and �� then we call P bounded� An

element x � P is an upper 	lower
 bound of Q if q � x �x � q for every q � Q� The set of all upper �lower bounds

of Q is denoted Qu �Ql�

De�nition ��� Let P be an ordered set and Q a subset of P � If Qu has a least element x� then x is called the join

or least upper bound of Q� denoted tQ� If Ql has a greatest element x� then x is the meet or greatest lower bound

of Q� denoted uQ��

If Q has exactly two elements� x and y� then tfx� yg and ufx� yg may be written x t y and x u y� respectively�
The join xt y may fail to exist because x and y have no common upper bound or because they have no least upper
bound �i�e� bfx� yguc is not a singleton� In the former case we call x and y join incompatible� and if x and y have no

common lower bound they are called meet incompatible� Note that in a �nite ordered set� there exists a non
unique

meet if and only if there exists a non
unique join� In the ordered set in Figure ���� we can see that dogtwild doesn�t
exist� while dog uwild � feral dog�

domestic canine wild social

dog wolf african
wild dog

feral dogpoodlecollie terrier kit fox red fox

fox

Figure ���� Example ordered set

De�nition ��� �� Let P be an ordered set and Q a subset of P � The set of minimal upper bounds of Q is called

the join base of Q and the maximal lower bounds of Q is the meet crest of Q�

By abuse of notation� we denote lower bound� or meet� crests the same as meets �and upper bound� or join� bases

the same as joins� although the result is a set� not a single element� Thus� in Figure ���� neither dog u fox nor

dog twild exist� but wild u social � fwolf� african wild dogg and fox twolf � fcanine� wildg�
De�nition ��� Let P be an ordered set and Q a subset of P � Then Q is a down
set if for x � Q and y � P � y � x

implies y � Q� Up
sets are de�ned dually�

We can construct the smallest down
set containing a set Q as �Q � fy � P j�x � Q� y � xg� If Q consists of

the single element x� we write �x� Note that Q is a down
set if and only if Q � �Q� As an example� in the second
ordered set in Figure ���� �� � f�� �� �� �g� The family of all down
sets of an ordered set P is denoted by O�P � and
is ordered by set
inclusion� A down
set with a single maximal element is called principal� otherwise it is compound�

Compound down
sets can be viewed as the union of a set of principal down
sets� Note that if P is an anti
chain�

then O�P � �P �the power set of P � In general� O�P � �P and is much smaller for most ordered sets�
There is a complementary correspondence between down
sets and up
sets� as formalized in the next theorem�

Note that we use the symbol �n� for the set di�erence operator�
Theorem ��� �� If �Q is a down�set in an ordered set P then Pn�Q is an up�set�

Proof� If e is not in the down�set� then it is not subsumed by any element in Q� So every ancestor of e is also not in the

down�set� Thus� this complement is an up�set� �

When P is �nite� every non
empty set �Q � O�P can be characterized by its maximal elements� called the
factors of the down
set� In a canonical down
set �Q� every pair of elements in Q is incomparable �i�e� they form an

anti
chain and is thus the set of factors of �Q� Hereafter� we assume that all down
sets are canonical�
�Some order theory texts use � and � to denote meets and joins� �e�g� ������ These symbols	 however	 con
ict with the symbols

traditionally used in predicate logic for conjunction and disjunction� The symbols u and t are also used in order theory	 and provide a
more consistent notation�

CHAPTER �� BACKGROUND AND MATHEMATICAL PRELIMINARIES �

����� Lattices

De�nition ��� Let L be a non�empty ordered set� If joins and meets exist for every x� y � L� then L is a lattice� If

the join and meet exists for every subset S � L� then L is a complete lattice�

Every complete lattice must be bounded and every �nite lattice is complete ���� �since the meet of any set can

be expressed as the successive meets of pairs of elements� An example of a lattice is �X for a set X� ordered by set

inclusion� Also� if P is an ordered set� O�P is a complete lattice ordered by set inclusion� All of the examples in
Figure ��� are lattices� but the example in Figure ��� is not� Note that the dual of a statement regarding lattices is

obtained by interchanging u and t in addition to reversing the order relation�
De�nition ��� A non�empty down�set �Q of a lattice L is an ideal if a� b � �Q implies a t b � �Q�
Thus� an ideal is a down
set that is closed under join� A dual ideal is called a �lter� An ideal �Q is called proper

if Q � L� For each a � L� �a is an ideal and �a is a �lter� respectively called the principal ideal and principal �lter

induced by a� Thus� every principal down
set is an ideal� Also� in a �nite lattice� every ideal or �lter is principal �����

De�nition ��� Let L be a lattice and Q a proper ideal in L� Then Q is a prime ideal if a� b � L and a u b � Q

implies a � Q or b � Q� A prime �lter 	ultra�lter
 is de�ned dually�

De�nition ��	 Let P be an ordered set and e � P� e �� �� Then e is meet irreducible if xu y � e implies that x � e

or y � e�

Thus� e is meet irreducible if it is not the �unique meet of any set of elements not containing e� Join irreducible

elements are de�ned dually� We represent the set of meet and join irreducible elements by M�P and J �P �
respectively� In a lattice L� the meet �join irreducible elements are the elements that have exactly one parent

�child� For ordered sets� however� the set of meet �join irreducible elements is not as easily identi�ed�

Theorem ��� �� Let P be an ordered set� Then an element x � P is meet irreducible if and only if the set of

parents A of x is a singleton or has a non�singleton meet crest�

Proof� Let x be an element of P and let A be the set of parents of x�

� If A is not a singleton and has a singleton meet crest� then the meet is x� so x is not meet irreducible�

� Suppose A is a singleton or has a non�singleton meet crest� In the former� x is clearly meet irreducible� For the latter

case� suppose x is non�meet irreducible� Then there is a set of elements Q for which uQ � x� Let A� be the elements of A

subsumed by some element of Q� It follows that uA� � x� Clearly x � uA� Consider any lower bound b of A� Since b is also

a lower bound of A�� b � x� Thus x is the greatest lower bound� so A has a unique meet� �

����� Order mappings and lattice completions

De�nition ��� Let P and Q be ordered sets� A map � � P � Q is
i� order
preserving 	or monotone
 if x � y in P implies ��x � ��y in Q�

ii� an order
embedding if x � y in P if and only if ��x � ��y in Q�

iii� an order
isomorphism if it is an order�embedding mapping P onto Q 	denoted as P �� Q
�

Note that if � is an order
embedding� then ��P �� P � Also� an order
embedding is one
to
one� so its inverse is a

partial function� and an order
isomorphism is bijective� so its inverse is a total function� Figure ��� shows an ordered

set and example order
preserving and order
embedding mappings� Two order
isomorphic sets must have isomorphic

diagrams�

De�nition ��
 Let K and L be lattices� A map � � L � K is a homomorphism if � is join and meet�preserving�

That is� ��a t b � ��a t ��b and ��a u b � ��a u ��b�
A bijective homomorphism is a lattice isomorphism� If � is one
to
one� then the sublattice ��L ofK is isomorphic

to L and � is an embedding of L into K� If ��� � � and ��� � �� then it is called a f���g
homomorphism�
Figure ��� shows a simple lattice and two homomorphisms� both of which happen to be f���g
homomorphisms� The
second is also an order
embedding�

CHAPTER �� BACKGROUND AND MATHEMATICAL PRELIMINARIES ��

T

T

a b

c d

ϕ(a)=ϕ(c)

ϕ(T)=ϕ(b)

ϕ(d)=ϕ(

T

)

ϕ(T)

ϕ(a) ϕ(b)

ϕ(c) ϕ(d)

e

ϕ(

T

)

Figure ���� Example order mappings� The �rst �centre mapping is order
preserving and the second �right
hand
mapping is an order
embedding�

T

a b

ϕ(T)=ϕ(b)

ϕ(a)=ϕ(

T

)

ϕ(T)

ϕ(a) ϕ(b)

ϕ(

T

)

T

c

Figure ���� Example lattice mappings� Both mappings are f���g
homomorphisms and the second �right
hand
mapping is also order
embedding�

����� Lattice completions

Since many results depend on a lattice structure� we now describe how to form a lattice from an arbitrary ordered

set using an order
embedding� This is known as lattice completion�

De�nition ���� Let P be an ordered set and L a complete lattice� If � �P � L is an order�embedding� then L is a

completion of P 	via �
�

For example� the mapping ��x � �x embeds P into the complete lattice O�P � Other completions include
the Boolean lattice completion of Cohn ����� It is� however� possible to specify a completion of minimal size� The

following de�nition is isomorphic to the Dedekind
MacNeille completion ���� ��� �which maps into a sublattice of

O�P and the completion described in ��� �which maps into a sublattice of �P � Recall that for ordered sets� we
de�ne the �u� operation to return the set of maximal lower bounds �as opposed to a single meet element�

De�nition ���� Let P be an ordered set and LP � �P be a lattice de�ned as follows� A � LP if and only if �a� b � P

for which A � auP b� For A�B � LP � A �LP B if and only if �a � A� �b � B such that a �P b� The minimal lattice

completion of P is the order�embedding � � P � LP � where for a � P � ��a � fag�

This lattice completion can be constructed simply by checking each pair of elements in P � If their meet is not

unique� then create a new element that represents this meet� Clearly� LP �� P if and only if P is already a lattice�

We could also de�ne a minimal completion in terms of joins� which is isomorphic for �nite lattices� As an example�

Figure ��� shows a minimal completion of the lattice in Figure ���� where pack dog � fwolf� african wild dogg and
wild dog � fferal dog� fox�wolf� african wild dogg�

domestic canine wild social

dog

wolf
wild dog
african

feral dogpoodlecollie terrier

kit fox red fox

fox

wild dog

pack dog

T

T

Figure ���� Minimal completion of the ordered set in Figure ���

CHAPTER �� BACKGROUND AND MATHEMATICAL PRELIMINARIES ��

A minimal completion can be viewed in two ways� The �rst is as an abstract construct that gives formal meaning

to meet crests within P �by adding new nodes to stand as proxies for non
singleton meet crests� In this context� we

work with the original ordered set� When computing meets� we may obtain a non
singleton meet crest� which requires

additional search in the ordered set� This is the approach taken in ��� and is useful when many lattice operations are

performed before output to the user is required� The second viewpoint� taken in ���� ����� is to realize the completion�

Working with a lattice leads to simpler encoding algorithms and decoding schemes� Unfortunately� completion may

result in adding an exponential number of elements to our original set� This problem can be alleviated somewhat

using the technique of lazy completion in ����� where elements representing non
unique meets and joins are only added

as they are computed�

An ordered set P that does not possess a � element is called ��unbounded� For a lattice L� every meet in Lnf�g
exists� except those that result in �� All �nite lattices must be bounded� otherwise they would not be closed under
joins and meets� In many real lattices� however� � is only implicit �e�g� as an absurd element� There are several
ways that we can handle �� First� we can treat it as any other element� which is simple but may not be very
satisfactory� particularly for orders that are wide or that may change dynamically� A second approach �espoused in

����� is to treat � as meet failure� That is� if a u b � �� then the meet operation must fail� We can also treat it as
decode failure
 if the code computed for a meet has not been assigned to any element� then assume it is �� These
latter two approaches essentially treat the lattice as �
unbounded�

Part I�

Taxonomic Encoding

�Discovery consists of looking at the same thing as everyone else

and thinking something di�erent�

� Albert Szent�Goygyi

��

Chapter �

The Evolution of Taxonomic Encoding

�In rivers� the water you touch is the last of what has passed and

the �rst of that which comes� so with time present�

� Leonardo da Vinci

Leibniz �in ����� initiated the quest for representations� or encodings� of lattices and partial orders that could be

used to e�ciently compute operations� such as greatest lower bound and comparability� This quest continues today�

and has been an active area of research in the past few years� In this chapter� we review the developmental history

of taxonomic encoding�

��� Introduction

Taxonomies appear in a multitude of guises and in many �elds� As the size of these taxonomies increases� there is

a growing need to represent them in a form that is amenable to performing operations� such as meets� e�ciently�

Encoding taxonomies in a manner that permits quick execution of such operations has been a goal in logic pro

gramming� and in other areas computer science� for some time now� Although many encoding schemes have been

successful� research in this area is ongoing in the quest for general purpose� compact� �exible and e�cient encoding

techniques�

In logic programming� encodings have been used to reduce the length of the proofs needed to deduce some kinds

of facts� to facilitate intensional replies and to achieve partial execution of some queries �e�g� ���� ��� ���� and to

integrate many
sorted logic ���� In natural language processing� they have been used to permit quick semantic agree

ment veri�cations on queries� to calculate domain intersections through uni�cation� and for incremental description

re�nement �e�g� ���� ���� In systemic linguistics� these techniques have been used for representing and making

inferences from systemic networks ������

The evolution of taxonomic encoding has involved interactions among researchers working with both the logic

programming and bit
vector approaches� Other techniques are introduced within our formal framework for encoding

in the following chapter� The early work in the logic programming ���� ��� and bit
vector ��� directions has been

expanded within ���� ��� and between ����� ���� research lines�

Schemes for encoding taxonomies so that the basic operations can be performed through uni�cation have been

studied� e�g�� in ���� ��� ���� ����� Alternative approaches involve rewriting the logic programming interpreter or

compiler to extend uni�cation to facilitate e�cient encodings ����� or to encompass type operations directly ����

Bit
vector encoding techniques can be applied using logical terms� but logical terms may possess structure not easily

mimicked with bit
vectors� so the converse may not be as apparent� In general� most schemes can be abstracted

from the particular space used for the codes �e�g� terms or bit
vectors to analyze the actual taxonomic information

encapsulated in the encoding�

The following sections of this chapter outline early research on encoding� The viewpoints are expressed in the

form of the original research� In the next chapter� some of these approaches and other techniques are re
cast in our

formal framework�

��

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

��� Encoding tree�shaped hierarchies

One of the early encoding techniques ���� ��� dealt e�ciently with tree
shaped hierarchies �i�e� hierarchies that

do not allow multiple inheritance� It was inspired by the simple observation that by representing a type t as a

term t t� ��� tn� where we assume that the relationships t � t�� t� � t�� � � � � tk�� � tk hold� we can also represent

partially known types by similar terms in which a variable stands for the unknown sequence of set inclusions� and

then check for operations� such as set inclusion� through uni�cation� By extending Horn
clause terms� a simple

representation of taxonomic information is obtained� Essentially� a type in a such a hierarchy can be represented as

the �unique path from the root node to the type� As meets are always � in a tree
shaped hierarchy� we are only
concerned with joins and subsumption checking�

As an example� the elements chameleon and dog in Figure ��� can be encoded as the paths �animal� reptile�

chameleon� and �animal�mammal� dog�� respectively�

animal

mammal

dog cat

reptile

snakechameleon

Figure ���� A tree
shaped hierarchy

Checking subsumption in this representation can be done by checking if the path of the subsuming label is a pre�x

of the path of the subsumed label� So� for example� the path of mammal� �animal�mammal�� is a pre�x of that

of dog� as mammal subsumes dog� By representing the paths as di�erence lists�� this operation can be performed

with a single uni�cation� Thus� mammal and dog would actually be represented by �animal�mammaljX�nX and

�animal�mammal� dogjY �nY � respectively� If this uni�cation fails� then the two elements are incompatible� The join
operation can be achieved by simply retaining the longest common pre�x of the two paths� Thus� dog t cat will

�nd the longest common pre�x of �animal�mammal� dog� and �animal�mammal� cat� which is �animal�mammal��

Decoding is done by �nding the label with this path� which is mammal� Since each element has no more than one

parent� joins will always be unique�

With the di�erence list representation of paths� we can express incomplete types� That is� we store a path from

the root to the most speci�c type known� with the possibility of extending this path as more information is obtained�

For example� if we all know about an object is that it is a mammal� the code for mammal� �animal�mammaljX�nX�
can be extended as more information is discovered�

This technique permits us to formulate intensional replies� to perform quick semantic agreement veri�cations on

natural language queries and to achieve partial execution of some queries� For example� we can state that all reptiles

crawl� crawl�A � �animal� reptilejX�nX� Now we can ask which animals crawl �e�g� �� animal�A�� crawl�A���

This will quickly reply with reptile� If we desire further information� we can backtrack to �nd more speci�c elements

in our hierarchy which crawl�

This approach has the advantage of being simple� e�cient and entirely within the framework of Prolog terms�

However� limiting taxonomies to being trees imposes a severe restriction on the types of inheritance and operations

that can be performed�

�A di�erence list is a list representation that allows for appends to execute in one uni�cation step� To achieve this	 a list is viewed as
the di�erence between two other lists� For example	 the list ������ can be viewed as the di�erence between ���� ������ and ������ By
using a variable as the second list �e�g� representing �� ���� as ���� �jX�nX�	 we can append any list to it simply by giving a value to X
through uni�cation�

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

��� Extending trees to graphs

Extending the above method to deal with general partial orders� Massicotte ���� partitions the nodes into two sets�

nodes with a unique path from the root �deterministic nodes and nodes with multiple paths from the root �non�

deterministic nodes� Non
deterministic nodes are a result of one or more ancestors having multiple inheritance�

In essence� the maximal tree portion of the hierarchy �the tree pre�x� starting at the root� is treated in the

same way as above� Thus� a deterministic node is represented by a path� expressed as a di�erence list� from the

root to the node� For a nondeterministic node� the paths from the closest ancestors with multiple inheritance are

explicitly represented� and the paths from the root to these ancestors are implicitly represented �through a predicate

call associated with each such path� If a node has multiple parents� then multiple paths are associated with it� one

from each closest ancestor with multiple inheritance� or from the root if no such ancestors exist�

To demonstrate� Figure ��� shows a hierarchy in which we have emphasized the tree pre�x� The deterministic

nodes are f�� person� adult� child� butterfly� larvag and the non
deterministic nodes are fteenager� caterpillar��g�
To represent adult requires only storing the path ��� person� adult�� but to store teenager requires the paths

�adult� teenager� and �child� teenager�� To �nd all paths from � to teenager requires appending the path �adult�

teenager� to each path from � to adult and appending �child� teenager� to each path from � to child� This can be
achieved via uni�cation� the recursive nature of the implicit paths ensures that all paths will be found�

person

child

teenager

adult

butterfly

caterpillar

larva

⊥

⊥

Figure ���� Taxonomy showing tree pre�x

To test whether a label� e�� subsumes another label� e�� now requires checking if there exists a path from the root

to e� which is a pre�x of some path from the root to e�� If both e� and e� are deterministic nodes� then this operation

can be achieved in one uni�cation� If either one is a non
deterministic node� this will require one uni�cation for each

possibility in the worst case� Provided the taxonomy is a join semi
lattice� joins may also be formulated in a recursive

manner� There is� however� no simple way to use this approach for meets� or for �nding join crests in non
lattices�

This approach enjoys the simplicity of Dahl�s encoding� and it also remains within the scope of Prolog� However�

it cannot tolerate many multiple inheritances before its recursive nature will limit its e�ciency�

��� Characterizing term encodable hierarchies

The technique of using uni�cation to perform hierarchical operations can be generalized to use logical terms as

codes� rather than di�erence lists� We �rst note that the approach of ���� for encoding tree
shaped hierarchies�

can also be achieved by representing the partial paths as nested� unary function symbols �as pointed out in ������

So� for example� the taxonomy in Figure ��� can be represented using terms as shown in Figure ���� Checking

subsumption still requires one uni�cation� If the uni�cation succeeds� then the term that was further instantiated

subsumes the term that was not� If the uni�cation fails� then the two elements are incompatible� Joins can be

achieved through anti�uni�cation� the dual of uni�cation� For example� to compute the join dog t cat� we anti
unify
the terms animal�mammal�dog� and animal�mammal�cat� � resulting in animal�mammal� which is the

term associated with mammal�

With this scheme� it is possible to utilize functions with more than one argument� The technique in ���� is direct

extension of ���� that allows a set of tree shaped hierarchies� leading to multi
argument terms where a subterm has

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

animal(_)

animal(reptile(_))

animal(reptile(snake(_)))

animal(mammal(_))

animal(mammal(dog(_))) animal(mammal(cat(_)))animal(reptile(cham(_)))

Figure ���� Logical term encoding of a tree
shaped hierarchy

one argument per tree rooted at that node� This can be taken even further to encode more general taxonomies� by

permitting logical variables� As an example� consider the term encoding shown in Figure ��� of our example hierarchy

from Figure ����

f(_,_,_)

f(person,_,_)

f(person,adult,_)

f(person,adult,child)

f(person,_,child)

f(insect,butterfly,_) f(insect,_,larva)

f(insect,butterfly,larva)

⊥
Figure ���� Encoding of type hierarchy in Figure ���

Mellish �in ������ provides a characterization of lower semi
lattice taxonomies �i�e� unique meets exist for which a

particular type of term encoding exists� Such encodings are targeted at determining meets and checking subsumption�

Essentially� a term encoding� in Mellish�s sense� requires that the meet of two elements can be determined by unifying

the terms associated with these elements� If the uni�cation fails� then the result is bottom� Otherwise� the resulting

term is exactly the term associated with the unique meet element� This is de�ned more formally as follows�

De�nition ��� A hierarchy H � �!�� is term encodable i�� for some term space G� there is a mapping � � !�G

satisfying�
�� If � �e� � � �e� then e� � e�
�� � �� � �
� � �e� u e� � � �e� u � �e�

where e� and e� are elements of !� and u represents the term uni�cation operation�

The �rst condition ensures that the mapping is invertible� which is necessary for decoding if we are to support

meets� The third condition requires that � not only preserves subsumption� but also that the uni�cation of the terms

of two elements is exactly the term of the meet of those elements� The second condition guarantees that if this meet

is �� the uni�cation fails� Therefore� if we can �nd a term encoding for our taxonomy� meets can be determined

using one uni�cation step�

Although no algorithm for constructing term encodings is given� Mellish does categorize taxonomies according

to the complexity of the types of terms required for such encodings� The simplest encodings require only tree terms

�i�e� terms in which all variables are singletons� Such terms can always be drawn as trees� At the next level� �at

terms are studied �i�e� terms in which variables may corefer� but the depth is restricted to one� Flat terms can then

be generalized to the set of all terms� Going beyond terms leads us to the use of rational trees in encodings �����

Unfortunately� determining which type of terms are required for encoding a given taxonomy appears to be di�cult�

Also� constructing encodings that employ terms more complex than simple tree terms may be non
trivial� and limits

the possibility of exploiting parallelism in uni�cation� Even some simple taxonomies turn out to be non
tree term

encodable� according to the above de�nition of encodability� We provide examples of this in the next chapter�

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

Furthermore� a change to the taxonomy may require recomputation of the entire� or a signi�cant portion of� the

encoding�

In ������ Mellish extends his characterization to taxonomies encodable by graphs�

��� Bit�vector encodings

A number of researchers have explored the possibility of encoding taxonomies using bit
vectors� using the operations

of logical �bit
wise AND and OR to compute meets and joins� The founding research on using bit
vectors was by

A�	t
Kaci et al� ��� for use in the logic programming language LIFE ���� The de�nition of encoding used assumes

that the taxonomy is a lower semi
lattice� In order to achieve this� a minimal semi
lattice completion is presented�

It is important to note that this semi
lattice construction is not actually computed� but rather is used to provide

a semantics for computing meets that are not unique� This contrasts with the approaches by Mellish� above� and

Caseau� below� which actually require the taxonomy to be a lower semi
lattice� Performing this construction may be

exponential in the worst
case�

Transitive closure� A simple bit
vector encoding� called transitive closure� can be achieved by associating one

position in the bit
string with each element in a taxonomy �except �� Let us call element�i the element
associated with position i in this bit
vector� For each element e� position i is a � if e subsumes element�i

and a � otherwise� Thus� each code for an element incorporates all of the lower bounds of that element� To

demonstrate� consider the taxonomy of Figure ���� Table ��� associates one bit with each element� and Figure

��� shows the transitive closure of the table according to subsumption �in a bottom
up manner�

Table ���� Assigning bits to elements from Figure ���
� person butter�y larva adult child teenager caterpillar

� � � � � � � � �
person � � � � � � � �
butter�y � � � � � � � �
larva � � � � � � � �
adult � � � � � � � �
child � � � � � � � �
teenager � � � � � � � �
caterpillar � � � � � � � �

01001110

00000110

00000010

00001010

00100001

00000001

00010001

11111111

00000000
Figure ���� Bottom
up bit
vector encoding of taxonomy in Figure ���

Both subsumption checking and meet operations can be performed using logical AND operations� That is�

e� � e� if and only if � �e� AND � �e� � � �e�� Also� e� u e� is computed by � �e� AND � �e�� If the meet is

unique� this will be the code of that element� If not� this code will represent the crown and additional decoding

must be done to extract the elements comprising this crown�

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

Compact encoding� The above approach requires one bit for every element except �� Thus� a taxonomy with n
elements requires n� � bits per code� By analyzing the structure of the taxonomy� it is possible to reduce this
number� When an element has exactly one child� we must use an additional bit to distinguish its code from

that of its child� But when an element has multiple children� it may be possible to encode it simply using the

OR of the codes of its children� The compact encoding scheme optimistically assigns codes in such a way� and

if this leads to two incomparable elements having comparable codes� then additional bits are added� Thus�

while transitive closure indiscriminately uses one bit per element� compact encoding adds bits only as necessary�

saving space on elements that do not require a bit to maintain the encoding homomorphism� Subsumption

checking and meets are computed using logical AND� as before�

Consider our example taxonomy� We start with � for �� Then we assign � to teenager and �� to caterpillar�
Next adult is allotted ��� and child ����� Butterfly is given ����� and larva ������� Then person� since

it has two children is assigned ��� AND ���� � ����� Finally �� with three children� gets ���� AND �����
AND ������ � ������� In this simple example� we reduce the code size from � bits to � bits� This compact

encoding is shown in Figure ����

001110

000110

000010

001010

100001

000001

010001

111111

000000
Figure ���� Compact bit
vector encoding of taxonomy in Figure ���

Which elements require a bit� For a bottom
up compact encoding� it is precisely the join irreducible elements�

If this scheme was applied in a top
down manner� it would be the meet irreducible elements� Therefore� unlike

the transitive closure approach� a compact encoding may require a di�erent number of bits depending on

whether it is applied in a top
down or a bottom
up fashion�

Modulation Many objects naturally group themselves into relatively disjoint� dense groups with few links between

groups� This can be exploited by treating these groups� or modules� as a single unit in the taxonomy ����

Then the modi�ed taxonomy �with one module node replacing all the elements of the module can be encoded

separately from the elements in the module� To do this� the module must itself have the form of a taxonomy�

That is� modules have a top and a bottom element� and every path from outside to lower elements inside the

module goes through the top node of the module� and every path from inside to lower elements outside the

module goes through the bottom node of the module�

Since modules are sub
taxonomies� this process can continue recursively� until each module contains a small

number of elements� The di�culty lies in �nding modules� The heuristic algorithm provided in ��� attempts

to modulate a given taxonomy� but is not guaranteed to �nd a maximal modulation� A fast �linear algorithm

for modulation has recently been developed �����

An element may now reside within a module� which is itself within a module and so on� In ���� the code of such

an element is the juxtaposition of the codes of the containing modules �starting with the maximal containing

module and the code of the element� which was calculated in the least containing module�

The operations of subsumption checking and meet are complicated by modulation and will be described only

for one level of modulation� To check if element e� subsumes element e�� we must �rst check which modules

they are in� If they reside in the same module� we simply check if the code for e� subsumes the code for e�� as

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

before� If they are in di�erent modules� we check if the code for the module containing e� subsumes the code

for the module containing e�� Otherwise e� does not subsume e��

To determine the meet of e� and e� involves a similar process� If they are in the same module� then simply

take the AND of their codes� If e� subsumes e�� then the meet is e�� If e� subsumes e�� then the meet is

e�� Otherwise� take the logical AND of the containing module codes to obtain the meet module and the meet

element is the topmost element of this module� For non
unique meets� crowns are found� as in the compact

encoding method above�

To illustrate� we add an insect element above butterfly and larva in our example taxonomy� Now� the portion

of the hierarchy dealing with people can form one module� and the portion dealing with insects can form

another� These modules can then be encoded using the compact encoding� This modi�ed taxonomy and its

modulated encoding are shown in Figure ���� where the module codes have been separated from the element

codes by a colon�

person

child

teenager

adult butterfly

caterpillar

larva

insect
Module 1 Module 2

01:11

01:10

01:00

01:01 10:01

10:00

10:10

00

10:11

11

⊥

⊥
Figure ���� A modulated taxonomy and its encoding

To �nd the meet adultu child� we AND the element codes �� AND ��� and prepend the module code �� to get
������ which is the code of teenager� To �nd adult u butterfly� we AND the module codes �� AND �� to get
��� which is the module code of ��
These operations can be extended in an obvious way for further levels of modulation� Since each level of

modulation adds one more step in the process and since there can be at most logN levels of modulation for a

taxonomy of N elements� these operations take at most logN steps� So� although modulation has the potential

to reduce the size of the codes substantially� it also increases the complexity of computing operations� The

assumption is that most operations will be within� not between� modules� so that only one step is required�

Also� the complexity of determining a modulated encoding is substantial� Modi�cations to the taxonomy can be

either more or less costly than for non
modulated taxonomies� Changes within a module restrict the extent of

changes to within that module� If� however� one or more modules are breached �e�g� a link is added that enters

or leaves a module at a mid
point� then we may have to re
modulate a signi�cant portion of the hierarchy�

In Chapter �� we formally deal with and extend modulation�

Encoding for subsumption only If the only operation required is subsumption checking� then it may be possible

to reduce the length of codes further� without resorting to modulation� In this situation no decoding is necessary

and the codes can be such that neither meets nor joins can be determined� as long as the subsumption relation

is maintained�

One such approach has been developed for the Laure object
oriented programming language ����� This scheme

modi�es a top
down version of compact encoding� but is restricted to taxonomies that are lattices� The

algorithm basically assigns a bit position� or gene� to each meet irreducible element� Since the taxonomy is a

lattice� these are the elements with a unique parent� The code for an element is the union of the genes �i�e�

logical OR of its ancestors� plus its gene� if it is meet irreducible� Since we are not concerned with computing

meets or joins� it is possible to assign the same gene for some elements� provided this doesn�t violate the

CHAPTER �� THE EVOLUTION OF TAXONOMIC ENCODING ��

subsumption relation� Caseau�s algorithm performs this incrementally� in a top
down manner� As each meet

irreducible element is processed� an attempt is made to assign a gene already in use� For other elements� a

check is made to see if the union of the parent genes violates subsumption� If so� mutations of ancestral genes

are performed until subsumption is respected�

Using this algorithm� we encode the taxonomy in Figure ��� as shown in Figure ���� In the taxonomy at the

left� we display the genes assigned to each meet irreducible element� As can be seen the adult and butterfly

elements share a gene� as do child and larva� This reduces the code size to � bits� as achieved by modulation�

Checking for subsumption requires only one logical AND operation� element e� subsumes e� if and only if

� �e�AND� �e� � � �e�� We cannot� however� compute meets or joins due to the polymorphic character of

genes�

g1:person

g3:child

teenager

g2:adult g2:butterfly

caterpillar

T

g3:larva

g4:insect

⊥

0001

0101

0111

0011 1010

1110

1100

1111

1000

0000

Figure ���� A subsumption only encoding

��� Discussion

In this chapter� we have attempted to describe the evolution of taxonomic encoding in a general and intuitive manner�

Where possible� we described techniques from the viewpoint of the original research� Some of the techniques covered

here� and additional techniques� are described in the following chapter� where the emphasis is on characterizing

techniques using our formal framework�

Chapter �

The Foundations of Taxonomic

Encoding

�Everything is simpler than you think and at the same time

more complex than you imagine�

� Goethe

Most of the research on encoding has focused on algorithmic and implementational details of encoding� and has

largely ignored or left unstated the informational content of the technique� In this chapter� we explore a fundamental

structure underlying encoding� By characterizing encoding using spanning sets we are able to provide a concise

framework in which all schemes can be compared� regardless of the actual implementation� This analysis permits

a separation of the informational content of an encoding scheme from the implementational details� and allows us

to see how both of these aspects a�ect time and space requirements� This exploration expands and formalizes our

introduction of spanning sets for encoding that appeared in a short workshop paper �����

In addition to the theoretical appeal of our framework� we also develop several important results� We show a

correspondence among several existing encoding techniques �sections ��� and ���� We prove two NP
Hardness results�

which demonstrate limitations to encoding algorithms and reveal avenues for approximation algorithms �sections ���

and ���� Our abstraction also exposes a more comprehensive view of some existing techniques� indicating directions

for further research� We discuss in more detail in section ���� our contributions to taxonomic encoding as well as

speci�c directions for future research�

In the following section� we motivate and de�ne taxonomic encoding� We rely heavily on the lattice theory

concepts introduced in section ���� including our departures from standard theory� In section ��� we characterize

encoding as order
embedding mappings induced by spanning sets� Since the result of these mappings is a set�

taxonomic operations reduce to set operations� independent of the implementation� Section ��� introduces a variety

of implementations of order subsets� speci�cally for the implementation of spanning sets and section ��� describes

how we can permit portions of a taxonomy to be in�nite while still bene�ting from encoding techniques�

Using this framework� we analyze the information content of various spanning set types and develop formal

techniques to reduce the representation cost of the spanning set mapping� Through much of this analysis� we

introduce existing encoding techniques� characterize them in terms of our spanning set framework� and then abstract

general properties and limitations of such spanning sets� We �rst characterize some simple encodings in terms of

spanning sets of principal down�sets in section ���� This includes the transitive closure and compact encodings of

���� We then show a correspondence between principal down
sets and prime up�sets� providing a direct link to the

approach of ����� Section ��� explores and characterizes spanning sets that preserve only subsumption� and we prove

that determining a minimal such spanning set is NP
Hard� The approach of ���� is shown to be an approximation of

the optimum� We next consider how decomposing a spanning set can achieve more concise results� as in the proposals

of ���� and ������ We also prove that� for certain forms of decomposition� �nding the optimal is NP
Hard� Section ���

views partial orders as systems of constraints� and encodings as preserving certain properties by representing a subset

of these constraints� Using coreference� more expressive encodings are possible� Finally� we discuss areas for future

��

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

research� including expanding the theory presented� exploring implementational issues and designing approximation

algorithms�

��� Setting the Stage

The general problem we wish to address is as follows� given an ordered set P � how do we represent P to provide fast

computation of subsumption� and possibly meets and"or joins� We focus on encoding �nite ordered sets� although

we later describe how these can be augmented with certain forms of in�nite orders� Some ordered sets� such as

families of subsets ordered by set inclusion� sets of integers ordered by divisibility �i�e� x � y if and only if x is

a factor of y� and logical term spaces ordered by term instantiation� have in common the simplicity of element

comparisons� determining if x � y can be done locally �i�e� using only information directly related to x and y

and e�ciently� This is not true� however� of many others� such as sets of graphs ordered by subgraph isomorphism

and multiple inheritance hierarchies in object
oriented systems� In the former case� local information can be used to

check subsumption� but this is costly� In the latter case� only the intransitive� irre�exive portion of the partial order

is maintained �i�e� the transitive reduction� so there is no local information to determine if x � y� It is in contexts

such as these that encoding is bene�cial�

We will assume that we are given an ordered set P as a graph G � �P�E� where E is either the transitive closure

�i�e� �x� y � E if and only if x � y or the transitive reduction of P � We need a way to implement P that is

both space e�cient and facilitates fast computation of operations� Directly implementing P using standard graph

representation techniques is straightforward �where G � �P�E� two common techniques are adjacency matrices�

which take O�jP j� space� and adjacency lists� which take O�jEjlogjP j# jP j space� If G is the transitive reduction
graph of P � then adjacency list representation corresponds to maintaining the list of parents �or children for each

element� Subsumption� meets and joins can be determined in O�jEj time for either implementation� If G is the

transitive closure graph of P � then subsumption can be computed in constant time for adjacency matrices� and

O�jP j time for adjacency lists� In both cases� meets and joins take O�jP j time�
Before de�ning encoding� we recall our generalizations of meet and join� for a subset Q of an ordered set P � we

call the set of minimal upper bounds of Q the join base and the maximal lower bounds of Q the meet crest�� A join

�meet is simply a singleton join base �meet crest� We use the same notation for joins and join bases �and meets

and meet crests� Thus� in Figure ���� fox t wolf � fcanine� wildg and wild u social � fwolf� african wild dogg�
whereas dog uwild � fferal dogg�

De�nition ��� Let P and Q be ordered sets� and � an order mapping � � P � Q� Then � is
� a �subsumption encoding for P if � is an order�embedding 	i�e� x �P y if and only if � �x �Q � �y
�
� a meet encoding for P if � is meet
crest
preserving� if a� b � P then auP b � ����� �auQ � �b� where ��� is

the inverse of ���

� a join encoding for P if � is join
base
preserving� if a� b � P then a tP b � ����� �a tQ � �b�

Although �Q de�nes a partial order on Q� determining if x �Q y may be accomplished in a number of ways� as we

discuss in section ���� The intent of an encoding is that taxonomic operations in Q can be performed more e�ciently

than in P � There are several forms of encoding that have appeared in the literature� the trademark of encoding is

the pre
computation of the encoding function � and the association with each element x � P the value� or code� � �x�

Thus encoding trades the cost of explicitly storing � for improved time to compute taxonomic operations�

In most schemes� the target space Q has the property that elements are independent� That is� the order relation

is somehow encoded in the elements themselves� Examples of this include bit
vectors and logical terms� In the

�The set of upper bounds �lower bounds� is an up�set �down�set�� The join base �meet crest� is precisely the set of factors for this set
� its base �crest�� Join bases and meet crests are anti�chains�

�In general	 ��a�uQ ��b� is a set of elements in Q	 so ��� must map this set back to the meet crest in P � Depending on the structure
of Q	 however	 ��� is normally treated in one of two ways� �i� If Q is a lattice	 then ��a�uQ ��b� reduces to a single element of Q� In this
case	 Q embeds a minimal completion of P 	 and the inverse ��� must map back to the meet crest in P � �ii� If � is an order isomorphism
�i�e� it maps P onto Q�	 then ��a�uQ ��b� reduces to the set of elements in Q corresponding to the meet crest in P � Here	 ��� must map
each element in this set back to P � Note that if P and Q are both lattices	 then � must be meet�preserving in the lattice�theoretic sense�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

tree encoding scheme of ����� however� Q is a tree data structure� and � maps elements of P to nodes of the tree�

Operations in P are translated to operations on this data structure�

In this chapter� it is our goal to develop a uni�ed framework that separates the content �semantics of the encoding

map from its implementation �syntax� We do this using a structure called a spanning set� which we introduce in

section ���� Through this separation we provide a common ground on which di�erent encoding schemes can be

compared� analyze the e�ect on time and space of di�erent implementations� and study the semantic content that

encodings must possess in order to preserve certain properties of an ordered set� We also strive to provide a principled

basis on which to select or design encoding algorithms for particular taxonomic applications� and to expose some of

the limitations and restrictions to encoding�

There are several aspects by which we can characterize encoding algorithms�
� The taxonomic operations supported�
� The time and space complexity of the encoding algorithm�
� The space requirements of resulting encodings�
� The time complexity of performing operations using resulting encodings�
� The complexity of modifying an encoding�
� The complexity of decoding �i�e� computing ����

We show how various encoding techniques and implementations a�ect these characteristics� Since the focus and

requirements of particular taxonomic applications may di�er� it is apparent that there may be no best encoding

algorithm to satisfy all needs� Rather� the designer of an encoding algorithm must take into account the needs of

the application� and the form of the taxonomies to encode� in order to determine the relative importance of the

above characteristics� Using our framework� appropriate techniques and implementations can be selected� leading to

existing algorithms� or the need to design new algorithms�

Our framework would be improved with empirical results that demonstrate the behaviour of various encoding

algorithms with respect to the above characteristics� In order to be useful� however� such testing would have to

be extensive and this is beyond the scope of this thesis� Our research� however� provides an organizational basis

with which such testing could be carried out� Some empirical results on the space e�ciency of di�erent encoding

algorithms is available in �����

��� Spanning Sets

Now we present spanning sets as a basis for encoding� generalized from ������

De�nition ��� Let P be an ordered set� A family of subsets S of P is called a spanning set if the function C � P � �S

de�ned by C�x � fs � Sjx � sg is one�to�one�

A spanning set S is ordered under set inclusion �where� for s�� s� � S� s� �S s� if and only if s� � s�� and the

function C is an order mapping� called the component mapping �where elements of S can be regarded as components

from which P is constructed� In the next subsection we describe some structural restrictions that enable us to use

spanning sets to perform taxonomic operations locally� Encoding can then be viewed as computing a spanning set

that preserves the desired properties of an order P � and then e�ciently representing the component mapping� As an

example� the �gure below shows a simple lattice and two spanning sets� S� � fs� � fa��g� s� � fb��g� s� � fc��gg�
and S� � fs� � fa� b� cg� s� � fb��g� s� � f�� b� cgg� It can easily be veri�ed that component mappings for both of
these are one
to
one� For S�� we have C�a � fs�g� C�� � � and C�� � fs�� s�� s�g�
In ����� a variation of spanning sets was studied to produce a number of fundamental duality results� It is also

worth noting the similarity between spanning sets and reduced or minimal bases in Wille�s concept lattices ������

where lattice elements and spanning set components correspond to objects and attributes� respectively� in Wille�s

terminology�

We are primarily concerned with spanning sets of down
sets �and up
sets� where S � O�P and C � P � �O�P ��

What makes these interesting components is that they encapsulate much of the order information� In Chapter �� we

introduce the concept of a spanning set of order intervals�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

a b c

T

T

a b c

T

T

a b c

T

T

s1 s2 s3

s3

s1

s2

S1 S2

Figure ���� Diamond lattice and two spanning sets

We hypothesize that all encodings can be characterized as computing a spanning set of down
sets� up
sets or

intervals� possibly augmented with constraints� and implementing its associated component mapping� Rather than

trying to establish this claim� we portray all the encodings we are aware of by using spanning sets� These portrayals

are supported by a number of formal results� We later discuss augmenting spanning sets with constraints �such

as coreference constraints as provided by logical variables �section ��� and spanning sets of intervals �Chapter

�� Viewing encoding in terms of spanning sets allows us to separate the implementation details of any particular

encoding algorithm from the structural properties of the spanning set being constructed� The spanning set embodies

the content �semantics of an encoding and the implementation embodies the form �syntax�

����� Taxonomic operations using spanning sets

We now demonstrate how spanning sets that satisfy certain restrictions reduce taxonomic operations to set operations�

De�nition ��� A spanning set S on an ordered set P preserves subsumption if either 	i
 for all a� b � P � a � b if

and only if C�a � C�b� or 	ii
 for all a� b � P � a � b if and only if C�a � C�b�
Equivalently� this requires the component mapping to be an order
embedding� Although order
preserving map

pings maintain comparability� we need to also preserve incomparability� We say that subsumption is preserved with

subsets in case �i �i�e� a is subsumed by b if and only if C�a is a subset of C�b and with supersets in case �ii� If
S is a spanning set of down
sets� then the component mapping is monotonically increasing as we descend the order

�since if x � �Q then any descendant of x is also in �Q� In this case� subsumption may only be preserved with
supersets� Conversely� if S preserves subsumption with supersets� then S must be a spanning set of down
sets� Thus�

not all spanning sets preserve subsumption� In the above example� S� preserves subsumption �with supersets but

not S�� since C�a � fs�g � fs�� s�g � C�c yet ajjc�

De�nition ��� A spanning set S on a lattice L preserves meets if either 	i
 for all a� b � L� C�a u b � C�a � C�b�
or 	ii
 for all a� b � L� C�a u b � C�a � C�b� S preserves joins if either 	i
 for all a� b � L� C�a t b � C�a � C�b�
or 	ii
 for all a� b � L� C�a t b � C�a � C�b��
If a spanning set preserves meets or joins� then it preserves subsumption� because a � b if and only if a u b � a

and at b � b� Also� a spanning set of down
sets can preserve joins only with intersection and meets only with union�

In general� if a spanning set S preserves subsumption with supersets �i�e� S is a spanning set of down
sets then

C�a � C�b � C�a u b and C�a t b � C�a � C�b� Unfortunately� it is not always possible for a spanning set to
preserve both meets and joins �unless the ordered set is distributive�� as discussed in section ������ Consider again

the non
distributive ordered set in Figure ���� The spanning set f�a� �b� �c� �fa� cgg preserves subsumption� but not
joins or meets� since a u c � �� but C�a � C�c � f�a� �c� �fa� cgg �� f�a� �b� �c� �fa� cgg � C��� Also� a t c � ��
but C�a � C�c � f�fa� cgg �� � � C��� The spanning set f�a� �b� �cg preserves joins with intersection but not
meets� while f�fa� bg� �fb� cg� �fb� cgg preserves meets with union but not joins� Suppose we have a spanning set S
that preserves joins with intersection� Since the join of any pair of a� b� c is �� the intersection of any pair of their
component mappings must be C��� Further� each must be in at least one component di�erent from the others� But
then the union of any pair cannot possibly be C���

�To generalize this de�nition to an ordered set P 	 we say S preserves meet crests if either �i� for all a� b � P 	 au b � C���C�a��C�b��	
or �ii� for all a� b � L	 a u b � C���C�a�� C�b���

�A lattice L is distributive if �a� b� c � L	 a u �b t c� � �a u b� t �au c��

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Theorem ��� Spanning Set Duality Theorem� Let L be a lattice and S a spanning set of down�sets for L� Let

S be the set of up�sets de�ned as S � fLn�Q j �Q � Sg� Then 	i
 S preserves subsumption with supersets if and only

if S preserves subsumption with subsets and 	ii
 S preserves joins with intersection if and only if S preserves joins

with union�

Proof� Consider the component mapping for S� C�x	 � fLn�Q � Sjx � Ln�Qg� But x � Ln�Q if and only if x �� �Q� so C is

isomorphic to the converse mapping of C� Cc�x	 � f�Q � Sjx �� �Qg�

�i	 Suppose S preserves subsumption with supersets� Consider any two elements� a� b � L� The converse mapping maps

these elements as follows� Cc�a	 � SnC�a	 and Cc�b	 � SnC�b	� If a � b then C�a	 � C�b	� so clearly Cc�a	 � Cc�b	� If a �� b

then C�a	 �� C�b	� and so Cc�a	 �� Cc�b	� The case when S preserves subsumption with subsets is similarly proved�

�ii	 Consider the join of any two elements a� b � L� If S preserves joins with intersection then C�a	 	 C�b	 � C�a t b	�

The converse mapping maps these as� Cc�a	 � SnC�a	� Cc�b	 � SnC�b	 and Cc�a t b	 � Sn�C�a	 	 C�b		 � SnC�a	
 SnC�b	 �

Cc�a	
 Cc�b	� Now� if S preserves joins with union then Cc�a	
 Cc�b	 � Cc�a t b	� The component mapping for S maps these

as� C�a	 � SnCc�a	� C�b	 � SnCc�b	 and C�a t b	 � Sn�Cc�a	
 Cc�b		 � SnCc�a	 	 SnCc�b	 � C�a	 	 C�b	� �

This theorem demonstrates that for every spanning set of down
sets that preserves joins with intersection� there

is a spanning set of up
sets that preserves joins with union� Since this construction is invertible� the converse is also

true� Together with the dual� this shows we can characterize all spanning sets that preserve joins or meets with

intersection or union by analyzing only those that preserve joins with intersection�

