Programming with

L ogic

| nheritance
F unctions

E quations

Hassan Ait-Kacl I ILOG, Inc. I

Outline

e Generalities

e LIFE’s basic data structure: the -term
e Predicates

e Functions

e Sorts

e Programming examples

e Conclusion

Generalities

e |dea:
To mix programming with:

— logical relations (defined as Horn clauses),
— functional expressions (including higher-order),
— object approximations (using inheritance).

o Key:

Using a universal and flexible data structure called -term.

Syntax

LIFE Is a generalization of Prolog:
most Prolog programs run under LIFE.

Same syntactic conventions:

e variables are capitalized (or start with)

e other identifiers start with a lower-case letter
e the unification predicate Is =

e defining Horn clauses uses : -

e the cut control operator is !

e etC.

Syntax
Syntactic conventions differing from Prolog’s:

e queries are terminated with a 7
e assertions are terminated with a .

Interactive querying is incremental:

e levels are marked by —----n>

e backtracking brings to previous level.

U-Terms

® 4?2

e int

e -5.66

e real

e "a piece of rope"

e string

e foo bar

e date(friday,13)

e date(1 => friday, 2 => 13)

e freddy(nails => long,face => ugly)

e [this,is,a,list]

e cons (this, cons (too, [1))

sSorts

Sorts are the data constructors of LIFE.
Sorts are partially ordered by <| in a sort hierarchy.

For example, declaring:
student <| person.

augments the hierarchy with:

Cstudent>

sSorts

@ is the most general sort (T):

{} is the least sort (L):

Values are sorts like all others.

LIFE’s built-in sorts I

Sort intersection

bike

bike

truck
truck

car

car

toy_car
rolls_royce

AN N N N N N N A

two_wheels.
vehicle.

four_wheels.
vehicle.
four_wheels.
vehicle.
four_wheels.
car.

Sort intersection

wo wheels > four wheels >

vehicle

(ca

rolls_royce

Sort intersection

e two_wheels A vehicle = bike
e four wheels A vehicle = {car; truck}
e two_wheels A four wheels =_|

e rolls royce /A car = rolls royce

e truck A @ = truck

Variables as Tags

e Like Prolog’s, LIFE’s variables start with __ or an upper case
letter.

e Unlike Prolog’s, LIFE’s variables can occur anywhere within
terms.

e They are used as reference tags into a -term’s structure.

e References may be cyclic: a tag can occur in a y-term tagged
by it.

e X:t denotes a y-term t tagged by a variable X.

e X occurring alone is the same as X:@.

e X:t1&t2 IS the same as X=t1, X=t2.

Disjunctive terms

A disjunctive term Is an expression of the form:

{t;; -5 ty}

where n > 0 and each t; is either a y-term or a disjunctive term.

Disjunctive terms are enumerated by left-right depth-first back-
tracking, exactly as Prolog’s (and LIFE’s) predicate level resolu-
tion.

Disjunctive terms

e A={1;2;3}7 behaves like A=1;A=2;A=37

where ; means “or” in Edinburgh Prolog syntax.
ep({a;b}).

IS like asserting p(a). p(b).

e write(vehicle&four wheels)?

prints car, then on backtracking will print truck.

U-Term Unification

persa

student

/|

(oob> (piotr X pabloCsimonC elena> (ard(judy) (donXjohn3sheila>

VU-Term Unification

X = student
(roommate => person(rep => E:employee),
advisor => don(secretary => E)),

Y = employee
(advisor => don(assistant => A),
roommate => S:student(rep => S),
helper => simon(spouse => A)),

VU-Term Unification

X = workstudy
(advisor => don(assistant => _A,
secretary => _B),
helper => simon(spouse => _A),
roommate => _B:workstudy(rep => _B))

Predicates

LIFE’s predicates are defined as Prolog’s, with)-terms replacing
terms.

Predicates are executed using y-term unification.

With the “vehicle” hierarchy, consider the definitions:

useful (vehicle).

mobile (four_wheels).

fun(X) :- mobile(X:@(color=>green)) ,useful (X).

Predicates

> fun(X)?

**k* Yes

X = car(color => green).
--1>

**k* Yes

X = truck(color => green).

LIFE vs. Prolog

A difference with Prolog is that LIFE terms have no fixed arity.
pred(A,B,C) :- write(A,B,C).
In (SICStus) Prolog:

?- pred(1,2,3).