We require an e�cient means to evaluate the component mapping C� A key feature of encoding is that C is
calculated a priori� or incrementally� and stored in a form amenable to e�cient computation� This amounts to

associating with each element x of the taxonomy the set representing C�x� as we describe in section ����

����� Representation theory and encoding

Representation theory attempts to identify a small suborder Q of a lattice L from which the entire lattice can

be constructed easily and uniquely� In ����� it is shown that this can be done satisfactorily in the �nite case for

distributive lattices� In this case L is uniquely identi�ed by its set of join �or meet irreducible elements� where

Q � J �L and L �� O�J �L� The general case for lattices and partial orders is not so amenable to such an analysis�
Although encoding can bene�t from the results of representation theory� there are a number of important dif

ferences� First� although we associate with an ordered set P a small set �i�e� the spanning set� we want a subset

S � �P � not Q � P � Second� we are interested in representing P in order to facilitate e�cient computation� To this

end� we associate a code with each element of P � This contrasts with the above goal of uniquely representing P by

the set Q� We do not want to reconstruct P � but rather we wish to associate with it a spanning set S from which

codes can be formed�

There are� however� some results from representation theory that are fundamental to encoding� particularly the

identi�cation of join and meet irreducible elements as basic elements from which all other elements in an ordered set

can be de�ned� This conclusion is also found in section ���� but doesn�t require the ordered set to be a distributive

lattice �as in Birkho��s representation theorem ����� so we can view spanning sets as partial representations of

ordered sets �only preserving certain properties such as meets�

Since we are given an arbitrary ordered set P � we may not have the luxury to ensure that certain properties are

satis�ed �e�g� that P is a lattice or is distributive
 maintaining certain properties may entail adding an inordinate

number of elements to P �e�g� the minimal lattice completion for a standard example Sn ������ which has �n elements�

contains �n elements ����� If we can be sure that our set observes certain properties� or that the addition of a small

�or bounded number of elements can achieve these properties� then our encoding scheme can utilize this structure

to generate more concise and"or �exible codes� For example� if we are guaranteed to have a distributive lattice� then

we can specify spanning sets that preserve both meets and joins� although in general this is not possible ������ In

fact� every distributive lattice is isomorphic to a lattice of sets ���� �i�e� where meets and joins are computed by

intersections and unions� respectively� This suggests a fundamental connection between representation theory and

spanning sets� For a detailed analysis of properties of distributive and simplicial lattices related to encoding see �����

In our presentation� we focus on the problem of encoding general partial orders and lattices and make no further

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

structural assumptions regarding the given ordered set� although our analysis should apply to techniques designed

for more constrained orders�

��� E	cient Implementations of Component Mappings

In this section we describe some approaches to implementing subsets of ordered sets� particularly down
sets and up

sets� as returned by component mappings� This list is by no means exhaustive� but includes all the implementations

that have been used for encoding� We are interested in implementing subsets within the order induced by a spanning

set S� not in our original order P � This order is isomorphic to a suborder of P for spanning sets of principal down
sets�

but not for more complicated spanning sets� Note that for any spanning set S� the subset C�x is an up
set in S�
Given a spanning set S for an ordered set P � our goal is to represent� for each x � P � the mapping C�x� In

general C can be viewed as a relation� for x � P� s � S� �x� s � C if and only if s � C�x� We may� however� be able
to exploit the structure of the order induced by S�

����� Unordered implementations

By treating C�x as an unordered subset of the domain S �i�e� by treating C as an unordered relation we can realize
implementations that do not utilize the hierarchical structure of the ordered set S� Such representations employ

existing techniques for implementing sets� In the representations we describe below� the elements of S are given a

linear order � �which is not necessarily a linear extension of S�

Characteristic vectors In a characteristic �or bit vector implementation� we represent a subset Q � S using a bit

vector of length n � jSj� essentially embedding S into the Boolean lattice of bit
vectors of length n� We place a �
in position i if element i �in the chain � is a member of the subset and a � otherwise� This approach is analogous
to adjacency matrix representations of graphs�� Set union and intersection are computed using bitwise OR and

AND� respectively� For two subsets Q� and Q�� Q� � Q� if and only if Q��Q� � Q� �or Q��Q� � Q�� As an

example� suppose S � fs�� s�� s�� s�� s�g� We can represent the subsets fs�� s�g and fs�� s�� s�g by the strings
����� and ������ respectively� The advantages of this representation include minimal storage requirements for

each position �one bit and immediate hardware implementation of set operations� Disadvantages include the

need to store un�lled positions �i�e� every subset has length n� and more complicated processing required for

large domains �asymptotically� the set operations grow linearly with the size of the domain�

Interval sets An alternative �proposed in ��� is to represent a subset Q with a set of intervals� where each contiguous

sequence of elements �in � is represented by an interval� For example� the above subsets would be represented
as f��� ��� ��� ��g and f��� ��g� Although this scheme alleviates the need to store un�lled positions� the set
operations become more complex� Unlike the bit
vector approach� the order � may have a signi�cant e�ect on
the size of resulting codes� We discuss in section ��� how the approach in ��� �nds optimal orderings�

Adjacency lists and hashing Analogous to adjacency list graph implementations� we can maintain for each ele

ment x � P the list of the elements C�x� This is space e�cient for cases when C�x is relatively small �i�e� the
spanning set is large� but the component mapping only maps each element to a small number of elements� but

becomes unwieldy as the size of C�x increases� To speed up access to particular elements� we can hash C�x
for each x � P �i�e� for a given x � P� s � S� we can quickly determine if s � C�x� Using this technique� there
is no direct support for union and intersection operations�

����� Tree representations and code sharing

Using a linear ordering � of a spanning set S� we can implement the component mapping in a labeled tree form

that permits some sharing of common subsets� We propose a generalization of the tree encodings in ���� ��� �����

which apply only to distributive lattices� In fact� this technique can be used to implement any family of �nite subsets

�If jP j � m	 then an adjacency matrix requires m� bits	 whereas here we require n �m bits�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

from the same domain� The basic structure of such a tree representation is as follows� The elements in the original

ordered set P are nodes in the tree �although there may be additional empty nodes� as discussed below� Each label

is a subset of elements of S� and the union of all labels on the path from an element x � P to the root forms the set

C�x�
There are several ways that we can build this tree� If our original ordered set is a distributive lattice L� then the

approach of ���� ���� builds a very e�cient tree for the spanning set S � f�xjx � M�Lg� Every node of the tree
is an element of L and each label is a single element from S� Thus� the size of the tree is linear with respect to the

size of L� Furthermore� the labels on all paths from a node to the root are monotonically increasing according to the

linear extension � of S� and paths are joined at common su�xes� By ordering the children of each node according
to �� operations can be performed in O�jSj time� using the algorithms in ���� ����� Decoding �i�e� the inverse of the
component mapping is achieved for free as a by
product of computing operations in these trees�

We can apply this technique to a general ordered set P � although we can no longer guarantee that labels will be

singletons� or that there will be no empty nodes� We order the results of C according to �� and form the tree by

joining elements at common pre�xes �or su�xes� If a common pre�x is not the code of any element� this results in

the creation of an empty node� As above� the code for x � P is the union of all labels on the path from x to the

root� To illustrate� consider the lattice in Figure ���� This lattice is not distributive since a u �b t c � a u � � a�

but �a u b t �a u c � � t c � c� The tree T� implements the spanning set S� � f�a� �b� �c� �d� �e� �fg� where �
is the given order of S� and elements are assigned numeric values according to �� In this case� no empty nodes
are created� but there is one edge with a non
singleton label� The second tree� T�� implements the spanning set

S� � f�fb� dg� �fb� cg� �b� �fa� fg� �fa� eg� �ag� where � is the given order of S�� Here� two empty nodes were created
as well as edges with non
singleton labels�

a b

c d e f

g h

T

⊥

a b

c d e f

g h

T

⊥

a

b

c

d

f e

g

h

T

⊥

.
T1

.

1

2

3

4

5

6

4,5,62,4,5,6
4,5,6

4,5,6

5

T2
1 2

5 6

6

3 4

4

2,3,4,5,6

Figure ���� Tree representation

Performing unions� intersections� and subset checking is accomplished by locating the position of the two elements

in the tree and comparing the labels along the paths from these elements to the root� To be more concrete� consider

the above spanning set S� that preserves meets with union �and thus subsumption with subsets� To check if x � y�

we incrementally compare the set of labels C�x and C�y on the paths from x and y to the root� respectively� From

the structure of the spanning set� we know that x � y if and only if C�x � C�y� Since the components in labels are
monotonically ordered within labels and along these paths� this comparison is linear in the size of the label sets� For

example� C�g � f�� �� �� �� �g � f�� �� �� �g� C�d� so g � d� but C�g �� f�� �� �� �� �g� C�h� so g �� h�

To compute x u y � z� we incrementally union the labels on the two paths from x and y to the root� Then we

descend the tree using this union to �nd the meet element� For example� to �nd cud� we �nd C�c�C�d � f�� �� �� �� �g�
and descend to �nd that this set is C�g� Thus� c u d � g�

Operations can be further optimized by �nding the node in the tree at which the two paths converge� and only

considering the portions of the paths below this point �which is how the algorithm in ���� works� We can avoid

further comparisons above this point� since the remainders of the two paths coincide� For details of the tree traversal

algorithms that compute subsumption� meets and joins for distributive lattices� see ���� ���� The modi�cations

required to handle our generalization of this tree representation are trivial�

Determining the space complexity of these trees is not as simple as before� Since empty nodes must have at least

two children� the number created will be bounded by jP j� Non
singleton labels cause these trees to be non
linear in
the size of the ordered set� but the code sharing can still greatly reduce the overall space requirements� Operations

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

are no longer bounded by the depth of the tree� but rather by the number of labels on a path to the root� This is

also true in the distributive case� but there each edge has a singleton label� As before� children of nodes are ordered

lexicographically by edge labels� Since the labels from an element to the root are in strictly decreasing lexicographic

order� operations are linear in the size of the codes using an adaptation of the algorithms in ���� ����� and decoding

can still be achieved e�ciently� Clearly� the tree constructed will depend on the ordering � of S �which is usually a
linear extension of S� so algorithms need to be developed that �nd orderings for which optimal trees can be found

or approximated�

����� Logical terms

We can also implement sets using logical terms� embedding our order into the lattice of generalized atomic formulae

������ Terms with no structure can be used in a manner similar to bit
vectors using anonymous variables in place of ��

For example� ����� can be represented as p��� �� � �� for an arbitrary predicate p� However� terms can also be used

to capture some structural information� Set union and intersection correspond to uni�cation and anti
uni�cation�

respectively� Subset checking becomes term subsumption checking� We can also exploit the hierarchical structure

of an up
set to reduce storage requirements� It is important to note that logical terms also provide the ability to

implement unions that produce the entire domain �e�g� � by uni�cation failure� To illustrate� consider the ordered
set in Figure ���� We may represent the up
set �kit fox by the term p�canine�fox�kfox� wild� and �collie by
p�canine�dog�collie� � domestic� Their intersection is obtained by anti
uni�cation� p�canine� � � �representing

�canine� If we represent �dog by p�canine�dog� � � domestic and �wolf by p�canine�wolf� wild� social� we

capture the fact that doguwolf � � with uni�cation failure� Although desirable� we shall see that this is not always
easy to achieve� We show in section ��� how compact tree terms �terms in which all variables are anonymous can

be derived from spanning sets� In section ��� we discuss the use of coreference constraints� as provided by logical

variables� in encoding�

A disadvantage of logical terms is that specifying �lled positions �with an atom or functor requires more space

than the � bit required for the bit
vector approach� An advantage is that not all un�lled positions need to be speci�ed�

In our example� the subset for �canine� p�canine� � � � only reserves three additional spaces �via anonymous
variables� additional spaces become available dynamically through instantiation at these positions� It is also possible

to implement parallel algorithms in hardware for uni�cation and anti
uni�cation of tree terms�

����� Sparse logical terms

Sparse terms ���� allow an e�cient and direct implementation of hierarchical sets by providing the tree
shaped struc

ture of ordinary terms as well as several other key features� They are similar to the directed acyclic graphs �DAGs

and feature structures used in natural language processing systems �e�g� ������ In ������ the use of DAGs to imple

ment encodings is explored in detail� In Chapter �� we develop sparse terms in detail as a universal implementation

for encoding�

����� Integer vectors

Natural numbers can be used to implement chains or anti
chains� All �nite total orders of size n are isomorphic

to the interval ��� n�� providing a simple and e�cient binary number implementation using only logn space for each

element� We �nd it convenient to use the dual of the natural order� so that � is the top of the chain� Each integer

then represents all the preceding elements in the chain �i�e� k� � � k � n represents the interval ��� k�� Subsets can

be checked in an obvious way �a � b if and only if a � b� while a � b � max�a� b and a � b � min�a� b�

Every anti
chain of size n is isomorphic to the �at lattice of the natural numbers ��� n�� In this lattice� each pair

of unequal integers is treated as meet and join incompatible� To represent an anti
chain� we assign each element a

unique number in ��� n�� and use � to represent the empty set� The set operations are de�ned as follows�

subsets� i � j � i � j or i � ��

union� i � j fails if i �� �� j �� � and i �� j� Otherwise i � j � max�i� j�

intersection� i � j � i if i � j� otherwise i � j � ��

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

By viewing an ordered set as being composed of a number of chains or anti
chains� we can use integer vectors to

represent up
sets�

De�nition ��� Let P be an ordered set� A partition Q � fP�� P�� � Pmg of P is called a chain �anti
chain

partition if the suborder de�ned on each of the Pi is a chain 	anti�chain
�

An anti
chain Q is called meet 	join
 incompatible if every pair of elements in Q is meet �join incompatible� In

essence� the above partitions view a partial order as a number of parallel interconnected chains or anti
chains� As an

example� consider the chain and meet incompatible anti
chain partitions of the ordered set of Figure ���� shown in

Figures ��� �where each chain is represented vertically and ��� �where each anti
chain is represented horizontally�

domestic canine wild social

dog wolf african
wild dog

feral dogpoodlecollie terrier kit fox red fox

fox

Figure ���� Chain partition of the ordered set in Figure ���

domestic

canine

wild

social

dog wolf african
wild dog

feral dogpoodlecollie terrier kit fox red fox

fox

Figure ���� Meet incompatible anti
chain partition of the ordered set in Figure ���

Integer vectors can be used to represent up
sets using chain or incompatible anti
chain partitions by assigning

one position in the vector to each chain or anti
chain� since we only need to represent at most one element of each�

The integer vector encoding in ���� uses a chain partition� A partition of size k requires vectors of length k� We

need to have a special integer �we use � to place in a position when the up
set does not contain any element

from the corresponding chain or anti
chain� For chain partitions� an entry represents all preceding elements in the

corresponding chain� For meet incompatible anti
chain partitions� at most one element from each anti
chain can be

present� so a non
zero entry represents an element plus the absence of all other elements in the anti
chain� The entire

vector then represents the union of the information represented in its entries� We denote each entry of a vector V of

size k as V �i�� � � i � k� The set operations for chain partitions are de�ned as follows�

subsets� V� � V� � �� � i � k� V��i� � V��i��

union� V� � V� � V � �� � i � k� V �i� � max�V��i�� V��i��

intersection� V� � V� � V � �� � i � k� V �i� � min�V��i�� V��i��

In our example� we represent �kit fox by ��� �� �� �� �� ������ and �terrier by ��� �� �� ������ �� ��� Their intersection
is the code for �canine� ��� �� �� ���� �� ����� We now consider the set operations for meet incompatible anti
chain
partitions�

subsets� V� � V� � �� � i � k� V��i� � V��i� or V��i� � ��

union� �� � i � k� V� � V� � V fails if V��i� �� �� V��i� �� � and V��i� �� V��i��

Otherwise V �i� � max�V��i�� V��i��

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

intersection� V� � V� � V � �� � i � k� V �i� � V��i� when V��i� � V��i�

Otherwise V �i� � ��

In our example� we represent �kit fox by ��� �� �� ���� and �terrier by ��� �� �� �� ��� The intersection of these is
��� �� �� ���� ��canine but their union fails�
Bit
vectors can be viewed as a special case of both forms of integer vectors� where an ordered set is seen as a

set of n chains or anti
chains of size �� Note that any singleton anti
chain is vacuously meet incompatible� For both

cases� � represents that no element of the corresponding chain or anti
chain is in the subset� and � represents that

the �rst� and only� element is in the subset� The logical operations of AND and OR compute the set operations�

Also� �at logical terms �i�e� terms with no functors or nesting provide a direct logical realization of incompatible

anti
chain vectors� using anonymous variables instead of � and atomic symbols instead of integers� For example� the

above vectors could be represented as p� � �� �� �� � and p��� �� � �� �� respectively� Note that we can apply sparse

representations to integer vectors �i�e� introduce indices for non
zero elements� and eliminate the zero entries� as we

show in Chapter ��

��� In
nite Suborders

Our analysis of encoding assumes that the original ordered set is �nite� For many applications we require the

integration of a �nite order with one or more in�nite orders such as real numbers� integers� strings� intervals�

etc� Clearly� we cannot compute codes for the elements of an in�nite suborder a priori� so we need to be able to

perform taxonomic operations involving one or more elements in an in�nite suborder dynamically� Provided certain

restrictions are obeyed� we can permit portions of our set to be in�nite while still bene�ting from encoding� As far

as we know� such a formulation has not previously been described�

Suppose we have an ordered set P with an in�nite suborder Q� We can encode the �nite portion of P using the

techniques described in this chapter provided Q obeys the following�

Classi�cation Given any element x in Q� we must be able to ascertain that in fact x � Q� Note that one in�nite

suborder may be a suborder of another in�nite suborder �e�g� integers and reals� Thus� we must be able to

classify elements correctly �e�g� checking if � � ���� we must classify � as a rational number�

Locality The order relation within Q must be locally determined and e�cient� This is required for operations

involving only elements of Q� so that encoding is not necessary� For example� it is easy to locally determine

order between integers� strings or intervals of real numbers� If meets or joins must also be preserved in Q� then

these operations must also be locally computable�

Encapsulation In order to compute operations involving one element in Q and another not in Q� Q must be

bounded �i�e� it must have top and bottom elements� �Q and �Q
�� In a sense� these elements provide entry

and exit points to the in�nite suborder and can be incorporated into the �nite portion of the ordered set�

Normally� the bottom will simply be the bottom of the ordered set� We also require that Q be closed� That

is� Q � ��Qn��Q � f�Qg and Q � ��Qn��Q � f�Qg� This requires that the bounds of Q must provide the

only entry and exit points� We show in Chapter � that bounding and closure implies that Q must be a module

within P �

These requirements allow us to encode the �nite portions of an ordered set� including the bounds of any in�nite

suborder� as though the entire set was �nite� For operations involving elements within an in�nite suborder� we use

locality to compute the operation� In the case of meets and joins� the result will also be in the in�nite suborder� For

operations involving one element in an in�nite suborder Q and another not in Q� we can use the one of the bounds

in place of this element� If the result of a meet or join is this bound� it can be replaced by the original element� We

provide more details of how this may be achieved when we discuss modulation in Chapter ��

�It may be possible to relax this restriction to require a �nite number of maximal and minimal elements of the in�nite suborder�
This	 however	 complicates taxonomic operations� For example	 the meet of two elements not in an in�nite suborderQ may result in any
element in Q	 not just one of the maximal elements�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

��� Spanning Sets of Principal Down�sets and Up�sets

����� All principal down�sets

The transitive closure encoding introduced in ��� and described in section ��� encodes a partial order with k elements

using bit
vectors of length k�� as follows� Each element ai � P �except � is assigned a unique integer i in ��� k����
For any element aj � P � bit i� � � i � k will be � if and only if ai � aj� The actual procedure given in ��� produces

this encoding in a bottom
up manner� starting at � and propagating codes upwards towards ��
In terms of our framework� this procedure simply computes the spanning set S� consisting of every principal

up
set for the bottom
up case described� or the spanning set of every principal down
set for the top
down case� The

encoding is the characteristic vector implementation of these component mappings� The orders induced by these

spanning sets are isomorphic to the original order� As an example� the following �gure shows a lattice� a component

mapping� and its bit
vector implementation�

{↓a,↓b,↓c,↓d,↓e,↓f,↓

{↓a,↓b,↓d} {↓a,↓c,↓e} {↓b,↓c,↓f}

{↓a} {↓b} {↓c}

{} 0000000

0000001 0000010 0000100

0001011 0010101 0100110

1111111

d e f

a b c

T

T T

}

Figure ���� Principal down
set encoding

The interval encoding in ��� is closely related� and is based on the same spanning set S�� but implemented using

sets of integer intervals� Recall from section ��� that� under a total order � of S�� any set of components can be

implemented using the corresponding set of intervals in �� In ���� an algorithm for �nding an optimal ordering is

described� A cover tree T for the ordered set P is identi�ed by choosing� for each element x � P � the parent that

has the most ancestors� The authors show that the total order � de�ned by the postorder traversal of T produces
interval set codes that minimize the overall space requirements of the encoding �i�e� the total number of intervals for

all codes	� In case P is a tree� for each element x � P � C�x will be exactly one interval� To illustrate� Figure ���
shows a cover tree T � the preorder number of T � and an interval implementation of the lattice in Figure ����

[1,8]

[1,4] [1,2],[5,6] [1,1],[3,3],[5,5],[7,7]

[1,2] [1,1],[3,3] [1,1],[5,5]

[1,1]

d e f

a b c

T

T

2 3 5

4 6 7

8

1

Figure ���� Cover tree� preorder numbering and interval encoding for the lattice in Figure ���

Theorem ��� Let L be a lattice� The set of principal down�sets of L forms a spanning set S� that preserves joins

through intersection�

Proof� We need to show that e� t e� � e if and only if C�e�		C�e�	 � C�e	� Suppose that e� t e� � e� Consider any principal

down�set �a � C�e�	 	 C�e�	� Then e� � a and e� � a� By the de
nition of join� e � a� so �a � C�e	� Consider any principal

down�set �a � C�e	� Then e � a� Since e� � e and e� � e� �a � C�e�	 	 C�e�	� Therefore� C�e�	 	 C�e�	 � C�e	�

Assume that C�e�	 	 C�e�	 � C�e	� Since �e � C�e	� e� � e and e� � e� So e is an upper bound of e� and e�� Now if

e� t e� � a then �a � C�e�	 	 C�e�	� so �a � C�e	 and e � a� implying e � a� �

�This optimum in fact only holds when we do not consider merging two adjacent intervals �e�g� �i�� i�� and �j�� j�� where j� � i� �
could be replaced by �i�� j���� When merging is performed	 the total order identi�ed may not be optimal� However	 adjacent intervals in
the codes resulting from � may be merged to provide an approximation to the optimal�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

The dual of the above theorem shows that the set of principal up
sets forms a spanning set that preserves meets

through intersection�

Such spanning sets lead to a particularly time e�cient implementation using a Boolean matrix in which entry

�i� j � � if i � j and � otherwise ������ checking subsumption can be accomplished in constant time
� In ����� the

encodings of ��� are used in the typed feature logic programming language T DL� and in ����� a transitive closure
encoding implemented using tree terms is proposed�

����� Principal down�sets of meet irreducible elements

Since a focus of encoding is space and time e�ciency� we are interested in �nding spanning sets with a minimal

number of elements� In ��� it is recognized that not all principal down
sets are required to maintain joins� This led

to the compact encoding algorithm described in section ���� Let us denote the set of meet irreducible ancestors of

an element e as ��e� It is easy to show that � is monotonically increasing as we descend the taxonomy from parents

to children �i�e� if e� � e� then ��e� � ��e�� We now show that in a lattice� � also preserves joins�

Lemma ��� Let L be a lattice� Then for e�� e� � L� e� � e� if and only if ��e� � ��e��

Proof� � By the monotonicity of �� if e� � e�� ��e�	 � ��e�	�

� Suppose ��e�	 � ��e�	 and e� �� e�� Clearly� any ancestor of e� that does not subsume e� must not be meet irreducible�

So e� cannot be meet irreducible� If two of the parents of e� subsume e�� then the meet of these two parents is not unique�

Thus� at least one parent p of e� does not subsume e�� Since p cannot be meet irreducible� we can continue until we have an

ancestor of e� that is a child of � and does not subsume e�� But all children of � are meet irreducible� �

Theorem ��� The set of principal down�sets for the meet irreducible elements of a lattice L� SM�L� � f�eje �
M�Lg� forms a spanning set that preserves joins through intersection�

Proof� The component mapping for the set of principal down�sets of meet irreducible elements is de
ned as C�x	 � f�eje �

��x	g� Consider any two elements e� and e�� If C�e�	 � C�e�	 then ��e�	 � ��e�	 and so ��e�	 � ��e�	 and ��e�	 � ��e�	� By

the above lemma� e� � e� and e� � e�� so e� � e�� Thus� C is one�to�one and so SM�L	 forms a spanning set�

We need to show that e� t e� � e if and only if C�e�	 	 C�e�	 � C�e	� This is equivalent to showing that e� t e� � e if and

only if ��e�	 	 ��e�	 � ��e	�

� Suppose that e� t e� � e� Consider any meet irreducible x � ��e�	 	 ��e�	� Then e� � x and e� � x� By the de
nition

of join� e � x� so x � ��e	� Consider any meet irreducible x � ��e	� Then e � x� Since e� � e and e� � e� x � ��e�	 	 ��e�	�

Therefore� ��e�	 	 ��e�	 � ��e	�

� Assume that ��e�	 	 ��e�	 � ��e	� Then e is an upper bound of e� and e�� since ��e	 � ��e�	 and ��e	 � ��e�	 imply

that e� � e and e� � e� by the above lemma� For any upper bound x of e� and e� we have ��x	 � ��e�	 and ��x	 � ��e�	�

by the lemma� and so ��x	 � ��e�	 	 ��e�	� From our assumption and the lemma� we deduce that ��x	 � ��e	 and e � x�

implying e� t e� � e� �

The dual of this theorem states that the set of principal up
sets for the join irreducible elements of a lattice L�

SJ �L� � f�eje � J �Lg� forms a spanning set that preserves meets through intersection� Also note that the order
induced by SM�L�� for a lattice L� is isomorphic to the suborder obtained by restricting L to the meet irreducible

elementsM�L�

The compact encoding in ��� for a lattice L implements the component mapping of SJ �L�� for the bottom
up case

described� and SM�L� for the top
down case� using characteristic vectors� We again use the lattice in Figure ��� to

illustrate� Figure ��� shows the component mapping for SM�L� and its bit
vector implementation�

For distributive lattices� the ideal tree in ���� ���� encodes SM�L� in a tree data structure �see section ����� that

permits computation of both meets and joins in O�jM�Lj time� We now demonstrate that SM�L� and SJ �L� are

the smallest spanning sets of principal down
sets or up
sets that preserve not only joins and meets� respectively� but

also subsumption�

This is simply the adjacency matrix implementation of the transitive closure graph of the ordered set�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

{↓a,↓b,↓c}

{↓a,↓b} {↓a,↓c} {↓b,↓c}

{↓a} {↓b} {↓c}

{} 000

001 010 100

011 101 110

111

Figure ���� Meet irreducible encoding

Lemma ��� Let L be a lattice� Then every meet irreducible element of L must be a factor� of at least one down�set

in a spanning set of down�sets�

Proof� If not� it has the same component mapping as its parent� �

Theorem ��� Let L be a lattice� If jM�Lj � m� then any spanning set of principal down�sets that preserves

subsumption with supersets must have at least m down�sets�

This theorem is a direct consequence of the above lemma� Thus� for subsumption preservation� the smallest size

spanning set of principal down
sets or up
sets has min�jM�Lj� jJ �Lj elements�

Theorem ��� Let L be a lattice and S a spanning set of down�sets on L that preserves joins by set intersection�

Then every component of S must be a principal down�set�

Proof� Suppose there is a component Q � �fq�� q�� � � � � qng � S that is not principal �i�e� n �	� Consider the join of any

two of the maximal elements� say q� and q�� Clearly the join must properly subsume both of these elements �since q�jjq�� and

so Q �� C�q� t q�		� But Q � C�q�	 and Q � C�q�	� so Q � C�q�	 	 C�q�	� Thus� S does not preserve joins by intersection� �

This last theorem� along with the Spanning Set Duality theorem� shows us that jSM�L�j �jSJ �L�j is the minimum
size of any spanning set that preserves joins �meets�

Much of the above discussion assumes that we are encoding a lattice� For a general ordered set P � the spanning set

of all principal down
sets preserves subsumption� as does SM�P �� provided we recognize the meet irreducible elements

of the order� which do not necessarily have a single parent as shown by Theorem ���� Both techniques� however�

can be used to encode for join bases �meet crests instead of joins �meets� When computing a join base a t b� the
intersection of the two component mappings C�a � C�b � Catb will result in a component set that represents the
join base� If the join base is a singleton �i�e� a join� a t b � c� then C�c � Caub� otherwise� we need to �nd the
maximal elements whose component mappings are subsets of Catb�

��� Spanning Sets of Prime Down�sets and Up�sets

This section describes spanning sets of prime down and up
sets and shows a direct correspondence with spanning sets

of principal up
sets and down
sets� respectively� Although not standard in lattice theory� we de�ne prime down�sets

analogously to prime ideals� a down
set �Q of a lattice L is prime� if when x u y � �Q� either x � �Q or y � �Q�
That is� we cannot get into �Q from two elements not in �Q� For an ordered set P � we generalize this de�nition� a
down
set �Q of P is prime� if when x u y � �Q� either x � �Q or y � �Q�

Lemma ��� Let L be a lattice� If e is an element and �e is its principal down�set then bLn�ec 	i�e� the principal

factors of the up�set Ln�e
 are all join irreducible�

�Recall that a factor is a maximal element of a down�set�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Proof� Suppose f is a minimal element in Ln�e and is not join irreducible� Then it has at least two children� x and y� Both

x and y must be in �e or else f is not minimal� Since both x and y are subsumed by e �by the de
nition of down�set	� e is an

upper bound of x� y� But f �� e and f clearly must be the join of x and y� so we don�t have a lattice� �

Theorem ��� Let L be a lattice� Then �Q is principal if and only if Ln�Q is prime�

Proof� � Suppose an up�set �Q is principal� Q � feg� Let �Qe � Ln�e� By the dual of the above lemma� the factors of this

down�set must all be meet irreducible� Suppose � e� and e� such that e� u e� � �Qe but e� �� �Qe and e� �� �Qe� By the

construction of �Qe� e� � �e� so e � e�� Similarly� e � e�� Therefore e � e� u e�� But then e� u e� � �e�

� Suppose an up�set �Q is not principal� Consider any two factors e� and e� of �Q� Since e� u e� �� �Q� Ln�Q is not a

prime down�set� �

We say that Ln�e is the prime down
set induced by e� the elements not in its principal up
set� In ������ Mellish
shows that if we have a spanning set of prime down
sets� we can guarantee that the meet of two elements can be

found with uni�cation �down
set union� With the Spanning Set Duality Theorem �Theorem ���� we can see that

a spanning set of down
sets that preserves meets with union can be easily constructed from the join irreducible

elements� The above theorem shows that this is a spanning set of prime down
sets and the �nal result of the previous

section shows that this is the smallest such spanning set� Naturally� for an ordered set P � the order induced by a

spanning set of prime down
sets is dually isomorphic to that produced by a SJ �P ��

As an example� in Figure ���� J �P � fd� e� a� cg� The �rst encoding shows a bit
vector implementation of the
spanning set SJ �P � � f�d� �e� �a� �cg where meets are preserved with intersection� The spanning set of prime down

sets associated with these join irreducible elements is SJ �P � � f�c� �a� �fb� cg� �fa� bgg� preserving meets with union�
The second encoding shows the implementation of this spanning set�

1010 1100 0101

1111

1000 0100

0000

a b c

T

T

d e

0101 0011 1010

0000

0111 1011

1111

Figure ���� Principal up
set and prime down
set encodings

The encoding of ���� represents each element by the set Q of join irreducible elements that it doesn�t subsume�

which is equivalent to the set of prime down
sets induced by elements in Q� The underlying spanning set therefore

consists of the prime down
sets induced by J �P � and so preserves meets with union� The bit
vector implementation
of such a spanning set is identical to the bitwise negation of the bit
vector implementation of SJ �P�� as can be seen

in the above example�

We have now shown a correspondence between the compact encoding of ��� based on set intersection �e�g� bitwise

AND� and prime down
set encodings of ���� ���� based on set union �e�g� bitwise OR and logical term uni�cation�

There is� however� one important distinction to make for the approach of Mellish ������ In the above construction� if

the meet of two elements is �� set union will produce the entire domain �i�e� the entire spanning set S because � is
treated as any other element� It is also possible �as Mellish�s approach requires to implement meet incompatibility

as failure �e�g� with uni�cation failure� This strict requirement essentially treats the ordered set as �
unbounded�
We discuss in sections ��� and ��� how incompatibility as failure may be achieved�

��� Spanning Sets of Compound Down�sets and Up�sets

So far� we have studied spanning sets of principal down
sets that preserve joins with intersection� and spanning sets

of prime �possibly compound down
sets that preserve meets with union� We showed that the latter case is equivalent

to spanning sets of principal up
sets that preserve meets with intersection� Between these extremes lie spanning sets

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

that preserve subsumption� but neither meets nor joins� We now consider such spanning sets� which may contain

down
sets with multiple factors� Recall that the factors of a down
set �Q is the set of maximal elements of �Q �which
is an anti
chain� Initially� we focus on spanning sets that do not permit multiple occurrences of factors� That is�

elements that are factors of several spanning set components� Later in the section� we relax this restriction�

Our �rst theorem shows that� for any spanning set S of down
sets� there is a spanning set containing only meet

irreducible factors which is no larger than S� This means that� as in section ���� we need only be concerned with

irreducible elements when constructing minimal size spanning sets�

Theorem ��	 Let S be a spanning set for a lattice L that preserves subsumption� Then there exists another spanning

set S� that 	i
 contains no more down�sets than S 	ii
 preserves subsumption and 	iii
 has only meet irreducible factors

in all down�sets�

Proof� Suppose we have a subsumption preserving spanning set S for which there exists a down�set �Q � �fq�� q�� � � � � qmg

where qi is not meet irreducible� for some � i � m� Further suppose we remove qi from Q �this may reduce the number of

components in the spanning set if Q becomes empty or equivalent to another down�set in S	� This produces a new spanning

set S� that is identical to S except that Q� � fq�� � � � � qi��� qi��� � � � � qng has fewer elements than Q �and so �Q� � �Q	 and

S� � Snf�Qg
 f�Q�g� The component mapping for S� will be denoted by C�� The only di�erence between C and C� �modulo

the name change of Q to Q�	 is that the mapping of elements in �Qn�Q� does not contain Q� �i�e� descendants of qi not

subsumed by some qj � Q� i �� j and � j �m� are not in �Q�	�

If S� does not preserve subsumption� then �e�� e� � L for which e� �� e� and C
��e�	 � C��e�	 �due to the monotonicity of the

component mapping for spanning sets of down�sets� the case e� � e� but C��e�	 �� C��e�	 cannot occur	� Since C�e�	 �� C�e�	�

C��e�	 � C�e�	nf�Qg � C�e�	 � C��e�	� This situation is only possible if e� � qi but e� �� �Q� and e� �� �Q� otherwise

C�e�	 � C�e�	�

Let p�� p�� � � � � pn� n � be the parents of qi� Since qi � Q� none of its parents are in �Q� so �Q �� C�p�	 and C�p�	 �

C�qi	 � C�e�	� C�p�	 � C�e�	� Thus� e� � p�� Similarly� e� � p�� � � � � pn� Also e� �� qi� since e� �� �Q� This implies that

L is not a lattice� since qi must be the meet of its parents� but e� is a lower bound of these parents not subsumed by qi�

Therefore S� must preserve subsumption� Clearly� we can similarly remove all non�meet irreducible elements from S to produce

a subsumption preserving spanning set that has no more components than S� �

Hereafter� we assume that the components of all spanning sets have only meet irreducible factors� We have

already shown that no spanning set S of compound down
sets can preserve joins by intersection� Can S preserve

meets with union� If it does� the Spanning Set Duality Theorem tells us that there is a corresponding spanning set

S� that preserves meets with intersection� Since S� can have only principal up
sets for components� S must be a

spanning set of prime down
sets�

We now focus on how compound down
sets can reduce the size of a spanning set that preserves only subsumption�

First let us consider when two elements can be factors of the same down
set�

Theorem ��� Let P be an ordered set and S be a spanning set of down�sets for P with no multiple occurrences of

factors� Then S preserves subsumption if and only if� for every compound down�set �Q � S with factors e�� e�� � �
an element that is 	i
 a descendant of the parent of e�� but not of e� itself and 	ii
 a descendant of e��

Proof� � Suppose e� and e� are factors of the same down�set �Q of S� and � an element q that is �i	 a descendant of the parent

p of e�� but not of e� and �ii	 a descendant of e�� Since e� is a factor of no down�set in S other than �Q� C�e�	 � C�p	
f�Qg�

Also q � p and q � e�� so C�p	 � C�q	 and Q � C�q	� Therefore� C�e�	 � C�q	� but q �� e�� so S does not preserve subsumption�

� Suppose for every down�set �Q � S� if e�� e� are factors of �Q then � � an element that is �i	 a descendant of the parent

p of e�� but not of e� itself and �ii	 a descendant of e�� So if e�� e� are factors of �Q then for every element q� if q � p and

q � e�� then q � e�� If S does not preserve subsumption� then �x� y � P for which C�y	 � C�x	� but x �� y� Let e� be a

maximal ancestor of y for which x �� e� and C�e�	 � C�x	� If e� is non�meet irreducible� then the meet of the parents Q of

e� is unique� Clearly� this meet must be e�� Also� every parent of e� must subsume x� otherwise it is not maximal� so x is a

lower bound of Q� But then x � e��

Thus e� is meet irreducible� and so must be a factor of some down�set �Q� Since C�e�	 � C�x	� �Q � C�x	� Since x �� e��

�Q must have at least one other factor e� for which x � e�� But then our assumption is violated� since e�� e� � Q� x � p where

p is the parent of e�� x �� e� and x � e�� �

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Figure ��� illustrates the case when e� and e� do not satisfy the constraints of the theorem� If we put e� and e�
as factors of the same component� the component mapping for the descendant d will be a superset of that of e�� and

so we will incorrectly conclude that d � e��

e1 e2

p

d

... ...

Figure ���� Elements that cannot be in the same down
set

In ����� Caseau proposes an encoding scheme that preserves subsumption� His algorithm computes a subsumption

preserving spanning set of down
sets� implemented with bit vectors� Through his notion of �gene sharing�� compound

down
sets may be formed� The algorithm proposed computes the spanning set incrementally as the ordered set is

constructed from top to bottom� When meet irreducible elements are added� the algorithm adds the element as

a factor of the �rst down
set permitted according to the above theorem� When non
meet irreducible elements are

added� a check is made to see if the conditions of the theorem are violated� If they are� a factor of some down
set

contributing to this violation is moved to another down
set in a process called �gene mutation��

Below is an example ordered set and the encoding that the algorithm determines immediately before and after

the addition of element i �which causes a gene mutation� since i is �i a descendant of the parent a of c� but not

of c itself and �ii a descendant of e� The spanning sets prior to and following the mutation are respectively

f�a� �b� �fc� eg� �fd� fgg and f�a� �b� �fc� eg� �d� �fg� The rightmost encoding shows a more compact encoding than
Caseau�s that satis�es the above theorem� but which the algorithm does not �nd� The spanning set for this encoding

is f�a� �b� �fc� fg� �fd� egg�

T

a b

c d e f

g hi

0000

0001 0010

0101 1001 0110 1010

1101 1110

00000

00001 00010

00101 01001 00110 10010

01101 1011001111

0000

0001 0010

0101 1001 1010 0110

1101 11101011

Figure ����� Subsumption preserving encoding

Intuitively� it seems that subsumption preservation should not rely on the existence of meets or joins� However�

Caseau�s incremental algorithm forms the minimal �i�e� Dedekind
MacNeille lattice completion of the given ordered

set� which is potentially costly�

Theorem ��
 Let P be an ordered set� Then the elements that must be represented as factors of down�sets for a

subsumption preserving spanning set are the meet irreducible elements of P �

It is easy to show thatM�P �M�LP � where LP is the minimal lattice completion of P � The proof of the above

theorem follows from this fact and previous theorems� Thus� we don�t need to actually realize the lattice completion�

Rather� we need only recognize which elements are meet irreducible�

��	�� Finding a minimal subsumption preserving spanning set is NP�Hard

In Caseau�s paper� a suggestion is made for the gene mutation process to attempt to detect more compact ways to

rectify a violation� once detected� Both the original algorithm and this suggested improvement� however� provide

approximations to the problem of �nding a minimal spanning set of down
sets that preserves subsumption� Unfor

tunately� as we show through the next theorem� this problem is NP
Hard� This result is related to one suggested in

���� regarding the bounded dimension of an ordered set� dim��P �

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

De�nition ��� Minimum Subsumption Preserving Spanning Set� Given a lattice L and a positive number

k � jLj� Is there a spanning set of down�sets of size k that preserves subsumption�

Theorem ���� The Minimum Subsumption Preserving Spanning Set problem is NP�Complete�

Proof� Consider the following problem� which is known to be NP�Complete �����

Partition into Cliques� Given a graph G � �V�E	 and a positive number k � jV j� Is there a partition of G into k

cliques�

We provide a polynomial transformation from this problem to our problem� Let us construct a lattice L from G � �V� E	�

where n � jV j and e � jEj� as follows� �i	 start with a � element �� will be left implicit	� �ii	 Add n elements P�� P�� � � � � Pn�

where Pi � �� �iii	 Add n elements v�� v�� � � � � vn� where vi � Pi� �iv	 Add m � n�n � 	�� � e elements as follows� For each

pair of vertices vi� vj� where i � j� that does not have a connecting edge in E� add an element �vi� vj	 where �vi� vj	 � Pi and

�vi� vj	 � vj �

Claim� L has a subsumption preserving spanning set of size n� k if and only if G has a partition into k cliques�

� Suppose L has a subsumption preserving spanning set S of size n� k� First note that� by theorem ���� S must contain

n principal down�sets corresponding to the Pi meet irreducibles� Since the �vi� vi	 elements are not meet irreducible� all other

down�sets must be composed of the vi elements� Further� there must be exactly k of these down�sets� Consider any one of

these down�sets �Q� Claim� The corresponding vertices in G forms a clique� Consider any pair of elements vi� vj � Q� where

i � j� Since they are factors of the same down�set� � � an element that is �i	 a descendant of the parent of vi� but not of vi
itself and �ii	 a descendant of vj� By the above construction� the only possible element for which this could occur is �vi� vj	�

which only exists if vi� vj are not connected by an edge� Thus� vi� vj have a connecting edge� Therefore� the corresponding

vertices within each of these k down�sets forms a clique in G�

� Suppose G has a partition into k cliques� Each of the Pi meet irreducibles must form a down�set for any spanning set

that preserves subsumption on L� This makes n down�sets� Consider any one of the k cliques� Q� Claim� The corresponding

meet irreducibles in L can be factors of the same down�set� By the theorem� any pair vi� vj� i � j� can be factors of the

same down�set provided � � an element that is �i	 a descendant of the parent of vi� but not of vi itself and �ii	 a descendant

of vj� By the above construction� the only possible element for which this could occur is �vi� vj	� which only exists if vi� vj

are not connected by an edge� But since vi� vj are in a clique� they are connected by an edge� Thus� the corresponding meet

irreducibles within each of these k cliques can be factors of the same down�set in a spanning set that preserves subsumption

on L� �

Figure ���� shows an example of this reduction� Elements a� b� c� d form a clique in the graph and can also be

factors of the same down
set in a subsumption preserving spanning set for the lattice�

T
a

b

c

d

e

f

a b c d e f

Pa Pb Pc Pd Pe Pf

(a,e) (a,f) (b,f) (c,e) (d,e)

Figure ����� Transformation of a graph to a lattice

��	�� Multiple occurrences of factors

Although� it may seem unnecessary for an element to be a factor of more than one down
set� more compact spanning

sets may result by allowing multiple occurrences of factors� We characterize the general conditions such spanning sets

must satisfy� In Figure ����� any spanning set without multiple occurrences of factors has at least ten elements� It is

easy� however� to verify that the spanning set S � f�fa� b� c� d� e� fg� �fa� b� c� g� h� ig��fa� d� e� g� h� jg� �fb� d� f� g� i� jg�
�fc� e� f� h� i� jgg preserves subsumption�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

T

a

T

b dc e f g h i j
00111

11100
11010

11001
10110

10101
10011

01110
01101

01011

00000

11111

Figure ����� Subsumption preserving encoding

Theorem ���� Let P be an ordered set and S be a spanning set of meet irreducible down�sets for P � Then S

preserves subsumption if and only if� for every meet irreducible element e� � M�P � � � an element x for which 	i
 x

is a descendant of the parent of e�� but not of e� itself and 	ii
 ��Q � S where e� is a factor of �Q� � a factor e� of

�Q for which x is a descendant of e��

The proof of this theorem is similar to that for Theorem ���� Figure ���� illustrates the case when the constraints

of the theorem are violated for an element e�� If every component for which e� is a factor� has one of the fi as

a factor� the component mapping for the descendant d will be a superset of that of e�� and so we will incorrectly

conclude that d � e�� Allowing multiple occurrences of factors provides greater �exibility to subsumption encoding

and permits more compact spanning sets� Finding a minimal sized spanning set is undoubtedly NP
Hard� but it may

be possible to design an approximation algorithm �such as an extension to Caseau�s greedy algorithm that performs

better than existing algorithms�

e1
f2

p

d

... ...

f1 fk

..
.

.

.

..

..

Figure ����� Violation of subsumption

There have been two encoding schemes ����� ��� that permit multiple factors in compound spanning sets� Al

though the algorithms are too detailed to describe fully in this thesis� there are several issues of interest�

The algorithm in ���� constructs a bit
vector encoding using two passes over a lattice L� one upwards and one

downwards� The resulting encoding preserves subsumption with subsets� and thus implements a spanning set of

up
sets� One of the goals of this encoding is to provide e�cient meet computations �join computations are described�

but are not e�ciently handled� Meet computations are achieved in this subsumption preserving encoding by using

an interesting indexing method� Suppose L is the lattice to encode� and S is the spanning set of up
sets generated by

the algorithm� With each non
meet irreducible element x � L� x ��M�L� one of the components sx � S is associated

in the following way�

De�nition ��	 Let L be a lattice� and S be a spanning set of up�sets on L� Then S discriminates the non�meet

irreducible elements of L if �x � L� x �� M�L� �sx � S for which 	i
 x � sx and 	ii
 if y � L� y ��M�L� and y � sx�

then x � y 	i�e� x is the unique minimum non�meet irreducible element of sx
�

To compute a meet xuy� we �rst check if x � y or y � x� If neither of these hold� we know that the meet must be

a non
meet irreducible element� We then intersect the component mappings for x and y� Caub � C�x � C�y� Using
a linear extension � of the lattice L� a linear ordering is formed for S� the details of the particular linear extension
formed in ���� are unimportant� but what is essential is that� for two non
meet irreducible elements x� y � L� if x � y

then sx � sy � By the manner in which S is formed� the meet will correspond to either the �rst or second spanning

set component in Caub corresponding to a non
meet irreducible element��� Using a bit
vector mask �which contains a
�A generalization of this property is proven below�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

� in each position corresponding to a non
meet irreducible component� these components can be identi�ed� A table

indexed by the bit corresponding to these components is then used to decode the meet�

Note that this approach to decoding meets through a table lookup can be applied to any spanning set that

preserves subsumption with subsets and discriminates the non
meet irreducible elements� In particular� the transitive

closure method of ��� could use this indexing technique for e�cient decoding�

Rather than elaborate on the details of this algorithm� it will be more fruitful to elucidate its important contri

butions� First� although this approach usually requires less space than the transitive closure method of ���� there are

cases in which a spanning set contains redundancy� By the dual of Theorem ���� subsumption preservation needs

only to deal with join irreducible elements� For the indexing method to function� however� we need to keep those

components associated with non
meet irreducible elements �which may contain non
join irreducible factors� How

ever� there are other redundancies that may result from the algorithm in ����� �i it is possible to have a factor that

is meet irreducible but not join irreducible� such factors can be removed �by Theorem ���� �ii it is possible to have

duplicate and redundant components� By remediating these problems in the resulting spanning set� the algorithm

could be improved�

As an example� consider the ordered set in Figure ����� The �rst encoding results from the algorithm in ����� The

spanning set that is implemented is S � f�fe� gg� ��� �e� �g� �f� �fe� ggg� Note that the component �fe� fg appears
twice �in the �rst and last bit positions� which is clearly unnecessary� Secondly� this component is redundant� since

it is not associated with any non
meet irreducible element� and �e and �g are both components of S� A more e�cient
spanning set that preserves the desired properties is S� � f��� �e� �g� �fg� its bit
vector implementation is shown on
the right
hand side of Figure �����

T

a

T

c d

e f g

101111

101011 100111

101001 000010 100101

000000

111111

0111

0101 0011

0100 0001 0010

0000

1111

Figure ����� Example encodings that discriminate non
meet irreducible elements

We now formulate the encoding problem tackled by the algorithm in ���� in a general manner� which may lead

to the development of more e�cient solutions� Suppose we have a lattice L and we wish to construct a spanning

set S that �i preserves subsumption with subsets �i�e� x is subsumed by y �x � y if and only if C�x � C�y� and
�ii discriminates non
meet irreducible elements� For each element x � L� x �� M�L� de�ne the set R�x � fy �
Ljy � x� �z � L� z �� M�L� y � z � x � zg� These are the elements that are subsumed by x� but not by any other
non
meet irreducible element that is not an ancestor of x� Note that x � R�x� Now the problem can be described

as constructing a subsumption preserving spanning set of up
sets S with the restriction that �x � L� x �� M�L�

�sx � S for which the factors of sx are a subset of R�x �i�e� bsxc � R�x� This ensures that S discriminates
non
meet irreducible elements� The component sx will be called the component associated with x�

We know from theorem ��� that to preserve subsumption� we need only be concerned with the join irreducible

elements J �L� Thus� for optimality� we need only consider the join irreducible elements of R�x� if there are none�
then we can use sx � �x�
The interesting result is as follows�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Theorem ���� Let L be a lattice and S be a spanning set of up�sets for L such that

i� S preserves subsumption

ii� S discriminates non�meet irreducible elements

iii� S is partitioned into those components that are associated with non�meet irreducible elements� S� and those

that are not� S�
iv� There is a linear extension � of S��

Then� for any meet a u b � c� consider Caub � C�a � C�b�
i� if Caub � C�a� then a � c�

ii� if Caub � C�b� then b � c�

iii� if Caub � �� then c � ��
iv� if Caub � S� � fsxg� then� if a � x 	or b � x
� then � � c� otherwise x � c�

v� if jCaub�S�j � �� then let sx and sy be the �rst and second elements 	according to �
 in Caub �S�� If a � x

	or b � x
� then y � c� otherwise x � c�

Proof� Let L be a lattice and S a spanning set of up�sets for L that satis
es the above conditions� Consider any meet aub � c

and the set Caub � C�a	 	 C�b	� Since S preserves subsumption� cases �i�iii	 hold�

Now suppose sx is the
rst component �according to �	 of Caub 	 S�� It is possible that a � R�x	 and b � R�x	� in which

case a � x and b � x �i�e� the factors of sx are below a� b and x	� Since x subsumes every element in R�x	� either both a and

b subsume x or both are subsumed by x� Since � is a linear extension� if both a and b subsume x� clearly x � a u b�

Claim� For any component sy � Caub 	 S�� sy �� sx� both a and b subsume y �or conversely� it is impossible for y to

subsume a and b	� Suppose y subsumes a and b� Thus� a � R�y	 and b � R�y	� Since � is a linear extension of S�� x must

also subsume a and b� and either y � x or xjjy� In the
rst case� we can infer that x � R�y	� which is impossible� since x is

non�meet irreducible� In the second case� we can infer that L is not a lattice�

Thus� in case x subsumes a and b� we can select the second element sy of Caub 	 S�� If no such element exists� then

a u b � �� otherwise a u b � y� �

This theorem provides a general and e�cient procedure for computing and decoding meets� which abstracts the

algorithm in ����� Given a and b� if neither subsumes the other� and the intersection of their component mappings

is non
empty� then we can determine their meet simply by extracting the �rst component sx corresponding to a

non
meet irreducible element x� If x does not subsume either a or b� then a u b � x� otherwise extract the second

component sy corresponding to a non
meet irreducible element y� If no such component exists� au b � �� otherwise
a u b � y�

Another approach that implements spanning sets of compound down
sets� described in ����� decomposes an

ordered set P into co�atomic sublattices��� By grouping elements together that have the same set of subsuming

co
atoms� the authors show that the resulting order is a co
atomic lattice� If P is already a co
atomic lattice� then

the resulting order is isomorphic to P � This partitioning is performed repeatedly on each group of elements� forming

a tree of co
atomic lattices that is used as the basis for generating a bit
vector encoding of the original ordered

set� Their algorithm can also be viewed as computing a spanning set of compound up
sets� although the details are

beyond the scope of this thesis�

��� Spanning Set Decomposition

We have seen that with spanning sets of down
sets� we can only preserve joins with principal down
sets �section ���

and meets with prime down
sets �section ������ The preceding section discussed combining principal down
sets into

compound down
sets while still preserving subsumption� In this section� we describe how decompositions of spanning

sets that satisfy certain restrictions can lead to some e�cient implementations using� for example� integer vectors or

logical terms�

��A co�atomic lattice is a lattice in which every element is a meet of one or more co�atoms�
��Without the use of additional constraints	 such as coreference	 as discussed in section ���	 and in ���	 ����

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Suppose a spanning set S for an ordered set P is decomposed into 	�� 	�� � � � � 	k �i�e� 	� � 	� � � 	k � S�

In order to use this decomposition� we modify the component mapping to return� in addition to each component�

the subset containing it� We use the notation 	�s to denote that component s is in subset 	� For example� if

	�s � C�e� then e � s and s is a member of the subset 	� We say that an element of P is in a subset if it is in

any of its constituent components� If we can guarantee that subsets possess certain structure� we can implement

them with space logarithmic to the number of components� as opposed to the linear space required to represent the

components individually�

��
�� Chain decomposition

For a spanning set S on an ordered set P � a chain partition� as de�ned in section ������ of the order induced by S

is one form of chain decomposition� If the components of S are principal down
sets� a chain partition of S is also

isomorphic to a chain partition of P � In general� if S is subsumption preserving� it corresponds to a chain product

embedding of P � as we discuss below�

The key feature of a chain decomposition S � 	� �	�� � � ��	k is that� given a component si of 	j� we can infer
every component preceding si in the chain� Thus� we need not represent all components explicitly
 the component

mapping need only return at most one for each subset� Integer vectors� described in section ������ provide a direct

and e�cient implementation�

The virtual time proposal in ����� addressing the problem of global time in distributed systems� essentially performs

a chain partition on a spanning set of principal down
sets implemented using integer vectors� At each of k sites�

transitions are caused by internal state changes� and message sends and receives� forming a partial order based on

precedence constraints among events �e�g� a send must precede its corresponding receive� Note that this partial

order is not necessarily a lattice� since two sites may simultaneously send to each other� The transition events for

each site represent local clock advances� Possible combinations of the local clocks constrain the possible global times�

No global time is maintained in the system� but each site approximates it using its local time plus the times obtained

from other processes by messages received�

The transitions at each site form a chain� interconnected by message sends and receives� producing a natural chain

partition that is represented by a vector of k integers� Since the clock at each site is updated after each transition�

the code of an event for site i consists of the code of its parent at this site� with the ith entry incremented and� if the

event is a receive� the union is formed with the vector sent with this message� The underlying spanning set is thus

the set of all principal down
sets� so it preserves joins but not meets� As an example� a three site system is depicted

in Figure ����� A space reduction could be realized if down
sets were restricted to the meet irreducibles�
Site 1 Site 2 Site 3
[1,0,0] [0,1,0] [0,0,1]

send [2,0,0]

receive [2,2,0]

internal [0,0,2]

send [2,3,0]

receive [2,3,3]send [2,4,0]

receive [3,4,0]
Figure ����� Distributed virtual time encoding

Generalizing this scheme requires partitioning an arbitrary spanning set S into the minimum number of chains�

which is equivalent to �nding the maximum sized anti
chain of S ����� The cardinality of this anti
chain� called the

width of S� determines the minimumnumber of chains needed to represent S� and thus the minimum size of a vector

implementation� In the distributed system� the width is the number of sites� In general� determining the width of S

is possible in O�jSj� time ����� The next theorem shows the space requirements for a balanced chain partition�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Theorem ���� Let S be an ordered set with n elements and width k� Further suppose that there is chain partition of

S into k chains of size n�k� Then the integer vector encoding for S on this partition requires O�nk�blog�n�kc # �
space�

Since each element requires a vector of size k� and the maximum sized integer in each vector is n"k �requiring

O�log�n�k space� the result follows� Note� If k � �� then we have a total order and we require O�logn space to

represent each element� If k � n� then we have an anti
chain and we require O�n space for each element� In both

cases� bit
vectors require O�n space�

Chain product embeddings

Chain partitions are in fact a special case of chain product embeddings�

De�nition ��� Let P be an ordered set� fC�� � � � � Ckg be a set of chains� and � � P � C� � � Ck be a function

from P to the cross product of these chains� Then � is a chain product embedding if� for x� y � P � x � y if and only

if � �x � �cx� � � � �c
x
k� � �y � �c

y
�� � � � c

y
k and cxi �Ci c

y
i for � � i � k�

We de�ne element i of the vector � �x as � �x�i� �i�e� � �x�i� � cxi � A chain partition is the case when the Ci are

chain suborders of P that partition P � Chain product embeddings are closely related to order dimension ������ and

encoding dimension �����

Theorem ���� Let P be an ordered set� Then every chain partition of a subsumption preserving spanning set of up�

sets S for P corresponds to a chain product embedding of P � and every chain product embedding � of P corresponds

to a chain partition of some spanning set of up�sets for P that preserves subsumption�

Proof� � Let S be a subsumption preserving spanning set of up�sets for P � and let fC�� C�� � � � � Ckg be a chain partition

of S� Let us also de
ne a special null component s� �� S that subsumes every component of S� De
ne the mapping

� � P � C� � � � � � Ck as ��x	 � �c�� c�� � � � � ck	 where� for � i � k� ci is the least element in Ci that is in C�x	� If

Ci 	 C�x	 � � �i�e� there is no element in chain Ci that is in C�x		� then ci � s�� Thus� ignoring the null components in this

mapping� C�x	 � �fc�� c�� � � � � ckg
���

Claim� � is a chain product embedding� If x � y� then C�x	 � C�y	� Clearly� for � i � k� we have ��x	�i� �Ci ��y	�i�
���

Conversely� suppose for � i � k� we have ��x	�i� �Ci ��y	�i�� Then C�x	 � C�y	� so x � y�

� Let � be a chain product embedding of P into the set of chains fC�� C�� � � � � Ckg� De
ne jCij � ni� De
ne the spanning

set S � fs��� � � � � s
�
n�
� s��� � � � s

�
n�
� � � � � sk� � � � � s

k
nk
g� where� for � i � k� � j � ni� we de
ne sij � fx � P jj �Ci ��x	�i�g� Note

that �i � fsi�� � � � s
i
ni
g� for � i � k� de
nes a chain partition of S�

Claim� S is a subsumption preserving spanning set of up�sets� If x � y� then for � i � k� ��x	�i� �Ci ��y	�i�� Suppose

sij � C�x	� Since j �Ci ��x	�i� and ��x	�i� �Ci ��y	�i�� j �Ci ��y	�i�� and sij � C�y	� Thus� C�x	 � C�y	� Conversely� if

C�x	 � C�y	� then ��x	�i� �Ci ��y	�i�� for all � i � k� Thus x � y� �

Chain products have a natural implementation using integer vectors� A nice description of encoding by embedding

ordered sets in products of chains is given in ����� Unfortunately� �nding a minimal size product of chains into which

an ordered set can be embedded is NP
Hard���

��
�� Meet incompatible decomposition

A meet incompatible subset 	�s�� s�� � sk � S is a subset in which components are pairwise meet incompatible�

That is� if i �� j then �a � si� b � sj � a u b � �� If the spanning set is composed of down
sets� this is equivalent
to si � sj � f�g� For a meet incompatible subset 	� any non
bottom element in 	 will be in exactly one of the

constituent components� So if 	�si � C�x� then x � si and for all other components sj of 	� x �� sj � Within

��Recall that for a spanning set S	 C�x� � fs � Sjx � sg is an up�set in S�
��This holds even if ��y��i� or both ��y��i� and ��x��i� are equal to s��
��This is called �nding the encoding dimension in ����	 and is closely related to the NP�Hard problem of �nding the dimension of an

ordered set P �the minimum number k for which P can be embedded in a product of k chains��

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

this framework� subset checking� union and intersection are essentially the same as before� Now� however� if we are

computing the union of two component mappings and they contain a subset 	 with di�erent components� the union

fails� This is facilitated by treating our lattice as �
unbounded�
A spanning set S of all principal down
sets of an ordered set P is isomorphic to P � In this case� a meet incompatible

partition of S is just a meet incompatible anti
chain partition of P � as de�ned in section ���� This is the basis for

the tree term encoding in ����� which gives a logical term encoding of tree shaped taxonomies� In general� however�

this does not hold� Note that a decomposition need not partition the components of S� By allowing components

to be members of more than one subset� implementing meet incompatibility as union failure may be more viable�

In addition� even if we are not concerned with meet incompatibility� specifying that a set of components is meet

incompatible can permit a large space savings� as shown for the following representations�

Bit�vectors Instead of representing a component in a subset of size n by one bit� we assign blognc # � bits to the
subset and assign a number from � � � �n� For elements not in the subset� we place a � in these positions� as

before� For an element in the subset� we place the number of the unique component containing this element�

This derives the integer vector representation of section ����

Logical terms In a term� we use one position for each subset� For elements not in the subset� we place an anonymous

variable for ordinary terms and nothing for sparse terms� For an element in the subset� we place a unique

symbol for the component containing this element� Uni�cation and anti
uni�cation operate as expected� We

can exploit the hierarchical structure of terms by introducing a subset 	�s�� s�� � sk at the functor for one
of the components in tfs�� s�� � skg� This can provide a signi�cant space savings over integer vector �or
�at term implementations� This is the form of tree term encodings discussed in ������ More general term

encodings permit the use of logical variables �coreference� as discussed in section ����

As an example� Figure ���� shows a meet incompatible anti
chain partition of the spanning set SM�P � �i�e� the

principal down
sets associated with the meet irreducible elements for the ordered set P in Figure ���� Note that

since dog and feral dog are not meet irreducible� they do not have corresponding elements in Figure ����� Figure ����

then shows a logical term implementation of this partitioned spanning set�

↓domestic

↓canine

↓wild

↓social

↓wolf ↓african
wild dog

↓poodle↓collie ↓terrier

↓fox

↓kit fox ↓red fox

Figure ����� Meet incompatible decomposition

p(s,_,_)p(_,c(_),_) p(_,_,w(_))

p(d,c(_),_)

p(_,c(_),w(fx)) p(s,c(_),w(w)) p(s,c(_),w(awd))

p(d,c(c),_) p(d,c(p),_) p(d,c(t),_) p(d,c(_),w(_)) p(_,c(kf),w(fx)) p(_,c(rf),w(fx))

p(d,_,_)
domestic canine wild social

dog

fox wolf african wild dog

collie poodle terrier feral dog kit fox red fox

Figure ����� Logical term implementation of meet incompatible decomposition

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

In section ��� we analyzed spanning sets of prime down
sets and showed a direct correspondence with spanning

sets of principal up
sets� We were able to then claim that any �nite lattice has a spanning set of prime down
sets

that preserves meets with union $ this can easily be implemented using tree terms� In ������ an additional constraint

is imposed on such spanning sets� if a u b � � then the C�a � C�b must fail� As we saw above� this may be

accomplished using decomposition� but this is not always possible� Logical terms provide an implementation of this

with uni�cation failure� For implementations using tree terms� this constraint is formulated as follows�

Theorem ���� ����� Let L be a lattice� Then L has a meet preserving tree term encoding if and only if� for any

a� b � L� aub � � if and only if there are two meet incompatible prime down�sets P�� P� for which a � P� and b � P��

Clearly� if there are two meet incompatible prime down
sets containing a and b� respectively� aub � �� Requiring
the converse� however� means that many lattices are not tree term encodable� according to Mellish�s de�nition�

Surprisingly� this includes even the lattice shown in Figure ���� Encoding this lattice so that � is implemented

as uni�cation failure requires coreference� as shown in ���� ����� Determining if a lattice is tree term encodable

in this sense can be accomplished in polynomial time since all meet incompatibility must be incorporated into a

decomposition�

In general� we want to �nd the smallest decomposition of a spanning set� Unfortunately� this is NP
Hard for the

simpler case of partitioning an ordered set into meet incompatible subsets�

De�nition ��
 Meet Incompatible Ordered Set Partitioning� Given an ordered set P � and a positive number

k � jP j� Is there a partition of P into k meet incompatible subsets�

Theorem ���� Meet Incompatible Ordered Set Partitioning is NP�Complete�

Proof� We give a polynomial transformation from the Partition into Cliques problem� described in section ���� to our problem�

Let us construct an ordered set P from G as follows� Let n � jV j and e � jEj� �i	 Add n vertex elements v�� v�� � � � � vn� �ii	 Add

m � n�n�	���e non�edge elements as follows� For each pair of vertices vi� vj� where i � j� which does not have a connecting

edge in E� add the element �vi� vj	 where �vi� vj	 � vi and �vi� vj	 � vj�

Claim� P has a partition into k � meet incompatible subsets if and only if G has a partition into k cliques�

� Suppose P has a partition into j meet incompatible subsets� Select one subset �� that does not contain any vertex

element� If no such subset exists� j � k and let �� � � �a trivial meet�incompatible subset	 to bring the number of subsets

to k � � otherwise j � k � � Consider any subset � �� ��� Claim� The vertices corresponding to the vertex elements in �

form a clique in G� Consider any pair of vertex elements vi� vj � �� where i � j� Since they are components of the same

subset� they are incompatible� By the above construction� this could only occur if vi� vj have a connecting edge� Therefore�

the corresponding vertices within each of these k subsets forms a clique in G�

� Suppose G has a partition into k cliques� Consider any one of the k cliques� �� Claim� The corresponding elements

in P can be components of the same subset� Any pair vi� vj� i � j� can be components of the same subset provided they are

incompatible� By the above construction� this can only occur if vi� vj are connected by an edge� Since vi� vj are in a clique�

they are connected by an edge� Thus� the corresponding elements within each of these k cliques can be components of the

same subset� One additional meet incompatible subset can be formed from all of the non�edge elements� �

The following �gure shows an example of the above transformation� It is easy to see that the elements a� b� c� d

form a clique in the graph and are meet incompatible in the lattice�

a

b

c

d

e

f

a b c d e f

(a,e) (a,f) (b,f) (c,e) (d,e)

Figure ����� Transformation of a graph to a lattice

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Any meet incompatible decomposition of a spanning set S of an ordered set P corresponds to a meet incompatible

decomposition of the induced subset order of S� but not vice versa �since we may have two components s�� s� � S

for which s� uS s� � �S� but s� � s� �� �� However� we can add elements �si� sj for any pair of components in S
that are incompatible with respect to the induced order of S� but compatible with respect to the order of P � These

elements would ensure equivalence between the two forms of meet incompatibility among components in S� Thus�

the more general problem of �nding a minimal meet incompatible decomposition of a spanning set is also NP
Hard�

��
�� Meet homogeneous decomposition

We now generalize the notion of meet
incompatible subsets� we hope that this generalization can be exploited

in the development of new encoding algorithms� We call a subset 	�s�� s�� � sk meet homogeneous �or simply

homogeneous if for any two distinct components s�� s� � 	� a � s� and b � s� implies a u b � s� �s � 	� That is�

every element is either in �� � or all the components of the subset� A meet incompatible subset can be viewed as a

special case of a homogeneous subset� with the added restriction that a u b � �� Since any element in the subset
will either be in exactly one or all of the components� we need to associate a special symbol� ��� with each subset

indicating that every component is present� We rede�ne below the set operations for meet homogeneous subsets�

subsets� C�e� � C�e�� �	�x � C�e�� either
i� 	�x � C�e� or
ii� 	��� � C�e��

union� C�e� � C�e� � Q� �	�z � Q� either

i� 	�z � C�e� and e� �� 	�

ii� 	�z � C�e� and e� �� 	 or

iii� 	�x � C�e�� 	�y � C�e� and x � y � z or z � ���

intersection� C�e� � C�e� � Q� �	�z � Q either

i� 	�z � C�e� and 	�z � C�e��
ii� 	�z � C�e� and 	��� � C�e� or
iii� 	��� � C�e� and 	�z � C�e��

We can implement these operations with a modi�cation to the sparse term or integer vector representations� By

partitioning a spanning set into meet homogeneous subsets� we can achieve the bene�ts of meet incompatible subsets�

The generality and �exibility of this structure� however� may permit more dense decomposition� decreasing the space

requirements of an encoding� which may over
compensate for the increased operational complexity� To illustrate

these concepts� consider the ordered set below� The minimal subsumption preserving spanning set of down
sets

�with no multiple occurrences of factors is S � f�a� �b� �c� �d� �e� �f� �h� ��g� which also preserves joins� Since every
pair of components is compatible� meet incompatible decomposition provides no bene�t� However� the following is

one possible homogeneous decomposition of S� f	���a� �f� �h� 	���b� �c� �d� �e� 	����g� The component mapping
corresponding to this decomposition is also shown in the �gure�

T

a b c d e f

g h i

j

{}

α1(a) α1(f)α2(b) α2(c) α2(d) α2(e)

α1(a),α2(b) α1(h),α2(c) α1(f),α2(e)

α1(

T

T T

),α2()

α1(

T T

),α2()

T

,α3()
Figure ����� Meet homogeneous decomposition

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

�� Constraints and Coreference

We now develop a constraint
based examination of encoding� viewing both ordered sets and spanning sets as systems

of constraints� and we formulate an integration of spanning sets with other forms of constraints� In this context� we

are able to view the process of taxonomic encoding as a special case of constraint satisfaction� We �rst introduce the

various types of constraints imposed by an ordered set� Preserving certain properties involves satisfying some of these�

We next show how these constraints can be incorporated into the components of any subsumption preserving spanning

set S of down
sets� through the use of guarded constraints� which are analogous to Dijkstra�s guarded commands�

This involves restating the initial constraints in terms of the components of S� and may alter the properties of S with

respect to joins and meets� Many constraints can be implemented using techniques previously covered� such as chain

partitions� We introduce coreference� such as that o�ered by logical variables� as a complementary implementation

tool� formalized through equivalence classes of constraints� We also hypothesize about more general implementations�

����� Types of constraints

We will view constraints in a top
down manner as logical implications� denoted using the � symbol� Inferences on

constraints are denoted using the � symbol� and sets of constraints are denoted using %� Given a set of elements
and a constraint involving one or more of these elements� some consequence may follow through the application of

modus ponens� where we use ��� to denote logical conjunction and �	� to denote logical disjunction� For example�
given a� b and a � b � c we infer c� written a� b� a�b�c � c� Di�erent categories of constraints are distinguished by

subscripting the % symbol� To be precise� we should also specify the partial order to which the constraints apply�

but this is usually obvious�

Order constraints %��� The constraint imposed by the relation a � b is simply a � b� Thus� given element a

and this constraint� we can infer element b� This constraint has been implicit in our analysis� and is integral to

any subsumption preserving spanning set of down
sets� The cover relation dictates a set of cover constraints

%�� � Inferring %� from the re�exive and transitive closure of %�� follows�

Meet and join constraints %u�%t�� Suppose we have a� u a� u u ak � b� Interpreting this logically� if we

have all of the ai� we can infer b� The constraint imposed by this relation is then a� � a� � � ak � b��� An

important e�ect of this constraint is that if b � c then a� � a� � � ak � c� even if none of a�� a�� � ak are
comparable with c� From an encoding point of view� a meet constraint is satis�ed by deducing new information�

We later show how certain cases of meet constraints can be implemented using coreference�

Suppose we have a�t a�t t ak � b� Interpreting this logically� if we have at least one of the ai� we can infer

b� The constraint is then a� 	 a� 	 	 ak � b� Thus� from the uncertainty associated with a disjunction� we

can infer a consequent� Due to the di�culty in implementing join constraints except with intersection� we will

rely on previous techniques to satisfy %t�

Meet and join incompatibility constraints %��%��� Suppose we wish to implement � as failure and we have
a meet a� u a� u u ak � � that is minimal in the sense that any subset of the ai is meet compatible� This
results in k constraints� a� � � ai�� � ai� � � ak �
ai� � � i � k� Join incompatibility constraints can

be de�ned dually� although we do not discuss them� The negation of an element ai is a logical construct� the

purpose of which is to cause an inconsistency in case we infer ai � We show later how these constructs can be

used to implement � as failure�

As indicated� we only explicitly deal with %��%u and %�� Thus� the antecedent of every constraint will be a

conjunction �or a singleton� Our only rule of inference is modus ponens� A�A�b � b� where A is a conjunction of
one or more elements� This rule enables us to deduce new elements from a given base set� Rather than allowing

closure immediately� we provide an incremental inference procedure� This is important for encoding� since we need

��The generalization to meet�crest constraints is straightforward� if we have a� u a� u 	 	 	 u ak � fb�� b�� � � � � bjg	 then the resulting
constraint is a� � a� � 	 	 	 � ak
 b� � b� � 	 	 	 � bj� To keep our discussion clear	 however	 we will focus only on meet constraints and
lattices�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

to bound the number of inference steps in a deduction for the sake of e�ciency� The following rules describe this

procedure for a given initial set of constraints %� where �� represents one application of modus ponens�
i� %� � fA� b j %� A �� bg �� %
ii� %i� � fA� b j �%i� A �� c�� � �%i� A �� ck and %i� c�� � ck �� bg
iii� %� �

S�
i�� %

i�

We say % � A� b if there is some i � � for which A� b � %i� Since % is �nite� there will be a number k � � for
which %k� � %k� giving a �xed
point for this construction and %� � %k� Of course� using the above rules� we could

specify a minimal set of constraints from which all others could be obtained �e�g� the entire order relation could

be derived from the cover relation� and perform taxonomic operations using inference� However� to satisfy locality�

every constraint we wish to satisfy needs to be immediately accessible �i�e� in a constraint set or derivable in a small

number of steps� For the spanning sets we have studied� all constraints are local� We show later how coreference

may allow us to derive additional constraints in one inference step�

We will use the diamond lattice in Figure ��� to illustrate the speci�cation and use of constraints� The cover

constraints are %�� � fa��� b��� c��� ��a� ��b� ��cg� The meet and join constraints are� %u � fa�b���
a�c��� b�c��g and %t � fa	b��� a	c��� b	c��g� respectively� Recall that we showed in section ��� that
no spanning set exists that preserves both meets and joins for this lattice� We later show how %u and %t may be

preserved using coreference�

����� Augmented spanning sets

Each component of a spanning set S can be viewed as encompassing a set of constraints� and S preserves certain

properties that we can infer from these constraints�

A down
set �fa�� a�� � akg represents the set of constraints �x � �fa�� a�� � akg� x � a� 	 a� 	 	 ak�

That is� given any element in the down
set� we can infer the disjunction of the factors� In case the down
set is

principal� �a� we have �x � �a� x� a� An up
set �fa�� a�� � akg embodies the constraints� �x � �fa�� a�� � akg�
a� � a� � � ak � x� That is� given all of the factors� we can infer any element in the up
set� In case the up
set is

principal� �a� we have �x � �a� a� x� Our analysis focuses on down
sets� We can also view a component itself as a

set of constraints� the component s represents x� s for all x � s�

Principal down
sets thus include a subset of %� and the spanning set of all principal down
sets induces this entire

set� We showed in Theorem ��� that the meet irreducible elements embody the essence of joins� so SM�L� preserves

subsumption and joins while retaining only a subset of %�� Compound down
sets� however� incorporate ambiguity�

By merging the constraints of two or more principal down
sets� uncertainty arises as to which constraint is satis�ed�

Although we cannot preserve joins with such uncertainty �as we have shown� we can possibly preserve subsumption

and meets �sections ��� and ���� In general� if C�x� � C�x� � � C�xk � C�y then x� � x� � � � �� xk � y� We

denote the set of constraints of a spanning set S as %�S� These can be expressed dually in terms of components� if

s� � s� � � sk � s then s� � s� � � � �� sk � s�

A decomposition S � 	��� � ��	k represents additional constraints� A chain decomposition induces the constraints
�� � i � k� if s�� s� � 	i and s� ��i s� then s� � s�� For a meet incompatible decomposition we have� �� � i � k�

if s�� s� � 	i and s� �� s� then s� �
s�� For a meet homogeneous decomposition� �� � i � k� if s�� s�� s� � 	i and

s� �� s� then s� � s� � s��

To integrate constraints and spanning sets� we express constraints in terms of spanning set components� We now

discuss how this a�ects the component mapping and taxonomic operations�

De�nition ���� A component constraint of an ordered set P is a constraint

s��� � ��sk�� � sk� where each of the antecedents and the consequent are subsets of P � A set of component constraints

S� of P is called an augmented spanning set if the function C� � L� �S� de�ned by C��x � fs� � s� � � � �� sk���
sk � S�j�i� � � i � k� x � sig is one�to�one�

Ordinary spanning sets are a special case� where k � � for every constraint� We associate a constraint with

every element in its antecedent or consequent� An augmented spanning set for our example is as follows� S� �

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

f�a� �b� �c� �a��b��c� �a��c��b� �b��c��ag� We say that S� is an augmented spanning set of down
sets if
every antecedent and consequent is a down
set�

Although many constraints can be inferred from a base set� encoding essentially performs all the desired inferences

a priori� and then represents the consequences of an element in a code� Using this code� we can perform operations

locally� which amounts to reducing inferences to one step� We shall see in Chapter � one approach to relaxing this

to allow inferences with a �xed number of steps� How can we perform a one
step inference� Since we associate

constraints with elements� we can perform set operations� as we have previously shown� We can also apply one level

of modus ponens �i�e� calculate %� from %� using coreference� as we describe later�

We must now rede�ne property preservation for an augmented spanning set S� of down
sets�

Subsumption� x � y if and only if C��y � C��x�
Meets� x u y � z if and only if C��x� C��y�C��z�
Joins� x t y � z if and only if C��x � C��y � C��z�

Note that when computing meets� we use the constraints to infer additional components� For e�ciency� we

will usually only perform one inference step� That is� we only infer components from the given components and

inferences� and do not attempt further inferences using inferred components �i�e� we compute ��� After performing
the inference step of a meet� we can remove trivial constraints �e�g� if we already have s�� then s��s� is redundant�

Our example preserves subsumption and meets� but not joins� For elements a� b and ��
i� C��a � f�a� �a��b��c� �a��c��b� �b��c��ag
ii� C��b � f�b� �a��b��c� �a��c��b� �b��c��ag
iii� C��� � f�a� �b� �c� �a��b��c� �a��c��b� �b��c��ag

We can see that C��a � C���� To compute aub� we compute the inference C��a� C��b � �c using the constraint
�a��b��c� We can thus infer C���� and so a u b � �� Simplifying the constraints then yields the set f�a� �b� �cg�
Since C��� � �� but C��a and C��b are not disjoint� this spanning set does not preserve joins�

����� Integrating spanning sets and constraints

Suppose we have a set of constraints % we wish to satisfy and a spanning set S of down
sets that may satisfy some

of these constraints� In order to integrate S and %� we need to transform % so that the antecedents and consequents

are expressed in terms of components�

How do we convert elements to components� This can easily be done for any subsumption preserving spanning set

S of down
sets� Using the original set % of constraints �we assume that % � %�S � %�� we construct an augmented
spanning set S�� The next theorem shows not only how these conversions can be accomplished� but also proves that

it can always be done in a sound and complete manner� For soundness we require� S� � a� � a� � � ak�b implies

% � a��a�� �ak�b and for completeness we require� % � a��a�� �ak�b implies S� � a��a�� �ak�b� We

need to specify how we can infer a constraint on elements from a set of component constraints� S� � a��a�� �ak�b

if and only if �i Q �
S
��i�k C�ai and �ii S� � Q�s for every s � C�b� That is� if we can infer every component of

the consequent from the components of the antecedents� then we can infer that the antecedents imply the consequent�

Theorem ���	 Let L be a lattice� S a spanning set that preserves subsumption and % a set of constraints on L of

the form a� � a� � � � � � ak�b 	which contains %�S
� Then the augmented spanning set S� � S � fQ�sjA�b �
%� Q �

S
a�A C�a� s � C�bg is sound and complete�

Proof� Soundness� Suppose S� � A�b and Q �
S

a�A
C�a	� Then S� � Q�Q�� where Q� � C�b	� Let the sequence of

constraints in S� that were used to derive Q� be Q��q�� � � � �Qm�qm� where Q � Q� and Q� � Q
 fq�� � � � � qmg� Each

component constraint Qi�qi must have come from a constraint Ai�bi � �� where A � A�� Thus� ��A � bi� � i � m

�i�e� each inference step is justi
ed	� Since
S

a�A
C�a	

S
bi�fb������bmg

C�bi	 � C�b	 and S� preserves subsumption� we have

A � b� � � � � � bm � b � ��S	 � �� Thus� ��A � b�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Completeness� Suppose ��A � b� Let the sequence of constraints in � that were used to derive b be A��b�� � � � �Am�bm�

where A � A� and b � bm� For each constraint Ai�bi� there is a set of constraints in S�� Qi�s� where Qi �
S
a�Ai

C�a	 and

s � C�bi	� Thus� we can derive S��Q � bi� where Q �
S
a�A

C�a	� �

We can now convert any constraint to a component constraint and the theorem shows that the resulting set will

be sound and complete� The resulting constraints can of course be simpli�ed� Constraints with empty consequences�

or for which a component appears as both an antecedent and the consequent� can be eliminated� Continuing with

our example� if S � f�a� �b� �cg and % � fa��� b��� c��� a�b�c� a�c�b� b�c�a� ��a� ��b� ��cg� then
the augmented spanning set is� S� � f�a� �b� �c� �a��b��c� �a��c��b� �b��c��ag� We can achieve a further
reduction in this example� and still maintain order and meets� by eliminating the components containing �a in their
consequents� This results in the augmented spanning set S�� � f�b� �c� �a��b��c� �a��c��bg� Although it may
be di�cult to determine a minimal augmented spanning set� approximation algorithms may be developed�

Our analysis above did not consider negated elements resulting from meet incompatibility constraints� For this�

we require the notion of a negated component
s� which represents a logical barrier to the inference of a component
s �i�e� s�
s is inconsistent� The constraint a��a�� �ak�
b� can be replaced by C�a��C�a�� �C�ak�
s
provided� �i s � C�b and �ii � factors f of s� we have a� � a� � � ak�
f � Thus� we can replace a negated
element by the negation of one of its components provided the antecedents imply the negation of every factor� This

is required because incompatibility will be detected by inference failure and we need to be certain that all failures

are justi�ed� We can always accomplish this if the negated element is the factor of a principal down
set component�

If no component satis�es this constraint� we can add this principal down
set to the spanning set� We later show how

coreference and decomposition can be used to implement these constraints�

As an example� a spanning set for the cube lattice in Figure ��� is SM � f�a� �b� �cg and the meet incompati

bility constraints are fauf��� bue��� cud��g� The augmented spanning set is S� � f�a� �b� �c� �a��b�
�c�
�a��c�
�b� �b��c�
�ag� To take the meet ufa� b� cg� we �rst obtain the entire set above� from which we can

derive �a� �b� �c� �a��b�
�c��c�
�c� which is inconsistent� We can again reduce the number of components in the
augmented spanning set� while still maintaining meets� S�� � f�b� �c� �a��b�
�c� �a��c�
�bg�

����� Guarded constraints

Although constraints are global� for e�ciency we want to selectively associate constraints with elements� We must

do this in a way that ensures satisfaction� yet minimizes the number of constraints associated with each element�

A constraint could be a�liated with each of its antecedents and its consequent� but to ensure satisfaction only one

antecedent� or the consequent in case there are no antecedents� needs to be linked to it �since the antecedents are

conjunctive� This leads to the notion of guarded constraints� which are analogous to Dijkstra�s guarded commands�

De�nition ���� Let P be an ordered set� A guarded constraint for P is a constraint of the form a � A�b� where

A�a�b is a constraint in P �	� For any element a � P � a � a is a trivial guarded constraint�

The set of guarded constraints obtained from % is denoted as %G� A constraint with k antecedents may result in

up to k guarded constraints� but we may not need to retain all of these� it may be possible to eliminate up to k�� of
the constraints� although we shall see that this cannot be done arbitrarily� In the diamond lattice example �Figure

���� we can guard the meet constraints and still maintain meets as follows� %G � fa�b��� a�c��� c�b��g�
Modus ponens can be revised to operate on guarded constraints� a�A� �a�A�b � b� Given a starting set of

constraints %� constraint inference becomes�

i� %� � fa�A�b j %� a� A �� b �� %
ii� %i� � fa�A�b j �%i� a� A �� c�� � �%i� a� A �� ck and %i� c�� ck �� bg

For encoding� we will guard the constraints in augmented spanning sets� Thus SG� will be a set of guarded com

ponent constraints from S�� We guard an elementary component s as s�s �if we write s� this is assuming the implicit

��If A � �	 we write a � b�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

form s�s� The component mapping is modi�ed as follows� C��x � fs� � � � � � sk���skjsg � s�� � � ��sk���sk �
SG� � x � sgg�
Taxonomic operations are performed as before� The reason that we don�t include the guard in the result of the

augmented component mapping is that the guard indicates to which elements a constraint �or augmented component

is associated� and the rest of the constraint is conditional on the context of the guard �analogous to conditional

probability� Also� in order to implement augmented spanning sets� we require that� for every component of the form

sg �s�� � � ��sk���sk� there are elementary components si�si for � � i � k� Thus� down
sets involved in constraints

�but not necessarily guards must be present as elementary components� We show later how this property can be

used to reduce encoding size�

In our example� SG� � f�a� �b� �c� �a��b��c� �a��c��b� �b��c��ag� Meets� and now also joins� are preserved�
We can also reduce this spanning set to S�G� � f�b� �c� �a��b��c� �a��c��bg�

����� Coreference

Logical terms provide coreference through named variables or labels� Two or more positions in a term that corefer

must hold identical values� called a coreference constraint� If one is instantiated� then all are identically instanti

ated� We can characterize coreference as persistent or transient� Once a coreference point is instantiated� transient

coreference disappears �i�e� there is no recollection of the coreferring positions� This is the form provided by Prolog�

Although implementations may retain the coreference constraint to reduce storage requirements� the surface form is

transient� Persistent coreference� as provided by LIFE ���� maintains the coreference after instantiation�

More generally� coreference is an equivalence relation within a term� That is coreference is �i symmetric� if it

is used to implement a�b� then it also implements b�a� and �ii transitive �since we can only have one coreference

label or variable at a position in a term� if we implement a�b and b�c� then we are also implementing a�c� By

introducing coreference within a speci�c term� we implement a guarded equivalence relation� For example� if we

use coreference to implement the guarded constraint s�s��s�� then the equivalence class s� � s� is implemented

for elements in s� Meet incompatibility constraints �e�g� s�s��
s� require the use of symbols� as discussed in the
next subsection� If we can decompose our meet inferences into guarded equivalence classes� we can implement an

augmented spanning set using coreference in logical terms� as formalized below�

Theorem ���� Let L be a lattice� and SG� be a guarded augmented spanning set on L that contains no negated

components 	i�e� no meet incompatibility constraints
� Then there is a logical term implementation 	which may use

coreference
 of SG� if and only if
i� If sg �s��s�� �sk�s � SG� then k � �
ii� If SG� � sg �s��s� then SG� � sg �s��s�
iii� If SG� � sg �s��s� and SG� � sg �s��s� then SG� � sg �s��s�

The proof of this theorem follows from the fact that coreference cannot itself be conditional �condition �i and it

imposes a set of equivalence classes �conditions �ii and �iii� Condition �iii is actually unnecessary� since it follows

from inference� It is possible to take any constraint with more than one antecedent and split it into a number of

constraints with two antecedents each� For the constraint a��a�� �ak�b� we can create k�� additional elements
l���� l���� lk���k and rewrite the constraint as� a��a��l���� l����a��l���� � lk���k�ak�b�

Logical terms can be used to implement augmented spanning sets that satisfy the above restrictions� A coreference

equivalence class will be introduced by its guard by placing a new variable in the positions assigned to each of the

coreferring components� We may also be able to implement coreference using integer vectors equipped with pointers�

For non
decomposed spanning sets� we can use the same symbol �e�g� � for all components� or just record the

presence of the component without a symbol �as is possible with sparse terms� We describe additional restrictions

for decomposed spanning sets and meet incompatibility constraints in the next subsection� Using coreference� we

can implement our example spanning set for the diamond lattice as shown in the �rst diagram in Figure ����� Meets

are preserved with uni�cation and joins with anti
uni�cation�

There are lattices for which we cannot preserve both meets and joins with augmented spanning sets of down
sets�

As indicated� problems arise when we cannot establish symmetry or transitivity of constraints� Figure ���� shows

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

f(1,_) f(X,X) f(_,1)

f(_,_)

f(1,1)

f(1,_) f(X,X) f(_,2)

f(_,_)

f(1,1) f(1,2) f(2,2)

Figure ����� Term encoding for diamond and cube lattices

such a lattice� If we are to preserve joins� the component mappings for each of a� b� c must be disjoint� Thus all

the down
sets must be principal� and in particular the guards must be principal down
sets� We must preserve the

constraint a�c�b� but neither a�b�c nor b�c�a holds� so there is no way to guard this constraint for implementation

with coreference�
T

a b c

bc

abc

ab

Figure ����� Lattice for which no augmented spanning set of down
sets can preserve meets and joins

����� Coreference decomposition and meet incompatibility constraints

Decomposition in augmented spanning sets only applies to elementary components �components of the form s�s� the

other components will be implemented as constraints between these� Meet
incompatible decomposition� in addition

to reducing space requirements� permits some meet incompatibility to be detected by union failure� and represents

incompatibility constraints among pairs of elements� However� when the meet of three or more elements is �� but
every pair is compatible� we cannot ensure incompatibility
as
failure using decomposition alone ������

Since coreference imposes equality constraints between positions within terms� and each subset in a decomposition

is assigned a position within a term� we de�ne a partial function symbol that maps elementary component"subset

pairs to the symbol used to represent the elementary component within the subset� Thus symbol�s� 	� for s � 	 � S�

returns the symbol used to discriminate component s from other components within subset 	� We specify the subset

since components may be in multiple subsets� For non
decomposed spanning sets with no meet incompatibility

constraints this was unnecessary� as every component could be assigned the same symbol� For a chain decomposition�

the symbols must be ordered according to the chain order� For meet homogeneous decomposition� we must have a

�� symbol to put in the position of 	 for elements in every component� but otherwise the restrictions are similar

to those for meet incompatible decomposition� We do not consider these cases further� Integrating coreference with

meet incompatible decomposition of spanning sets requires di�erent restrictions than in Theorem �����

Theorem ���
 Let L be a lattice� SG� be a guarded augmented spanning set on L� and A � f	�� � � � � 	kg be a meet

incompatible decomposition of the elementary components of SG� � Then there is a logical term implementation 	which

may use coreference
 of SG� if and only if 	i
 � sg �s��s�� �sk�s � SG� � k � � and 	ii
 � guarded equivalence

relations� �sg� A �A for each guard sg in SG� � and a symbol mapping that satisfy�

i� �	 � A� if s�� s� � 	 and s� �� s� then symbol�s� � 	 �� symbol�s� � 	

ii� If sg �s��s� � SG� then �	� � A for which s� � 	�� �	� � A for which s� � 	� and symbol�s� � 	� �

symbol�s� � 	� and 	� �sg 	�
iii� If sg�s��
s� � SG� then �	�� 	� � A for which s� � 	�� s� � 	� and symbol�s� � 	� �� symbol�s� � 	� and

	� �sg 	�
iv� If neither sg �s��s� � SG� nor sg �s��
s� � SG� � then

iv��� �	�� 	� � A such that s� � 	� and s� � 	�� if symbol�s� � 	� �� symbol�s� � 	� then
�	� �sg 	�
iv��� �	�� 	� � A such that s� � 	� and s� � 	�� and
�	� �sg 	�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

For every constraint sg �s��s� we need to establish coreference between each subset containing s� and some subset

containing s�� For every constraint sg�s��
s�� we need to establish coreference between one subset containing s�
and one containing s�� By ensuring equality or inequality of the symbols� we can satisfy the constraint in the context

of sg � In the former case� we will infer s� given s�� in the latter case uni�cation will fail if we have both s� and

s�� Thus� provisions �i� �ii and �iii are necessary conditions for implementation of the non trivial constraints in

SG� with coreference� Since coreference forms a guarded equivalence relation among subsets of the decomposition

A� not among components� the establishment of coreference constraints must be consistent with other constraints
pertaining to the coreferring subsets� Provision �iv ensures that no unsupported inferences are made� Note that

the above conditions can be used when attempting to satisfy meet and meet incompatibility constraints even if our

spanning set is not decomposed by giving it the trivial decomposition that puts each component in its own subset�

Given a satisfying set of guarded coreference relations and symbol mapping� we can easily construct the terms

as before� Each subset will have a position� as discussed in Section ���� When computing the term for an element

x� start with the inherited term �i�e� the uni�cation of the parent terms� For each subset 	 for which x is a factor

of a component s � 	� put symbol�s� 	 in the position for 	� For each guard sg for which x is a factor of sg � add

coreference between all positions 	�� 	� for which 	� �sg 	��

As an example� consider again the lattice in Figure ���� Using principal down
sets� we can derive the augmented

spanning set SG� � f�a� �b� �c� �b��a�
�c� �b��c�
�ag� As in the previous case� we can notice that the elementary
component �b is unnecessary� so a reduced spanning set is S�G� � f�a� �c� �b��a�
�c� �b��c�
�ag� We can now
give the trivial meet
incompatible decomposition� and de�ne the symbol mapping as follows� symbol��a� f�ag � �
symbol��c� f�cg � �� Since the constraints guarded by �b are equivalent� we can easily implement this spanning set�
as shown in the second diagram in Figure �����

����	 Encoding algorithms

In ����� is an exploration of which forms of ordered sets can be encoded using logical terms so that meets are preserved

with union �i�e� uni�cation and meet incompatibility is detected with failure� In ����� this exploration is extended

to general DAGs�

Our exploration of the use of constraints and coreference takes a di�erent approach� Mellish �xes on an imple

mentation �e�g� terms or DAGs and attempts to �nd the class of ordered sets that can be encoded to preserve %u
and %�� In contrast� we take the ordered set P to encode and the constraints to satisfy as input that we cannot

control� Our goal is to develop a variety of tools with which we can e�ciently encode P regardless of its form