123

7- pred(A,B,C).

_26_60_94

?- pred(A,B,C,D).

WARNING: predicate ’pred/4’ undefined.
7- pred(A,B).

WARNING: predicate ’pred/2’ undefined.

LIFE vs. Prolog

> pred(1,2,3)7

123

**k*x Yes

> pred(A,B,C)7

©Q0

**x*x Yes

A=@, B=0@ C=0.
> pred(A,B,C,D)7?
000

**k*x Yes

A=@0, B=0@, C=0, D=0.
> pred?

000

**k*x Yes

User interaction

Interaction with user is more flexible than Prolog’s: Once a query
IS answered, a user can extend it in the current context by enter-

ing:

(CR) to abandon this query and go back to the previous level
, to force backtracking and look for another answer

a goal followed by ? to extend this query

to pop to top-level from any depth

User interaction

Example:

father (john,harry).
father (john,mike) .
father (harry,michael) .

grandfather(X,Y) :- father(X,Z),
father(Z,Y).

User interaction

> grandfather(A,B)?
*** Yes

A = john, B = michael.
--1> father(A,C)?

***x Yes

A = john, B = michael, C = harry.
———=2>

**x*x Yes

A = john, B = michael, C = mike.
———=2>

x*% No

A = john, B = michael.

User interaction

--1> father(C,B)?
k% Yesg

A = john, B = michael, C = harry.
-——-2> father(A,C)?

*** Yes

A = john, B = michael, C = harry.
______ 3>

x*xx No

A = john, B = michael, C = harry.
-——=2>

Functions

Functions are rewrite rules transforming -terms into -terms.
Function calls use y-term matching, NOT unification.

A functional expression may occur anywhere a y-term Is ex-
pected.

fact(0) -> 1.
fact(N:int) -> Nxfact(N-1).

> write(fact(b))?
120
xkxk Yeg

Residuation

> A=fact(B)7?

**x*x Yes

A =0, B=@0".
--1> B=real?

**x*x Yes

A =0, B = real™.
-——=2> B=57

**x*x Yes

A =120, B = 5.

Residuation

A =0, B=real™.
———=2> A=1237

***% Yes

A =123, B = real”.

Functions

Functions are deterministic—they require no value guessing and
no backtracking.

NB: If foo and bar are non-unifiable, calling:
f (foo,bar)
will skips a definition such as:

f(X,X) > ---

otherwise, it residuates. It will use it only if, and when, the two
args are unified by the context.

Functions

Some built-in functions are inverted: e.g., 0=B-C causes B and C
to be unified.

>A =F(@B), F=/(2=>A), A =57

k% Yesg
A=5, B=25,F =/(2=A4).

Note that here / (division) is curryed before being inverted.

Currying

Currying Is not the same as residuation, because the result of
currying is a function, not T.

In curryed form, £ (a => X,b => Y) IS:
f(a =>X) & @(b => Y)

but also:

f(b =>Y) & @(a => X)

Currying
Arguments may be passed out of order:

> £(X,Y,Z) > [X,Y,Z].
k% Yes

> A=f(a,3 => ¢c)7

**x* Yes

A =f(a,3 =>c).

—-1> A=f(2 => b)7

***% Yes

A = [a,b,c].

Functional variables

Functional variables are allowed.

That is, a functional expression may have a variable where a root
symbol is expected.

Example:

map(F, []) -> [].
map(F, [HIT]) -> [F(H) |lmap(F,T)].

Functional variables

> L=M(F,[1,2,3,4])7

**x% Yes

F=0, L=, M=20".

—-—-1> M=map?

**x* Yes

F=0"", L= [0,0,0,0], M= map.
———=2> F= +(2=>1)7

**x% Yes

F=+(12=>1), L= 1[2,3,4,5], M = map.

Functions

Residuation, currying, and functional variables give functions ex-
treme flexibility:

quadruple —> *(2=>4).
pick_arg({5;3;7}).
pick_func({quadruple;fact}).

test :- R=F(A),
pick_arg(A), pick_func(F),
write("function ",F," of ",A," is ",R),

nl, fail.

Functions

> test?

function
function
function
function
function

function
xxx NO

x(2 => 4)
fact of 5
x(2 => 4)
fact of 3
x(2 => 4)
fact of 7

of
1S
of