�although we assume that P is �nite� and Mellish does not� In the above two papers� the form of encodable ordered

sets is explored� but no encoding algorithms are presented� The only encoding algorithm that exploits coreference

that we are aware of is the brute force algorithm in ������ Unfortunately� this algorithm may potentially produce

terms that are of exponential size compared to the size of the ordered set to encode�

We have not given any encoding algorithm� although a naive one may be speci�ed�

i� Start with the constraints to satisfy �e�g� a subset of %� � %u � %��
ii� Derive an augmented spanning set SG� that satis�es these constraints �e�g� the principal down
sets for

meet
irreducible elements satisfy this�
iii� Form a meet
incompatible decomposition of the elementary components�

iv� Form guarded coreference relations and a symbol mapping that satisfy as many of the constraints as possible�

while obeying provisions �i and �iv of Theorem �����

v� Derive the logical term for each element using the component and symbol mappings� and the guarded

coreference relations�

Recall that �nding a minimal meet
incompatible decomposition is NP
Hard� Thus� it seems likely that encod

ing algorithms that exploit logical terms and coreference will be approximation algorithms� The above high
level

algorithm will �nd a term encoding that approximates the optimal in terms of space requirements and properties

satis�ed� An area for future research is to design speci�c algorithms for term encoding�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

����
 Variations

In order to enhance implementations of augmented spanning sets� there are several avenues worth considering� The

�rst involves the preservation of joins� Given a spanning set SM� which preserves joins� when we augment this with

constraints we may lose joins because of constraints that are associated with each element of the join� but not with

the result� This problem can be avoided by rede�ning joins to consider only the elementary components�

Although coreference provides an e�cient and available implementation of certain forms of constraints� its na

ture restricts its usage� Since logical inference is transitive� this is a desirable property to implement constraints�

Symmetry� on the other hand is not always desired� it does not always hold in a set of constraints� What we require

is a way to implement arbitrary guarded constraints� One approach would be to use a constraint logic programming

language� This is viable only if the language e�ciently implements such constraints� Another possibility is to use a

�trigger� mechanism that invokes a constraint when the antecedents are satis�ed� but ignores it otherwise� Coref

erence essentially allows the consequence to trigger the constraint as well as the antecedent� This functionality is

developed as reference constraints in Chapter ��

���� Discussion and Conclusion

In this chapter� we have characterized encodings as implementations of spanning sets that preserve subsumption and

possibly meets and"or joins� We have thus provided a framework in which to compare all approaches to encoding�

Although implementations may have a drastic e�ect on the size and e�ciency of encodings� we can abstract the

fundamental aspects of a technique to the level of spanning sets�

Throughout our analysis� we classi�ed current encoding techniques within this structure� We showed how the

transitive closure and compact encodings in ���� the tree encoding in ���� and a simpli�ed version of a tree term

encoding de�ned in ����� are all implementations �or equivalent to implementations of spanning sets of principal

down
sets or up
sets� The compact hierarchical encoding of ���� implements a spanning set of compound down
sets�

which we showed to be an approximation to the NP
Hard optimum� The integer vector encoding of ���� employs

chain partitioning� More complex term encodings described in ����� arise from meet incompatible decomposition and

coreference constraints induced by logical variables� Table ��� summarizes our characterization of these encoding

schemes in terms of the operations satis�ed� the types of components in the spanning set� whether decomposition is

utilized and the implementation of the spanning set� For comparison� we characterize schemes using spanning sets

of down
sets� which may be the dual of the actual algorithm described� As can be seen� there are many possibilities

open for exploration�

In many of the our inquiries� the complexity of the problem has left open many avenues for continued research� The

NP
Hard results for minimal spanning sets of compound down
sets and meet incompatible decomposition warrant

further exploration for approximation algorithms� In particular� we have indicated the utility of multiple occurrences

of factors in compound down
sets� o�ering the potential for �nding approximation algorithms resulting in more

e�cient subsumption encodings than in ���� ��� ���� Another area justifying more research is in the speci�cation and

implementation of constraint
based spanning sets� Coreference provides a logical implementation for certain forms

of constraints� Mellish ����� provides a brute force method for encoding any �nite taxonomy using coreference�

A key factor a�ecting the design of encoding algorithms is whether the ordered set is dynamic or static �i�e� the

degree to which the ordered set may change during run
time� The encoding of a static order can be computed a

priori� In this case� the speed of the encoding algorithm� and the feasibility of modifying codes is not as important

as the e�ciency of the codes� For dynamic orders� however� we need encoding schemes that e�ciently generate

encodings and are not brittle in the face of change� In this case� the modi�cations required for codes should be local

to the change in the ordered set and should not take too long to update� Of course the underlying spanning set will

have a great impact on the scope of a change� Compound components and decomposition both magnify the number

of elements directly e�ected� Implementations also have a signi�cant e�ect on scope� Those which require every

element to be of the same length �e�g� bit
vectors and integer vectors� or which require the speci�cation of un�lled

positions �e�g� bit
vectors and ordinary logical terms� cause the scope of change to extend beyond those elements

directly a�ected� For the interval encoding in ���� the authors describe how leaving gaps between di�erent intervals

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

Table ���� Characterization of encoding schemes in terms of spanning set of down
sets
type of spanning set decomposition implementation
encoding components

transitive closure join principal
 bit
��� S� vector
compact join principal
 bit
��� SM vector
interval join principal
 integer
��� S� intervals
virtual time join principal chain integer
���� S� vector
tree encoding meet prime
 bit
���� SJ vector

tree term ����� meet prime meet tree
����� SJ incompatible term

term meet pseudo
prime�
 meet logical
����� incompatible term
compact subsumption compound
 bit
hierarchical ���� vector
indexed join compound
 bit
���� vector
co
atomic tree subsumption compound
 bit
encoding ���� vector

can reduce the cost of updates �both inserts and deletes� As these gaps �ll� it may become necessary to re
encode

the ordered set� We argue in Chapter � that sparse terms may o�er the �exibility required of dynamic environments�

One of the contributions of our analysis is that it may guide the development of new encoding schemes� A

given encoding problem may dictate certain constraints� such as structural properties of the ordered sets to encode

�e�g� lattice� distributive� bounded width� operations required �order checking� meets� joins� if the order changes

dynamically and how �does it grow top
down� are the changes frequent�� and so on� The application and available

hardware may also suggest an implementation �e�g� parallel hardware may preclude the use of coreference� The

problem parameters will constrain the available techniques and may indicate the availability or absence of existing

algorithms to solve the problem� In the latter case� some of our results may assist in the development of new

algorithms�

There are several important topics that we did not cover in this chapter� We did not discuss in detail the problem

of decoding the result of a meet or join operation to obtain the element�s in the original order� The importance of

this depends on the application� Some applications �e�g� ��� only need to perform a decode operation after many

meet operations� and so the e�ciency of decoding is less signi�cant� Other applications� however� may need to decode

after every operation� There are several options to decode e�ciently� E�cient algorithms have been proposed in

���� ��� ��� ����� The composition of sparse terms may be exploited in decoding� Depending on the implementation�

hashing may also be possible� Another area we ignored is relative complements� which involves the association of

negative� as well as positive� information with elements� We hypothesize that the technique in ��� can be formalized

in terms of spanning sets and integrated with the techniques we have discussed�

We have proposed spanning sets as a foundational framework in which taxonomic encoding techniques can be

classi�ed� Our analysis exposes connections among existing schemes in terms of the information content of the

resulting encodings and the implementation techniques employed� We have also shown some of the limits of encoding�

especially our NP
Hardness results� The classi�cation also reveals several avenues for continued research on encoding�

particularly for algorithms to approximate the NP
Hard problems �e�g� sections ��� and ��� and for exploration of

�
See ���� for a description of pseudo�prime spanning sets�

CHAPTER �� THE FOUNDATIONS OF TAXONOMIC ENCODING ��

some of the generalizations and extensions that we have proposed� Additional exploration of the use of constraints

�such as coreference constraints provided by logical variables is also warranted�

We feel that this work provides an important view on the �eld of taxonomic encoding� summarizing current e�orts

and giving direction for its continuing development� It is one step forward in the quest for e�ciency in taxonomic

reasoning�

Chapter �

Modulated Encoding

�Thinking is sometimes injurious to health�

� Aristotle

In the previous chapter� we considered encoding ordered sets in their entirety� Using the techniques presented� many

e�ciency gains can be realized� However� if we could decompose our ordered set P into a number of smaller units�

dramatic decreases in space may be achieved��

In this chapter� we examine ordered sets in terms of intervals� A special type of interval� called a module� leads

to an e�cient form of order partitioning called modulation ��� where each partition can be encoded� or further

modulated� independently� This allows us to synthesize� with little overhead� di�erent approaches to encoding� by

taking advantage of the most e�cient techniques for portions of a taxonomy�

Modulation is related to modular decomposition of graphs� particularly comparability graphs ���� ���� ������

Another form of partitioning for distributive lattices is described in ����� We present a �exible scheme to perform

lattice operations on modulated taxonomies� and also lay some groundwork for generalizing modulation� This chapter

extends our research in ����� and provides correctness proofs for operations in modulated taxonomies�

��� Order Intervals and Modules

De�nition ��� Let P be an ordered set� A closed interval� denoted as

�fa�� � amg� fb�� � bng�� is a set of elements fx � P j�ai� bj such that ai � x � bjg�

We can alternatively de�ne a closed interval as the intersection of a down
set and an up
set� �fa�� � amg�
fb�� � bkg� � �fa�� � amg��fb�� � bkg� Intervals in ordered sets are analogous to intervals in total orders� such
as the integers� and are also known as convex suborders� Open and half
open intervals can be similarly de�ned using

non
inclusive subsumption� If m � � and n � �� then the interval is called principal� otherwise it is compound� A

canonical principal interval �a� b� requires a � b and represents a unique� non
empty set of elements�� If A�B � P

then the compound interval �A�B� can be de�ned as a union of principal intervals� �A�B� �
S
a�A�b�B�a� b�� The

notation for a compound interval must not contain any redundant information� �A�B� is canonical if A and B are

anti
chains� and �a � A� �b � B� a � b and dually� This ensures that non
empty intervals are uniquely represented

with this notation�

Since intervals are a restricted type of subset� a spanning set of intervals is simply a set of intervals for which the

component mapping is one
to
one� Rather than using spanning sets of intervals directly� however� we will employ

certain forms of intervals to partition the ordered set into more manageable pieces that can then be encoded using

approaches described previously� Down and up
sets in these segments correspond to intervals in the original ordered

set�

�The decomposition techniques described in section ��� of Chapter � are designed to decompose spanning sets to improve the space
e�ciency of implementation whereas in this chapter	 decomposition is a meta�level technique for subdividing an order to encode into two
or more smaller orders�

�A graph GP is the comparability graph of an ordered set P if GP � �P�E� and �x� y� � E if and only if x � y or y � x�
�If a � b does not hold	 then �a� b� � ��

��

CHAPTER �� MODULATED ENCODING ��

Intervals are related by two partial orders� containment and subsumption� Since intervals represent subsets of a

lattice L� they can be related by set containment� �a� b� � �c� d� if and only if c � a and b � d and �A�B� � �C�D� if
and only if �a � A� b � B� �c � C� d � D where c � a and b � d� The subsumption ordering on L can also specify

subsumption on intervals� We �rst de�ne �absolute subsumption� �a� b� � �c� d� if and only if b � c� which is equivalent

to� �x � �a� b�� �y � �c� d�� x � y� For compound intervals� �A�B� � �C�D� if and only if �b � B� �c � C� b � c� We

now de�ne partial subsumption among intervals� �a� b� � �c� d� if and only if �x � �a� b�� �y � �c� d�� x � y� This is

equivalent to� b � d� Absolute subsumption and interval containment can both be seen as special cases of this�

We are particularly interested in certain forms of intervals that permit us to partition an ordered set without

incurring a loss of information or unreasonable additional cost to maintain order� Our analysis formalizes and extends

an earlier proposal in ����

De�nition ��� Let P be an ordered set� a � P and Q � P � A surrogate for a in Q is an element b � P for which

�x � Q� 	i
 a � x if and only if b � x and 	ii
 a � x if and only if b � x�

An element b � P that satis�es only the �rst �second condition is called an upper �lower surrogate for a in Q�

Also� if a is a surrogate for b in Q� then b must also be a surrogate for a in Q�

De�nition ��� Let P be an ordered set� A subset M � P is called a module if �x� y �M � x is a surrogate for y in

PnM �

That is� �x� y � M and z � PnM � x � z if and only if y � z� and x � z if and only if y � z� Modules are also

called order autonomous sets ����� and the sets in the comparability graph GP that correspond to modules are called

modules� stable sets� or clumps ������ We now state some properties of modules�

Theorem ��� Let L be a lattice� Then M � L is a module if and only if tM � b is an upper surrogate and uM � a

is a lower surrogate for M in LnM �

Proof� � Suppose M is a module� Let b � tM and a � uM � Also� let z � LnM and x � M � If z b then z x �by the

de
nition of join	� If z x then z y for all y �M �by the de
nition of a module	� Then z b �by the de
nition of join	�

Thus b is an upper surrogate for M in LnM � An analogous proof can show that a is a lower surrogate for M in LnM �

� Suppose b is an upper surrogate� and a is a lower surrogate� for M in LnM � Consider any z � LnM and x� y � M �

z x if and only if z b if and only if z y� and z � x if and only if z � a if and only if z � y� Thus every pair of elements

in M are surrogates in LnM � so M is a module� �

Corollary ��� Let L be a lattice� If a subset M � L is a module� then

i� There are no elements between the maximal 	minimal
 elements ofM and the join 	meet
 ofM � �dMe�tM � �
� and �uM� bMc� � ��

ii� M is a closed interval� M � �bMc� dMe� and
iii� The only arcs entering 	leaving
 M are through the maximal 	minimal
 elements of M �

M � �dMen�bMc � bMc � �bMcn�dMe � dMe�
Proof� �i	 Suppose �z � LnM for which z � tM and z 	 y for some y � dMe� But then tM is not an upper surrogate for

M in LnM � By the above theorem� M cannot be a module�

�ii	 If z �M � clearly z � �bMc� dMe�� Let z � �bMc� dMe�� Then �a � dMe� b � bMc such that b � z � a� Suppose z ��M �

Then a and b cannot be surrogates for each other with respect to z�

�iii	 Suppose M is a module� By �ii	 above� M � �bMc� dMe�� Let x � M � Clearly x � �dMe� x � �bMc if and only if

x � bMc� In either case� x � �dMen�bMc
 bMc� Let x � �dMen�bMc
 bMc� Then either x � �dMe and x �� �bMc or

x � bMc� In the latter case� x �M � For the former case� �a � dMe for which x � a and �b � bMc� x �� b� If x ��M then M

cannot be a module� We can analogously show that M �� bMcn � dMe
 dMe� �

This corollary shows that a module is a special type of interval �item �ii above� The general forms of a module

are shown in the following �gure� In the �rst and third b is a surrogate� In the �rst and second� a is a surrogate� In

all cases� a is a lower surrogate and b is an upper surrogate�

CHAPTER �� MODULATED ENCODING ��

b

a

...

...

b

a

...

...

... ...
b

a

...

...

... ...

b

a

...

...

... ...

... ...

Figure ���� Types of modules

��� Order partitions

De�nition ��� Let P be an ordered set� An order partition is a partition of P into two suborders Q and PnQ�
A partition basically loses the subsumption information between elements in Q and PnQ� We say that Q � P

induces the partition Q and PnQ�
De�nition ��� A partition of an ordered set P into Q and PnQ preserves subsumption if �a� b � PnQ such that a

is a lower surrogate� and b an upper surrogate� for Q in PnQ�
Theorem ��� Let L be a lattice and Q � L� Then Q is a module if and only if the partition induced by QnftQ�uQg
preserves subsumption�

Proof� � Suppose Q is a module� Let b � tQ and a � uQ� By a previous theorem� b is an upper surrogate� and a a lower

surrogate� for Q in PnQ� Since QnftQ�uQg � Q and a� b �� QnftQ�uQg� this partition is subsumption preserving�

� Suppose the partition induced by QnftQ�uQg preserves subsumption�

Then �c� d � Pn�QnftQ�uQg	 such that c is an upper surrogate� and d a lower surrogate� for Q in Pn�QnftQ�uQg	� Let

x� y � Q and z � PnQ� Then x � z if and only if c � z if and only if y � z and x z if and only if d z if and only if y z�

Thus� Q is a module� �

Note that tQ and uQ need not be in Q� Both are in Q only for principal modules� In this case� only one of these
need be left behind in the partitioning�

Theorem ��� Let L be a lattice and let Q be a module in L� Then the decomposition of L into Q and LnQ�ftQ�uQg
produces two lattices�

Proof� Clearly Q is a sub�lattice �i�e� it is closed under meets and joins	� Consider the meet of any two elements in

LnQ
 ftQ�uQg� x u y� The only way x u y could be in Q is if x u y � tQ� otherwise Q is not a module� �

��� Modulation

Modulation involves partitioning a lattice into two sublattices according to a module� and successively repeating until

only trivial or small modules remain� essentially constructing a lexicographic decomposition ����� In the comparability

graph� this corresponds to modular� tree or substitution decomposition ���� �����

At each step� the surrogates for the module inducing the partition are retained and associated with this module�

essentially creating the quotient graph induced by this module ������ Due to the partitioning� the containment

relation of the �nal set of modules forms a tree� called the containment or decomposition tree and denoted as CT �
This tree corresponds to the decomposition graph of Gallai ���� ���� Subsumption� meets and joins in the original

lattice are maintained in the modulated lattice through the individual modules� their surrogates and the containment

tree� The orders induced by the modules and CT will be distinguished using subscripts�
Let us de�ne two functions mapping modules to their surrogates� Supper�M and Slower�M � To simplify our

procedures for taxonomic operations in modulated lattices� we de�ne� for an element x � L� Supper�x � x and

Slower�x � x� Let us also de�ne a function mapping elements to their smallest containing module� M �x� We can

now de�ne the taxonomic operations in a modulated lattice L�

CHAPTER �� MODULATED ENCODING ��

Subsumption x �L y if and only if

i� Mcontext �M �x tCT M �y�

ii� � children Mx�My of Mcontext for which M �x �CT Mx and M �y �CT My
��

iii� Supper�Mx �Mcontext
Slower�My�

Meet x uL y � z if and only if

i� Mcontext�Mx�My are as above�

ii� If x �L y then z � y� If x �L y then z � x�

iii� If xjjy then z � Slower�Mx uMcontext
Slower�My�

Join x tL y � z if and only if

i� Mcontext�Mx�My are as above�

ii� If x �L y then z � x� If x �L y then z � y�

iii� If xjjy then z � Supper�Mx tMcontext
Supper�My�

Theorem ��� Let L be a modulated lattice� Then the above equivalences for subsumption� meets and joins hold�

Proof�

Subsumption Let x� y � L� Mx �My	 is the largest module that contains x �y	 but not y �x	� and Mcontext is the smallest

module that contains both x and y� By the de
nition of surrogates� x �L y if and only if Supper�Mx	 �Mcontext y�

Similarly� x �L y if and only if x �Mcontext Slower�My	� Putting these together� we arrive at our result�

Meet Let x� y � L and suppose x uL y � z� Clearly� if x L y �x �L y	 then z � y �z � x	�

Otherwise� z �L x� z �L y� Mx �My	 is the largest module that contains x �y	 but not y �x	� and Mcontext is the

smallest module that contains both x and y� Also� by the de
nition of modules� z must be an element of Mcontext�

By the de
nition of surrogates� z �L x if and only if z �Mcontext Slower�Mx	� Similarly� z �L y if and only if

z �Mcontext Slower�My	� Putting these together� gives our result�

Join The proof is the dual of the proof for meets�
�

In an unmodulated encoding� subsumption requires one comparison of codes and meets require one calculation

followed by decoding� Here� subsumption requires one calculation in the containment tree to �nd the context module

and one comparison of codes within this module� Meets require the calculation to �nd the context module� one

calculation within this module and decoding� Thus� although the number of comparisons is greater� the size of each

code can be drastically reduced� since the size of the resulting modules and the containment tree will be much smaller

than the original ordered set P � For the proposal in ���� the number of operations increases linearly with the depth

of the containment tree CT � The above operations are simpli�ed if� for each module� upper and lower surrogates are
the same element�

To encode a modulated lattice involves encoding each sublattice formed by the partitioning as well as the con

tainment tree� Any of the techniques previously covered can be used� although there are particularly simple and

e�cient techniques for encoding trees �e�g� ����� Associated with each element x is its smallest containing module

M �x and its code CM �x within this module� Associated with each moduleM is a code for the containment tree and

the surrogates Supper�M and Slower�M � The spanning set for the entire lattice is the union of the spanning sets
for these sublattices plus the intervals de�ned by the sublattices themselves� The component mapping will compute

the components of an element within its smallest containing module plus the de�ning interval of this module� Thus�

the above operations can be e�ciently implemented�

Since any technique can be used to encode a module� modulation opens the possibility of heterogeneous encoding

����� di�erent modules can be encoded using techniques that are best suited to the form of the order within the

module� For example� modules that are chains may be encoded using integers� while modules that are anti
chains

�If M�x� � M�y�	 then Mcontext will be a leaf of the containment tree� In this case	 Mx � x and My � y� Essentially	 this treats
elements as �atomic� modules�

CHAPTER �� MODULATED ENCODING ��

may be encoded using logical terms� In both cases� the use of di�erent techniques can lead to optimal encodings�

The only additional information required for a module is the type of encoding technique utilized�

Figure ��� depicts a modulated lattice� where the modules are encircled by ovals and named for illustrative

purposes� In an implementation� they can be replaced by their surrogate elements� The containment tree of this

modulation is also shown� In order to determine if v � d� we �rst compute Mcontext �M
 tCT M� � M � Mv �M�

and Md �M�� Now� M� �M M�� so we conclude that v � d� To compute c u d� we �nd Mcontext �M�� Mc � M�

and Md �M�� Then M� uM�
M� � s� Similarly� c u e gives us M�� the surrogate of which is u�

T

a b
c d e f

g h i j k

s

⊥

M1

M

l nm
po q r

M5

M2

M4

M3

M1 M2

M4 M5

M3

M

t

u
v w

x y

z

M6 M7

M8

M6 M7 M8

Figure ���� A modulated lattice and its containment tree

There still remains the problem of �nding modules� Fortunately� we can take advantage of results from compa

rability graphs� In ������ an algorithm that requires O�jP j� time and O�jP j� space is described for constructing
the entire decomposition tree in a top
down manner� This paper also cites two other algorithms that have time and

space complexity of O�jP j�� the latter of which constructs the decomposition tree incrementally� There exist more
recent linear algorithms for producing the entire containment tree ���� ���� These algorithms may be adaptable to

heterogeneous encoding� Also� in ���� an e�cient approximation algorithm for modulation is described�

��� Extending modulation

The restrictive nature of a module permits e�cient partitioning as well as computation of lattice operations� Un

fortunately� many lattices cannot take advantage of modulation� particularly very dense lattices� Additionally� in a

dynamic environment� modules are fragile and can be breached by the addition of a single arc entering or leaving

the middle of the module� We outline below one approach we have developed to make modules more �exible�

����� Lower and Upper Semi�Modules

De�nition ��� Let P be an ordered set� A subset M � P is called a lower semi
module if �x� y �M � x is a lower

surrogate for y in PnM �

Upper semi
modules are de�ned dually� For a subset M of a lattice L� we can show that uM � a is a lower

surrogate for M in MnL if and only if M is a lower semi
module� For a lower semi
module� we only obtain a lower

surrogate� Elements within the semi
modulemay have di�erent upper surrogates� but we may still be able to split our

lattice on this semi
module� retaining only the surrogates in the original lattice� Thus� instead of an order partition�

we end up with an order decomposition and the containment tree becomes a containment order� An example is

shown in Figure ���� The �rst diagram is a lower semi
module within the context of our lattice� where element a

is a lower surrogate� The second diagram shows a partition of this semi
module �with the grey lines according to

upper surrogates� which are the greatest elements within each partition� Only these elements need be retained in

CHAPTER �� MODULATED ENCODING ��

the original lattice� as we modulate� The set of upper surrogates in a lower semi
moduleM is the set obtained by

the meet closure �within M of the elements that breach M from above� In this example� elements b� c and e breach

M and the meet closure is fb� c� e� ig� since e u c � i�

f g

b

a

c d e

... ...

hi f g

b

a

c d e

... ...

hi

... ...

a

i

c e

b

Figure ���� Lower semi
modules

Lower modulation incurs some duplication of elements� since the lattice is not partitioned �i�e� the upper surro

gates are in both resulting lattices� Each element must now have associated with it not only its smallest containing

semi
module� but also its upper surrogate in this semi
module �the lower surrogate is associated with the semi

module� Within the semi
module� the duplicated elements are ghost elements
 they are no longer treated as other

elements� but act as place holders for resolving operations within the semi
module� We may� however� still achieve

space savings if we can decompose a lattice using lower semi
modules that do not have too many upper surrogates�

Upper semi
modules may be particularly useful for ordered sets that grow dynamically downwards �such as those in

����� In this case� once an upper semi
module is identi�ed� it will never be breached by later updates� although the

number of lower surrogates may change�

����� Generalized Modules

We can generalize this technique one step further to decompose a lattice based on any interval that is closed under

meets and joins� Note that a trivial sublattice of an ordered set P is a singleton set� P itself or the empty set�

De�nition ��	 A generalized module of a lattice L is a non�trivial sublattice of L�

A number of upper and lower surrogates for the module may need to be left in the parent lattice on decomposition�

These elements can be determined as above� where the lower surrogates will be the join closure of elements that

breach the module from below� Now� in addition to the smallest containing module M � we need to associate with

every element its upper and lower surrogates within this module �as well as its code in M �

There are several consequences of modulation using generalized modules�

i� Modules may overlap� we may have M� ��M��M� ��M�� but M� �M� �� �� The containment relation is no
longer a tree� but a general partial order�

ii� Upper and lower surrogates are no longer associated with modules� but with individual elements�

iii� Ghost elements result in duplication of surrogate elements�

Consider the lattice fragment in Figure ���� where we have encircled a potential module M � The left fragment

partitions M according to lower surrogates and the right fragment partitions M according to upper surrogates�

Modulation on M will remove all the elements that are neither upper nor lower surrogates in M � as shown in the

rightmost diagram in Figure ���� Each element has a unique upper and lower surrogate in these remaining elements�

For elements that are removed �i�e� elements that are neither upper nor lower surrogates for this module� no

duplication occurs� Both upper and lower surrogate elements are now duplicated� the element that is in the module

is a ghost element� We discuss the implications and handling of ghost elements below� Once the decomposition has

occurred for a module� we can continue the process of modulation�

CHAPTER �� MODULATED ENCODING ��

a

b
c d e

f g h i

j k l

m n o

...

... a

b
c d e

f g h i

j k l

m n o

...

...

a

b

ef

l

n

...

...

Figure ���� Generalized modulation� Lower surrogates �left are fa� e� lg and upper surrogates �centre are fb� e� f� ng�

����� Non�overlapping Modulation

We �rst consider generalized modulation for modules that do not overlap �i�e� for two modules� either one contains

the other� or they share no elements in common� In this case� the containment relation is strictly a tree� In the

example in Figure ���� further modulation would either contain all or none or fa� b� e� f� l� ng�
We associate with each module M its code in the containment tree CT � With each element x we associate its

least containing moduleM �x� its upper and lower surrogates Supper�x and Slower�x� and its code in this module�
The procedure for computing subsumption can now be extended with a modi�cation to use the surrogates

associated with individual elements rather than modules� A surrogate pathway will need to be followed through the

containment tree from the initial elements to the context interval�

Subsumption x �L y if and only if
i� Mcontext � M �x tCT M �y�
ii� � elements sx� sy in Mcontext that can act as surrogates for x and y �and can be computed as follows�

where ���� denotes assignment��

sx �� x� sy �� y�

while M �sx ��Mcontext� sx �� Supper�sx�
while M �sy ��Mcontext� sy �� Slower�sy�

iii� sx �Mcontext
sy�

A similarly modi�ed procedure can be applied to compute meets� The procedure for joins can easily be derived�

Meet x uL y � z if and only if
i� If x � y then z � y� If x � y then z � x�
ii� If xjjy then

ii�a� Mcontext �M �x tCT M �y�
ii�b� � surrogate elements sx� sy in Mcontext for x and y �and can be computed as follows�

sx �� x� sy �� y�

while M �sx ��Mcontext� sx �� Slower�sx�
while M �sy ��Mcontext� sy �� Slower�sy�

ii�c� z � sx uMcontext
sy �

In strict modulation� surrogates are associated with modules� so once we have found the contextual module

Mcontext� we can use the surrogates for the appropriate children� Here� we must follow a path of surrogates from

the initial elements to the contextual module� Whether upper or lower surrogates are following depends on the

operation� The length of these paths depends on the depth of the containment tree� which in turn depends on the

sizes of modules�

Note that when performing a meet x u y � z� the result z may be embedded within a module below �in the

containment tree the context Mcontext� Due to the way ghost elements are dealt with �i�e� duplicating elements in

the meet and join closure of breaching elements� however� this element will be duplicated in both the context and

this lower level module �in the latter� it will be a ghost element� Thus� the meet can be performed in Mcontext�

Theorem ��� Let L be a lattice that is modulated using generalized modules with no overlapping modules� Then the

above equivalences for subsumption and meets hold�

CHAPTER �� MODULATED ENCODING ��

Proof�

Subsumption Let x�y � L� Mcontext is the smallest module that contains both x and y� Let s� � x� s�� � � � � sk � sx be

the path of surrogates followed from x to sx in the above procedure �i�e� sx � Supper�Supper�� � � �Supper�x	 � � �			 and

M�sx	 � Mcontext	� By the de
nition of surrogates� x �L y if and only if sx �Mcontext y� Similarly� x �L y if and only

if x �Mcontext sy� Putting these together� we arrive at our result�

Meet Let x� y � L and suppose x uL y � z� Clearly� if x L y �x �L y	 then z � y �z � x	� Otherwise� z �L x� z �L y�

Mcontext is the smallest module that contains both x and y� Also� by the construction used in generalized modulation� z

must be an element ofMcontext� This is because the meet closure of elements that breach any module are duplicated �one

is left in the containing module� and the other is retained as a ghost element in the contained module	� By the de
nition

of surrogates� z �L x if and only if z �Mcontext sx �as shown above	� Similarly� z �L y if and only if z �Mcontext sy�

Putting these together� we arrive at our result�
�

An area requiring a closer look is the treatment of ghost elements� which are duplicated upon decomposition� A

ghost element xg is created when an element x is a surrogate for one or more elements in a moduleM � The element

x remains in the parent lattice� and its duplicate xg remains in the module� This ghost element only needs to be

present as an image of x so that operations within the moduleM which result in xg can be resolved� Thus� the ghost

needs to be encoded inM � but it does not need any other associated information �i�e� the smallest containing module

and surrogates� A ghost element xg can be viewed as a place holder for the portion of the code of x associated with

module M �

����� Overlapping Modulation

In strict modulation� overlapping modules are not possible� In our generalization� this may now occur
 this will

happen in the example in Figure ��� if a new module contains some� but not all of fa� b� e� f� l� ng� There are two
complications that arise from overlapping modules� �i the containment information is no longer a simple tree� but a

general partial order� and �ii determining the context Mcontext of an operation� and the surrogates in this context�

is more di�cult�

To deal with these problems� we no longer rely on the containment relation between modules� Instead� we use

surrogate containment information� and the resulting surrogate containment order SC� For two modulesM� andM��

M� covers M� in SC if and only ifM� contains a surrogate for at least one element in M� �i�e� i� �x � M� such that

Supper�x �M� or Slower �x �M��

Extending the taxonomic operations for overlapping modules requires following surrogate pathways through SC
to �nd the contextual module� Since we cannot easily identify the contextual module� rather than encoding SC� we
associate with each moduleM a level� level�M � which is the length of the longest path fromM to the root of SC�
The modi�ed procedures for subsumption �for generalized modules and meets are given below�

Subsumption x �L y if and only if
i� � Mcontext and elements sx� sy in Mcontext that can act as surrogates for x and y �and can be computed

as follows�
sx �� x� sy �� y�
Lev �� max�level�M �sx� level�M �sy � ��
while M �sx ��M �sy

while level�M �sx
 Lev� sx �� Supper�sx�
while level�M �sy
 Lev� sy �� Slower�sy�
Lev �� max�level�M �sx � level�M �sy � ��

end while�
Mcontext ��M �sx�

ii� sx �Mcontext
sy�

CHAPTER �� MODULATED ENCODING ��

Meet x uL y � z if and only if
i� If x � y then z � y� If x � y then z � x�
ii� If xjjy then

ii�a� � Mcontext and elements sx� sy in Mcontext that can act as surrogates for x and y �and can be

computed as follows�
sx �� x� sy �� y�
Lev �� max�level�M �sx� level�M �sy � ��
while M �sx ��M �sy
while level�M �sx
 Lev� sx �� Slower�sx�
while level�M �sy
 Lev� sy �� Slower�sy�
Lev �� max�level�M �sx � level�M �sy � ��

end while�
Mcontext ��M �sx�

ii�b� z � sx uMcontext
sy �

Theorem ��� Let L be a lattice that is modulated using generalized modules 	with possible overlapping modules
�

Then the above equivalences for subsumption and meets hold�

Proof�

Subsumption Let x� y � L� We need to
nd Mcontext as well as surrogates for x and y in Mcontext� The level of modules

decreases monotonically as we ascend the surrogate containment order SC searching for Mcontext� sx and sy� but it may

decrease in steps greater than one�

Initially� we set Lev to one level above the lowest �maximum	 level of x and y� This ensures that the lowest of sx� sy �or

both if they are at the same level in di�erent modules	 will move up at least one level in the subsequent two loops� The

outer loop continues until we have found Mcontext �i�e� until M�sx	 � M�sy		� The two inner loops each continue until

the level of sx �sy	 is at or above Lev� Since we are following upper �lower	 surrogates for sx �sy	� the subsumption

relation between sx and sy remains invariant� After both inner loops complete� we set Lev again as above�

At the end of the loops� M�sx	 � M�sy	 � Mcontext� Mcontext is the smallest module that contains both an upper

surrogate for x and a lower surrogate for y� Since we move up SC following upper �lower	 surrogates for x �y	� we
nd

the
rst module that contains appropriate surrogates for both�

Let s� � x� s�� � � � � sk � sx be the path of surrogates followed from x to sx in the above procedure �i�e� sx �

Supper�Supper�� � � �Supper�x	 � � �			 and M�sx	 � Mcontext	� By the de
nition of surrogates� x �L y if and only if

sx �Mcontext y� Similarly� x �L y if and only if x �Mcontext sy� Putting these together� we arrive at our result�

Meet Let x� y � L and suppose x uL y � z� Clearly� if x L y �x �L y	 then z � y �z � x	�

Otherwise� z �L x� z �L y� We need to
nd Mcontext as well as surrogates for x and y in Mcontext� as above�

Initially� we set Lev to one level above the lowest �maximum	 level of x and y� This ensures that the lowest of sx� sy �or

both if they are at the same level in di�erent modules	 will move up at least one level in the subsequent two loops� The

outer loop continues until we have found Mcontext �i�e� until M�sx	 � M�sy		� The two inner loops each continue until

the level of sx �sy	 is at or above Lev� Since we are following lower surrogates for sx �sy	� the subsumption relation

between sx �sy	 and z remains invariant� After both inner loops complete� we set Lev again as above�

At the end of the loops� M�sx	 � M�sy	 � Mcontext� Mcontext is the smallest module that contains a lower surrogate

for both x and y� Since we move up SC following lower surrogates for x �y	� we
nd the
rst module that contains

appropriate surrogates for both�

By the construction used in generalized modulation� z must be an element of Mcontext� This is because the meet closure

of elements that breach any module are duplicated �one is left in the containing module� and the other is retained as a

ghost element in the contained module	�

By the de
nition of surrogates� z �L x if and only if z �Mcontext sx �as shown above	� Similarly� z �L y if and only if

z �Mcontext sy� Putting these together� we arrive at our result�
�

����� Extending Modulation Algorithms

We have outlined the properties and requirements of generalized modulation for encoding purposes� but we need

algorithms that can �nd �good� decompositions� Perhaps some of the algorithms for modulation can be adapted to

CHAPTER �� MODULATED ENCODING ��

decompose an ordered set into lower semi
modules or generalized modules for which the number of surrogates �i�e�

the degree of duplication and the amount of overlap is minimized�

Although generalized modulation may not guarantee encoding e�ciency� it does o�er many potential bene�ts�

First� the fragility and stringent nature of strict modules makes modulation impractical for many encoding envi

ronments� especially for ordered sets that are dense� Although generalized modulation may still be ine�cient for

very dense lattices� there is the opportunity to expand the utility of decomposition and heterogeneous encoding�

Generalized modulation may also be used in conjunction with strict modulation in dynamic environments� Starting

with a modulated lattice� updates to the lattice that breach modules may be tolerated� while incurring only a small

overhead for updating the encoding� When the decomposition becomes ine�cient� the new ordered set can be re

modulated� Another bene�t of generalized modulation is in distributed environments� in which a large ordered set

may be spread out over a number of sites� The portion of the ordered set at each site can be encoded independently

of the others� and duplication of information across sites may only be necessary for the containment order�

��� Conclusion

Recent results in taxonomic encoding have identi�ed various taxonomic forms for which e�cient encodings exist

�e�g� distributive lattices� trees and bounded width lattices� Through order partitioning techniques� a generalized

heterogeneous encoding scheme can take advantage of these encoding schemes when such forms are identi�ed as

suborders�

In this chapter� we formalized and extended lattice modulation for encoding� introduced in ���� Modulation

partitions a lattice to encode into sublattices and o�ers the possibility of greatly reducing encoding sizes regardless

of implementation� and without undue cost in performance� Generalized modules may increase the applicability

of modulation� even for dense� dynamic or distributed lattices� By maintaining �and encoding the containment

information of the decomposition� we provide an e�cient framework in which modulated encoding is both feasible

and e�cient�

For dynamic taxonomies� modulation may con�ne the extent of change� The strict nature of modules� however�

makes them susceptible to violation as a result of change� The generalized modules developed in section ��� are more

impervious to change� Finally� modulated encoding may aid in decoding� since we know in which partition the result

lies� greatly reducing the search space�

Chapter �

Encoding with Sparse Logical Terms
�Unless you expect the unexpected you will never �nd truth�

for it is hard to discover and hard to attain�

� Heraclitus

The purpose of the present chapter is to empirically apply the theory of encoding� During our research� we developed

sparse logical terms as a variant of logical terms that are particularly suitable for encoding ����� Sparse terms are

closely related to directed acyclic graphs �DAGs� which have also been studied for encoding ������ Our focus�

however� is on developing an e�cient implementation for encoding rather than taking an existing technique� Sparse

terms share a number of similarities with Prolog terms� �
terms in LIFE ���� feature structures ��� ��� ����� the PATR

II formalism ����� ����� etc� However� the focus of sparse terms as an e�cient representation for encoding endows

them with a number of key distinctions from these other formalisms� as will become clear� Since our aim is to use

sparse terms as a contribution to encoding� rather than as a contribution to the suite of logical formalisms� we chose

to omit in
depth coverage of these related formalisms�

After motivating our development of sparse terms� we introduce the basic form of sparse term developed in �����

In section ���� we develop extensions that make sparse terms suitable as a universal encoding implementation� We

then provide algorithms that implement the transitive closure and compact encoding techniques� which are the �rst

logical term algorithms to be published� Finally� we analyze some theoretical properties of sparse terms in encoding�

which we back up with an empirical study of encoding using two taxonomies derived from existing applications�

��� Introduction

Compact representations for data structures are commonly used when certain properties can be exploited to sig

ni�cantly reduce the storage space required� As an example� principles of locality are used in data compression

techniques� For sparse matrices� the assumption that the majority of elements are zero permits us to retain only the

nonzero elements� along with their coordinates� If this assumption holds true� the savings accrued by not explicitly

storing the zero elements outweighs the additional cost of storing coordinates for nonzero entries�

We develop a similar representation for logical terms� A sparse term is a term in which the majority of elements

�i�e� functors� atoms and variables are anonymous variables� Named variables provide coreference between term

positions� whereas the only purpose of anonymous variables is to reserve positions� and so they do not contribute to

the information content of a term�

Applications that work with sparse terms can bene�t from sparse terms both in terms of space and time� Uni

�cation with an occurs check needs only to examine the named variables� Uni�cation without an occurs check is

linear in the sum of the number of atoms� functors and variables of the two terms� This will be more e�cient� as our

sparse representation eliminates the storage of anonymous variables�

Sparse terms were� however� developed primarily to provide a form of logical term adapted for encoding� In

extending the basic sparse term� we incorporate integer sorts �i�e� when unifying two di�erent functors f� and f��

if both are integers� the result is max�f�� f�� if at least one is not an integer� then uni�cation fails� Integer sorts

come for �free�� and can be used to generalize integer vectors� integer sorts provide a form of sparse integer vector

��

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

that permits the integration of integer vectors and logical terms� This combination is powerful for encoding� since

integer sorts are suited for encoding chains� while ordinary functors are suited for encoding anti
chains�

We also integrate more compact and �exible forms of subterm indexing� The basic form of sparse terms are

very compact for terms with many anonymous variables� However� as the terms become less sparse� the overhead

of explicit subterm indexing surpasses the savings of eliminating anonymous variables� In the expanded form� we

permit �relative� indices which denote integer indices that are relative to preceding integer indices in a term� In this

more expressive form� as a term becomes more dense� the sparse term representation can remain more compact� up

to a point� than the corresponding ordinary terms or integer vectors�

We also permit grouping sequences of indices with identical subterms into intervals� For encoding� this will

normally only occur for unspeci�ed subterms� Index intervals in sparse terms provide a generalized implementation

of sets of intervals� which have also been used in encoding ���� Figure ��� shows the relation of sparse terms to the

encoding implementations of which we are aware�

logical terms

bit vectors

flat terms integer vectors interval sets

sparse terms

Figure ���� Encoding implementations� sparse terms generalize other techniques

��� Basic Sparse Terms

Our representation is modeled after that of sparse matrices� An n � m sparse matrix may be stored as a list of

coordinate"value pairs for the non
zero elements rather than as an n �m array� For example� the following matrix

can be stored as �����
�� ����
�� ����
�� ����
���

� � � � �
� � � � �
� � � � �
� � � � �

We avoid storing the zeros by using a more space
consuming representation for the non
zero elements� By

assuming that most of the elements are zeros we predict a net reduction in storage space�

A sparse term representation relieves us from storing anonymous variables at the expense of a more complex

scheme for the named elements �i�e� atoms� predicates� functors and named variables� We focus on the surface form

of terms� Although the internal representation may be quite di�erent from this and is implementation dependent�

it is the surface form that users manipulate and store outside the system� As for sparse matrices� we need to store

the position� or index� of the named elements� Using a rooted graph notation� we can do this by labeling arcs

with the index of the named elements and removing the anonymous variables �which are represented by underscores

in Prolog� Consider the Prolog term� a�b� � c� d� � � � e� � f� � � � The ordinary and sparse forms are shown

graphically below� The sparse term can be represented linearly as� a���� b���� c� � � d�� �� e�� � � f ��� where the

argument lists are ordered according to increasing index�

__

a

b e

dc f__

__ __

__

__ __

__

a

b e

dc f

1 4

2 3 2

Figure ���� Sparse logical terms

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

To be more precise� we provide the following de�nition of our representation�

De�nition ��� A basic sparse term is either 	i
 an atom 	ii
 a named variable or 	iii
 a functor of the form a�L�

where a is the functor symbol and L is a sparse argument list� A sparse argument list is a list of elements of the

form n�ST� where ST is a sparse term and n is the index of ST in the parent term� This list is ordered by increasing

indices with no repetitions�

����� Space requirements

Now that we have a sparse representation for logical terms� when is a term considered sparse� That is� when will

this representation bene�t an application� Since an accurate account of the space required to represent a logical

term� for example in Prolog� is implementation dependent� we restrict our analysis to the asymptotic time and space

behavior of the surface form�

Consider an ordinary term that has n named elements and m anonymous variables� Since there are n#� symbols�

let us assume representing each requires O�logn space� For the sparse representation� O�logn space is also required�

Both representations require space for the n named elements� so we do not include this factor in our calculations�

For punctuation marks �e�g� commas� parentheses� dashes� ordinary terms require O�n #m space whereas sparse

terms require O�n space� Since punctuation may not form part of the internal representation� we do not consider it

further�

In addition to the above� ordinary terms require O�mlogn space for anonymous variables� whereas in the worst

case sparse terms require O�nlog�n # m space for indices� Essentially� this means that the space bene�ts of our

sparse representation begin to manifest when the ratio of anonymous variables to named elements is greater than

one� Of course� due to the constants not included in this analysis� these bene�ts may not become evident until this

ratio is somewhat greater than this�

����� Uni�cation and Implementation

Without an occurs check� uni�cation of both ordinary and sparse terms is linear in the number of symbols involved�

If the number of named elements in both terms is n and the number of anonymous variables is m� we have O�n#m

for ordinary terms vs� O�n for sparse terms� For uni�cation with an occurs check� we avoid needlessly checking

the anonymous variables� In both cases� we achieve asymptotically better results� Thus� by using our sparse

representation� applications involving sparse terms have potential bene�t both in terms of time and space�

The straightforward nature of sparse terms permits a simple implementation of the required algorithms �uni�

cation� subsumption� etc� either in a logic language �e�g Prolog or as an extension to a logic language �written

in� e�g�� C� Our representation shares some features with the �
terms in LIFE ���� in particular attribute indexing

and unbound arity� but it also di�ers in several respects� Named variables in LIFE use more generalized coreference

labels �which can specify coreference between any two locations in the graphical representation� not just between

leaves� Although our de�nition of sparse terms implies the use of Prolog variables� we have also extended our

implementation to provide both forms of coreference� Our representation also deviates from �
terms in the use of

anonymous and disjunctive functors� discussed below� Another signi�cant di�erence is that our representation is

intended as an enhancement to Prolog systems� not as a replacement�

����� Variations

Our sparse representation removes the burden of explicitly storing anonymous variables� We now explore some

variations on this theme� Prolog is capable of expressing uncertainty through variables� only for entire predicates�

functors or atoms� We analyze how we may incorporate �ner scale uncertainty into logical terms� speci�cally for

arity and functors� We also integrate an extension of argument indexing that permits arbitrary labels� or attributes�

rather than just numerical indices� By blending these variations� applications have the ability to incorporate varying

degrees of uncertainty and information into logical terms� while remaining concise and e�cient�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

Binding arity� The representation presented does not provide a one
to
one correspondence between sparse and

ordinary terms� For example� the following terms correspond to the sparse term f��� � a�� f�a� f�a� �

f�a� � � f�a� � � ��� Any sparse term has an in�nite number of corresponding ordinary terms� The arity of

each functor and atom is not bound� so we can always append an arbitrary number of anonymous variables as

arguments of functors and atoms�

If we require the arity of terms to be bound� we must specify it explicitly� This can be accomplished by

extending part �iii of our de�nition to allow functors of the form a�N�L where a is a functor� N is the arity

of the functor and L is a sparse argument list� For example� the term f� � b� � � c� d�e� � is completely

represented by f������ b��� �� c��� �� d������ e����� and graphically as�

f/5

b/2

e/0

2 4

1

3

c/0 d/2

Figure ���� Binding arity in sparse terms

Anonymous functors� An interesting variation that we have found useful for encoding allows terms to specify

only those argument positions that are occupied� but not record the functor or atom in that position� This

information� presumably� would be stored elsewhere� This greatly reduces space requirements for cases when

many terms are being formed from one set of data� which is indeed the case for our logical term encodings where

each element of a taxonomy is assigned a term that is a subgraph of the taxonomy itself� We can label the

original taxonomy with term positions and use it to decode our terms� To provide functorless terms� we simply

remove the functor or atom from the elements of the sparse argument list� The term f� �b� � � �c�d� �e� would

thus be represented as the term ����
������ and graphically as�

2 4

31

Figure ���� Anonymous functors in sparse terms

Attribute�value matrices� Attribute
Value Matrices �AVMs� or Feature Structures� are a tool used in several

computational linguistic systems �e�g� ������ Some implementations of AVMs using ordinary terms require

prior knowledge of all the attributes an AVM may contain in order to compile appropriate terms �e�g� ���� �����

A simple modi�cation to our scheme� allowing atomic� rather than numeric� indices �for the attributes and

omitting functor names �a value is either an atom or another AVM� provides for e�cient and dynamic AVMs�

A predicate can be provided to access the value of an attribute� or a sequence of attributes� As an example�

the sparse term �a�
v�� a�
v�� a�
�b�
x�� b�
x��� a�
v�� represents the following AVM �shown in both its matrix

and graphic forms�

a1 a2 a3 a4

v1 v2 v4
b1 b2

x1 x2

a1
a2
a3

a4

v1
v2

v4

b1
b2

x1
x2

Figure ���� Attribute
value matrix using sparse terms

Disjunctive functors� Thus far� we have permitted two levels of certainty regarding a functor symbol� either

it is unknown �i�e� it may be any atomic symbol or it is known� Between these extremes lies a range of

increasingly focused information as to the actual functor symbol� That is� we may know that it is one of a

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

set of possible symbols� When this set has cardinality one� we know which symbol it must be� We name such

functors disjunctive and represent them with a set notation� For example� the term �model
fMacSE� MacIIg�
memory
f�������g� may be used to represent a computer system whose model type is either a MacSE or a MacII
and with either �� �� � or � KB of memory�

Applications that permit and maintain uncertainty may �nd the �exibility o�ered by disjunctive functors a

valuable property� Examples include computational linguistics� for maintaining the uncertainty of the referent

of a pronoun� and automatic system con�guration �e�g� �����

��� Generalizing Sparse Terms for Encoding

Basic sparse terms are based on the observation that anonymous variables only reserve positions and do not con

tribute to the information content of a logical term� We now extend the basic form to develop a universal encoding

implementation� In addition to the bene�ts of eliminating anonymous variables� there are some properties of extended

sparse terms that endow them with �exibility and conciseness required for encoding�

Unbound arity A sparse term can represent an in�nite number of ordinary terms� since arity is not bound� This

permits �exibility for encoding updates since a code may be extended with a subterm without a�ecting related

codes�

Unspeci�ed functors Positions in terms can be speci�ed as �lled� but the actual symbol �predicate� atom or

functor occupying the position can be left unspeci�ed� Thus� ��� � � ��� ��� represents a term in which the

second position is occupied by an unknown subterm� and the fourth position is occupied by a subterm in which

the �rst and third positions are �lled� Of course� uni�cation can only fail if there are di�erent functors at the

same location in two terms�

Integer sorts Although sparse terms were designed for encoding� they share a number of similarities with �
terms

in LIFE ���� including unbound arity� A hierarchy can be speci�ed among functors in LIFE� which is used when

two di�erent functors are uni�ed� If 	 and � are uni�ed� the result will be 	 u � or failure if this results in ��
One of the most in�uential papers on encoding was written with the purpose of performing these operations

e�ciently ���� However� there is a very simple functor ordering that we can incorporate into sparse terms for

free� the total order on integers� Uni�cation of two functors will be as in Prolog� unless both are integers n�
and n�� in which case uni�cation will result in max�n�� n�� This simple addition generalizes integer vectors�

providing a form of sparse integer vectors with the hierarchical advantages of logical terms�

Relative Indices As terms become less sparse� the advantages of explicit indexing diminish until the costs outweigh

the bene�ts� To overcome this� some indices may be relative� Relative indices can be speci�ed by preceding a

positive integer n by the �#� symbol� and represent the previous numerical index to the left plus n� If there is

no preceding numerical index� then the index is n� For example� the sparse term ����� ���� ���� ���� ���� could

be represented as �����#��#��#���#��� Although we must still provide an index� if the absolute index is very

large� a space saving may be realized�

Interval Indices As terms become even more compact� there may be situations �particularly for encoding in which

we can bene�t from denoting a sequence of indices using a set� These interval indices provide a generalization

of interval sets� which have been used for encoding ���� To illustrate� the sparse term ��� �� �� �� ��������������

��� ��� ��� ��� could be represented as ���� ��� ���� ���� Relative indices can also be used in the interval bounds�

As we have mentioned� sparse terms generalize the various implementations that have been used for encoding�

The signi�cance of this is that� not only can encoding algorithms be adaptive and selected from existing encoding

techniques� but mixtures of techniques can take advantage of structures within taxonomies� The following de�nition

is based on the original de�nition� but extended with integer sorts� and relative and interval indices� We do not

provide any form of coreference� since it is not necessary for our application� although this could be easily integrated�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

De�nition ��� A sparse term ST is de�ned as�

ST
�
� Functor�ArgumentList j ArgumentList j Functor

Functor
�
� Atom j NaturalNumber

ArgumentList
�
� �ArgumentjArgumentList� j � �

Argument
�
� Index�ST j Index

Index
�
� NumericIndex j �NumericIndex�NumericIndex j Atom

NumericIndex
�
� NaturalNumber j #NaturalNumber

where NaturalNumber is any natural number� The notation �HeadjTail� denotes a list� the �rst element of which

is Head and the remainder of which is Tail� while � � denotes an empty list 	as in Prolog
�

����� Explicit and canonical forms for sparse terms

In order to simplify description of a canonical form� and for de�ning subsumption� uni�cation and anti
uni�cation� we

need to describe an explicit form for sparse terms� The explicit form replaces all relative indices by their corresponding

absolute values� and all interval indices by their corresponding sequences� We also clarify terms that have empty

argument lists or no functors� where explicit sparse terms use anonymous variables �� � in place of unspeci�ed

functors�

De�nition ��� An explicit sparse term STx is de�ned as�

STx
�
� Functorx�ArgumentListx

Functorx
�
� Atom j NaturalNumber j

ArgumentListx
�
� �Indexx�ST j ArgumentList� j � �

Indexx
�
� NaturalNumber j Atom

Given a sparse term ST � we can construct its explicit form as follows�

Empty Argument Lists If F is a subterm with an empty argument list �i�e� F is just a functor� then replace it

by F�� ��

Unspeci�ed Functors If AL is a subterm with an unspeci�ed functor �i�e� AL is just an argument list� then

replace it by �AL� Note that in sparse terms� the anonymous variable can only be instantiated to a functor�

Relative Indices Suppose #n is the �rst relative index in an argument list �including those that appear in interval

indices� �� � � �#n � ST� � � ��� If there is no absolute numerical index to the left of this position� then replace

#n � ST by n � ST � Otherwise� if the �rst absolute numerical index to the left of this position is m� then

replace #n� ST by n� � ST � where n� � n#m�

Interval Indices Suppose we have an argument list containing an interval index� �� � � � �n�� n��ST� � � ��� If n�
 n��

then simply remove �n�� n� � ST from the argument list �i�e� the interval is empty� Otherwise� replace it by

the sequence m� � ST� � � � �mk � ST � where m� � n�� mi� � mi # �� � � i � k� and k � n� � n� # ��

Given an arbitrary sparse term� for e�ciency we want to de�ne a canonical or normal form� For terms in canonical

form� subsumption� uni�cation and anti
uni�cation algorithms can be designed much more e�ciently than otherwise

possible �i�e� linear in term size� Below we de�ne a canonical form for a term ST in terms of its explicit form� We

say that ST is in canonical form� if its explicit form is in canonical form�

Let ST be a sparse term� and STx be its explicit form� We de�ne the canonical form STc of ST as follows�

No duplicate indices If STx has a duplicate index I in some argument list� �� � � � I � ST�� � � � � I � ST�� � � ��� then

remove I � ST� and I � ST� and add I � ST���� where ST��� is the uni�cation of ST� and ST��

Indices in increasing order For any subterm in STx� if index I� precedes index I� then I� v I�� where v denotes
a lexical ordering on indices�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

����� Sparse term subsumption

We now describe how subsumption �� is computed for explicit canonical sparse terms� Uni�cation and anti

uni�cation can easily be derived in a standard way based on subsumption� All three operations have been implemented

in Sicstus Prolog� Converting from an ordinary canonical sparse term to the explicit form can be done easily during

processing� First� some general properties are given below�

� � � subsumes everything �i�e� ST � � � for any sparse term ST �

� If n�� n� are integers and n� � n� then n� � n� �note the role reversal�

� If n is an integer and a is a non
integer atom� then njja �i�e� n and a are incomparable�
� If a�� a� are non
integer atoms and a� �� a�� then a�jja��

De�nition ��� If ST� and ST� are sparse terms� then ST� � ST� if and only if all of the following hold�

�� ST� � F��ArgList� and ST� � F��ArgList�
�� F� � F�
� ArgList� � ArgList�

If F� and F� are functors� then F� � F� if and only if one of the following holds�

�� F� � 	functorless terms

�� F� and F� are non�integer atoms and F� � F� 	atomic functors

� F� and F� are integers and F� � F� 	numeric functors

If ArgList� and ArgList� are argument lists� then ArgList� � ArgList� if and only if one of the following holds�

�� ArgList� � � �

�� ArgList� � �Index� � ST�jRest��� ArgList� � �Index� � ST�jRest�� and one of the following holds�

	a
 Index� � Index�� ST� � ST� and Rest� � Rest�

	b
 Index� v Index� and Rest� � ArgList�

��� Encoding with Sparse Terms

The most well
studied implementation for encoding is the bit
vector ��� ��� ��� ���� The available hardware imple

mentation and minimal requirements for each item of information �one bit makes them attractive for encoding�

However� there are a number of drawbacks to using bit
vectors for encoding very large� dynamic ordered sets�

� Codes in a bit
vector implementation all have the same size� so updates to the encoding that require changing
this length a�ect every code� This problem is shared with integer vectors� Sparse terms� however� do not su�er

from this� so the scope of change can be contained�

� Both logical terms and integer vectors generalize bit
vectors in di�erent dimensions �see Chapter �� A bit

vector s of length k can be represented with a logical term � of arity k� if position i in s is a � �resp� ��

then position i in � is the functor � �resp� an anonymous variable� The translation from bit
vectors to integer

vectors is obvious� Thus� any bit
vector encoding can be translated to use sparse terms and exhibit the same

asymptotic behaviour� only the asymptotic constant changes� Since we are most concerned with asymptotic

behaviour for encoding large taxonomies� bit
vectors do not actually provide any real bene�t� although their

in�exibility is certainly a drawback� In fact� we show later how the hierarchical structure of sparse terms can

provide a signi�cant savings over bit
vectors even for modest taxonomies of only several thousand nodes�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

As we showed in Chapter �� all encoding algorithms we are aware of can be abstracted into two components� �i

the underlying information stored in the encoding �which can be characterized using what we call spanning sets and

�ii the implementation details for storing this information in a computer� Some encoding algorithms require a lot

of e�ort to generate codes� This is understandable� given the complexity of the problem �in ����� evidence for the

NP
Hardness of �nding optimal encodings is discussed� For static taxonomies� it may be worthwhile spending a lot

of energy to construct compact encodings� For dynamic taxonomies� however� this e�ort may be wasted by changes

to the hierarchy� In fact� the changes required for an encoding after updates to the source taxonomy may be more

extensive in complex encodings� due to the wider scope of analysis performed�

Encoding algorithms for dynamic taxonomies must be e�cient� in addition to generating e�cient codes� Two

of the earliest and most well
known� encoding algorithms �transitive closure and compact ��� satisfy the need for

e�cient computation of codes� However� the algorithms described directly construct bit
vector implementations� As

we showed in Chapter �� these basic algorithms form the basis of a number of encoding techniques� We describe how

sparse terms can implement these simple schemes� This in itself does not contribute signi�cantly� but we show in a

subsequent section how sparse terms equal or surpass other implementations for encoding a number of theoretical

ordered sets� This is followed empirically� where two ordered sets taken from existing applications are encoded using

the transitive closure and compact algorithms� These results are compared with the space requirement for bit
vectors�

Since we are concerned with large taxonomies� we must carefully count space requirements �i�e� an integer

of size n takes logn� not constant� space� Two common techniques for implementing a graph G � �P�E are

adjacency matrices� which take O�jP j� space� and adjacency lists� which take O�jEjlogjP j# jP j space� Adjacency
list representation corresponds to maintaining the list of parents �or children for each element�

Both the encoding algorithm and the implementation a�ect these characteristics� Since the requirements of

particular taxonomic applications may di�er� it is apparent that there may be no best encoding algorithm to satisfy

all needs� Rather� the designer of an encoding algorithm must take into account the needs of the application� and

the form of the taxonomies to encode� in order to determine the relative importance of di�erent characteristics�

Most existing algorithms concentrate on the resulting codes and have not been as concerned with the complexity

of the encoding algorithm or of dynamic updates� In addition to the space requirement of the resulting codes� we

focus on these two issues�

��� Sparse Term Encoding

The simple transitive closure and compact encoding algorithms in ��� satisfy one of our goals� the complexity of the

encoding algorithm is minimal� Transitive closure has an additional advantage� decoding �i�e� determining the ele

ment�s denoted by a given code can be done e�ciently in both bit
vector ���� ��� and sparse term implementations�

Sparse terms use a spanning tree of the order for decoding in time linear in the depth of a code term� Research

on complex encoding algorithms to �nd optimal encodings �e�g� ���� is important� but is of limited practical use

in dynamic environments� Below we use the abstract versions of these two simple encoding algorithms described in

Chapter � to specify versions that compute sparse term encodings� Note that we use these algorithms in a top�down

manner �which preserve joins� while the dual bottom�up versions �which preserve meets were described in ����

The transitive closure algorithm for sparse term encoding is given below� Several variations were implemented in

Sicstus Prolog� and were used to derive the empirical results of section ���� A topographic traversal of the ordered

set is done so that� when processing an element p� the codes for all parents of p have already been constructed�

Associated with each element p is a �path� �a sequence of indices from the root of the code � �p to one of the leaves�

and a �label� indicating how to extend � �p� The code for an element is built from the uni�cation of the parent

codes� plus an extension of the path associated with one of its parents� The subroutine extend will select one of the

parents to extend� and either increment an integer sort �done through extend integer sort or add a new subterm

�done through extend arglist� These two straightforward functions are not described�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

Algorithm � sparse term encoding	input� P � output��

�� let � p�� � � � � pn
 be a 	top�down
 topographic ordering of P � where p� � �
�� � �� �� � �
� path�� �� � �
�� label�� �� �
�� for i � � to n do

�� � �pi �� uq�parents�pi�� �qu extend	pi

Algorithm � extend	input� p� output�	

Global information� ordered set P 	p � P
� and path� label and pred information

�� if �q � parents�p such that label�q
 � then

�� 	 �� extend integer sort�path�q� label�q

� path�p �� path�q

�� label�p �� label�q # �

�� if label�q � � then

�� label�q �� ��
�� else

�� label�q� label�pred�q

�� endif

��� else

��� select any q � parents�p

��� n �� �label	q

�� 	 �� extend arglist�path�q� n

��� path�p �� 	

��� label�p �� �

��� label�q �� ��n # �
��� endif

��� pred�p �� q

Note the polymorphic use of the predicate label� If label is a positive integer n� then term extension is to be

accomplished by setting the integer sort at the end of the path speci�ed in the path predicate to n� If label is a

negative integer �n� then term extension is to be accomplished by adding a new subterm at the end of path with

index n� Also note that we used ���� to denote variable assignment� while the symbol ��� is used to denote identity
�i�e� in line �� label�q becomes identical to the label of its predecessor pred�q� Essentially� if any parent q can be

extending by incrementing an integer sort� we select that parent �lines � to �� The current element p inherits the

path of q �line � and increments the next integer sort extension �line �� If the label for q is � then a new subterm

list is begun �line �� otherwise subterm expansion is done using its predecessor�s sublist �line � so new subterm

extensions will be done correctly �since q and its predecessor have the same path� In both cases� new extensions will

be argument list extensions� If no parent can be extended with integer sorts� we select one to extend by adding a

new subterm �lines �� to ��� The label is the negation of the new subterm index� which is used to extend the path

of q� and also becomes the new path of p �lines �� to ��� Now p can be extended by incrementing �the currently

non
existent integer sort functor �line ��� while the next extension of q is updated �line ��� The last line sets up

the predecessor information�

For compact encoding� we need only change line � of the sparse term encoding algorithm to the following� so that

only the codes for meet irreducible elements are extended� The code for a non
meet irreducible element is simply

the uni�cation of the parent codes�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

���� if pi is meet irreducible then

���� � �pi �� uq�parents�pi�� �q u extend�pi
���� else

���� � �pi �� uq�parents�pi�� �q

Postprocessing can optimize codes to use relative and interval indices� where a space saving can be realized� For

dynamic updates to the taxonomy� variations of these algorithms can modify existing encodings by updating only

codes below the point of change� although we do not describe these here�

��� Theoretical Justi
cation

We now justify� using a variety of theoretical taxonomies� that sparse terms provide the necessary �exibility and

e�ciency required for encoding� This analysis complements an earlier theoretical comparison of various encoding

techniques� including �at terms� on theoretical orders ����� where the focus was on comparing di�erent encoding

algorithms� We focus on comparing di�erent implementations of two algorithms� transitive closure and compact�

There is one deviation� however� for interval sets� where we used the results of the more complicated algorithm

described in ���� Although the underlying information is the same� the resulting interval sets are more compact �at

the cost of more encoding e�ort�

Chains� Integers are well suited for encoding chains� Thus� sparse terms �using integer sorts� integer vectors and

interval sets provide optimal encodings� However� bit
vectors require linear space� Since every element is meet

irreducible� bit
vectors using the compact encoding algorithm also require linear space� Figure ��� shows a

sparse term encoding for a chain�

1

2
.

n-1

..
1 [1] [n-1] [1-a1] [1-a2] [1-ak]... ...

[] [][] []

1.[(1,n-1)]

Figure ���� Chain and anti
chain encodings

Anti�chains� Terms and interval sets optimally encode anti
chains� Bit
vectors and integer vectors� however� require

linear space� Figure ��� shows a sparse term encoding for an anti
chain� The second anti
chain encoding shows

how � could be encoded as uni�cation failure using atomic functors�
Complete Binary Trees� In this case� the combination of integer sorts and logical terms permits optimal encoding

using sparse terms �linear with respect to the height of the tree� Integer vectors and sparse terms without

integer sorts both require linear code space� as do bit
vectors� With additional processing� bit
vectors can

achieve optimal code size� using modulation or other techniques ��� ��� ���� Figure ��� shows a sparse term

encoding for a complete binary tree�

1 [1]

[]

2

3 2.[1]

1.[2]

1.[2-1] 1.[2-[1]]

[1-1] [1-[1]]

[1-2] [1-1.[1]] [1-[1-1]] [1-[1-[1]]]
Figure ���� Binary tree encoding

If we invert the tree� and add a top element� the space requirement for sparse terms� bit
vectors and integer

vectors does not change� but interval sets require O��logn� space�

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

For arbitrary binary trees� the code size for sparse terms remains linear with respect to the tree height� The

worst
case occurs for a right
skewed binary tree �i�e� where the left branch is always a leaf� where the height

is asymptotically the same as n� However� all of the other implementations require linear code space� except

for interval sets which is optimal using the more complex algorithm� Also� if the tree is �ipped left
right� then

sparse terms achieve optimal encoding� In general� due to the use integer sorts� sparse terms will perform

better if trees are organized so that the leftmost branch of a node has the largest subtree� In case two children

have the same size subtree� the deepest should be selected as the leftmost� These selection criteria are closely

related to those used in the interval sets approach ����

For complete k
ary trees� bit and integer vectors remain linear� However� if the tree has height h� then sparse

terms require O�hlogk� Since h � logkn this is bounded above by O�logkn � logk�
Square Lattices� A square lattice is a partial order resulting from the product of two chains� An example is shown

in Figure ���� For two chains of length k� their product has n � k� elements�

Transitive closure bit
vectors require linear space� Integer vectors� interval sets and sparse terms require

O�
p
nlog�

p
n � O�

p
nlogn which is sublinear� although not optimal� This is primarily because the square

lattice has width k �
p
n� If additional work is performed to determine that this lattice is a chain product�

then space can be improved to O��log
p
n � O�logn� In general� however� �nding the minimum number of

chains that decompose a partial order is NP
Hard������

For compact encoding� there are �k � �
p
n meet irreducible elements� Thus� bit vectors require O�

p
n�

Compact encoding for sparse terms� integer vectors and interval sets� however� achieve optimal codes� Figure

��� shows a transitive closure and compact sparse term encoding for a square lattice�

1 [1]

[]

2

3 2.[1-2]

2.[1-3.[1-1]]

1.[1-1]

1.[1-1.[1-2.[1]]]

[1-[1]]

4.[1-2]

5.[1-3.[1-1]]

1.[1-1.[1-1]] [1-[1-[1]]]

2.[1-4.[1-2.[1]]]

6.[1-4.[1-2.[1]]]

1 [1]

[]

2

3 2.[1]

2.[1-1]

1.[1]

1.[1-2]

[1-1]

3.[1]

3.[1-1]

1.[1-1] [1-2]

2.[1-2]

3.[1-2]

Figure ���� Square lattice transitive closure and compact encodings

Consider a product of m chains of length k each �so n � km� Optimally� if we have an algorithm that can

decompose this order� integer vectors require O�mlogk� However� using the transitive closure algorithm� we

can only detect that the width of the order is km�� � n
m��

m � Thus� integer vectors� interval sets and sparse

terms require O�km��logk � O�n
m��

m
�
m
logn which is still sublinear� Using the compact algorithm� we again

obtain optimal results�

Generalized Crowns� The preceding example orders are all somewhat sparse �and of low dimension������ In

lattice theory� generalized crowns are the standard example used for minimal sized partial orders of high

dimension� Figure ��� shows the generalized crown S� of dimension �� An important property of such orders�

is that the minimal size lattice into which the generalized crown Sn of �n elements can be embedded has �n

elements�

Determining compact encodings for the generalized crown Sn is a challenge� Bit
vectors and integer vectors

both require linear space� even for the compact algorithm� Note that even if we can determine the dimension

�which is NP
Hard� we cannot improve on these results� However� interval sets and sparse terms can encode

Sn using optimal space �also shown in Figure ����

Table ��� summarizes these results� where n is the number of elements in the ordered set� Unless indicated� results

are for both transitive closure and compact algorithms� Also� recall that the results for interval sets are somewhat

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

1 [1]

[]

[1-1,(2,+2)]

[2] [3] [4]

2.[(2,+2)] 1.[1,+2-1,+1] 1.[1,+1-1,+2] 1.[1-[1],+1,+1]
Figure ���� Transitive closure encoding of a crown S�

biased as they are based on the more complex algorithm in ���� using this algorithm� sparse terms can match or

surpass these results� since they generalize interval sets�

Table ���� Asymptotic encoding results for theoretical orders
Sparse Terms Bit
Vector Integer Vector Interval Sets

Chains logn n logn logn
Anti
Chains logn n n logn
Complete Binary Tree logn n n logn
�inverted logn n n �logn�

Arbitrary Binary Tree n n n logn
Square Lattice
�transitive closure n���logn n n���logn n���logn
�compact logn

p
n logn logn

Product of m chains

�transitive closure n
m��

m � �
m logn n n

m��

m � �
m logn n

m��

m � �
m logn

�compact logn k � k
p
n logn logn

Crown logn n n logn

��� Empirical Evidence

The above clearly shows the power of sparse terms� However� the partial orders likely to occur in practice are

unlikely to possess any of the above forms� Intuitively� a large partial order will probably have some regions that are

very sparse while others that are dense� some regions may possess certain properties� while others possess di�erent

properties� One technique that can be used to encode such hierarchies is modulation ��� ���� which decomposes a

partial order into suborders that can be independently encoded� Modulation can be a powerful technique provided

the order is not too dense� Although we generalized modulation to handle denser orders in Chapter �� and a linear

modulation algorithm now exists ����� it may not be appropriate for all dynamic taxonomies�

To demonstrate the power of sparse terms� we encoded two large empirically obtained taxonomies� using transitive

closure and compact algorithms� The resulting sparse terms were not optimized in the sense that no relative or interval

indices were used� Also� for the compact encoding� no integer sorts were used
 this accounts for poorer behaviour in

some cases compared with the transitive closure algorithm� If integer sorts are incorporated� more dramatic results

may be achieved� We show the resulting space requirement of the encodings� as well as the required space for bit

vector encodings� Here too� the results are skewed against sparse terms� The sparse term space requirement was the

actual memory used to store all codes� for bit
vectors� however� the space requirement does not consider memory

padding� Still� the improvement that sparse terms o�er over bit
vectors is remarkable�

The �rst taxonomy was obtained from a chess learning program ����� in which each node is a board position�

There are ����� nodes ���� meet irreducible elements and ����� join irreducibles and ����� links in the transitive

reduction� As shown in Table ���� sparse terms require one quarter of the space for bit
vectors in the top
down

transitive closure algorithm� and three quarters for the compact algorithm� Similar space improvements are made

for the bottom
up algorithms� Thus� we not only gain the improved �exibility of sparse terms over bit
vectors� but

this shows that even for moderate size taxonomies� the asymptotic advantage of sparse terms pays o��

CHAPTER �� ENCODING WITH SPARSE LOGICAL TERMS ��

Table ���� Empirical results �in bits for chess learning system ����
Top
Down Top
Down Bottom
Up Bottom
Up

Trans� Closure Compact Trans� Closure Compact

Bit
Vectors total ��������� ��������� ��������� ���������
bits"code ����� ��� ����� �����

Sparse Terms total ������� ������� ������� ���������
bits"code ��� ��� ��� ���

Sparse Term"
Bit
Vector ratio ���� ���� ���� ����

The second taxonomywas obtained from a terminologicalmedical knowledge base�� Nodes are medical terms� and

the partial order is subsorting� There are ����� terms ������ meet irreducible elements and ����� join irreducibles�

and ����� links in the transitive reduction� This taxonomy is less dense than the previous one �more nodes� less

links� and most of the elements are irreducible� In this situation� compact encoding provides very little bene�t for

the additional cost� However� the bene�ts of sparse term encoding are even more marked� about �� times more

e�cient than bit
vectors�

Table ���� Empirical results �in bits for medical ontology
Top
Down Top
Down Bottom
Up Bottom
Up

Trans� Closure Compact Trans� Closure Compact

Bit
Vectors total ��������� ��������� ��������� ���������
bits"code ����� ����� ����� �����

Sparse Terms total ������� ������� ������� �������
bits"code ��� ��� ��� ���

Sparse Term"
Bit
Vector ratio ���� ���� ���� ����

��� Conclusion

Our goal in this chapter is twofold� First� we presented sparse terms as a universal implementation for encoding�

generalizing the basic form of sparse terms ���� and extending previous work on logical term encoding ����� Second�

we argued that for large dynamic taxonomies� simple and fast encoding algorithms are necessary� These two claims

are backed up by theoretical and empirical evidence� Furthermore� either claim could be taken independently� In

particular� sparse terms could be exploited in any encoding algorithm with a potentially large decrease in space�

Finally� although logical term encoding has been extensively studied ���� ��� ��� ����� this chapter presents the �rst

published description of algorithms for encoding with terms� The results presented are important in contexts such

as conceptual structures� where taxonomic knowledge is likely to change frequently�

�Thanks to Ian Horrocks	 Medical Informatics Group at the Univ� of Manchester�

Part II�

Applications and Extensions

of

Reasoning with Taxonomies

�Then he was told� Remember what you have seen�

because everything forgotten returns to the circling winds�

� Lines from a Navajo chant

��

Chapter �

Extending Partial Orders for Sort

Reasoning

�Reason� alas� does not move mountains	 It only tries to walk around them

and see what is on the other side�

� G� W� Russel

The mathematical basis of partial orders has been exploited in taxonomic knowledge representation and reasoning�

and research on taxonomic encoding has provided techniques for the e�cient management of partial orders� Unfor

tunately� the simple structure of a partial order limits the taxonomic knowledge that can be represented� At the

other extreme are description logics �e�g� the KL
ONE family ���� ���� in which taxonomic relationships among

sorts are speci�ed using a formal language� but the taxonomy itself must be derived through classi�cation �which

may or may not be NP
Hard� depending on the logic� We feel that explicit maintenance of a taxonomy is important

for e�ciency� In this chapter� we formally extend partial orders to permit incorporation of additional taxonomic

information�

��� Introduction

Research on integrating additional forms of taxonomic knowledge into partial orders is scarce� Most notable� work

by Cohn ���� proposed a generalized form of taxonomic speci�cation within a sorted
logic framework� In ���� we

proposed some extensions to partial orders to integrate machine learning ����� and systemic classi�cation ���� �����

We extend these proposals in this chapter in an attempt to develop a taxonomic knowledge representation system

that is both �exible and parsimonious�

We may wish� for example� to de�ne an element to be the intersection �union of another set of elements �e�g�

woman � human � female� Although this may hold coincidentally through meets �joins� such a restriction

ensures that any changes must also respect this constraint� As another example� every element in a taxonomy must

normally be speci�ed� but there may be cases when this is both unnecessary and ine�cient� Suppose we wish� e�g��

to view people along lines of religion �e�g� Catholic� Jewish� Muslim� etc�� nationality �e�g� Canadian� Belgian and

occupation �e�g� student� prof� miner� Currently� we need to specify all possible combinations �i�e� the cross�product

of these facets to produce all sorts of people �e�g� a Belgian Catholic student� It would be cleaner if we could specify

these lines separately� and infer the cross
product when needed�

After providing some background on sorted logic and sorted logic programming� we formalize sorts and sort

hierarchies� and identify the relation between lattice and set operations� We then propose the sort reasoning problem

as the fundamental problem for a sort reasoner� and discuss how sort relations can be speci�ed in two expressive�

but equivalent ways� In section ��� we develop a three
valued propositional logic for sort reasoning and introduce

the notion of a sort context� Using this logic� we show that� although resolution provides a sound and complete

mechanism for sort reasoning� it is NP
Complete� The focus of section ��� is to identify tractable subcases of sort

reasoning� Finally� we discuss some implementation issues�

��

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

��� Background

First
order logic is unsorted in the sense that the domain of discourse �i�e� the universe is treated as a single undivided

set� A sort can be viewed as a subset of the domain of discourse� and is generally a group of objects related in some

way �e�g� the set of dogs� Sorts can be mimicked using special sort predicates� but many sorted logics move sorts

into the forefront as �rst
class objects� This allows speci�cation of the non
logical symbols as belonging to certain

sorts� and provides a simple syntactic mechanism to state semantic constraints� Thus� in a many
sorted logic� a set

of sorts can be speci�ed that divide the domain of discourse� Although in some logics� sorts must be disjoint� most

permit overlap between sorts� in which case the subset relation forms an order on sorts�

There are a number of advantages to using sorts in logic� particularly the reduction in the length of certain proofs

by eliminating futile branches of the search space� See ���� for speci�c coverage of the bene�ts of many
sorted logic�

Sorted logic programming is simply the logic programming analog to sorted logic� Prolog is unsorted� and so the

uni�cation to two unequal atoms results in failure� LIFE ���� on the other hand� permits the speci�cation of a sort

hierarchy P � In the event of uni�cation of unequal atoms a� and a�� the sort hierarchy is used to determine the

result� If a� uP a� � � then failure results� If a� uP a� � b� then the result of the uni�cation is b� Since the sort

hierarchy does not need to be a lattice� a� uP a� may be fb�� b�� � � � � bkg� In this case� processing proceeds with the
result b�� and subsequent sorts from this set are attempted in turn on backtracking�

��� Sort Reasoning

Sorts represent sets of individuals grouped according to common features� Intuitively� a sort p� is a subsort of p�
provided that every individual in p� is also in p� �e�g� collie is a subsort of dog� We don�t require that sorts denote

unique sets of individuals� so two sorts p� and p� may be aliases for the same set �e�g� car and automobile� or that

a sort be non
empty �e�g� unicorn is an empty sort� As we describe below� subset information on sets of aliases

forms a partial order�

� Let U be the domain of discourse �i�e� the set of individuals�
� Let P be a set of base sorts� notated using letters p and q� �p � P� p represents a subset of U � P contains an
implicit element� �P � representing U �

� Then � forms a preorder relation on P �i�e� � is re�exive and transitive�

From P we can specify the literal sorts� PL � fp�
pjp � P�
p � Unpg� notated using greek letters 	� �� etc� We
can derive an implicit literal sort �P �
�P that represents �� We can also extract two relations�

� The sort equivalence relation� �P � for p�� p� � P� p� �P p� if and only if p� � p� and p� � p�� We denote the

set of equivalence classes of P as P�� and each equivalence class as �p�� where p is a representative for the class�
� The sort 	partial
 order� �P���P� for �p�� �q� � P�� �p� �P �q� if and only if �pi � �p�� qj � �q�� pi � qj� Clearly

�P is re�exive and transitive� To show anti
symmetry� consider two classes �p� and �q�� If �p� �P �q� and

�q� �P �p�� and pi � �p�� qj � �q�� then pi � qj and qj � pi� Thus� pi �P qj� so it must be the case that �p� � �q��

For simplicity of notation� we omit the brackets surrounding alias classes� We now describe the relationship

between taxonomic and set operations�

� If p�up� � p�� then p��p� � p�� For example� if p�up� � �� we cannot infer that there is no element in U that
is in both p� and p�� We can only infer that there is no known sort that represents such elements� However� if

we know that p��p� � p� then we can infer p�up� � p�� For non
singleton meet crests� if p�up� � fq�� � qkg�
then �qi� � � i � k� p� � p� � qi�

� If p� t p� � p�� then p� � p� � p�� However� if we know that p� � p� � p� then we can infer p� t p� � p�� For

non
singleton join bases� if p� t p� � fq�� � qkg� then �qi� � � i � k� p� � p� � qi�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

Thus� it is not always possible to perform sort inferences using taxonomic operations� This issue was the focus of

the lattice completion proposed in ����� Figure ��� shows the above relationships using Venn diagrams� Our goal is

to exploit both the complete and incomplete knowledge in a sort hierarchy for a sort reasoning system� This requires

a general means of specifying� maintaining and reasoning with information that relates sorts�

β
α

α1 α2β α1 α2β β
β

α1 α2
α1 α2

β <P α β = α1 α2
β ⊆ α1 ∩ α2

β = α1 ∩ α2 β = α1 α2
β ⊇ α1 ∪ α2 β = α1 ∪ α2β ⊆ α

Figure ���� Relation between taxonomic and set operations

	���� Generalizing sort reasoning

De�nition 	�� Suppose we have a set P of n base sorts�

� An atomic sort is a sort s obtained by intersecting� for every sort p � P� either p or its complement
p�
� A derived sort is a set of atomic sorts�

� A conjunctive sort is the intersection 	conjunction
 of a set of literal sorts�

� A conjunctive sort s is consistent if and only if it does not contain both a base sort and its complement� A

consistent conjunctive sort is a derived sort�

In a Venn diagram of all possible combinations of sorts� each distinct region is an atomic sort of which there are

�n� Taxonomic information may reduce the number of non
empty atomic sorts �e�g� if p� � p� then an atomic sort

with p� but not p� is empty� A derived sort is obtained by selecting � or more atomic sorts� and corresponds to the

union of distinct regions in a Venn diagram� In the worst case �no taxonomic constraints there are ��
n

non
empty

derived sorts�

To illustrate� consider the speci�cations� �i francophone � person and �ii canadian � person� Although sorts

francophone and canadian are incomparable� there is no information that indicates they are disjoint� Combining

them results in the derived sort canadian francophone� In general� conjunctive sorts can be denoted by juxtaposing

their constituent sort labels �lexicographically to ensure uniqueness� although any total order on the sort labels could

be used� Automatic derivation of conjunctive sorts can be contrasted with LIFE in which the same combination

will result in failure� since their coincidental meet is ��
For conjunctive sorts� we can specify an intrinsic ordering ��� for two conjunctive sorts s� and s�� we know that

s� � s� if s� contains a superset of the literals in s�� For example� p� �
p� � p� �
p� � p�� Taxonomic information
provides further extrinsic ordering among conjunctive sorts� Thus� for conjunctive sorts s� and s�� s� � s� implies

that s� � s�� but not necessarily the converse�

Clearly there is potential for a combinatorial explosion in the number and size of derived sorts� In ����� complete

ness in a many
sorted logic setting is required� and so the entire derived sort space must be handled� Unfortunately�

this leads to the possibility of a sort structure of exponential size� Our goal is to produce a general sort reasoner

that minimally retains polynomial space� and so we choose to restrict the set of derived sorts to conjunctive sorts�

Conjunctive sorts are natural in that they group together individuals in U that share attributes� They provide
for monotonic sort reasoning� since the set of individuals denoted by a partially speci�ed sort cannot increase as new

constraints are applied� These are the types of sorts produced in LIFE ��� through uni�cation� Conjunctive sorts

have a natural representation using a three
valued logic by selecting for each base sort p � P either true �include sort
p� false �exclude sort p or uncertain� Thus� there are at most �n di�erent consistent conjunctive sorts� although

constraints may reduce this number� Conjunctive sorts have a simple and e�cient implementation using logical terms

�see section ����

Our problem can now be described succinctly as follows�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

De�nition 	�� Sort Reasoning Problem abstract�� Given a set of base sorts P� a set of assertions A that

specify the emptiness or non�emptiness of zero or more conjunctive sorts� and a conjunctive sort s� Can we infer

that s is empty or non�empty�

We show that interesting sort reasoning problems can be characterized as special cases of this problem� and we

describe general methods of specifying the assertions� We develop a sort logic �not a sorted
logic� but a logic for sort

reasoning that has a sound and complete reasoning strategy� We also show that this problem is NP
Complete� so

we explore tractable subsets of sort reasoning�

The assertions A partition the conjunctive sorts into three groups� empty sorts� non�empty sorts and possibly

empty sorts� If a conjunctive sort s� is empty� and s� � s�� then s� must also be empty� Dually� if s� is non
empty�

and s� � s�� then s� must be non
empty� Thus� sort reasoning can be viewed as classifying conjunctive sorts into

these groups based on the current set of assertions�

	���� Clausal taxonomic speci�cation

In ����� a suggestion is made for clausal speci�cation of taxonomies� �x� p��x 	 	 pm�x 	
q��x 	 	
qn�x�
where the pi and qj are base sorts� A number of special cases are worth noting�

�� m � �� n � �� q� and q� are incompatible�
�� m � �� n
 �� q�� � qn cannot simultaneously hold�
�� m � �� n � �� q� � p��
�� m
 �� n � �� p�� � pm decompose � �i�e� Sfp�� � pmg � ��

The usefulness of these clausal speci�cations is not explored in ����� In light of the sort reasoning problem� such

a speci�cation can be viewed as asserting that a certain conjunctive sort is empty� The universally quanti�ed form

is equivalent to � �x�
p��x� �
pm�x� q��x� � qn�x �i�e� conjunctive sort
p� � �
pm � q�� � qn is
empty� We propose to also allow dual speci�cations� �x�
p��x � �
pm�x � q��x � � qn�x� which permit
asserting that a certain conjunctive sort is not empty� Duals of the above special cases are�

�� m � �� n � �� q� and q� are compatible�
�� m � �� n
 �� q�� � qn can simultaneously hold�
�� m � �� n � �� q� �� p��
�� m
 �� n � �� p�� � pm do not decompose ��

With these two forms� we have the ability to fully specify any instance of the sort reasoning problem� so we can

dispense with the quanti�cation� and limit our focus to propositional logic� Universally quanti�ed assertions �or

universal sorts are global in that they must all simultaneously hold� but not existentially quanti�ed assertions �or

existential sorts� which may specify di�erent individuals in U � Figure ��� shows the set relationships imposed by
these speci�cations�

β1

β2

β3

α
α1

α2

α3

β
α1

α2

α3

β−(α1∪α2∪α3)

α∨¬β1∨¬β2∨¬β3 α1∨α2∨α3∨¬β ¬(α1∨α2∨α3∨¬β)

β1
β2

β3α

β1∩β2∩β3−α

¬(α∨¬β1∨¬β2∨¬β3)

β

Figure ���� Venn diagrams of clausal taxonomy speci�cation

	���� De�nitional speci�cations

As an alternative to clausal speci�cations� a number of natural relationships can be constructed using sort de�nitions�

Some possibilities are described below and shown in Figure ���� and formed the basis of extended description spaces

�����

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

Conjoined Sort De�nition� We may want to de�ne a sort as precisely the intersection of a set of other sorts� For

example� we may want to de�ne woman as the intersection of person and female� We can denote this using

set intersection� p � 	�� �	k� where the 	i are sort literals� Such de�nitions are equivalent to the clauses�
�i p	
	�	 	
	k� and �ii
p		i for � � i � k� Partial orders only permit the second set of clauses� and

so we may only say� p � 	� � � 	k�
Sort Decomposition� Sometimes we know that a set f	�� � 	kg of �possibly overlapping sorts decomposes an

other sort p� That is� p � 	� � � 	k� For example� we may wish to de�ne a sort university course �

grad course � undergrad course �where some courses may be cross
listed as both� Sort decomposition is

analogous to generalization in the entity
relationship model ����� Such a declaration is equivalent to the clausal

speci�cations� �i
p		�	 		k� and �ii p	
	i� for � � i � k� Every conjoined sort de�nition p � 	�� �	k
induces a dual sort decomposition
p �
	� � �
	k� and vice versa�

Sort Partitioning� We may have even stronger information that a set Q decomposes a supersort p and every pair

of elements in Q is disjoint� For example� we may want to say that the sort person is partitioned into woman

and man� We can denote this using disjoint set union� p � 	�# #	k� where # is interpreted as union with

the constraint that each pair of sorts on the right
hand side must be disjoint� Such assertions are equivalent to

the clauses� �i
p 	 	� 	 		k� �ii p 	
	i for � � i � k� and �iii
	i 	
	j� for � � i � j � k�

β2

β1

β3

α1
α2

α1

α3

β1 α2
α1

α3

β1

β1 = α1 ∪ α2 ∪ α3 β1 = α1 + α2 + α3α1 = β1 ∩ β2 ∩ β3

Figure ���� Aggregate speci�cations

We can specify the dual of these assertions� by replacing equal signs by strict subsets� We may� e�g�� state that

wild and canine is insu�cient to de�ne wolf as wolf � wild � canine �i�e� the sort
wolf � wild � canine is

non
empty�

Interestingly� de�nitional and clausal speci�cations are equivalent� A universal assertion� p� 	 	 pm 	
q� 	
 	
qn can be speci�ed as� �i q� � q� � � qn� �ii p� � p� � � pm� and �iii q� � p� � q� �or q� � p�� An

existential assertion�
�p�	 	pm	
q�	 	
qn can be speci�ed as� �i q� � q�� � qn� �ii p� � p�� �pm�
and �iii q� � p� � q� �or q� �� p��

��� Sort Logic

De�nition 	�� A sort context is a triple ! � �P� E �N � where
� P is a set of sort symbols� and PL is the corresponding set of sort literals�

� E is a set of universal sort assertions� where for every � � E � � � 	� 	 	 	k and each 	i� � � i � k� is a

sort literal� Conjunctive sort
� is in the same sort equivalence class as �P 	i�e�
� is an empty sort
�

� N is a set of existential sort assertions� for every � N � � 	� � � 	k and each 	i� � � i � k� is a sort

literal� Conjunctive sort is in a di�erent sort equivalence class from �P 	i�e� is a non�empty sort
�

Since existential sort clauses are local �i�e� they implicitly existentially quantify an individual� we cannot use

them indiscriminately� we only allow at most one to appear in a proof� Our sort logic has three truth values� T

�true� F �false and U �unknown or uncertain� For example� the answer to the query dog�cat � �� may be true�
whereas the answer to the query student � plumber � �� may be uncertain� We also have one rule of inference�
resolution� which we can formalize as follows �where the 	i and �j are sort literals� and

p � p�

�� 	 	� 	 	 	j � �
� 	 �� 	 	 �k � 	� 	 	 	j 	 �� 	 	 �k

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

Using a standard resolution process� we �nish when either the empty clause is derived� or no more resolution is

applicable� The empty clause is derived only if both 	 and
	 can be derived� which clearly indicates inconsistency�
A sort context ! is consistent if for every conjunctive sort s resulting from PL� we cannot infer that s is both empty

and non
empty� Since resolution is sound and refutation complete ����� determining if a sort context is inconsistent

using resolution is sound and complete� We do not assume complete knowledge� however� so it may be the case that

we cannot infer that s is empty or non
empty� In this case� following Cohn ����� we call s possibly�empty�

Queries can be dealt with as follows�

Empty Sorts� To check if a conjunctive sort s � 	� � � 	k is empty� we assert that it is not empty by adding
s as an existential sort� and attempt to derive the empty clause through resolution� If we derive the empty

clause� then s must be empty� and
s must be a universal sort �i�e� the sort context �P� E � fsg is inconsistent�
If not� then s may be either non
empty or possibly
empty� Note that we only use elements of E � but not of N �
for this�

Inferring Sorts� We may be interested in the sorts that can be inferred from s� These can be produced as a side

product of the above resolution process� If s is an empty sort� then every sort is derivable�

Non�empty Sorts� To check if s is non
empty� we assert that it is empty �i�e� add
s as a universal sort� and
attempt to derive the empty clause through resolution� We do this by �nding a non
empty sort � N with

which we can derive the empty sort �i�e� the sort context �P� E � f
sg� fg is inconsistent� Note that this is
akin to skolemizing the existential sort �

We can now restate the sort reasoning problem in more de�nite terms�

De�nition 	�� Sort Reasoning Problem concrete�� Given a sort context ! � �P� E � fsg� Is ! consistent�

The Sort Reasoning Problem is NP
Complete� as we prove formally in the following subsection� This can be

demonstrated by modeling an instance of �
SAT using sort de�nitions� as shown in Figure ���� where a conjunctive

normal form formula with ternary clauses f � c� � � ck� where ci � li�� 	 li�� 	 li��� � � i � k can be represented

using one intersection de�nition for f and one union de�nition for each of the clauses� In diagrams� we denote

intersection �resp� union de�nitions by connecting the parent �resp� child subsumption arcs with a horizontal line�

Answering the query �Is f an empty sort�� is clearly NP
Complete�

f

ci

li,1

c1 ck

li,2 li,3

...

Figure ���� Using sort de�nitions to represent an instance of �
SAT� f � c� � � ck� where ci � li�� 	 li�� 	 li���
� � i � k

From a logical standpoint� intractability is of no concern� provided the logic is sound and complete� Also� some

systems may prefer to retain expressiveness and assume that the worst
case will rarely� if ever� occur� Even so� there

is some sort structure maintenance that we may perform to reduce the cost of sort reasoning� If we determine that

a sort s is empty or non
empty� then we can assert this information in the sort context� We refer to this as sort

memoing� since it is akin to memoing in OLDT resolution ������ If sort reasoning is performed in localized areas of

the sort structure� then this enhancement may result in improved performance at the cost of additional storage �in

the worst
case� one conjunctive sort is added to the context for any query�

	���� Complexity of Sort Reasoning

We now prove that sort reasoning is NP
Complete� Note that context ! � �P� E � fsg is consistent if and only if s
is not provably empty�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

Lemma 	�� If s is an empty conjunctive sort and s� contains a superset of the literals of s 	i�e� s� � s
� then sort

resolution can show that s� is empty�

Proof� Suppose s is an empty sort� s � �� � � � � � �k �so ��� � � � � � ��k is a universal sort	� and s� contains a superset of

the components of s� s� � �� � � � � � �k �
� � � � � �
j� Further suppose that s� is not empty� assert ��� � � � � �k�
�� � � � �
j�

Clearly� through resolution we can derive the empty clause� Thus� sort resolution can show that s� must be empty� �

Lemma 	�� If s is an atomic sort 	i�e� s � 	� � � 	n
� then s is provably empty if and only if �
s� � E for

which s � s��

Proof� � Suppose � ��s� � E for which s � s�� The only way to infer that s may be empty from E is to
nd a decomposition

of s� each element of which is provably empty� But since s is atomic� no decompositions exist�

� Suppose ��s� � E for which s � s�� By Lemma ��� clearly s is provably empty� �

Theorem 	�� The Sort Reasoning Problem is NP�Complete�

Proof� Given a conjunctive sort s� if s is not provably empty� then there exists an atomic sort s� subsumed by s that is not

provably empty� By Lemma ���� checking if s� is not provably empty and checking if s� � s can both be done in polynomial

time� Thus� the sort reasoning problem is in NP�

To show that this problem is NP�Complete� we show a transformation to sort reasoning from ��SAT ����� The ��SAT

problem can be speci
ed as follows� Given a set of n variables v�� � � � � vn and a formula F that is a conjunction of k clauses�

each of which is a disjunction of precisely � literals� is there a truth assignment to the variables for which F is true�

Suppose we have an instance of the ��SAT problem� V � fv�� � � � � vng� F � C� � � � � � Ck and Ci � li�� � li�� � li���

 � i � k� where each of the li�j is either a positive or negated variable from V � Let us de
ne a sort context trivially as

� � �V
 fqg� fq� C�� � � � � Ckg� �	� Clearly this can be done in polynomial time� Note that the sort q must subsume all the

other sorts �i�e� it is in the same sort equivalence class as �	� Each atomic sort corresponds to a truth assignment�

Claim� there is a solution to the ��SAT problem if and only if we cannot infer that q is empty�

� Suppose formula F is satis
able� Take any satisfying truth assignment� and de
ne an atomic sort s as� s � ���� � ���n�

where �i � vi� if vi � true and �i � �vi otherwise �for � i � n	� If s is provably empty� then � a clause Ci � li�� � li�� � li��
for which �Ci � �li�� ��li�� ��li�� subsumes s by Lemma ���� But at least one of li�� � li��� li�� is true� so no such clause exists�

Therefore� s is not provably empty� which implies that q is not provably empty� So� if F is satis
able then q is not provably

empty�

� Suppose that q is not provably empty� Then � an atomic sort s that is not provably empty� De
ne a truth assignment

as follows� if vi is a component of s then set vi � true and if �vi is a component of s then set vi � false� Consider any clause

Ci � li�� � li�� � li�� for which none of the literals are true� Then �li��� �li�� and �li�� are all components of s� But then s must

be empty� so no such clause exists� and this truth assignment satis
es F � So� if q is not provably empty then F is satis
able� �

��� Tractable subcases

Many knowledge representation systems are concerned with tractable reasoning strategies� so it is important to

identify subcases of the sort reasoning problem with polynomial solutions� As intractability results from empty sort

assertions �i�e� universal sorts and queries� there is no need to restrict the form of non
empty sort assertions�

Positive literal sorts� A simple way to achieve tractability is to avoid negated sorts by only allowing assertions

that involve positive literals� In LIFE ���� only subsumption �i�e� p � q assertions are permitted in specifying a

sort hierarchy� However� if the meet crest p�u u pk happens to be fq�� � � � � qng� there is an implicit assertion
of the form p� � � pm � q� 	 	 qn�

Horn sorts� Another possibility is to restrict speci�cation to Horn clauses �clauses with at most one positive literal�

This leads to tractable resolution if we restrict each base sort to be a positive literal of at most one clause�

This restriction may be relaxed somewhat using the notion of ORD�Horn clauses described in ����� for �nding

a maximal tractable subclass of Allen�s Interval Algebra ��� for temporal reasoning�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

	���� Containing sort reasoning complexity

Both cases above impose unnecessarily strict limitations on the expression of taxonomic knowledge� To achieve

more �exibility while retaining tractability� we can either restrict the form of assertions or the form of queries� We

choose a combination� The basic form of universal sort assertions we allow are �i binary clauses� which can de�ne

a partial order among the literal sorts �i�e� p 	 q� p 	
q or
p 	
q� �ii intersection �conjoined sort de�nitions�
p � 	� � � 	m� and �iii union de�nitions �sort decomposition� p � 	� 	 	 	m�
Sort contexts can be described as �P�A�N � where A is a set of de�nitional assertions that satis�es the above

forms� Such assertions could be reduced to clausal form� but these de�nitional assertions can be maintained in a

partial order structure on the literal sorts� augmented with notation for the intersection and union de�nitions� N is

a set of existential conjunctive sort assertions as before�

Note that asserting a binary clause imposes two constraints� 	 	 � asserts
	 � � and
� � 	� Asserting an

intersection or union de�nition� also asserts the dual� The intersection de�nition� p � 	� � � 	m also asserts

p �
	� 	 	
	m� The union de�nition p � 	� 	 	 	m also asserts
p �
	� � �
	m�
Without restrictions� of course� we have full sort reasoning power with the above assertion forms� Even limiting

sorts to have at most one de�nition may lead to intractable behaviour� as shown in Figure ���� Our solution is to

limit the extent of intractability� First we need to de�ne several notions�

De�nition 	�� Let s � 	�� �	k be a conjunctive sort� The expanded form s� of s is the �xpoint of the following

construction 	i�e� there exists a k � � for which sk� � sk � s�
� 	i
 s� � f	�� � � � � 	kg� 	ii
 si� � si�f� � PLj�� �
si such that � � �g � f� � PLj� � �� � � �m is an assertion in A and �j � si� � � j � mg
Thus� given a conjunctive sort s� its expanded form is the set of all sort literals that may be directly inferred from

s�

De�nition 	�� Let s � 	� � � 	k be a conjunctive sort� and s� be its expanded form� The set of potential

conjunctive inferences C�s associated with s is de�ned recursively as the �xpoint of the following construction 	i�e�

there exists a k � � for which sk� � sk � C�s
� 	i
 s� � s�� 	ii
 si� � si �f�j� � �� � � �m is an assertion in

A� and �j � si for some � � j � mg
De�nition 	�	 Let s � 	� � � 	k be a conjunctive sort� and s� be its expanded form� The set of unresolved

disjunctions D�s associated with s is de�ned as� D�s � ff�� 	 	 �kgj�i	 � �� 	 	 �k is an assertion in A�
	ii
 	 � s�� and �iii��� � s� such that � � �i for some i� � � i � kg�
Thus� D�s is the set of union de�nitions for which the left
hand side sort� but none of the right
hand side sorts�

is in s� �so the disjunction is implied but not satis�ed by s�

De�nition 	�� Let s � 	� � � 	k be a conjunctive sort� A locally consistent selection of literals from the

unresolved disjunctions D�s is a set Q � f��� � � � � �mg of at least one sort literal from each disjunction in D�s�
where the expanded sort s�� 	s� � 	� � �	k � �� � �m
 is consistent�
The existence of a locally consistent selection is necessary but not su�cient to show that sort s is not provably

empty� Unresolved disjunctions may cascade due to a locally consistent selection
 D�s� may contain unresolved
disjunctions�

In order to determine if s is provably empty or not �provided s� is consistent� we need to show that every

possible way of resolving the set of disjunctions D�s leads to inconsistency� This problem may be intractable in two
dimensions� First� even making a locally consistent selection from D�s may be NP
Complete �cfr� �
SAT problem�
Second� the potential cascading e�ect of unresolved disjunctions may lead to an exponential search space� even if

determining locally consistent selections can be done in polynomial time� The following set of restrictions attempts

to curtail both of these sources of intractability� while retaining a degree of power that makes sort reasoning useful�

�� Positive literal sorts may not subsume negative literal sorts� and no set containing negative literals may imply a

positive literal� This is achieved by enforcing the following syntactic constraints on assertions� �i Subsumption

assertions must have the form p 	
q �i�e� q � p and
p �
q or
p 	
q �i�e� p �
q and q �
p� �ii The
sorts on the right
hand side of intersection and union de�nitions must be positive literals�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

�� For a given conjunctive sort s � 	� � � 	k� limit the number of unresolved disjunctions �union de�nitions
containing positive literals associated with s to a constant n	� This ensures that we can determine in polynomial

time if there is a locally consistent selection of literals from the unresolved disjunctions D�s� If D�s is empty
or contains only disjunctions with negative literals� then a locally consistent selection can be done in linear

time�

�� Limit the cascade of unresolved disjunctions by imposing constraints on the relation of positive sorts involved

in one union de�nition p � q� 	 	 qk to other union de�nitions� If si � C�qi� � � i � k� then D�si can
only contain disjunctions with negative literals� Note that if qi is not subsumed by any sorts on the right
hand

side of an intersection de�nition� then this reduces to the constraint� D�qi can only contain disjunctions with
negative literals� This restriction ensures that� for a conjunctive sort s� any locally consistent selection from

D�s can be checked for global consistency in polynomial time since cascading disjunctions can only contain
negative literals �and no selection of negative literals can result in a positive literal being derived�

The �rst and third restrictions are purely syntactic� The second a�ects both assertions �i�e� the conjunctive sorts

on the right
hand side of intersection de�nitions and queries� and depends largely on the current sort structure� It

can� however� be checked quickly given any conjunctive sort� If it is not satis�ed in a query� we can notify the client

and provide the option to attempt a potentially costly answer� Together these restrictions permit us to specify a

polynomial time algorithm for determining if a conjunctive sort s is provably empty�

i� Construct s�� If s� is inconsistent then s is provably empty�
ii� Determine D�s and check if there is a locally consistent selection� If none exists� then s is provably empty�
iii� Attempt to expand each locally consistent selection to a globally consistent selection� If this is not possible�

then s is provably empty�

The �rst step of the algorithm is performed automatically and e�ciently using lattice operations and the logical

term implementation described in the next section� Due to the second restriction above� step �ii can be accomplished

in polynomial time� and due to the third restriction� checking if there exists at least one globally consistent selection

�in which case s is not provably empty also takes polynomial time�

��� Implementing Conjunctive Sorts

For a simple logical term encoding of sort orders� that is fast to compute and �exible to update� we assign terms in

which each element has one position and use a variant of top
down transitive closure encoding ���� For any element

p � P� position i of the code � �p may have one of three values� �i If p � pi then position i will contain a �� �ii If

p �
pi then position i will contain a �� �iii Otherwise position i will contain an anonymous variable �denoted � ��
We can extend our logic and implementation to four values� true ��� false ��� uncertain � and inconsistent

�&� Inconsistency in a sort position could be used as an explanatory feature to identify the base sort at the root of

an inconsistency� It could also be used as a basis for extending our sort logic to include default and non
monotonic

reasoning
 an inconsistent value for a base sort p would indicate that somehow both p and
p have been acquired�
Our approach does not provide a means of resolving this inconsistency� but does give a framework upon which a

default or non
monotonic logic system can be built�

��� Conclusion

Taxonomic knowledge representation is a complex� yet intuitive and pervasive problem� By separating sort constraints

into a sort reasoner� specialized techniques can be used to manage the sort relations arising in a system� We argued

that� although mathematically elegant� partial orders are unwieldy for representing all the relations desired in a

system� Although sort reasoning can be plunged into a partial order �in fact� a Boolean lattice� the size of this

partial order is extraordinary
 given n base sorts� the lattice can be as large as ��
n

� The typical use of partial orders

for sort reasoning� in which each base sort is an atom �i�e� plunging the sort structure in a Boolean lattice of size

�n� leads to either the inability to state certain relations �e�g� sort woman is the intersection of sorts person and

female or to unjusti�able conclusions�

CHAPTER 	� EXTENDING PARTIAL ORDERS FOR SORT REASONING ��

We extended partial orders to more e�ciently handle sort processing� By restricting attention to conjunctive

sorts �sorts that consist of conjunctions of positive and negative base sorts� the scope of the problem is reduced

to the interesting case that is most apparent in current logic programming systems �e�g� LIFE ���� We extended

a clausal sort speci�cation notation introduced in ���� to include the speci�cation of existential sort assertions� the

dual of universal sort constraints� We also developed a de�nitional speci�cation notation� in which many important

taxonomic relations can be asserted �e�g� sort university student is de�ned as the union of sorts grad student and

undergrad student� Although the two forms are equivalent in power� the latter may be more intuitive for some

constraints�

Using the set of base sorts� and the existential and universal sort relations� we de�ned a sort context� and

formalized the sort reasoning problem as the problem of inferring whether a given conjunctive sort s is provably

empty� provably non
empty or neither� given a particular sort context� Sort reasoning is NP
Complete in general�

and for many
sorted logics this is of little concern� since sound and complete resolution strategies can be used� A

main contribution of this chapter is the identi�cation of a tractable subcase of sort reasoning� which is important for

practical many
sorted systems� We identi�ed a number of restrictions that achieve a polynomial
time sort reasoning

algorithm� while retaining a relatively high
level of expressive power� This goal is not easily obtained� due to the

many ways in which intractability may creep into a sort structure�

Chapter 	

Reference Constraints in Logic

Programming

�Man stays wise as long as he searches for wisdom
 as soon as he thinks

he has found it� he becomes a fool�

� Talmud

Equality constraints that arise through uni�cation partition logical variables into coreference classes� each of which

denotes an individual in a domain of discourse� These classes� however� are unrelated to each other� We develop

reference constraints as a generalization of equality constraints� allowing the speci�cation of a partial ordering among

coreference classes� This leads to the notion of individual level inheritance� where an individual denoted by a variable

may inherit properties from another individual denoted by a subsuming variable in the partial order� A variety

of systems� especially systems that reason in ambiguous domains� can bene�t from an e�cient� formally based

implementation of reference constraints�

��� Introduction

Sort �or class level inheritance permits the declaration of properties for a sort� which are automatically propagated

to all of its sub
sorts� A sort represents a conjunctive set of individuals �the subset of the universe that belongs to

the sort� whereas a variable represents a disjunctive set of individuals �the subset of the universe that contains the

individual� Each individual �or instance inherits the combination of properties of its ancestors in the sort hierarchy�

For multiple
inheritance hierarchies �i�e� general partial orders� not just trees� research has focused on resolving

con�icts among the inherited properties �e�g� ���� ��� �����

There are� however� applications in which inheritance among individuals �instance level inheritance is useful�

If an individual 	 inherits from another individual �� then any additional properties acquired by � must also be

dynamically acquired by 	� Such constraints may have use� for example� in systems that explore alternatives in

ambiguous situations� During a line of exploration� we may determine properties of the solution we seek that

must be propagated to all lines of exploration� Systems that exhibit such characteristics include natural language

processing systems� automatic con�guration systems� dynamic programming� and non
monotonic reasoning systems�

An unsatisfactory way of achieving this is to allow instances to be maximally speci�c �or leaf sorts� The problems

of mixing class and instance �i�e� subset vs� element links in hierarchies were clearly identi�ed by Woods ����� and

Brachman ����� Another unsatisfactory solution is to create new sorts that denote single elements� because sorts are

declarative in nature whereas individuals are assertional� Reference constraints provide a formal means of instance

level inheritance�

Logical variables denote individuals� This is true even for a universally quanti�ed variable� it may range over

a set of individuals� but can only denote one of these at any instant� Although variables may be sorted� the key

di�erence between the sets represented by variables and sorts is that sorts are conjunctive �e�g� every instance in the

set denoted by dog is a dog and variables are disjunctive �e�g� X�dog denotes some instance in the set denoted by

��

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

dog� We show how the symmetric coreference constraints imposed by equality among variables can be decoupled into

two asymmetric� unidirectional reference constraints� Although individual level inheritance and reference constraints

may be applied to a general many
sorted logic setting� we focus on logic programming� We use Prolog and LIFE ���

for examples� and discuss how reference constraints can be e�ciently implemented using attributed variables �����

After providing some background� we describe our decoupling of coreference in logical variables� This includes

a discussion of the syntax and semantics of reference constraints� maintenance of the reference order� an extended

example� a comparison with sort hierarchies� and how reference constraints may be e�ciently implemented in a logic

programming language� Section ��� develops and justi�es instance level inheritance� including a number of potential

applications�

��� Background

The entity to which a logical variable refers to may be unspeci�ed or partially speci�ed� In logic programming� each

variable X has an associated term � �X that contains information regarding the entity that it denotes� In case there

is no information� � �X � � When two variables X and Y are uni�ed �i�e� X � Y � then we are saying that the

entities to which X and Y refer are the same �i�e� X and Y corefer� Any change to X is re�ected in Y and vice versa

�i�e� � �X � � �Y � Naturally� to ensure this property� any rational implementation will store only one term for X

and Y � Such a constraint is called an equality or coreference constraint� and is a fundamental basis for some logic

programming languages such as Prolog� Equality constraints partition variables into a set of unrelated coreference

classes�

��� Decoupling Coreference via Reference Constraints

Suppose we decouple coreference and permit reference constraints� That is� suppose we can say that X refers to Y

without saying the converse� To do this� we add a reference �or semi�uni�cation or subsumption operator �� The
constraint X � Y states that � �X must be subsumed by � �Y �but not necessarily the converse� Any property

holding for the entity to which Y refers must also hold for the entity to which X refers �i�e� information in � �Y

implies that this same information� and possibly more� must be in � �X� The pair of constraints X � Y and

Y � X is equivalent to coreference"uni�cation �i�e� X � Y � Since the term associated with a variable is just an

approximation of an entity� X � Y implies di�ering degrees of knowledge �i�e� the range of variable X is a subset of

the range of Y � In Prolog� an entity denoted by a variable is only fully speci�ed when the associated term is ground�

LIFE� however� is based upon approximation ' terms have unbound arity �i�e� the arity of terms is not �xed� and

so the notion of a ground term has no meaning�

What are the consequences of reference constraints� Reference forms a preorder on the set of variables in a clause�

That is� reference is transitive and re�exive� However� it also forms a partial order among coreference equivalence

classes� If X � Y and Y � X� then X and Y are in the same equivalence class� Note that in order theory ����� we

can always form a partial order from such classes for any preorder� Logical variables in logic programming languages

such as Prolog or LIFE create a set of coreference equivalence classes� but there is no connection among these classes�

With our treatment of reference constrains� we can construct a relation among these classes�

If X � Y and we further instantiate � �Y � then we must similarly update � �X �and the terms for all variables

subsumed by the class of X� For example� the output for the code� X � Y � X � f� � b� Y � f�a� will be�

X � f�a� b� Y � f�a� �

More formally� we can de�ne a set of reference constraints as a state in a logic program� We sketch the formal

details here� We �rst de�ne some relevant static aspects of a program�

� Let U be the domain of discourse �i�e� the set of individuals�
� Let X be a set of variables� This may be in�nite� or viewed as the variables mentioned in the logic program�

� Let GAF be the lattice of logical terms� or generalized atomic formulae ������

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

We now de�ne the state �relevant to reference constraints of a logic program�

� Let � �X � GAF be a function mapping variables to terms� Initially� �X � X � � �X � �

� Let the reference constraints� �� be a preorder relation on X such that� for X�Y � X � X � Y implies

� �X �GAF � �Y �i�e� the term of X is subsumed by the term of Y in GAF �

From � we can extract two relations�
� The coreference equivalence relation� �� is de�ned as� for X�Y � X � X � Y if and only if X � Y and Y � X�

We denote the set of equivalence classes as P � For each equivalence class in P � we identify one member element

X as a representative for the class� and denote the equivalence class as �X�� We can extend the function � to

reference classes� � ��X� � � �X�
� The reference 	partial
 order� �P��P � for �X�� �Y � � P � �X� �P �Y � if and only if �Xi � �X�� Yj � �Y �� Xi � Yj�

Clearly �P is re�exive and transitive� To show anti
symmetry� consider two coreference classes �X� and �Y �� If

�X� �P �Y � and �Y � �P �X�� and Xi � �X�� Yj � �Y �� then Xi � Yj and Yj � Xi� Thus� Xi � Yj � so it must be

the case that �X� � �Y ��

In this framework� we can identify two state changes that may occur during the processing of a logic program�

updates to � and updates to � � These updates are caused by explicit reference and coreference constraints� and

through uni�cation� as we discuss in section ������ We assume initially that both are monotonic �we can only add new

reference constraints� and further instantiate terms� That is� suppose ��i� �i and ��i�� �i� are two subsequent

states of � and � in the program� Then �i��i� and �X � X � �i��X �GAF �i�X� This condition holds in

Prolog� but may be invalidated in LIFE by destructive variable assignment�

���� Notational considerations

There are two ways in which coreference can be noted in a logic program� explicitly through an equality constraint

�e�g� X � Y � or implicitly by using the same variable name at two or more locations in a clause �e�g� f�X�X in

Prolog or person�mother �
 X�person� bestFriend �
 X in LIFE� Although the implicit notation is important

to keep clauses concise and clear� it can be viewed as a convenience� we could replace all occurrences of a variable X

by unique names� and explicitly state the coreference constraints among this set of variables�

Reference constraints can be noted in clauses explicitly �e�g� X � Y could be noted using ASCII as X �� Y�

Implicit notation for reference constraints may be confusing� and we do not consider this possibility�

���� Maintaining and satisfying the reference order

In a logic programming language� such as Prolog� the scope of a variable is the clause� Due to the coreference

constraints on variables in the head of a clause when a predicate is called� the initial coreference classes may not all

be singletons� For example� if we call the predicate f�� with f�X�X� then the two variables in the head will already

be in the same coreference class upon entry to the clause� Similarly� a predicate may alter the coreference classes of

calling clauses� For example� if the predicate g�� uni�es its two head variables �e�g� if the head clause is g�X�X�

then the coreference classes of the two variables in any calling clause will be combined� Thus� from the perspective of

a clause� we start with a given set of coreference classes containing the variables in the head� which may be modi�ed

�monotonically in either the head or the body of the clause� With reference constraints� the reference order will

similarly be modi�ed�

At any stage in the processing of a clause� we have a current reference order �P��P � where P is the set of coref

erence classes� For e�ciency� we only maintain the representative for each coreference class in P � and the association

of variables with their representative �e�g� via union
�nd� In this way� reference constraints are constructed on top

of standard coreference� There are three situations we need to consider�

Explicit reference constraints Suppose we encounter an explicit reference constraint X � Y � where the repre

sentatives for X and Y are X� and Y �� respectively� If �X�� �P �Y
��� then nothing need be done� Otherwise we

must update the reference order and propagate changes to new descendants�

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

If �Y �� �P �X
��� then we collapse the suborder between �X�� and �Y ��� completing the coreference between X

and Y � for any class �Z� for which �Y �� �P �Z� �P �X��� we merge �Z� with �Y ��� After all such classes have

been merged� we propagate the term associated with �Y ��� which will be at least as instantiated as the term

associated with �X��� to all new descendants of �Y ��� These will be the coreference classes �Q� for which� prior

to the hierarchy update� �Q� �P �X
��� but �Q� ��P �Y

���

If �X�� and �Y �� are incomparable� then we simply add this new constraint to the order� Classes below �X��

will now also be below �Y ��� so new descendants of �Y �� �including �X�� need the term associated with �Y ��

propagated to them�

Explicit equality constraints Suppose we encounter a variable uni�cation X � Y � where the representatives for

X and Y are X� and Y �� respectively� We could handle this as two separate reference constraints X � Y and

Y � X� but it may be more e�cient to handle the coreference directly� If X� � Y � then nothing need be done�

If either �X�� �P �Y
�� or �Y �� �P �X

��� then we handle the completion of this coreference as above� If� however�

�X�� and �Y �� are incomparable� then we merge these reference classes� and propagate the term associated with

�X�� to the descendants of �Y �� �that are not also descendants of �X�� and vice versa�

Term uni�cation Additional coreference class updates and term propagation may result from implicit constraints

arising in uni�cation� During the uni�cation of two terms� if we unify a variable X with another variable Y �

then the situation is as above�

Suppose� however� we unify a variable X with a term �� �e�g� X � f�a� Z� In this case we �nd the

representative X� for X� unify �� and � �X�� and propagate this uni�ed term to all descendants of �X�� in the

reference hierarchy� Although this operation does not directly modify the hierarchy� the uni�cation of �� and

� �X� may result in further coreference class mergings� as described above�

���� Example

We now show an example with which we hope to elucidate the nuances of reference constraints� Consider the following

predicates�

p�G�H�I� 	� G �� H� G �� J� I �� H� K �� G�

G
 f�g��������� H
 f���h���� K
 f�����k��

q�J�K�H��

q�A�B�C� 	� A
 f�g�a������� C �� B�

Now consider the results of the predicate call p�X�Y�Z�� Initially� there are three separate� incomparable coref

erence classes� as shown in the �rst reference order in Figure ���� where � represents an implicit top element� The
second reference order in the �gure results after processing the body of p before the call to predicate q �where the

associated terms are shown below the variables� The structure arises from the reference constraints� For example�

the constraints G �� H and G �� J set input variable X �uni�ed with G to be subsumed by variables J and Y �uni

�ed with H� The associated terms arise from the explicit uni�cations in the predicate and the �ow of information

in the reference order� For example� the term associated with X is formed from the uni�cation G
 f�g��������

and the inheritance of information from J and Y �

The third reference order results after processing the �rst predicate in the body of q� The order itself did not

change� but propagation from J to X and K occurs� The next reference order is the �nal order after variables X�

Y and K merge to form one coreference class� with representative Y � The last order shows the returned state after

the local variable J is removed�

���� Comparison with sort hierarchies

There are a number of similarities� but also many important di�erences between our reference hierarchy and sort hi

erarchies in many
sorted logics ���� and sorted logic programming languages �e�g� LIFE ���� The two are compatible�

but independent uses of partial orders�

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

Y ZX

K

Y

ZX

f(_,h,_)

f(g(_),h,_)

f(g(_),h,k)

J

Y

f(g(a),_,_)

f(g(a),h,k)

T T T

J
_

f(_,h,_)

K

Y

ZX

f(_,h,_)

f(g(a),h,_)

f(g(a),h,k)

T

J
f(g(a),_,_)

f(_,h,_)

Z
f(g(a),h,k)

Y
f(g(a),h,k)

T

Z
f(g(a),h,k)

Figure ���� State of the reference order at various points in a predicate evaluation

Semantics� As mentioned above� a sort represents a conjunctive set of individuals� whereas a variable represents

a disjunctive set of individuals� If the exact individual denoted by a variable is unknown� the set represented

by it is neither empty nor a singleton� The distinctions between sorts and individuals �or declarational vs�

assertional relations are described in ����� and the need to distinguish between subsort �i�e� isa subsort of

relations and member �i�e� isa instance of relations is justi�ed� Thus� we cannot intermix the sort hierarchy

and individuals �where individuals might be seen as minimal sorts or leaves of the hierarchy� In a sense�

reference constraints add another relation �is more speci�ed than� among instances�

Scope� There is a fundamental di�erence between the scopes of sorts and variables� A sort hierarchy is intrinsically

global �declarational in scope� In many systems �e�g� imperative objected
oriented languages such as C##�

the sort hierarchy is speci�ed at compile time� In LIFE� the sort hierarchy may be modi�ed during run
time�

but in a limited way� New sorts may be added� and sorts may be rede�ned �e�g� to have new attributes� but

these changes are not propagated to existing individuals that are subsorts of those modi�ed�

The scope of a variable in logic is well
de�ned� In logic programming languages� the scope of a variable is not

global to a program� but local to a clause� Thus� all variable changes are during run time� which we would

expect to be more frequent than changes to sort hierarchies� In our approach� any change to the reference

hierarchy is re�ected in the instances represented by the variables a�ected�

Dynamic Behaviour� A key di�erence between sort hierarchies and reference constraints is with uni�cation� In

sorted logic programming� uni�cation does not modify the hierarchy� rather the uni�cation of two sorts is

generally their greatest lower bound� With reference constraints� however� uni�cation may actually change the

structure of the reference hierarchy� which in turn may modify terms associated with a�ected variables� This

was exempli�ed in section ������

Thus� we conclude that sort and reference hierarchies share some similarities� but are fundamentally di�erent and

independent� However� they are not mutually exclusive� and we feel that systems should provide both features�

���� Implementation

Can reference constraints be e�ciently implemented� If only coreference is used� then the reference order is an

anti
chain �i�e� each pair of coreference classes is incomparable� In this case there is little or no overhead when

permitting reference constraints� If reference is used� then we must maintain the partial order among coreference

classes� and propagate changes in a class to all of its subclasses� This could be achieved e�ciently through attributed

variables ����� where the cover �child relation is stored with variables� and may be implemented at the WAM level�

Thus� a modi�ed variable will have knowledge of its immediate descendants in the reference order� and so changes

can easily be propagated� Initially� the set of children for a variable will be empty� For changes to the reference

order� the only lattice operation that we need to perform is comparability �i�e� X �P Y �� This could be achieved in

time linear in size of the descendant cover relation for Y with a �parallelizable marker passing algorithm� Such an

algorithm would be e�cient as long as the size of reference order did not become too large� in which case taxonomic

encoding techniques could be exploited�

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

To facilitate backtracking� the state of the reference order would have to be saved� along with the standard trail

information� at choice points� Reference constraints also merge well with memoing techniques ������ Instead of

tabling only predicate call and return value information� we also need to store the relevant aspects of the reference

order prior to the predicate call� and upon return from the call� The relevant portion of the reference order P for

a predicate invocation is simply the suborder of P that contains only the variables mentioned in the predicate call�

When a look
up matches an entry in the table �i�e� both the predicate call and reference constraints on variables in

the call match� then we simply use the result information� which will provide both variable values and updates to

the current reference order�

��� Individual Level Inheritance

What are the bene�ts and uses of reference constraints� Ironically� although large reference orders may bene�t from

taxonomic encoding� it was in the development of our constraint
based view of encoding that the need for reference

constraints was �rst identi�ed ����� Encoding is� however� a limited domain of utility for this general mechanism�

More interesting applications arise with the notion of individual level inheritance �inheritance among individuals as

opposed to classes� A sort hierarchy provides a partial order among sets of entities� whereas reference constraints

construct a partial order among individual entities� Thus sort hierarchies and object
oriented class hierarchies permit

class to class and class to individual inheritance�

There are several reasons why we maywant individual level inheritance� In an ambiguous domain� we may want to

separate the known information about an entity from hypothetical or speculative information� In complex scenarios�

we may want to separate information related to an entity in di�erent contexts� We may even want to relate di�erent

entities that must share some common� but dynamically changing properties� In all these cases� reference constraints

permit the separation of information� while retaining a close structural relation� We now describe some properties

of applications that may bene�t from individual level inheritance�

In an ambiguous setting� we may have some information regarding an entity that we are certain of� and we may

have other information that we are uncertain of� In an exploratory fashion� we can analyze this other information�

perhaps in a breadth
�rst manner� If we discover new information with certainty� we can apply it to the original

entity� and it will be propagated down all paths of exploration� Any paths that become inconsistent will be pruned�

requiring a di�erent processing strategy than Prolog� instead of backtracking when the term of a variableX becomes

inconsistent� we can simply mark X as inconsistent �e�g� � �X � � and prune it from the reference order�

Another case arises if we want to retain information for a single entity� but in separate contexts� For example�

suppose we have a variable John which represents general aspects of a person named John� We may have additional

variables Father John � John and Pilot John � John which represent fuller information related to John in the

context of his being a father or a pilot� This situation is shown in Figure ���� We could combine these two contexts

with a variable Father P ilot John � Father John� Father P ilot John � Pilot John� In this way� we maintain

the information related to John in a hierarchically structured way� all information is accessible� but the information

within any context will not be cluttered by irrelevant information� In addition� any updates at higher levels �e�g�

adding general information about John� such as his age will be propagated to all lower levels� Such a scheme may

also be used for analyzing aliases� particularly if we allow information introduced at a descendant to override that

introduced at an ancestor �i�e� local information having precedence over inherited information�

John
person(name=>john)

Pilot_John
person(name=>john, occupation->pilot,

position=>captain, yearsExperience=>16)

Father_John
person(name=>john,

children->{person(name=>lucas, age=>5),
person(name=>mia, age=>7)})

Figure ���� Reference order for separating the contexts for a person named John

The above outlines properties of applications that would bene�t from individual level inheritance� We next

describe some concrete applications�

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

Automatic con�guration� Suppose we have a system that automatically designs a system con�guration given a

set of constraints among components and a set of speci�cation constraints �e�g� ����� At any point� we may

be certain about some properties of our system BaseSys� but uncertain about others� Through exploratory

reasoning� we could try a number of possibilities simultaneously� each of which must conform to BaseSys�

For each possibility� we could assign a variable� say Sysi � and make the constraint Sysi � BaseSys� We could

then add additional� hypothesized components to Sysi � Of course� this could be done recursively� creating

an entire hierarchy of possibilities� with BaseSys as the root� If we also detect relations among hypothetical

systems� then this hierarchy may be a general partial order� not just a tree �e�g� if we detect that Sysj � where

Sysj � Sysi � is an enhanced system of Sysk � we can add Sysj � Sysk �

During processing� we may determine the necessity of components in a higher system� resulting from analysis

or additional user input� For example� if we realize the need for a certain component in the base system� we

add it to BaseSys �via uni�cation and it will be automatically propagated to all of its descendants� This

propagation may detect inconsistency of one or more hypothetical systems� which will then be pruned from the

search space�

Of course� this system may be incorporated as part of a larger constraint solving system� and reference con

straints can be viewed as one more form of constraint in constraint logic programming�

Natural Language Processing� Computational linguistics systems must be robust� due to the high level of am

biguity in human languages� As examples� consider phrase parsing and discourse processing� A number of

techniques� such as chart parsing ���� �� ���� ����� have been designed to minimize the e�ort involved in

analyzing a sentence that may have multiple parses�

For a simple example� suppose a variable X represents what is known about a phrase� and variables Yi �where

Yi � X represent the investigation of various ambiguous parses �i�e� for each Yi some decision has been made

regarding the interpretation of an opaque word or phrase� During the parse� if something becomes known

about the entire sentence X �or about some sub
parse higher than the current level� this must be propagated

down fromX to the Yi �and recursively to their descendants� This idea can be extended from single sentences

to entire discourses�

In the sentence �Jack saw a dog on his way home�� the prepositional phrase �on his way home� may apply

to either the dog or to Jack� We may have semantic preference rules that would select the latter reading� but

the context of this sentence may override such rules� Thus� we may explore both possibilities� but focus on the

most likely reading given the current information available� In either case� we know that Jack saw a dog� so

we may assert this as known� and place the two readings in relation to this using reference constraints� Later

processing may incorporate additional certain information� which may prune one of the possibilities�

To achieve this using reference constraints� we must use a representation for parsed sentences in which ambiguity

can be resolved via further instantiation of terms� Figure ��� shows one possibility in which prepositional phrases

are stored in a list as the last argument of the main predicate�� In the term for variable X� we denote the

ambiguity as to whether Jack or the dog is on his way home using the disjunctive set notation fY �Zg �where�
for example� fjack� dogg uni�ed with dog results in dog� Although Prolog does not support such notation

directly� it can be speci�ed in LIFE and with sparse logical terms �����

X
saw(Y:jack,Z:dog,[on_way({Y;Z},home)])

X1
saw(Y:jack,Z:dog,[on_way(Y,home)])

X2
saw(Y:jack,Z:dog,[on_way(Z,home)])

Figure ���� Reference order for ambiguous parses of �Jack saw a dog on his way home�

�More linguistically motivated possibilities also exist	 but their development is beyond the scope of this thesis�

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

As another example� the word �chair� is ambiguous in the sentence �When Sherry saw the chair� she shook

her hand�� The default reading may be as a piece of furniture� but it may also refer to the chairperson of a

meeting� By maintaining both possibilities� backtracking may be avoided as further information is discovered�

Figure ��� shows how this may be represented using an interaction between reference constraints and a sort

hierarchy� The �rst diagram in the �gure shows a portion of a sort hierarchy for word meanings� in which

furniture chair and meeting chair are both subsorts of chair� and meeting chair is a subsort of person� The

second diagram shows the reference order after the sentence has been parsed� The pronouns she and her have

not yet been resolved� and the disjunctive set notation indicates that both must refer to either �Sherry� or

�the chair� �although the default may be that �she� refers to �Sherry� and �her� refers to �the chair�� In the

interpretation where �the chair� is a piece of furniture� we apply the semantic constraint that hand shaking is

done by persons� leading to a parse in which Sherry is shaking her own hand�

X
when(saw(Y:sherry,Z:chair),

X1
when(saw(Y:sherry,Z:furniture_chair),

X2
when(saw(Y:sherry,Z:meeting_chair),

chair

furniture_chair meeting_chair
shook({Y;Z},hand_of({Y;Z})))

shook(Y,hand_of(Y))) shook({Y;Z},hand_of({Y;Z})))

person

Figure ���� Reference order during parse of the sentence �When Sherry saw the chair� she shook her hand�

Chart parsing can be viewed as an instance of dynamic programming� It is generally bottom
up in that it starts

with words� which coalesce into larger and larger phrases� until one phrase �often a sentence spans the entire

input� The bene�t of saving intermediate results is a reduction in redundant processing �which is also the basis

of� and motivation for� memoing ������ Reference constraints can be used as an automatic aid to dynamic

programming systems in which information that applies to a node in the search space can be automatically

propagated� with inconsistencies corresponding to pruning�

Reference constraints may also aid in the integration of top
down and bottom
up techniques of discourse

processing by providing a structure for relating intermediate results� By maintaining ambiguity using reference

during top
down parsing� needless backtracking may be avoided� If bottom
up results are stored in a form

that is uni�able with the �nal result� then they too can be coalesced using reference� Thus� both forms of

processing create additional entities below existing entities� certainty is added higher up in the reference order�

and uncertainty is added at lower levels� When the entire structure coalesces into one coreference class� all

ambiguity has been resolved�

Non�monotonic and Default Reasoning� Although default properties are speci�ed in sort hierarchies� reference

constraints may be exploited to enhance the e�ciency of default reasoning by allowing a clean way of separating

known from assumed properties� When a variable X is constrained to be of sort s �e�g� via an assertion of

the form X�s� we can unify X with all the strict properties of s� and create an implicit default variable Xd�

where Xd � X� with which we unify all the default properties of s� In order to maintain the default variable�

new properties of X are uni�ed with Xd using what we call c�uni�cation ������ In c
uni�cation� one of the

terms is dominant and the other is subordinate� If a con�ict arises during uni�cation� instead of failing� only

the information in the dominant term is kept� Thus� when updating Xd after a change to X� we c
unify � �X

with � �Xd� where � �X dominates � �Xd� In this way Xd retains only those default properties that may

still be applicable to X� Additional default reasoning strategies �as in e�g� ���� ��� ���� may be built into

c
uni�cation� The importance of using reference constraints in this way is that monotonic aspects of reasoning

can be separated from� but still related to� non
monotonic aspects�

To illustrate� we use the standard �ying birds example� Suppose that bird is a sort with default properties

feathered�
true and fly�
true� and that penguin is a subsort of bird with a strict property fly�
false

and a default property home�
antarctica� The �rst diagram in Figure ��� shows the situation after initializing

CHAPTER
� REFERENCE CONSTRAINTS IN LOGIC PROGRAMMING ��

a variable Opus to be of sort bird �e�g� after an assertion of the form Opus�bird� The second diagram shows

the situation after we specialize Opus to be of sort penguin�

Opus
penguin(fly=>false)

Opusd
penguin(feathered=>true,

Opus
bird

Opusd
bird(feathered=>true,

fly=>true) fly=>false,
home=>antarctica)

Figure ���� Reference constraints for default reasoning

The hypothetical reasoning systems we described add uncertain assertions as children of a node� In this way�

certainty can be incorporated as it is determined� and removal of assertions corresponds to pruning children�

However� there may be systems in which assertions must be explicitly withdrawn without pruning the node�

In this case� additional work must be performed since branches of the reference order may have been pruned

using the information to be withdrawn� One possible solution is to mark� but not prune� inconsistent nodes of

the reference order� These nodes would be treated as pruned unless an assertion they contain is removed� in

which case they may change state from inconsistent to consistent�

Individual level inheritance is certainly possible without reference constraints� and in fact many systems appear

to be already doing this� However� we can apply the same arguments as for sort hierarchies in many
sorted logics�

and for inheritance in object
oriented systems� By making this process explicit� declarative and automatic� the

programmer �or logician is freed of the burden of performing this task� and can instead focus on higher
level aspects

of the problem� Due to the formal basis of reference constraints as a generalization of equality constraints� we ensure

a consistent semantics when individual level inheritance is exploited�

��� Conclusion

We have proposed two notions in this chapter� reference constraints and individual level inheritance� Reference

constraints are a generalization of equality constraints among logical variables� Equality constraints form equivalence

classes based on coreference� Reference constraints decouple the symmetry of coreference� and permit the construction

of a partial order of coreference classes� We have shown that� due to the semantic di�erences between sorts and

variables� the reference order is quite distinct froma sort hierarchy in many
sorted logics and sorted logic programming

languages� We believe� however� that both are compatible and desirable in a system� although we did not deeply

explore the interaction between the two� In this inquiry� we focused on reference constraints in logic programming

languages such as Prolog or LIFE ���� A full model theoretic analysis in a logic system is required�

Reference constraints lead to individual level inheritance� which permits inheritance from one individual to an

other� This is distinct from the ordinary notion of inheritance which is from a sort �or class to another sort or to

an individual� Through a general outline of the types of applications that may bene�t from automating individual

level inheritance� and descriptions of its use in automatic con�guration �and constraint logic programming� natural

language processing �and dynamic programming and default reasoning� we investigated the potential bene�ts of our

work in logic programming and arti�cial intelligence systems�

Chapter

Organizing the Hierarchy of Conceptual

Graphs

�When nothing is done� nothing is left undone�

� Lao Tsu

�Who really invented nothing
�

� Walt Kelly

Conceptual structures is a graphical knowledge representation formalismthat is equivalent in expressive power to �rst

order logic� There are two main forms of hierarchies used in the formalism� de�ned and derived� De�ned �declarative

hierarchies� such as sort and class hierarchies� have an explicit partial order relation� In conceptual structures� the

type and relation lattices are de�ned� A derived hierarchy is a partial order that is induced by internal structural

relations among components� Two conceptual graphs can be compared using the subsumption relation� where graph

g� subsumes graph g� if it contains a subset of the information in g�� Derived partial orders are employed in other

knowledge representation systems� most notably for classi�cation in the KL
ONE family of terminological systems

�����

To organize derived hierarchies such as these� which are highly dynamic and expensive to construct� a number of

techniques have been proposed� including encoding ���� and multi
level indexing ����� In this chapter� we develop a

novel approach to organizing derived hierarchies using graph normalization and spanning trees�

After providing a brief overview of conceptual structures� we introduce some normalization techniques for con

ceptual graphs� leading to spanning tree normal form �STNF� In ����� we show how an integration of sparse terms

and order�sorted feature terms� called sparse feature terms� can be used to implement graphs in STNF� and how

some operations on graphs in STNF can exploit uni�cation and enhance operational e�ciency� Starting with graphs

in STNF� we develop a generalization hierarchy normal form �GHNF with which we organize the derived hierarchy

of graphs� called the generalization hierarchy� into a spanning tree� We show how searches in this hierarchy can be

performed e�ciently using this spanning tree organization�

�� Background and Motivation

Since details of conceptual structures are not necessary for the following� for brevity we choose to limit detailed

background on the subject� which can be found in ������ Essentially� a conceptual graph �CG is a connected

bipartite graph consisting of labeled relation nodes and conceptual type nodes� Conceptual types are standard

ontological objects� such as �person�� �cat� or �eat�� and conceptual relations are basic relations among types� such

as �agent� and �object�� A standard example graph is shown in Figure ��� ������ and represents the declarative

statement �a cat sitting on a mat��

For our research� there are three ordered sets that are important� the conceptual types �the type lattice� the

conceptual relations �the relation lattice� and the graphs themselves �the generalization hierarchy� The formalism

��

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

CAT STAT SIT LOC MAT

AGNT

@1

@1

Figure ���� Conceptual graph representing �a cat sitting on a mat�

requires both the types and relations to form lattices� which we have argued is overly strict� and that only ordered

sets are required ����� These two ordered sets are de�nitional� in that the user imposes the partial order relation�

Since previous chapters have dealt with encoding de�ned taxonomies� we omit further discussion of the type and

relation lattices�

The generalization hierarchy� on the other hand� is derived using a set of canonical formation rules that de�ne

how graphs relate� If graph g� can be derived from graph g� using the canonical formation rules� then g� must

contain at least as much information as g�� A conceptual graph system begins with a set of given graphs� called the

canonical basis� All other valid graphs used by the system must be derivable from the canonical basis�

Spanning trees are a valuable tool for improving the operational e�ciency of graphs and the generalization

hierarchy� We only deal with atomic conceptual graphs in which all relations are both dyadic and invertible� Atomic

conceptual graphs contain no logical connectives �i�e� they are connected� no logical quanti�ers �other than the

implicit existential� and no nesting �i�e� there is only one context ���� ���� The inverse of a dyadic conceptual

relation R is a relation R�� that is semantically identical to R with the direction of the arrows reversed� For

example� the inverses of AGNT and PARENT are AGNT OF and CHILD� respectively� Similar assumptions have

been made in ���� ���� ���� �����

We �rst discuss the notions of cardinality constraints and functional relations� Although cardinality can be

expressed using sets or complex nesting of contexts� it is important to have the ability to express such constraints

simply and declaratively� Graph normalization techniques introduced in ����� are expanded upon in section ��� to

prepare for constructing the spanning tree normal form that we introduce in section ���� Of particular importance

to operational e�ciency is the elucidation of functional relations in graphs� We then explore their use in the

generalization hierarchy to specify a generalization hierarchy normal form� to enhance search operations such as

matching and retrieval� and to e�ciently perform topological traversals�

�� Cardinality Constraints

Although some conceptual relations are functional in character� CG theory provides no simple way to represent these

and other forms of cardinality constraints declaratively� without resorting to the use of actors� sets or complex nesting

of contexts� Actors imply computation of dependent concepts from independent concepts� while sets do not restrict

the number of relations of a particular type� which can be a valuable constraint for normalization and matching� For

example� the canonical graph� �EAT���AGNT��ANIMATE� does not tell us whether an act of eating must have
exactly one agent or may have multiple agents �i�e� if AGNT is a functional relation of EAT� Another example is�

�PERSON���SPOUSE��PERSON�� which says that the spouse of a person must be person� but does not constrain
a person to have at most one spouse� For illustration� we assume that both of these cases are functional�

De�nition
�� A cardinality constraint� �n 	n � Z
� between a concept c and a relation r states that at most n

relations of type r may be connected to c�

A cardinality constraint is denoted on the arc between the concept and the relation� Thus� the above example

becomes� �EAT�
(���AGNT��ANIMATE�� Restricting a relation to one occurrence for a concept �i�e� n � � is
a functional cardinality constraint� and it is these constraints that we focus on� The connection to logic is simple�

if the variable representing the independent concept appears in two instances of the relation� then the variables

representing the dependent concepts must be equal� This provides a sort of uniqueness constraint� Our example

translates to� �x�y �EAT�x � ANIMATE�y � AGNT�x� y ��z� AGNT�x� z z � y� We do not suggest that all

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

functional dependencies can or should be expressed in this way� Rather� we feel that by notating functional relations�

normal forms for CGs will be more distinct and easier to determine�

Cardinality constraints blend well with set cardinality ���� ����� For set coercion� a cardinality constraint can be

moved into the set notation� On expansion� the set cardinality can be moved out to a cardinality constraint� To ensure

set joins� we make concept sets functional� As an example� for� �DANCE���AGNT�
�PERSON� Liz�� set coercion on PERSON results in� �DANCE�
(���AGNT��PERSON� fLizg�� whereas set expan

sion on� �DANCE�
(���AGNT��PERSON� fLiz�Kirbyg(�� results in� �PERSON�Liz�!�AGNT!(�
�DANCE�

(���AGNT��PERSON�Kirby��

�� Normalization

Normalization is important to enhance the similarity among graphs and can be achieved via transformation rules

������ We assume that all relations are invertible so� e�g�� the inverse of WORKS FOR is EMPLOYS� whereas the

inverse of SPOUSE is itself �i�e� it is symmetric� In ����� we show how our representation automatically performs

some simpli�cation� reducing redundancy that can arise during joins�

Explicitly representing functional relations can be exploited to determine a precedence between a relation R and

its inverse R��� Priority is given to functional relations� Thus� assuming a world in which a person has at most

one nationality� we would prefer the graph� �PERSON�
(���CITIZENSHIP��COUNTRY� to� �COUNTRY��
�CITIZEN
(���PERSON�� If both R and R�� are functional� we incorporate both �i�e� we perform symmetry

completion ������ By doing this� we can traverse all functional relations in the direction of their arcs� If neither R

nor R�� are functional� other preference schemes need to be speci�ed�

Normalization will also incorporate selectional constraints related to the graph� particularly those which add

functional relations between concepts� To illustrate� the well
known example in Figure ��� shows a normalized

version of the CG� in which the concept SIT imposes the selectional constraint that it has exactly one agent�

�� Spanning Tree Normal Form

It is easy to specify a spanning tree for any conceptual graph� with coreference linking identical concepts as in the

linear form� Any traversal of a graph that visits every concept and relation de�nes a spanning tree� the �rst node

visited is the root and cycles are broken by introducing coreference� Our goal is to specify a spanning tree normal

form �STNF that can be used to improve the e�ciency of CG operations� by exposing functional relations� as well

as to organize and search the generalization hierarchy� In ����� there is also a proposal for a normal form that is

a spanning tree� but the tree is determined in an ad hoc manner �alphabetical order is used to select the root and

relations to expand partial trees�

De�nition
�� A spanning tree T for a conceptual graph G is a connected acyclic subgraph of G containing all the

concepts of G 	but not necessarily all the relations
� For each spanning tree� one concept is designated the root�

In the linear form ������ concepts and relations form the nodes of a spanning tree� and arcs are labeled with

directional arrows� For STNF� only concepts are nodes while relations are arc labels� The direction of arcs is

implicitly downward� Although this format is suitable for binary relations� which form the majority of conceptual

relations ������ it may be possible to accommodate monadic and higher
order relations� we do not explore this here�

We assume that our graph is normalized as described in section ��� and that we have linear extensions � and � of

the type and relation hierarchies� respectively� Since some graphs may require multiple root elements� we actually

construct a spanning forest� We maintain the individual trees in a list ordered by the type of the root concepts

�according to � � When drawing forests� we add an untyped dummy root to connect the trees together�

We give below an algorithm that takes as input a normalized conceptual graph G� and outputs a spanning forest

F that represents G in STNF� The concepts and relations of G are the ordered lists C and R� respectively� Each

node in the forest is a concept c to which a �possibly empty list of children is associated �via children�c� Each

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

child contains a pair� the child concept and the connecting relation� The root of the tree containing a concept c is

obtained by calling tree�c� F �

Algorithm � STNF	input� G �� C�R
� output� F

�� F �� C

�� for each concept c � C� children�c �� �
� for each relation r�ci� cj � R �taken in order

�� if 	tree�cj � F � cj AND tree�ci� F �� tree�cj � F
 then

�� children�ci �� children�ci � f� r� cj
g
�� F �� F � fcjg
�� else

�� children�ci �� children�ci � f� r� coref�cj
g
�� end

First� we start with a forest consisting of each concept in the graph G as a tree �lines � and �� We consider

relations one at a time and update the forest as necessary� A node is always placed below the entering concept ci�

labeled with the relation type� If the exiting concept� cj � is the root of a di�erent tree in the forest from ci simply

connect this tree below ci �lines � and �� We do this by adding the relation"concept pair to the children list of ci
and removing the tree rooted at cj from the forest� If� however� cj is not a root or is in the same tree as ci� the node

below ci will contain a coreference label linking to cj �line �� Once we have visited all relations� we have a spanning

forest for our graph� The time complexity of this algorithm is near linear in the number of concepts and relations in

the input graph if the tree function is implemented using a union
�nd algorithm�

The order in which we visit relations �line � is important� We consider all functional relations� before any non

functional ones� Within these groups� the order depends on the types of the relation and two incident concepts� The

order of precedence is the relation� followed by the entering concept and lastly the exiting concept� Exploring the

consequences of choosing di�erent precedence orderings is a topic for further research� It may still be possible for

there to be two or more arcs with precisely the same relation and incident concept types� In this case� contextual

information may be needed for selection� In this preliminary analysis� we simply select one arbitrarily� and this is

the only place where non
uniqueness can enter into the process� Thus� our construction computes a spanning tree

normal form that is nearly unique for normalized graphs� As an example of this construction� Fig� ��� shows the

STNF of the graph in Fig� ���� Note that both AGNT and LOC are functional relations of SIT� The last relation

visited is STAT� which is added using coreference� In diagrams� we notate functional relations using thick lines and

non
functional ones with thin lines�

CAT

STAT

SIT:*x
LOC

MAT

AGNT

*x

Figure ���� Spanning tree normal form

Another well
known example� with a cycle� is� a monkey eating a walnut using the walnut�s shell as a spoon ������

Figure ��� shows the normalized graph as well as its STNF� For illustrative purposes� we assume that an entity can

only be �intransitively a part of at most one other entity� and that an instance of eating has one agent and one

object� Thus the relation PART is inverted to PART OF� We assume that the linear ordering of relations is AGNT �

OBJ � PART OF � INST � MATR� We �rst add MONKEY and WALNUT as children of EAT� then a coreference

link to WALNUT as a child of SHELL� and �nally we add the non
functional relations INST and MATR in the tree

rooted at EAT�

For a more complicated example� consider the statement� a woman eating a dinner cooked by her husband� which

is shown in Figure ���� In this case� we end up with two trees since both EAT and COOK only have exiting relations

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

MONKEY

AGNT EAT OBJ WALNUT

PART_OF

SHELLMATRSPOON

INST
MONKEY

AGNT
EAT

OBJ

WALNUT:*y

PART_OF

SHELL

MATR

SPOON

INST

*y

@1 @1

@1

Figure ���� A cyclic graph and a tree representation

in the normalized form� Assuming the types are ordered by COOK � EAT � WOMAN � MAN� we obtain the

STNF as shown�

MAN

AGNTWOMAN OBJEAT

SPOUSE DINNER

COOKAGNT

MAN:*x

AGNT
COOK

OBJ

DINNER:*y

EAT

@1

@1@1

SPOUSE

@1

@1

@1

OBJ

AGNT OBJ

WOMAN:*z

SPOUSESPOUSE

*x

*y

*z

Figure ���� A woman eating a dinner cooked by her husband

In ����� we describe more fully the advantages of STNF� Graphs in STNF admit a direct implementation using

order sorted feature structures ��� ��� we developed a variant of sparse terms for this purpose� We demonstrate how

the canonical formation rules can be performed on graphs in STNF� in particular how uni�cation can be exploited

to e�ciently implement these rules by observing the constraints imposed by functional relations� Since these issues

are outside the scope of this thesis� we choose to omit details�

����� Pivoting

Given a graph in STNF� we may need a certain concept to be the root of one of the trees in the forest in order

to perform graph matching� to obtain di�erent viewpoints of a graph� or to further normalize the spanning tree for

storage in the knowledge base� We call this process pivoting� Although there are several possibilities for pivoting�

we have chosen one that is particularly simple� yet useful for organizing the knowledge base� We call the node

of a concept in a spanning forest that maintains the type information �and possibly has a subtree the dominant

node� All other� coreferring nodes are called subordinate� Basically� to pivot a concept that is not already a root is

accomplished by replacing the dominant node for the concept by a subordinate node and adding the subtree rooted

at this node as a top level tree in the forest� Pivoting can easily be carried out� as shown in the following �gure

which shows pivoting of the STNF form of the graph in Fig� ��� on the concepts �WALNUT� and �SHELL��

�� Representing the Generalization Hierarchy

A CG database contains of some of the �in�nitely many canonical graphs that can be obtained from the canonical

basis B using the canonical formation rules� The generalization hierarchy organizes graphs into a partially ordered

set of equivalence classes ���� ����� where each graph in a class is canonically derivable from all others in the class� and

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

MONKEY

AGNT

EAT

OBJ

WALNUT:*y

PART_OF
SHELL

MATR

SPOON

INST

*y

MONKEY

AGNT

EAT

OBJ

WALNUT:*y

PART_OF
SHELL:*z

MATR

SPOON

INST
*y*y

*z

Figure ���� Examples of pivoting the graph in Figure �

one class subsumes another if each graph in the latter is derivable from each graph in the former� The generalization

hierarchy consists of both the canonical basis �which represents things that could exist and the database graphs

�which represent things that do exist� Although B may not form an anti
chain� there is a subset B� of B that forms

the initial level� or co
atoms� of the generalization hierarchy� Our goal is to use STNF to assist in the organization

and search of this hierarchy� The advantages of explicitly maintaining the generalization hierarchy are described

more fully in ����� This hierarchy can be encoded so that many operations among graphs in the hierarchy can be

performed e�ciently using only taxonomic operations� avoiding matching altogether� In our case� we maintain the

full hierarchy� but mark one parent of each graph as dominant� to identify a spanning tree�

We �rst describe the process of constructing the spanning tree for the generalization hierarchy incrementally�

leading to another normal form� We start with an empty generalization hierarchy consisting only of ��� and ���� We
need to order the children of any element� so we de�ne a total order on graphs �perhaps based on the linear extensions

of the type and relation hierarchies� and the form of the graphs� The method used to specify this ordering is not

important to the following discussion�

Suppose we have a generalization hierarchy organized with an underlying spanning tree TG and we wish to add a

graph Q in STNF� We essentially use the algorithm of ���� to search the hierarchy and �nd the immediate predecessors

�IP and immediate successors �IS of Q� We store graphs so that every STNF graph G is a simple specialization

of its parent G� in TG� That is� G and G� have a direct matching �i�e� their feature term implementations are

uni�able� and the term of G� subsumes that of G� This cannot be achieved for all ancestors of G� but if it holds

for all ancestors in TG �i�e� graphs on the path from G to the root ���� then we can improve search and matching
operations� The position of Q in TG is below the leftmost IP�

As we �nd each predecessor C of Q in TG� we modify the form of Q� Since both C and Q are in STNF� the

spanning trees in the forest C will be contained in the trees of Q �modulo symmetric relations and coreference� For

each tree of C whose root is not a root of Q� we pivot� Pivoting does not destroy the STNF properties� but creates

additional trees� so we essentially �atten Q until C is more evident in its forest� When all the ancestors of Q in TG
have been processed� Q will be in generalization hierarchy normal form �GHNF� The advantage of a storing graphs

in GHNF is that if we have graphs Q and Q� for which Q subsumes Q� in TG� then Q and Q� have a direct and

simple matching� That is� not only is Q� a specialization of Q� the feature terms representing Q and Q� are related

by term subsumption�

����� Depth��rst topological traversals

The spanning tree TG underlying the generalization hierarchy can be viewed as representing a left
to
right �LR

depth �rst �DF traversal of the generalization hierarchy� We show here a relation between LR
DF traversals and

DF topological traversals� where a topological traversal is any traversal that obeys the topological property that a

node cannot be visited until all of its parents have been visited� In ����� the advantages of searching the hierarchy

for IP and IS topologically are described�

We make the distinction between breadth �rst �BF and depth �rst topological traversals� In BF traversals� we

visit nodes by level� The level in an ordinary BF traversal is the length of the shortest path to the root� since we place

an element in the search queue when it is �rst accessible� The level for a topological BF traversal� however� is the

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

length of the longest path to the root because we place an element in the search queue only when last accessible �when

the last parent has been visited� DF traversals� on the other hand� select the next candidate node to visit with the

longest leftmost path to the root �in a LR traversal� where con�icts are resolved by choosing the leftmost element�

For ordinary DF traversal� a candidate is any unvisited node that is connected by an arc to the tree traversed so far�

When observing the topological property� the only candidates are those whose parents have all been visited�

It should be clear that BF and DF topological traversals are implemented di�erently �using a queue in the former

and a stack in the latter and may visit nodes in di�erent orders� The proposal in ���� performs a BF topological

search of the generalization hierarchy to perform updates and retrievals� We feel that it is interesting to explore

DF topological searches for several reasons� First� such a search would result in �nding the �rst member of IP

earlier than a BF topological search� Second� we show how the spanning tree TG can be used to perform a DF

topological traversal without needing to mark elements as visited� Third� we can utilize GHNF more fully to improve

the e�ciency of graph comparisons�

Although we cannot use the LR
DF traversal suggested by TG in the search algorithm� there is an interesting

connection between DF traversals and DF topological traversals� If TG represents a LR
DF traversal of a hierarchy

P � then a right
to
left �RL DF traversal of TG is a RL
DF topological traversal of P �

Theorem
�� Suppose G is a rooted directed acyclic graph and TG is the tree resulting from a LR�DF traversal of

G� Then a RL�DF traversal of TG is a RL�DF topological traversal of G�

Proof� Consider any point in a traversal of TG� Suppose the next node to visit� v� with parent p in TG� has an unvisited

parent p�� Since p� is unvisited� it must be to the left of p in TG� but then during the initial DF traversal p� would have been

visited before p� and so v would be below p� not p in TG� �

Thus� a simple RL
DF traversal of TG performs a DF topological traversal of the ordered set without the overhead

of checking when all parents have been visited�

In order to fully utilize the spanning tree structure of the generalization hierarchy and the GHNF form of graphs�

we describe a modi�cation of the search algorithm of ����� The problem is to �nd the immediate predecessors �IP

and then the immediate successors �IS of a graph Q� which may or may not be in the hierarchy� We assume that

after a comparison between Q and a graph u in which u
 Q� it is desirable to compare the children of u with Q

so that we can bene�t from the result of the match �while still obeying the topological property� By following the

depth �rst topological traversal described above� this can be achieved with very little e�ort� we don�t even need to

mark elements as visited� By marking only those which successfully match Q� we can perform the search with a

minimum amount of administration� Furthermore� since graphs are in GHNF� we will successively compare graphs

whose GHNF forms most closely match until a subtree is traversed or until a graph is found which doesn�t match Q�

Another advantage of this approach is that by performing a DF topological search� the focus �as described in ����

becomes restricted more quickly� providing a more constrained target for guiding the search�

�� Conclusion

We have explored the use of spanning tree representations of graphs and the generalization hierarchy in conceptual

structures� We �rst proposed a means of declaratively representing cardinality constraints� Of particular interest are

functional relations� which restrict the number of occurrences of a particular relation type to one� These constraints

are important for improving the e�ciency of matching and other graph operations� We extended and re�ned CG

normalization� as introduced in ������ through the use of functional relations� We developed a spanning tree repre

sentation of CGs� leading to a spanning tree normal form �STNF that is based on semantic content and is less ad

hoc than some previous proposals� Graphs represented in STNF have a natural implementation using a variation of

order
sorted feature structures� providing a scheme in which graph operations can bene�t from the e�ciency of fea

ture term uni�cation� Finally� we showed how identifying an underlying spanning tree for the generalization hierarchy

can bene�t both storage and traversals� A spanning tree can assist in a further re�nement of STNF to generalization

hierarchy normal form �GHNF in which all graphs on the same path to the root are uni�able� Furthermore� by

CHAPTER �� ORGANIZING HIERARCHIES OF GRAPHS ���

traversing this left
to
right depth �rst tree in a right
to
left depth �rst manner� we achieve a depth �rst topological

traversal that can be used as an alternative search procedure of ����� An advantage of this search� in addition to its

e�ciency and simplicity� is that graphs which are closely related have a higher chance of being compared successively�

so we can take advantage of the results of previous matches�

Chapter ��

A Hierarchical Organization of

Landscape Models

�No man can reveal to you aught but that which already lies half asleep

in the dawning of your knowledge�

� Kahlil Gibran

Due to the spatial scale at which most empirical landscape studies are performed� replication is rarely feasible� and

experimenters may require arti�cial replication through the use of landscape models that are synthetically generated�

In our view� a landscape is a heterogeneous region on the surface of the earth� and a landscape model is a simpli�ed

representation �e�g� as a digital map of a landscape of interest� A generator of landscape models is a procedure for

producing landscape models�

Arti�cial generation of landscape models is becoming increasingly prevalent in landscape ecology and is useful

for a variety of purposes� including comparison with real data� testing general theoretical hypotheses� and providing

input to simulation models� However� the number of generators of landscape models is increasing and there is

no framework within which generators can be analyzed� compared and organized� In this chapter� we propose a

hierarchical framework that uni�es landscape models within a formal organizational system� A landscape model that

is arti�cially generated using a simple random process is called a neutral model� Generators of neutral models produce

instances of landscape models with two or more patch types� and constrain the patterns generated by specifying the

proportion of the model covered by each patch type� We develop a generalization of neutral models� where landscape

models are generated according to a set of constraints on possible patterns� A set of constraints is a landscape model

prototype�

Di�erent landscape model prototypes can be compared according to the number and type of restrictions� where a

prototype is considered �less neutral� or �more restricted� than another if the former has a superset of the constraints

of the latter� This relation produces a hierarchy that captures gradients of neutrality among prototypes� The

hierarchy thus formalizes� in a mathematically elegant manner� a multi
dimensional transition from neutral models

that impose few restrictions on pattern generation to predictive models that impose a variety of more ecologically

motivated constraints on the generation of landscape models� In a more practical context� this hierarchy may be

used to guide the development of landscape model generators� to aid selection of appropriate existing generators�

and to assist in the analysis of models derived from real landscapes through the use of landscape model prototypes�

���� Introduction

A landscape is a heterogeneous region of the earth that is composed of a mosaic of di�erent patches� and generally

contains a few interacting ecosystems ����� Landscapes may be de�ned from the viewpoint of a particular organism�

although a common viewpoint is from the human perspective� where a landscape is generally in the range of ��� to

��� ha �e�g� ������ A landscape model is a simpli�ed representation �e�g� as a digital raster map of a landscape of

interest� either real or theoretical� and is produced from natural �e�g� remote sensing or arti�cial �e�g� simulation

���

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

modeling sources� We must distinguish between three things� each of which may be viewed as a model� an instance

of a landscape model refers to a particular map that represents a landscape� a prototype of a landscape model refers

to a set of constraints on the generation of landscape models� and a generator of landscape models is a procedure for

synthetically producing model instances from model prototypes�

The spatial scale of many landscape studies limits the ability to perform experiments in a traditional way� it

is di�cult to exert the required control for manipulative experiments� and hard� if not impossible� to �nd true

replicates� With the increase in modeling related technology and techniques� many studies have used computer

generated landscapes both for arti�cial replication and for studying theoretical properties of idealized landscapes�

Research on the generation of landscape models can be classi�ed in two main groups� The goal of one group has

been to produce accurate prediction or duplication of the patterns seen in real landscapes �e�g� ����� We refer to

such model generators as predictive� The goal of the other group has been to generate landscape patterns that exhibit

a simpli�ed� but known� structure� and are generated by a random process� These types of generators have been

termed neutral models since they are neutral with respect to ecological processes responsible for patterns observed

in real landscapes ����� The patterns that emerge in neutral models are the patterns expected in the absence of any

ecological e�ects� Thus� neutral models can form a null hypothesis for testing for the e�ect of ecological processes on

natural landscape patterns� A potential focus for hypotheses that relate ecological process and pattern is to explain

the di�erence between neutral model patterns and patterns observed in real landscapes�

Work on neutral models has proceeded steadily over the last few years �e�g� ���� ��� ��� ����� but is now rapidly

expanding� as the number of presentations that focused on neutral models at a recent landscape ecology symposium

testi�es �e�g� ���� ��� ��� ���� ����� However� although the development and use of neutral models and neutral

model generators has proliferated� no unifying framework for organizing and categorizing models has emerged� Even

the notion of a neutral model is becoming vague as neutral model generators are enriched with new features �e�g�

���� ����

We develop a general� and formal� view for arti�cial generation of landscape models� We de�ne a landscape

model prototype to be a set of constraints that restricts the generation of landscape models� Intuitively� a landscape

model prototype is an abstract ideal of a landscape model� and can be viewed as specifying some characteristics

of landscape models that are generated using this prototype� For example� a prototype may include restrictions to

landscape indices �e�g� richness or contagion or may be more complex� involving non
trivial spatial or temporal

relations� Specialized generators must be developed to produce landscape models for di�erent types of constraints�

A variety of such generators already exist� and more are continually being developed�

Prototypes separate processes on landscapes into those aspects that account for the resulting pattern �i�e� the

processes embodied in the constraints from those that are not considered� The patterns that emerge from landscape

model prototypes are the expected patterns in the absence of all ecological e�ects not incorporated into the set

of constraints� Landscape model prototypes also form a null hypothesis for landscape patterns� and can be used

for testing the e�ect of ecological processes acting on patterns in natural landscapes that are not accounted for in

the constraints� Hypotheses may attempt to explain the di�erence between the patterns observed in the prototype

instances and real landscapes�

A given set of constraints will generate a distribution of landscape models with expected characteristics� and

may be deterministic or stochastically distributed� As the number of constraints increase� the expected pattern

generated becomes more restricted� providing a gradient from simple models to more complex� predictive models�

This relation forms a hierarchy� or partial order ����� on landscape model prototypes� The highest element of the

hierarchy imposes no constraints on landscape structure and hence all landscape patterns have equal probability� We

develop a framework within which this hierarchy of landscape models can be constructed� and describe its utility

to landscape ecology for managing and analyzing sets of landscape models� landscape model prototypes and model

generators�

Our framework provides a number of signi�cant contributions to landscape ecology� First� by formalizing the

abstract notion of a prototype� we provide a common ground upon which di�erent generators can be compared�

This not only may avoid re
developing existing generators� but provides a structure within which generators can be

contrasted� and gaps identi�ed� In addition� the resulting hierarchy provides a means for a common organization of

landscape model generators� producing a structure for access to existing generators� Finally� the prototype hierarchy

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

can be used to guide the analysis of data sets of landscape models� assisting the identi�cation of characteristics for

which the data set deviates from random�

The next section develops the notion of neutral models� as introduced by Garder et al� ����� This is followed

by a de�nition of landscape model prototypes� Section ���� uses this formal description to construct a hierarchy of

prototypes� Finally� we describe the potential uses of landscape model prototypes and the prototype hierarchy for

landscape ecology�

���� Background� Neutral models

Landscape patterns may be represented using a two
dimensional array of cells� where each cell is occupied by some

value� which we call a landscape feature� A patch is formed where adjacent cells are occupied by the same landscape

feature� The neutral models introduced in Gardner et al� ���� are whole mosaic models ���� that are constructed

using methods derived from percolation theory ������ In their simplest form� each cell in the model is occupied by

one of two distinct landscape features� which may di�erentiate� for example� community types that are susceptible

or unsusceptible to disturbance� These models are speci�ed by two parameters�

p � the fraction of the landscape occupied by one of the features

m � the linear dimension of the map �i�e� the length of one side

By a simple random process� cells are occupied by feature � with a probability p� and feature � with a probability

of ���p� These models are similar to landscape maps that have been classi�ed into two categories� but are �neutral�
with regard to the physical and biological processes that create real landscape patterns� Figure ���� shows three

example neutral models for various values of p�

Figure ����� Example neutral models� Each instance was generated on a ����� grid �m���� with varying proportions
of the white feature �p � ���� ��� and ����

Gardner et al� ���� used such simple neutral models to examine the e�ect of varying model size on patch size

and shape in order to de�ne appropriate scales for landscape analysis� and later Gardner et al� ���� examined

e�ects on animal movements� Turner et al� ����� simulated disturbances on neutral landscapes with di�erent

proportions of susceptible habitat� The disturbances were modeled as random events that occur with a given

frequency �probability of initiating and intensity �probability of spreading to neighboring cells� They showed that

the disturbance characteristic �frequency vs� intensity primarily responsible for the propagation and extent of a

disturbance depends on landscape connectivity �i�e� the value of p� In this last study� signi�cant changes in model

behaviour were detected near the percolation threshold �i�e� the value of p at which a patch of type feature � traverses

the landscape model� In these simple neutral models� the percolation threshold occurs at a value of p � ������ for

very large models�

Gardner and O�Neill ���� introduced a contagion factor �see section ���� that can be used to create landscape

models with larger contiguous patches while retaining the same relative proportion of features in the model� They

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

used these contagious landscapes to study the potential for movement and resource use by species living in patchy

landscapes� They found that the percolation threshold varies inversely with contagion� Turner et al� ����� compared

the results of simulating natural disturbance on real landscape models �Yellowstone National Park with results from

the same simulations run on neutral models that have an equivalent proportion of the �re susceptible community

type� A number of these studies propose that signi�cant departures by real landscapes from the expected patterns

generated by a neutral model may be used to form and test hypotheses about the relationship between the observed

patterns and ecological processes ���� �����

Neutral models have a number of important uses in landscape ecology� some of which are mentioned below�

Comparison with real data� This is the main use endorsed by Gardner et al� ���� and Caswell ����� Here� a

neutral model is used as an ideal against which to compare real landscape data� Using a landscape statistics tool

such as FRAGSTAT ���� ����� we can compute statistics that may di�erentiate between landscape patterns �e�g�

average patch size� number of patches� patch adjacency� fractal dimension� contagion� etc� ������ Deviations from

the neutral model permit an estimate of the e�ect of ecological interactions on the pattern observed in nature� and

may lead to hypotheses regarding ecological processes responsible for these di�erences in pattern�

Testing broad�scale landscape hypotheses� Neutral models can be used to test hypotheses about landscape

phenomena� such as the spread of disturbance and animal movements� The simpli�ed structure of neutral models

permit a clear analysis of how changing the parameter p e�ects the characteristics of interest� This is how neutral

models were exploited in ���� ����� Another use in this context is to analyze properties of neutral models themselves�

using tools such as FRAGSTAT ����� in order to determine how the value of p a�ects the value of di�erent landscape

indices� such as average patch size�

Comparison with output from predictivemodels� Since we know the characteristics of neutral models� they are

useful for comparison with the output from predictive models of landscapes� The di�erence between real landscape

data and the predictions of a model are one measure of a model�s ability to predict landscape patterns ����� Neutral

models provide a baseline that can be used to measure the improvement in predictability that is achieved by modeling

geomorphological� climatic� biotic and other ecological e�ects�

Input to simulation models� Replication of landscapes is a di�cult problem in landscape ecology� By specifying

certain constraints� generation using neutral models provides a means of approximating replicates of landscapes with

some speci�c characteristics �e�g� a �xed contagion� These arti�cial replicates can be used as input to landscape

simulation models that generate new landscape models from a given input model �e�g� SELES �����

���� Landscape Model Prototypes

Our objective is to extend the core ideas of neutral models into a general framework for reasoning with landscape

models that are arti�cially generated� The loose de�nition of a neutral model given by Caswell ���� is� �a neutral

model is an expected pattern in the absence of speci�c ecological processes�� Rather than focus on the absence �i�e�

neutrality of speci�c processes� we feel that models should be de�ned in terms of the presence of speci�c processes�

That is� �a landscape model prototype is an expected pattern in the presence of speci�c constraints on that pattern��

These pattern constraints� which we describe in detail below� dictate the expected pattern� We now give a formal

de�nition�

De�nition ���� A landscape model prototype is a set of pattern constraints that restrict the possible generation of

landscape models� An instance of a prototype is a landscape model generated under the set of constraints�

Thus a landscape model prototype describes the expected pattern of a landscape and in essence gives a distribution

of possible instances� which are particular landscape patterns generated using the given set of constraints�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

������ Pattern constraints

There are many ways in which ecological information may be incorporated into landscape model prototypes� We

have already seen two pattern constraints� as used in the simplest neutral models ����� the model size m and the

landscape area ratio �where landscape feature � had a relative distribution of p� and feature � had a distribution of

�� p� In addition� these models restrict richness to the interval ��� ��� Thus� these models are random with respect

to pattern� but always have a maximum richness of � and a landscape area ratio �LAR for feature � normally

distributed around p� The RULE program ���� permits the generation of models that precisely satisfy p� Richness�

model size and LAR can be viewed as constraints on the patterns generated by these neutral models �i�e� they are

not completely random� That is� a neutral model with p � ��� and m � �� can be represented as a landscape model

prototype with the constraints� fLAR � ����� ���� size � ��� ��� richness � ��� ��g�
Additional constraints may be speci�ed by restricting values of other landscape indices �e�g� contagion or average

patch size� or by incorporating feature responses to spatially explicit landscape parameters such as elevation or soil

type� We now discuss a number of constraints that can be imposed on the generation of landscape pattern� This

list is not intended to be exhaustive� The example instances were generated using the spatially explicit landscape

dynamics simulator SELES �����

Constraints on bounds� Since a landscape model must be represented in a �nite amount of memory� bounds on

the grid size and maximum number of cell values are important� Restricting the grid size �i�e� the number of cells

is a fundamental constraint� and is related to the extent �i�e� the physical area represented by the entire model and

the grain �i�e� the physical area represented by each cell in the model of the landscape of interest� where extent �

number of cells � grain�

Normally� each cell is represented by an integer� and so the number of potential cell values is bounded by the

maximum size of integer that can be represented� In the case of the neutral models of Gardner et al� ����� each cell

could be represented by a single bit� limiting the number of cell values to two �� and �� For instances generated

from prototypes that specify only bound constraints� there will be no expected pattern� the feature in each cell is

completely independent of all other cells� and hence no expected value �or expected distribution can be predicted�

Constraints on landscape indices� In the literature to date� neutral models have been restricted to two landscape

features �i�e� patch type richness is � �� We can extend this to any number of features� permitting richness in a range
of values �e�g� richness � ��� ��� For a particular application� each feature can be assigned di�erent characteristics
�e�g� to describe di�erential e�ects of a particular disturbance� In the context of percolation theory ������ instead

of restricting each cell to either percolate or not percolate� varying degrees of percolation properties can be assigned

to di�erent cell types� For studies of the spread of disturbance in neutral models �e�g� ������ this corresponds to

permitting varying susceptibility to disturbance spread �e�g� �res or insect outbreaks for each feature� as opposed

to the simple binary properties of susceptible vs� unsusceptible� In the absence of contagion� this is very simple� for

k features� we need to specify k relative abundance probabilities �which must sum to �� A model containing at most

k features can easily be generated�

We mentioned above that Gardner and O�Neill ���� propose contagion as a landscape index that may be used to

constrain pattern generation for the two feature neutral models� However� when combined with an arbitrary richness

constraint� the notion of contagion becomes more complex� In the two feature model� only one number was needed

to represent contagion� an index indicating the probability that two adjacent cells will have the same feature� Now�

in addition� we can specify contagion among di�erent features�

To take a more concrete example� suppose our features are tree species� For a cell of type Douglas
�r 	Pseudotsuga

menziesii
� we may specify not only the probability that an adjacent cell is Douglas
�r� but also the probability that

it is Western hemlock 	Tsuga heterophylla
� Red alder 	Alnus rubra
� etc� Thus we have k� contagion values to

specify� In some situations� it may be di�cult to have precise ecological data to specify this accurately� We can

simplify matters by only requiring one contagion value c that speci�es the probability that adjacent cells will have

the same feature� That is� for each pair of identical features �e�g� Douglas
�r next to Douglas
�r� the contagion

value is c� and for each pair of di�erent features� no contagion is speci�ed�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

Simultaneously preserving the probability distribution �i�e� LAR and contagion is not trivial� but can be ac

complished by a formal generalization of contagion� which we develop in the appendix at the end of this chapter�

Examples of landscape instances generated using di�erent values for contagion are shown in Figure ����� All three

models have four features with equal relative proportions ������

(a) (b) (c)
Figure ����� Instances of landscape model prototypes produced on a ���� ��� grid� Each model has four features
with equal landscape area ratios �i�e� equal relative proportions� The value of contagion di�ers for each model
instance� taking on the values ���� ��� and ����� respectively� The prototype for instance �a is therefore fLAR �
������ ����� ����� ����� size � ���� ���� richness � ��� ��� contagion � ���g�

Although contagion is an intuitive and common index for landscapes� there is nothing ecologically inherent

that distinguishes it from other indices� We could� in theory� restrict the value of any landscape index to constrain

possible landscapes� For example� we could set Shannon�s diversity index or edge fractal dimension� and only generate

landscapes that have a particular expected value for these indices� Furthermore� we could specify restrictions to more

than one landscape index simultaneously� and generate landscapes that satisfy all the values of these indices� In this

way� we view landscape model prototypes as models that are not neutral with respect to a given set of explicit

constraints �landscape indices in this case� but neutral with respect to everything else�

Spatial constraints� There is no mechanism in the models of Gardner et al� ���� to incorporate the e�ects of phys

iography when generating landscape models� The distribution of real landscape features may be strongly in�uenced

by some physical characteristics of the landscape� and we may want to integrate them into model generation� We can

incorporate responses to spatial parameters �e�g� topography� soil type� slope� etc� as constraints on the probability

distributions of features� providing a spatial context for pattern generation� Such parameters a�ect both the relative

proportion and spatial distribution of the features in the model� We call such models site speci�c due to the local

e�ect of parameter values at a given site� This use of spatial parameters essentially replaces a statistical approach

to spatial distribution with a more empirical based� process oriented approach�

These parameters can be derived from real data� or can themselves be arti�cially generated� For example� a

topography parameter can be derived from a real landscape through cartographic techniques� or it may represent a

theoretical topography derived through fractal model generation �e�g� ���� ���� ����� Spatial parameters are matched

to the landscape model� so that each cell in the landscape model has a corresponding value in the parameter model�

Generating a site speci�c model involves calculating� for each cell� the relative probability of occurrence for each

feature� This is akin to deriving a local LAR� This information is then used to either randomly determine a feature

for the cell� based on this distribution or it can be further constrained �e�g� with contagion� Note that as prototypes

become �less� neutral� the signi�cance of contagion in forming patches decreases� Contagion can be viewed as the

aggregation of ecological processes that explain why features are often grouped into patches� As these ecological

processes are integrated into a model through spatial constraints� the need for a contagion factor decreases� since

features will become more naturally aggregated�

These site speci�c models can range from more neutral models �i�e� site independent� aspatial distributions of

landscape features to complex models that specify relationships for many parameters� This extends our notion of

gradients of neutrality� from prototypes that specify aspatial constraints� to prototypes that incorporate a spatial

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

context that in�uences pattern generation� taking one more step towards predictive models�

Figure ���� shows an instance of a site speci�c model for which features vary with altitude� Each of the �ve

features di�ers in its response to elevation� The darker features respond �better� to lower elevation� while lighter

features respond �better� to higher elevation� That is� at low elevations� the relative probability of darker features

is higher than lighter features� and vice versa at high elevations�

The model instance is draped over the elevation map that was used to create it� providing a contextual view of

the instance� Note that using the same set of constraints� but a di�erent elevation map� would produce a di�erent

model instance� In this example� no contagion was used�

Figure ����� Geometric view of an instance of a landscape model prototype with spatial constraints� The instance
is overlaid on the elevation model used to create it� The model size of this instance is ���� ���� and the number of
features is �� The underlying elevation model provides a context in which spatial constraints� in the form of elevation
responses� a�ect pattern generation� Thus� the prototype for instance �a is fsize � ��� � ���� richness � ��� ���
spatial responses to elevationg�

Temporal constraints� We can also constrain pattern generation temporally through the use of an existing model

instance� If we view the existing instance as a previous state of the landscape� this creates a temporal context for

pattern generation� Using a combination of the input landscape model� and temporal change sequences �e�g� modeling

succession or disturbance� a landscape simulator may attempt to mimic ecological and"or abiotic processes in the

production of landscape pattern in the output model�

Specifying temporal constraints may be as simple as providing a Markov chain ���� �i�e� a transition matrix�

where entry �i� j speci�es the probability that a cell with feature i in the input model will have feature j in the

output model� At the other extreme� temporal constraints may determine the features of the output model based

on an analysis of the input pattern� and possibly other information such as spatial parameters� Depending on the

complexity of the constraints on temporal sequences� these prototypes may also provide a gradient from models that

are a small step beyond neutral models to more predictive models�

Figure ���� shows an instance of a prototype �pattern �b generated using temporal constraints and an input

model �pattern �a� The temporal sequence is stochastic� and most of the cells obtained their feature from the

previous state� some of the cells �most notably in the centre left of the pattern obtained di�erent values� In

general� such sequences may model a successional trajectory� the e�ect of a disturbance event� or some other dynamic

landscape process� The speci�cation of temporal constraints� and the generation of sequences of models based on

these constraints is the heart of landscape dynamics simulators� such as SELES ����� Note that the only constraints

involved in the generation of this model instance are richness� model size and temporal responses� the resulting

pattern is largely dependent on the input landscape�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

(a) (b)
Figure ����� Instance of a landscape model prototype �b generated using stochastic temporal constraints and input
pattern �a� The model size is ��� ��� and richness is �� The prototype for instance �b is therefore fsize � ��� ���
richness � �� temporal responsesg�

���� A Hierarchy of Landscape Model Prototypes

Di�erent combinations of constraints lead to di�erent landscape model prototypes� and the relation among these

prototypes forms a hierarchy� For two prototypes� P� and P�� if P� is de�ned by a superset of the constraints of P��
then instances generated by P� are more restricted than those generated by P�� In this case� we place P� �lower� in
the hierarchy than P�� The most general prototype� denoted �� is the one that imposes no constraints on pattern
generation� Although such a prototype may have limited practical utility� it does serve as a common starting point

for all other prototypes� The prototype hierarchy forms a general partial order not just a tree shaped hierarchy� since

a prototype may have multiple parents�

This hierarchy provides a framework for systematically cataloging and analyzing landscape pattern� A prototype

can be used to generate a set of instances with an expected pattern under known constraints� Deviations from this

expected pattern in real landscapes� or simulation results� can help us identify components of pattern not explained

by the constraints of the prototype�

Figure ���� shows a sample fragment from this hierarchy� Each node in the hierarchy includes the set of constraints

imposed by all nodes above it� Thus� the lowest node represents the prototype with the constraints� frichness � ��

model size � ���� LAR � 	��������������
� contagion � ���� spatial responses to elevational datag� The other nodes
in the example contain various subsets of these constraints�

The prototype hierarchy organizes work on neutral models and landscape model prototypes both for developers

and users of model generators� Some of the potential applications of the hierarchy are described below�

Development of landscape model generators� Landscape model generators are procedures for the synthetic

production of instances of landscape models� In general� they permit the speci�cation of prototypes via parameter

values� Once a set of parameters �constraints has been provided� landscape instances satisfying those constraints can

be produced� Thus� generators are more abstract than prototypes in that they only restrict which constraints may

be speci�ed� while prototypes also restrict the value of the constraints� Our framework provides a structure within

which landscape model generators can be systematically developed and compared� Not only can two generators be

contrasted as to which constraints may be speci�ed� but gaps in the suite of existing generators can be identi�ed�

In this viewpoint� the hierarchy does not specify values for constraints� The constraints that may be imposed by a

generator determine its position in the hierarchy� and its relation to other generators�

A sample fragment of the generator hierarchy is shown in Figure ����� Each node represents a generator that

allows speci�cation of the constraints attached to that node and all nodes above it in the hierarchy� For example�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

T

Contagion =0.8

Richness = 4

Landscape Area Ratio = Elevational

•

•

Model Size = 100

•

Responses

•

(0.1,0.2,0.3,0.4)

Figure ����� Sample fragment of the hierarchy of landscape model prototypes� Each node represents a prototype
that consists of the constraints labeling the node and all higher nodes in the hierarchy�

the node labeled Edge Fractal Dimension permits speci�cation of richness� model size� landscape area ratio� and edge

fractal dimension� The node below Richness and Model Size represents a �totally neutral model�� where only bound

constraints are speci�ed� Note this fragment is incomplete� and is not intended to suggest any particular relations

among constraints� Thus� for example� there may be another node above the one labeled Edge Fractal Dimension

that permit speci�cation of edge fractal dimension� but does not require landscape area ratio�

T

Contagion

Richness

Edge Fractal

Landscape Area Ratio Elevational

•

•

Model Size

Temporal

•

. . .

Sequences Responses

Dimension

Figure ����� Sample fragment of the hierarchy of landscape model generators� Each node represents a generator that
permits speci�cation of the constraints labeling the node and all higher nodes in the hierarchy�

A common organization of landscape model generators� Access to existing tools is a prevalent problem�

Currently� developers of landscape model generators have no source of information as to which generators already

exist� and so run the risk of re
inventing the wheel� Similarly� potential users of generators have no systematized

way of searching for generators� The prototype hierarchy has the potential to alleviate these problems as a common

organization of model generators� A site on the Internet could be established to maintain the hierarchy� and nodes

could have links to sites from which the corresponding generator can be accessed� Thus� once the desired set of

constraints has been identi�ed� the hierarchy could be traversed� and if the node corresponding to these constraints

could be found� then the landscape model generator exists and can be accessed�

With time� this hierarchy may potentially grow to a size where access becomes cumbersome� In this case� the

encoding techniques developed previously in this thesis for e�ciently storing and traversing hierarchies could be

utilized� A user could enter the desired set of constraints� and the system would automatically �nd the desired node

if it exists� If no such generator exists� then the set of most closely related nodes could be returned�

We envision the prototype hierarchy as providing a cooperative resource for landscape ecologists to share landscape

model generators� to �nd desired generators� and to identify gaps in the current state of landscape model generation�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

Analysis of landscape pattern� Landscape ecologists bene�t directly from the hierarchy of landscape model

prototypes� Given a data set of one or more landscapes� the hierarchy can guide hypothesis testing to determine the

level of neutrality of the data set� That is� we can �nd the node P in the hierarchy for which the models generated by
prototype P are not signi�cantly di�erent from the models in the data set� We provide below a theoretical example

of how this can be accomplished� The process of arriving at P may identify deviations from random� or neutral�

characteristics� This in turn may lead to hypotheses to explain these di�erences� The node itself is also of interest�

since it is the most general prototype that captures the pattern exhibited in the data set� establishing the �level of

neutrality� of the data set� That is� this prototype serves as a predictive model for the data set� and is the most

general such prototype�

For example� suppose we have a data set X of landscape models with size m and richness k� Starting near the top

of the hierarchy� we can take a basic prototype with constraints only on model size and maximum richness� Using this

prototype� we can generate a number of model instances� which can be used as a random sample of the prototype�

Now we can compare an attribute of the data set� such as the average contagion� with that of the sample� Note

that the contagion for the sample provides an expected value for contagion in the absence of additional ecological

information�

If no signi�cant di�erence can be detected between the contagion of the data set and that of the sample from the

prototype� then the data set has a contagion value that is indistinguishable from random� This isn�t to say that there

is no process in these landscapes acting on this attribute� but rather that we cannot distinguish from pattern that

is random with respect to this attribute� We can continue by selecting another attribute� such as LAR or elevation

responses�

If� however� we �nd that the attribute value for X di�ers signi�cantly from the expected value of the attribute�

then there is some process responsible for this divergence� The identi�cation of this deviation may lead to hypotheses

for explaining the di�erence� For example� if the average contagion for the data set X is greater than the average

contagion for the sample from the prototype� then this indicates that there is some ecological process responsible for

the higher degree of aggregation in the data set than is expected from random� This may lead to a hypothesis to

explain the aggregation seen in the data set�

We can now continue this process by taking a more constrained landscape model prototype that restricts model

size� maximum richness and contagion� In this way we are able to systematically exploit the model generators

available in order to classify a landscape on the neutrality gradient� and generate hypotheses to explain deviations

from random� If we �nd a prototype P for which all attributes of the data set are indistinguishable from the instances
produced by P� then this prototype not only identi�es the level of neutrality for the data set� but it can also serve
as a predictive generator for the data set �at least for the attributes tested during this analysis�

���� Conclusion

We have formalized landscape model generators using the notion of a landscape model prototype� which is a set

of constraints that restricts the generation of pattern� These prototypes induce a hierarchy that provides a formal

framework within which model generators can be constructed� compared and accessed� This hierarchy can be used to

guide the analysis of pattern from a data set of landscape models� and captures the idea of �gradients of neutrality��

That is� prototypes provide some measure of distance from neutrality� and the hierarchy embodies the variety of ways

in which models can diverge from random in a multi
dimensional space of possible constraints on pattern generation�

Analysis of data sets of landscape models can exploit this hierarchy to guide identi�cation of di�erences between the

data set and random� In addition� we described how one can determine the node in the hierarchy for which there are

no signi�cant di�erences between the models generated by the prototype represented by this node and the models

in the data set� This not only establishes the level of neutrality for the data set� but also the prototype at this node

acts as a predictive model for the data set�

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

Chapter Appendix� Formal Basis for Landscape Model Generators

that Permit General Richness� LAR and Contagion Constraints

In this appendix� we provide a mathematical derivation for landscape model generators that can satisfy general

constraints on richness� landscape area ratio and contagion� Gardner and O�Neill ���� provided the mathematical

basis for combining landscape area ratio �LAR and contagion for models with a richness of �� However� their results

do not permit a direct generalization to an arbitrary number of landscape features� Our goal is to provide a means

of generating landscape models that satisfy constraints on richness� LAR and contagion� Clearly� not all possible

combinations of constraints are satis�able� For example� the constraints richness � � and LAR � �������� imply

that contagion must be �� Even though these constraints are not completely independent� we can attempt to satisfy

the contagion constraint while maintaining the richness and LAR constraints� Here� we provide a formal derivation

for this landscape model generator�

In general� for k features� there can be up to k� contagion factors� where contagion factor cij can be viewed as a

probability index that a cell of feature i is next to a cell of feature j� This can be speci�ed using a k � k array Ckk�

Each contagion factor cij may take on any value in ���� ��� where a value greater �less than than � denotes that a
cell of feature i is more �less likely to be next to one of feature j than random� A value of � denotes that a cells of

feature i and j are juxtaposed randomly� That is� the probability that feature j is next to feature i is the same as the

relative abundance of feature j in the entire model� We minimally require one contagion factor c that is assumed to

be the contagion for adjacent cells of the same type� This is the situation we used in section ���� for examples� We

generalize this somewhat� and permit a vector of k contagion factors Ck� where ci denotes the probability index that

a cell of feature i will be next to another cell of feature i� The other contagion values �i�e� cij� i �� j are assumed to

be ��

The relative abundance vector Pk �i�e� LAR for each of the k features must clearly sum to � �i�e� !ki��Pk�i� � ��

Our algorithm for constructing the contagion matrix takes as input the relative abundance vector Pk and a contagion

factor vector Ck� Our goal is to generate a contagion matrix Qkk� where each element qij is the probability of feature

j being adjacent to feature i� and Qkk somehow satis�es the LAR Pk� In the case of no contagion� each row of Qkk

will be identical to Pk� As contagion is changed �either increasing or decreasing clumping� we must change the

entries of Qkk to re�ect this change while still satisfying the relative abundance requirements in Pk over the entire

landscape� Note that if qii � pi� then feature i will not be directly a�ected by contagion� If qii
 pi� then feature i

will be more clumped than random and if qii � pi� feature i will be less clumped�

In the two feature case� changing contagion while maintaining Pk was simple to achieve� and the mathematics

is given in ����� Their speci�cation of the problem was di�cult to generalize� so we look at it slightly di�erently�

First� we need to formalize what we mean when we say that a contagion matrix Qkk �satis�es� Pk� Our algorithm

for constructing a contagion matrix Qkk starts with each row of Qkk identical to Pk� Clearly� using this matrix to

generate a landscape will be the same as using Pk alone� We then transform Qkk so that Pk is always satis�ed and

at the end� Qkk re�ects the desired contagion factors�

De�nition ���� Suppose we have k features and a relative abundance vector Pk� Then a contagion matrix Qkk

satis�es Pk if and only if !kj��pj � qji � pi�

If this equation is satis�ed� then the overall probability that a cell will have feature i �i�e� pi will be the same as

the sum of the probabilities that an adjacent cell will have feature j times the probability that feature i will be next

to feature j� One property that we require of any contagion matrix �as we do for the relative abundance vector is

that the sum of the probabilities in any row must be � and that all probabilities must be non
negative�

Lemma ���� Suppose we have we have k features and a relative abundance vector Pk� Then a contagion matrix

Qkk satis�es Pk if� for all � � i� j � k� pi � qij � pj � qji�

Proof� Suppose the above property is satis
ed� Consider any feature i� Then �k
j��pj � qji � �k

j��pi � qij � pi ��
k
j��qij � pi�

since any row of Qkk must always sum to � �

CHAPTER ��� A HIERARCHY OF LANDSCAPE MODELS ���

In the initial state qij � pj � so this property is satis�ed� We now show that we can perform transformations on

Qkk that preserve this property�

Theorem ���� Suppose we have we have k features� a relative abundance vector Pk and a contagion matrix Qkk

that satis�es Pk� Given some � � i� j � k and a factor 	 such that max��qii�qij��qjj�qji � 	 � �� then after the

following transformation� Qkk still satis�es Pk�

qii � qii # 	 � qij
qij � qij � 	 � qij � ��� 	 � qij
qjj � qjj # 	 � qji
qji � qji � 	 � qji � ��� 	 � qji

Proof� Since only the above four entries are modi
ed� we need only ensure that the property of the above lemma is satis
ed�

For the diagonal elements� this is trivially satis
ed� pi � qii � pi � qii and pj � qjj � pj � qjj�

For the other two elements� we must satisfy� pi � qij � pj � qji� By our assumption� this property holds before the

transformation� After the transformation� we have� pi � �� � �	 � qij	 � pj � �� � �	 � qji	� Dividing both sides by �� �	

yields the desired result� �

The proof does not depend on the restriction to the value of 	� This restriction ensures that the entries in Qkk

remain non
negative� If 	
 �� then qij and qji become negative and if 	 � �qii�qij or 	 � �qjj�qji then one of qii
or qjj becomes negative�

Given a relative abundance vector Pk and a contagion factor vector Ck �both of size k� the contagion matrix

Qkk can be computed as follows� Start with each row of Qkk equal to Pk� For each contagion factor� ci perform the

above transformation on Qkk �where 	 becomes ci� Once we have Qkk� the landscape model instance Nmm can be

easily generated as follows�

�� For the �rst cell n��� select a feature randomly using Pk�

�� For each cell ni� in rest of the �rst row� select a feature randomly using the row of Qkk corresponding to the

left neighbour�

�� For each subsequent row�

�a For the �rst cell n�j� select a feature randomly using the row of Qkk corresponding to the neighbour above

in the map�

�b For each remaining cell nij in the row� using the average of the rows of Qkk corresponding to the neighbour

left and above�

This algorithm will tend to have a diagonal bias� which can be partially alleviated by alternately traversing rows

left and right� This will still leave a slight vertical bias� but not very pronounced except at high values of contagion�

Other generation techniques may be possible to generate maps using the contagion matrix� but without any bias�

The model instances shown in ���� have a clear horizontal bias� and must have been computed without considering

the vertical neighbours�

Chapter ��

Conclusion

�There is in nature what is within reach and what is beyond reach�

� Goethe

Reasoning is a fundamental problem in a variety of human intellectual endeavors� Taxonomies assist the reasoning

process by clarifying and categorizing knowledge� This thesis is an attempt to bring taxonomic reasoning to centre

stage� and to push forth some of the frontiers of research� From a pragmatic viewpoint� we have formalized research

on managing large taxonomies� a task known as taxonomic encoding� Our formal framework encapsulates the essence

of encoding and we are able to characterize all known encoding techniques within it�

During our analysis of encoding� we developed sparse logical terms as a universal implementation for encoding�

We explored the utility of sparse terms for encoding� both theoretically and empirically�

Although partial orders are an elegant and mathematically formal basis for representing taxonomic knowledge�

we became dissatis�ed with their limited expressive ability� Rather than shift to the other extreme� where taxonomic

information is hidden within a description logic �such as KL
ONE and can only be extracted via classi�cation� we

feel that explicit maintenance of taxonomic knowledge is essential for taxonomic reasoning� To pursue this line of

thought� we formally extended partial orders to incorporate additional information� and developed a sort logic for

reasoning within this more expressive framework� To maintain tractable reasoning� we also derived a restricted form

of the logic�

In the course of this thesis� it became apparent that taxonomies were prevalent in almost every �eld� We followed

shallow explorations of a number of applications� such as natural language processing� and delved deeper into three

of the �elds that are rich with possibilities�

Research on using logical terms for encoding led to a viewpoint that coreference in logical variables imposes

requirements that are too strict� By viewing the symmetry of coreference as the product of two asymmetric reference

constraints� a taxonomy may be constructed� where each node represents an equivalence class of variables �i�e�

variables that corefer� In current logic programming systems� variable coreference classes are constructed� but

cannot be related to one another�

Conceptual structures was the �rst �eld to which our initial research on encoding was applied� It became apparent

that encoding has a great potential impact on the �eld due to the variety of �potentially large taxonomies that are

used in the formalism� In addition� our research led us to further application of sparse terms to implement normalized

conceptual graphs�

The �nal area of application for this thesis is ecological modeling� Although hierarchies have been used in a

number of domains� we applied taxonomic reasoning to unbroken ground in landscape ecology� By formalizing a

hierarchy of landscape models� we have been able to bridge the gap between predictive and theoretical models of

landscapes� to provide a framework within which generators of landscape models can be designed� compared and

accessed� and to guide analysis of sets of landscape data�

���

CHAPTER ��� CONCLUSION ���

���� Signi
cance of Research

The overall goal of this thesis was to forge ahead with research on reasoning with taxonomies� to develop a formal

foundation upon which systems that use taxonomies can rest� and to apply the theory to a variety of applications�

The research that comprises this thesis has had a number of impacts on several �elds� as outlined below�

�� The theoretical work on encoding has provided a foundation on which di�erent encoding algorithms and tech

niques can be compared and critiqued� Prior to this development� encoding research was somewhat ad hoc�

with no context or means to critically evaluate advances in the �eld� The notion of a spanning set for separating

the information content of an encoding from the implementational details provides a yardstick for the addition

of new techniques� and avoids the potential problem of re
inventing the wheel�

�� Our contributions to modulation provide the potential to improve further the e�ciency gained from using this

technique� Furthermore� our generalization of modulation extends the elegance of modulated encoding into

the realm of practical encoding with dynamic and irregular taxonomies� By relaxing the notion of a module�

the e�ort involved in modulation can degrade gracefully over time� rather that break in brittle mathematical

precision� We have also provided proven algorithms that permit the computation of taxonomic operations in

generalized modules�

�� Our constraint based view of encoding provides a guideline for the use of coreference �i�e� logical variables

in encoding� By providing a formal analysis of encoding in terms of constraints� we have shed light on the

advantages and pitfalls of going beyond tree terms for logical term encodings�

�� The theoretical and empirical results of sparse term encodings place sparse terms as a universal encoding

implementation� The general form of sparse term developed for encoding directly subsumes most other encoding

implementations �e�g� integer vectors� logical terms� interval sets� with the exception of bit
vectors� The

empirical evidence provided by encoding two medium size taxonomies from existing applications� however�

shows how sparse terms let us have our cake and eat it too� Sparse terms used signi�cantly less space than

bit
vectors� while providing the �exibility required for dynamic updates to encodings �i�e� partial re
encoding�

�� Our work on extending partial orders separates the task of taxonomic� or sort� reasoning from applications that

use taxonomic information� The sort reasoner is provided with taxonomic knowledge in the form of assertions�

and can be called upon to answer queries regarding the taxonomic structure speci�ed� We developed a sound

and complete sort logic as a logic for reasoning about sorts �as contrasted with sorted logic for reasoning with

sorts� To �nd utility in practical systems� sort reasoning must be e�cient� One of our main contributions is

the development of a tractable restriction of the sort reasoning problem that retains enough expressive power

to capture many common forms of taxonomic knowledge�

�� Our development of reference constraints as a generalization of equality constraints in logic and logic pro

gramming is a novel application of reasoning with taxonomies� Although equality constraints form equivalence

classes of logical variables� reference constraints induce a partial order among these coreference classes� We

provided a formal description of how reference constraints may be speci�ed in a logic program� and how the

resulting reference order can be maintained and satis�ed�

Since variables denote individuals� reference constraints lead to the notion of individual level inheritance� where

an individual denoted by a variable may inherit properties from another individual which is denoted by a

subsuming variable in the partial order� A variety of systems� especially systems reasoning in ambiguous

domains� can potentially bene�t from an e�cient� formally based implementation of reference constraints and

individual level inheritance�

�� The issues involved in maintainingderived hierarchies� such as the generalization hierarchy of conceptual graphs�

di�er from encoding issues for de�ned hierarchies� such as class or sort hierarchies� Derived hierarchies may be

induced by the set of data �graphs in a knowledge base� they are highly dynamic and expensive to compute�

Focusing on the �eld of conceptual structures� we developed an approach to normalize graph knowledge bases

CHAPTER ��� CONCLUSION ���

and store the graphs in a spanning tree of the underlying partial order� The advantages of normalizing within

this spanning tree are twofold� �i the normalization of a graph can depend on its parent in the tree� so that

traversals within the tree can be much more e�cient than traversals in the general partial order� �ii there are

a number of bene�ts of traversing such hierarchies in a topological fashion �e�g� more rapid retrieval of a target

graph� as covered in ����� However� there are a variety of topological traversals� the one described in ���� is

breadth
�rst� We argued that there are bene�ts to depth
�rst topological traversals� and we showed that if the

spanning tree is formed as a left
to
right depth
�rst traversal of the original partial order� then a right
to
left

depth
�rst traversal of this tree corresponds to a right
to
left depth
�rst topological traversal of the partial

order�

�� Arti�cial generation of landscape models is becoming increasingly prevalent in landscape ecology� Due to the

spatial scale at which most landscape studies are performed� replication is rarely feasible and experimenters

may require arti�cial replication� Arti�cial generation of landscape models can be used for a variety of purposes�

including comparison with real data� testing general theoretical hypotheses� and providing inputs to simulation

models� However� the number of generators is increasing and there is no framework within which generators

can be analyzed� compared and organized� We proposed a hierarchical framework that uni�es landscape models

within a formal organizational system� By generalizing neutral landscape models� we proposed landscape model

prototypes that induce a hierarchy that represents gradients of neutrality� We described how this hierarchy may

be used to guide the development of landscape model generators� to aid selection of appropriate existing model

generators� and to assist in the analysis of models derived from real landscapes through the use of landscape

model prototypes�

���� Future Research Directions

�The solution to every problem is another problem�

� Goethe

The research presented in this thesis has contributed to a number of disciplines and made a variety of connections

among �elds� It has also opened many doors and identi�ed unexplored pathways which were beyond the scope of a

single thesis� This �nal section of the thesis identi�es some promising areas in which research can be continued�

Encoding� Using our notion of spanning sets� further theoretical work should be carried out on the limits of

taxonomic encoding� Research continues to push the frontiers in the quest for minimal size encodings �e�g� �����

and we maintain that the framework provided in this thesis is an appropriate common ground on which new

techniques should be evaluated� More empirical testing of di�erent encoding algorithms and implementations

should be done� As more taxonomies from real applications become available� this will become easier to perform�

Modulation� Although the advantages of modulation are intuitive� there is a real need for empirical testing of its

actual bene�t� and for determining at what size of taxonomy should modulation be attempted� We expect

that the bene�ts of modulation will not show up until taxonomies are quite large� but that this technique will

address issues of scaling encoding up to much larger taxonomies than are currently encountered� Finally� to

address issues of e�ciency� there is a need to integrate the linear time modulation algorithm of ���� with our

techniques� which may require changes to this fast algorithm to accommodate our generalized forms of modules�

Sparse Term Encoding� Further theoretical and empirical testing of di�erent encoding techniques is required to

provide a strong basis for comparison of sparse term encoding with other implementation schemes� Also�

additional work on sparse term encoding should be researched to implement and test the utility of encoding in

highly dynamic environments�

In the theoretical arena� there are a number of dimensions along which comparisons can be made� We selected

two techniques that we felt appropriate for encoding dynamically changing taxonomies �transitive closure

and compact� and compared the e�ects of di�erent implementations on these techniques� One advantage of

CHAPTER ��� CONCLUSION ���

our framework for encoding is that it makes possible such comparisons� Another approach� taken in ����� is

to compare di�erent algorithms �that mix technique with implementation� There is a great need for more

comparisons of these kinds� to identify the types of taxonomies that are best suited for di�erent approaches to

encoding�

Extending Partial Orders� Although we have developed a theoretical foundation for tractable sort reasoning in

Chapter �� this work needs to be implemented� and empirical testing can identify the utility of our restrictions

to obtain tractability� Other sets of restrictions can also be developed and contrasted with our proposal to

develop an e�cient sort reasoner�

Also� more e�cient encoding techniques that take advantage of the structure of extended partial orders should

be developed� For example� two incompatible sorts can share the same position within a term� leading to

uni�cation failure if an object is postulated to belong to both sorts� This opens a whole area of research for

generalizing our spanning set framework for encoding extended partial orders�

Data Mining� Tree
shaped conceptual hierarchies have been proposed for use in data mining ���� ��� ���� There

exists a great potential for generalizing these techniques to use partial orders� and even extended partial orders�

Reference Constraints� To fully demonstrate the utility of individual
level inheritance� reference constraints must

be implemented in a logic programming system� Possibilities include implementation in sparse terms or another

logic programming language� such as LIFE ��� or Bin Prolog ������ A variant of sparse terms has been imple

mented that includes coreference akin to that in LIFE ���� This variant could be extended in a straightforward

manner to handle reference constraints� In addition� the e�ects and advantages of di�erent control strategies

as mentioned in Chapter � should be explored�

Also� applications of hypothetical reasoning such as those outlined in this thesis need to be more thoroughly

developed and implemented� The application of individual
level inheritance as a means to integrate top
down

hypothetical analysis and bottom
up chart parsing in discourse processing appears to be a promising area to

pursue in this direction� In addition� the incorporation of reference constraints into Assumption Grammars

����� for natural language processing should be studied�

Conceptual Structures� As implementation of the Peirce workbench ���� and other systems for reasoning with

conceptual graphs proceeds� there will be opportunities to implement and compare the various approaches

to handling taxonomies of complex and dynamically changing information� such as graph knowledge bases�

Empirical testing of the advantages of the spanning tree organization for the generalization hierarchy compared

to other organizations of complex data �e�g� ���� must be performed�

Landscape Model Prototypes� Using the hierarchy of landscape model prototypes� existing model generators can

be placed in relation to each other� The next step is to use this hierarchy to provide a common organization

for model generators� and to organize existing and future generators for simple access by users� The internet

is a natural location to place such a hierarchy� a proposal in this direction is in progress�

Landscape studies need to attempt to use the hierarchical techniques proposed to guide the analysis of data

sets of landscape models� Studies that compare data sets against landscape prototypes will identify gaps in the

suite of available generators�

Analysis of Landscape Models using Formal Concept Analysis� The hierarchy of landscape model proto

types developed in Chapter �� permits analysis of the properties of an entire data set in comparison with

arti�cially generated models� Other techniques are necessary for the analysis of the properties of individual

models in comparison with other models in a given data set� The issues addressed here are quite di�erent� and

focus more on how the models in a data set can be di�erentiated and"or grouped� Such analysis is complex�

and researchers have proposed a multitude of indices for the comparison of landscape models in a data set

������ An attempt to select a core subset from this array of indices has been explored in Riitters et al� ������

However� attempts to derive a core set of indices that is independent from a data set fail to recognize that

di�erent sets of landscapes have inherently di�erent properties�

CHAPTER ��� CONCLUSION ���

We propose an alternate approach for reducing the set of potential indices through the use of formal concept

analysis ������ Formal concept analysis is based on a mathematical� set
theoretic model of concepts and concep�

tual hierarchies ���� ����� It was developed as a new approach to data analysis that permits structural analysis

of data without reducing the data� Concept analysis provides a formal� objective� data
driven technique for

automatically constructing a hierarchy of relationships from a set of objects �e�g� landscape models and a set of

attributes �e�g� landscape indices� This hierarchy� known as the formal concept lattice� elucidates relationships

inherent in the data� and can aid in the selection of key indices for a given set of landscape models� Formal

concept analysis has been applied to a variety of domains with many nice results �e�g� analysis of Rembrant

paintings ������ comparison of recreation opportunities in national parks ������ and information retrieval �����

In general� a concept lattice provides a hierarchical conceptual clustering of the objects� and also represents

all the implications among the attributes ������ Using the techniques of formal concept analysis� we can

automatically generate a concept lattice that illuminates subtle dependencies contained in the data such as�

dependencies among landscape indices� index groupings that cluster or di�erentiate subsets of landscape models�

and gradients of complexity within the data set� The concept lattice� if properly drawn� elucidates many of

the nuances and implications contained in the data set that are not apparent by inspecting the data only�

Producing good diagrams of concept lattices is an art in itself� although some progress in automating this task

has been made ������

Concept analysis is related to cluster analysis ���� ��� ���� although it di�ers in its ability to graphically illustrate

subtle properties of the data� A primary distinction between traditional cluster analysis and formal concept

analysis is that the former produces a tree of clusters grouped according to similarity criteria ������ while the

latter forms a lattice� This not only involves a novel application of reasoning with taxonomies� but permits the

detection of subtle relationships as well as general trends in the data� A wide avenue for future research is to

pursue the use of formal concept analysis in landscape ecology by studying its utility for the analysis of one or

more sets of landscape models�

Bibliography

��� R� Agrawal� A� Borgida� and H� Jagadish� E�cient management of transitive relationships in large data bases�

including is
a hierarchies� In Proceedings of ACM SIGMOD� �����

��� H� A�	t
Kaci� R� Boyer� P� Lincoln� and R� Nasr� E�cient implementation of lattice operations� ACM Transac�

tions on Programming Languages� ��������$���� �����

��� H� A�	t
Kaci and R� Nasr� Login� A logic programming language with built
in inheritance� Journal of Logic

Programming� �����$���� �����

��� H� A�	t
Kaci and A� Podelski� Towards a meaning of LIFE� Journal of Logic Programming� ����"������ �����

��� H� A�	t
Kaci� A� Podelski� and S� C� Goldstein� Order
sorted feature theory uni�cation� Technical Report ���

Digital Paris Research Lab� Paris� France� May �����

��� J� Allen� Natural Language Understanding� Benjamin"Cummings Pub� Co� Redwood City� CA� �nd edition�

�����

��� J� F� Allen� Maintaining knowledge about temporal intervals� Communications of the ACM� ���������$����

�����

��� T� F� H� Allen and E� P� Wyleto� A hierachical model for the complexity of plant communities� Journal of

Theoretical Biology� �������$���� �����

��� N� Asher� Reference to Abstract Objects in Discourse� volume �� of Studies in Linguistics and Philosophy�

Kluwer� �����

���� W� L� Baker� A review of models of landscape change� Landscape Ecology� �������$���� �����

���� G� L� Ball and R� Gimblett� Spatial dynamic emergent hierarchies simulation and assessment system� Ecological

Modelling� ������$���� �����

���� B� Banaschewski and G� Bruns� The fundamental duality of partially ordered sets� Order� ����$��� �����

���� D� B� Barber and H� J� Hamilton� Attribute selection strategies for attribute
oriented generalization� In Proc�

of the Eleventh Biennial Conference of the Canadian Society for Computational Studies of Intelligence� pages

���$���� Toronto� Canada� ����� Springer
Verlag�

���� J� M� Baveco and R� Lingeman� An object
oriented tool for individual
oriented simulation� Host
parasitoid

system application� Ecological Modelling� ������$���� �����

���� G� Birkho�� Lattice Theory� Volume �� of Colloquium Publications� American Mathematical Society� Provi

dence� RI� �rd edition� �����

���� R� J� Brachman� What IS
A is and isn�t� An analysis of taxonomic links in semantic networks� IEEE Computer�

�����$��� �����

���

BIBLIOGRAPHY ���

���� R� J� Brachman and H� J� Levesque� The tractability of subsumption in frame
based description languages� In

Proceedings of American Association of Arti�cial Intelligence� pages ��$��� Austin� TX� �����

���� R� J� Brachman and J� G� Schmolze� An overview of the KL
ONE knowledge representation system� Cognitive

Science� �������$���� �����

���� P� Bresciani� E� Franconi� and S� Tessaris� Implementingand testing expressive description logics� A preliminary

report� In Proc� First International Symposium on Knowledge Representation� Use and Storage for E�ciency

	KRUSE���
� Santa Cruz� CA� �����

���� C� Brew� Systemic classi�cation and its e�ciency� Computational Linguistics� ��������$���� �����

���� A� Bundy� L� Byrd� and C� Mellish� Special purpose� but domain independent� inference mechanisms� In Proc�

European Conference on Arti�cial Intelligence� pages ��$��� Orsay� France� �����

���� L� Cardelli� A semantics of multiple inheritance� In G� Kahn� D� MacQueen� and G� Plotkin� editors� Semantics

of Data Types� Springer Verlag� Berlin� �����

���� B� Carpenter� The Logic of Typed Feature Structures� Cambridge University Press� London� England� �����

���� Y� Caseau� E�cient handling of multiple inheritance hierarchies� ACM SIGPLAN Notices� ��������� October

�����

���� H� Caswell� Community structure� A neutral model analysis� Ecological Monographs� ������$���� �����

���� M� Chein and M� Mugnier� Specialization� Where do the di�culties occur� In H� Pfei�er and T� Nagle�

editors� Conceptual Structures� Theory and Implementation� Proc� �th Annual Workshop� Las Cruces� NM�

����� Springer
Verlag�

���� A� G� Cohn� Many sorted logic � unsorted logic # control� In M� Bramer� editor� Research and Development

in Expert Systems III� pages ���$���� Cambridge University Press� New York� �����

���� A� G� Cohn� Completing sort hierarchies� Computers and Mathematics with Applications� ����
�����$����

����� Reprinted in Semantic Networks in Arti�cial Intelligence� Fritz Lehmann� editor� Pergamon Press�

Oxford� �����

���� R� J� Cole and P� W� Eklund� Application of formal concept analysis to information retrieval using a hierar

chically structured thesaurus� In Proc� Fourth International Conference on Conceptual Structures 	to appear
�

Sydney� Australia� ����� Springer
Verlag�

���� A� Colmerauer� Prolog and in�nite trees� In K� L� Clark and S�
A� Tarnlund� editors� Logic Programming�

Academic Press� �����

���� A� Cournier and M� Habib� A new linear algorithm for modular decomposition� In Proc� CAAAP���� Lecture

Notes in Computer Science� No� ���� pages ��$��� �����

���� V� Dahl� Translating spanish into logic through logic� American Journal of Computational Linguistics� ������$

���� �����

���� V� Dahl� On database systems development through logic� ACM Transactions on Database Systems� ����

�����

���� V� Dahl� Incomplete types for logic databases� Applied Math� Letters� ������$��� �����

���� V� Dahl and A� Fall� Logical encoding of conceptual graph type lattices� In First International Conference on

Conceptual Structures� pages ���$���� Quebec� Canada� ����� Also available as SFU CSS"LCCR Technical

Report ��
��

BIBLIOGRAPHY ���

���� V� Dahl� A� Fall� S� Rochefort� and P� Tarau� A hypothetical reasoning framework for natural language

processing� In �th IEEE International Conference on Tools with Arti�cial Intelligence 	ICTAI���
� Toulouse�

France� �����

���� V� Dahl� G� Sidebottom� and J� Ueberla� Expert systems for automatic con�guration� International Journal

of Expert Systems� �������$���� �����

���� B� A� Davey and H� A� Priestley� Introduction to Lattices and Order� Cambridge University Press� Cambridge�

England� �����

���� R� Dawkins� Hierarchical organisation� a candidate for ethology� In P� P� G� Bateson and R� A� Hinde� editors�

Growing Points in Ethology� Cambridge University Press� Cambridge� �����

���� J� Dunning� D� Stewart� B� Danielson� B� Noon� T� Root� R� Lamberson� and E� Stevens� Spatially explicit

population models� Current forms and future uses� Ecological Applications� �����$��� �����

���� G� Ellis� Compiled hierarchical retrieval� In T� Nagle� J� Nagle� L� Gerholz� and P� Eklund� editors� Conceptual

Structures� Current Research and Practice� Ellis Horwood� New York� �����

���� G� Ellis� E�cient retrieval from hierarchies of objects using lattice operations� In Conceptual Graphs for

Knowledge Representation� Proc� First International Conference on Conceptual Structures� Quebec� Canada�

����� Springer
Verlag�

���� G� Ellis� Managing Complex Objects� PhD thesis� The University of Queensland� Queensland� Australia� �����

���� G� Ellis and R� Levinson� The birth of peirce� A conceptual graph workbench� In H� Pfei�er and T� Nagle�

editors� Conceptual Structures� Theory and Implementation� Proceedings of Seventh Annual Workshop� Las

Cruces� New Mexico� ����� Springer
Verlag�

���� J� Eusterbrock� E�cient knowledge base reasoning with transitive dags� In Proc� First International Symposium

on Knowledge Representation� Use and Storage for E�ciency 	KRUSE���
� Santa Cruz� CA� �����

���� B� S� Everitt� Cluster Analysis� Halsted Press� New York� �����

���� A� Fall� The foundations of taxonomic encoding� Technical Report ��
��� Simon Fraser University CSS"LCCR�

�����

���� A� Fall� An abstract framework for taxonomic encoding� In Proc� First International Symposium on Knowledge

Retrieval� Use and Storage for E�ciency� Santa Cruz� CA� �����

���� A� Fall� Heterogeneous encoding� In Proc� First International Symposium on Knowledge Retrieval� Use and

Storage for E�ciency� Santa Cruz� CA� �����

���� A� Fall� Spanning tree representations of graphs and orders in conceptual structures� In Proc� Third Interna�

tional Conference on Conceptual Structures� pages ���$���� Santa Cruz� CA� ����� Springer
Verlag�

���� A� Fall� Sparse logical terms� Applied Mathematics Letters� ������$��� �����

���� A� Fall� Sparse term encoding for dynamic taxonomies� In Fourth International Conference on Conceptual

Structures� Sydney� Australia� ����� Springer
Verlag�

���� A� Fall and V� Dahl� Integrating description identi�cation and systemic classi�cation� Technical Report ��
���

Simon Fraser University CSS"LCCR� �����

���� A� Fall� V� Dahl� and P� Tarau� Resolving co
speci�cation in contexts� In Proc� Workshop on Context in

Natural Language Processing� Montreal� Canada� �����

BIBLIOGRAPHY ���

���� A� Fall and J� Fall� A hierarchical organization of neutral landscape models� In Proc� International Association

of Landscape Ecology Symposium� Galveston� Texas� �����

���� J� Fall and A� Fall� SELES� A spatially explicit landscape event simulator� In Proc� GIS�Environmental

Modeling Conference� Santa Fe� New Mexico� ����� National Center for Geographic Information and Analysis�

Santa Barbara� Available on CD and the Internet at� ""www�ncgia�ucsb�edu"conf"santa fe�html�

���� L� J� Folse� J� M� Packard� and W� E� Grant� AI modelling of animal movements in a heterogeneous habitat�

Ecological Modelling� �����$��� �����

���� R� T� T� Forman and M� Gordon� Landscape Ecology� John Wiley and Sons� New York� �����

���� J� S� Fralish� Predicting potential stand composition from site characteristics in the Shawnee Hills forest of

Illinois� The American Midland Naturalist� ������$���� �����

���� T� Gallai� Transitiv orientierbare graphen� In Acta Math� Tom ��� pages ��$��� Acad� Sci� Hung� �����

���� D� Ganguly� C� Mohan� and S� Ranka� A space
and
time
e�cient coding algorithm for lattice computations�

IEEE Transactions on Knowledge and Data Engineering� �������$���� Oct �����

���� B� Ganter and R� Wille� Conceptual scaling� In F� Roberts� editor� Applications of Combinatorics and Graph

Theory to the Biological Sciences� volume ��� pages ���$���� Springer
Verlag� New York� �����

���� D� Gardiner� B� Tjan� and J� Slagle� Extending conceptual structures� Representation issues and reasoning

operations� In T� Nagle� J� Nagle� L� Gerholz� and P� Eklund� editors� Conceptual Structures� Current Research

and Practice� Ellis Horwood� New York� �����

���� R� H� Gardner� The generation and analysis of neutral models� In Spatial Analysis Techniques Workshop�

International Association of Landscape Ecology Symposium� Galveston� Texas� �����

���� R� H� Gardner� RULE� A program for the generation and analysis of landscape patterns� Unpublished draft

report� �����

���� R� H� Gardner� B� T� Milne� M� G� Turner� and R� V� O�Neill� Neutral models for the analysis of broad
scale

landscape pattern� Landscape Ecology� ������$��� �����

���� R� H� Gardner and R� V� O�Neill� Pattern� process and predictability� the use of neutral models for landscape

analysis� In M� G� Turner and R� H� Gardner� editors� Quantitative Methods in Landscape Ecology� Ecological

Studies ��� pages ���$���� New York� ����� Springer
Verlag�

���� R� H� Gardner� R� V� O�Neill� M� G� Turner� and V� H� Dale� Quantifying scale
dependent e�ects of animal

movement with simple percolation models� Landscape Ecology� ���"�����$���� �����

���� M� Garey and D� Johnson� Computers and Intractability� A Guide to the Theory of NP�Completeness� W� H�

Freeman� San Francisco� CA� �����

���� G� Gazdar and C� Mellish� Natural Language Processing in Prolog� An Introduction to Computational Linguis�

tics� Addison
Weslel Publishing Company� Menlo Park� CA� �����

���� G� Gazdar� G� Pullum� R� Carpenter� E� Klein� T� Hukari� and R� Levine� Category structures� Computational

Linguistics� ����� �����

���� M� R� Genesereth and N� J� Nilsson� Logical Foundations of Arti�cial Intelligence� Morgan Kaufmann Pub

lishers� Palo Alto� CA� �����

���� S� M� Glenn and S� L� Collins� Modelling the e�ects of competition on species percolating through landscapes�

In Proc� International Association of Landscape Ecology Symposium� Galveston� Texas� �����

BIBLIOGRAPHY ���

���� M� C� Golumbic� Algorithmic Graph Theory and Perfect Graphs� Academic Press Inc�� San Diego� CA� �����

���� W� E� Grant and N� R� French� Response of alpine tundra to a changing climate� a hierarchical simulation

model� Ecological Modelling� ������$���� �����

���� M� Habib� M� Huchard� and J� Spinrad� A linear algorithm to decompose inheritance graphs� Algorithmica 	to

appear
� �����

���� M� Habib and L� Nourine� Bit
vector encoding for partially ordered sets� In Proceedings of ORDAL� Lecture

Notes in Computer Science� Springer
Verlag� �����

���� M� Habib and L� Nourine� Tree structure for distributive lattices and its applications� Technical Report R�R�

LIRMM ������ Universit)e de Montpellier II� Laboratoire d�Informatique� de Robotique et de Microelectronique

de Montpellier� �����

���� M� Habib and L� Nourine� Embedding partially ordered sets into product of chains� In Proc� First International

Symposium on Knowledge Representation� Use and Storage for E�ciency 	KRUSE���
� Santa Cruz� CA� �����

���� M� A� K� Halliday and J� R� Martin� editors� Readings in Systemic Linguistics� Batsford Academic and

Educational Press� London� �����

���� J� Han and Y� Fu� Dynamic generation and re�nement of concept hierarchies for knowledge discovery in

databases� In AAAI��� Workshop on Knowledge Discovery in Databases 	KDD���
� pages ���$���� Seattle�

WA� �����

���� J� Han and Y� Fu� Discovery of multiple
level association rules from large databases� In Proc� Int�l Conf� on

Very Large Data Bases 	VLDB���
� pages ���$���� Z�urich� Switzerland� �����

���� G� M� Henebry� A spatio
temporal neutral model for ecological dynamics� In Proc� International Association

of Landscape Ecology Symposium� Galveston� Texas� �����

���� J� Hobbs� Resolving pronoun references� In Readings in Natural Language Processing� pages ���$���� Morgan

Kaufmann Publishers� Inc�� �����

���� J� F� Horty� R� H� Thomason� and D� S� Touretzky� A skeptical theory of inheritance in nonmonotonic semantic

networks� Arti�cial Intelligence� ������$���� �����

���� S� Le Huitouze� A new data structure for implementing extensions to Prolog� In International Workshop on

Programming Language Implementation and Logic Programming 	PLILP��
� LNCS ���� �����

���� T� Imielinski� Intelligent query answering in rule based systems� Logic Programming Journal� ���� �����

���� A� K� Jain and R� C� Dubes� Algorithms for Clustering Data� Prentice Hall� Englewood Cli�s� N�J�� �����

���� R� H� G� Jongman� C� J� F� ter Braak� and O� F� R� van Tongeren� Data Analysis in Community and Landscape

Ecology� Cambridge University Press� Cambridge� �����

���� D� Kelly� Comparability graphs� In I� Rival� editor� Graphs and Order� D� Reidel Publishing Co�� Dordrecht�

�����

���� S� Kodric� F� Popowich� and C� Vogel� The HPSG
PL system� version ���� Technical Report CSS
IS TR ��
���

SFU� �����

���� H� Korth and A� Silberschatz� editors� Database System Concepts� McGraw
Hill� New York� �����

���� H� Krieger� Classi�cation and representation of types in TDL� In Proc� First International Symposium on

Knowledge Representation� Use and Storage for E�ciency 	KRUSE���
� Santa Cruz� CA� �����

BIBLIOGRAPHY ���

���� R� Levinson� Pattern associativity and the retrieval of semantic networks� Computers and Mathematics with

Applications� ����
�����$���� ����� Reprinted in Semantic Networks in Arti�cial Intelligence� Fritz Lehmann�

editor� Pergamon Press� Oxford� �����

���� R� Levinson� Towards domain independent machine intelligence� InConceptual Graphs for Knowledge Represen�

tation� Proc� First International Conference on Conceptual Structures� Quebec� Canada� ����� Springer
Verlag�

���� P� Massicotte and V� Dahl� Handling concept
type hierarchies through logic programming� In Proceedings of

the Third Annual Workshop on Conceptual Graphs� St� Paul� MN� �����

���� F� Mattern� Virtual time and global states of distributed systems� In Parallel and Distributed Algorithms�

pages ���$���� Elsevier"North
Holland� �����

���� M� C� McCord� Design of a Prolog
based machine translation system� In Proceedings of the Third International

Conference on Logic Programming� Springer Verlag� �����

���� K� McGarigal and B� Marks� Fragstat� A spatial pattern analysis program for quantifying landscape structure�

Unpublished software� Oregon State University� Department of Forest Sciences� Corvelis� Oregon� �����

����� J� E� Meisel and M� G� Turner� Application of semivariogram analysis to simulated and real landscapes� In

Proc� International Association of Landscape Ecology Symposium� Galveston� Texas� �����

����� C� Mellish� Implementing systemic classi�cation by uni�cation� Computational Linguistics� �������$��� �����

����� C� Mellish� Term
encodable description spaces� In Logic Programming ���� Pre�Conference Proceedings� pages

�$��� Association of Logic Programming� UK Branch� �����

����� C� Mellish� The description identi�cation problem� Arti�cial Intelligence� ��������$���� �����

����� C� Mellish� Graph
encodable description spaces� Technical Report ESPRIT Basic Research Action DYANA

Deliverable R����B� University of Edinburgh� Scotland� �����

����� G� V� Merkuryeva and Y� A� Merkuryev� Knowledge based simulation systems
 a review� Simulation� �������$

��� �����

����� R� Milner� A theory of type polymorphism in programming� Journal of Computer and System Science� ���

�����

����� G� Mineau� Normalizing conceptual graphs� In T� Nagle� J� Nagle� L� Gerholz� and P� Eklund� editors�

Conceptual Structures� Current Research and Practice� Ellis Horwood� New York� �����

����� T� M� Mitchell� Generalization as search� Arti�cial Intelligence� ������$���� �����

����� R� H� M�ohring� Algorithmic aspects of comparability graphs and interval graphs� In I� Rival� editor� Graphs

and Order� D� Reidel Publishing Co�� Dordrecht� �����

����� R� Muetzelfeldt� D� Robertson� A� Bundy� and M� Uschold� The use of Prolog for improving the rigour and

accessibility of ecological modelling� Ecological Modelling� ����$��� �����

����� M� Mugnier and M� Chein� Polynomial algorithms for projections and matching� In H� Pfei�er and T� Nagle�

editors� Conceptual Structures� Theory and Implementation� Proceedings of Seventh Annual Workshop� Las

Cruces� New Mexico� ����� Springer
Verlag�

����� J� Muller and J� Spinrad� Incremental modular decomposition� Journal of the ACM� ������$���� �����

����� B� Nebel and H� Burckert� Reasoning about temporal relations� A maximal tractable subclass of Allen�s interval

algebra� In Twelfth National Conference on Arti�cal Intelligence� Seattle� Washington� �����

BIBLIOGRAPHY ���

����� L� Nourine� Quelques Propri�et�es Algorithmiques des Treillis� PhD thesis� Acad)emie de Montpellier� Universit)e

de Montpellier� �����

����� R� V� O�Neill� D� L� DeAngelis� J� B� Waide� and T� F� H� Allen� A Hierarchical Concept of Ecosystems�

Princeton University Press� Princeton� New Jersey� �����

����� A� P� Pentland� Fractal
based description of natural scenes� IEEE Transactions on Pattern Analysis and

Machine Intelligence� �������$���� �����

����� L� Polidori� J� Chorowicz� and R� Guillande� Description of terrain as a fractal surface� and application to

digital elevation model quality assessment� Photogrammetric Engineering and Remote Sensing� �������$���

�����

����� C� Pollard and I� Sag� Information�Based Syntax and Semantics� CSLI Lecture Notes No� ��� Center for the

Study of Language and Information� Stanford University� Stanford� CA� �����

����� F� Popowich and C� Vogel� A logic based implementation of head
driven phrase structure grammar� In Natural

Language Understanding and Logic Programming III� pages ���$���� Elsevier Science Publishers� Netherlands�

�����

����� A� Porto� A framework for deducing useful answers to queries� Technical Report DI"UNL
��"��� Universidade

Nova de Lisboa� Lisbon� Portugal� �����

����� J� C� Reynolds� Transformational systems and the algebraic structure of atomic formulas� In Machine Intelli�

gence �� Edinburgh University Press� Edinburgh� UK� �����

����� K� H� Riitters� R� V� O�Neill� C� T� Hunsaker� J� D� Wickham� D� H� Yankee� S� P� Timmins� K� B� Jones� and

B� L� Jackson� A factor analysis of landscape pattern and structure metrics� Landscape Ecology� �������$���

�����

����� L� Roberts� R� Levinson� and R� Hughey� Issues in parallel hardware for graph retrieval� In First International

Conference on Conceptual Structures� Theory and Applications� Quebec� Canada� �����

����� D� Robertson� A� Bundy� R� Muetzelfeldt� M� Haggith� and M� Uschold� Eco�logic� Logic�based Approaches to

Ecological Modelling� MIT Press� Cambridge� Massachusetts� �����

����� J� A� Robinson� Logic and logic programming� Communications of the ACM� �������$��� March �����

����� C� Rogers� Indices of landscape structure� School of Resource and Environmental Management ��� project�

Simon Fraser University� �����

����� H� C� Romesburg� Cluster Analysis for Researchers� Krieger Publishing� Malabar� Florida� �����

����� B� Russell� Mathematical logic as based on the theory of types� In Logic and Knowledge� George Allen and

Unwin Ltd�� London� �����

����� E� Rykiel� Arti�cial intelligence and expert systems in ecology and natural resource management� Ecological

Modelling� ����$�� �����

����� H� Saarenmaa� N� D� Stone� L� J� Folse� J� M� Packard� W� E� Grant� M� E� Makela� and R� N� Coulson�

An arti�cial intelligence modelling approach to simulating animal"habitat interactions� Ecological Modelling�

������$���� �����

����� S� M� Shieber� An Introduction to Uni�cation�Based Approaches to Grammar� Center for the Study of Language

and Information� Stanford University� Stanford� CA� �����

����� S� M� Shieber� Constraint�Based Grammar Formalisms� Parsing and Type Inference for Natural and Computer

Languages� MIT Press� Cambridge� Mass�� �����

BIBLIOGRAPHY ���

����� C� Sidner� Focussing for interpretation of pronouns� American Journal for Computational Linguistics� �������$

���� �����

����� N� K� Simpkins and P� Hancox� Chart parsing in Prolog� New Generation Computing� �������$���� �����

����� F� H� Sklar and R� Costanza� The development of dynamic spatial models for landscape ecology� A review and

prognosis� In M� G� Turner and R� H� Gardner� editors� Quantitative Methods in Landscape Ecology� Ecological

Studies ��� pages ���$���� New York� ����� Springer
Verlag�

����� J� Sowa� Conceptual Structures� Information Processing in Mind and Machine� Addison
Wesley� �����

����� D� Stau�er� An Introduction to Percolation Theory� Taylor and Francis� London� �����

����� L� Sterling and E� Shapiro� The Art of Prolog� MIT Press� Cambridge� Mass�� �����

����� G� Stumme� Knowledge acquisition by distributive concept exploration� In Third International Conference on

Conceptual Structures� pages ��$���� Santa Cruz� CA� �����

����� P� Tarau� BinProlog ���� User Guide� Technical Report ��
�� D)epartement d�Informatique� Universit)e de

Moncton� February ����� Available by ftp from clement�info�umoncton�ca�

����� P� Tarau� V� Dahl� and A� Fall� Backtrackable state with linear assumptions� continuations and hidden ac

cumulator grammars� In Workshop on the Future of Logic Programming� International Logic Programming

Symposium 	ILPS���
� Portland� Oregon� �����

����� P� Tarau� V� Dahl� and A� Fall� Assumption grammars� In Submitted to International Symposium� on Pro�

gramming Language Implementation and Logic Programming 	PLILP���
� �����

����� D� S� Touretzky� The Mathematics of Inheritance Systems� Pitman"Morgan Kaufmann� London� �����

����� W� Trotter� Combinatorics and Partially Ordered Sets� The Johns Hopkins University Press� Baltimore� �����

����� M� G� Turner� Landscape ecology� the e�ect of pattern on process� Annual Review of Ecological Systems�

������$���� �����

����� M� G� Turner� R� Costanza� and F� H� Sklar� Methods to evaluate the performance of spatial simulationmodels�

Ecological Modeling� ����$��� �����

����� M� G� Turner and V� H� Dale� Modeling landscape disturbance� In M� G� Turner and R� H� Gardner� editors�

Quantitative Methods in Landscape Ecology� Ecological Studies ��� pages ���$���� New York� ����� Springer

Verlag�

����� M� G� Turner� R� H� Gardner� V� H� Dale� and R� V� O�Neill� Predicting the spread of disturbance across

heterogeneous landscapes� OIKOS� ������$���� �����

����� M� G� Turner� W� H� Romme� and R� H� Gardner� Landscape disturbance models and the long
term dynamics

of natural
areas� Natural Areas Journal� ������$��� �����

����� M� G� Turner� W� H� Romme� R� H� Gardner� R� V� O�Neill� and T� K� Kratz� A revised concept of landscape

equilibrium� Disturbance and stability on scaled landscapes� Landscape Ecology� �������$���� �����

����� C� Vogel� F� Popowich� and N� Cercone� Logic based inheritance reasoning� In Prospects for Arti�cial Intelli�

gence� IOS Press� Burke� VA� �����

����� D� S� Warren� Memoing for logic programs� Communications of the ACM� �������$���� March �����

����� R� Wille� Restructuring lattice theory� In Ordered Sets� NATO ASI Series C��� Reidel� Dordecht� Holland�

�����

BIBLIOGRAPHY ���

����� R� Wille� Lattices in data analysis� How to draw them with a computer� In Algorithms and Order� Reidel�

Boston� �����

����� R� Wille� Concept lattices and conceptual knowledge systems� Computers and Mathematics with Applica�

tions� ����
�����$���� ����� Reprinted in Semantic Networks in Arti�cial Intelligence� Fritz Lehmann� editor�

Pergamon Press� Oxford� �����

����� P� H� Winston� Learning structural descriptions from examples� In The Psychology of Computer Vision�

McGraw
Hill� New York� NY� �����

����� K�With and A�W� King� Toward the development of a generalized� spatially explicit theory of species� responses

to landscape structure� In Proc� International Association of Landscape Ecology Symposium� Galveston� Texas�

�����

����� W� A� Woods� What�s in a link� Foundations for semantic networks� In Representation and Understanding�

Academic Press� Orlando� Florida� ����� Reprinted in Readings in Knowledge Representation� R� J� Brachman

and H� J� Levesque �Eds�� Morgan Kaufmann� Los Altos� CA� �����

����� W� A� Woods and J� G� Schmolze� The KL
ONE family� Computers and Mathematics with Applications� ����

�����$���� ����� Reprinted in Semantic Networks in Arti�cial Intelligence� Fritz Lehmann� editor� Pergamon

Press� Oxford� �����

����� G� Yang� Y� Choi� and J� Oh� CGMA� A novel conceptual graph matching algorithm� In H� Pfei�er and T� Nagle�

editors� Conceptual Structures� Theory and Implementation� Proceedings of Seventh Annual Workshop� Las

Cruces� New Mexico� ����� Springer
Verlag�

����� R� Young� G� Plotkin� and R� Linz� Analysis of an extended concept
learning task� In Proceedings of the

International Joint Conference on Arti�cial Intelligence� Cambridge� MA� �����

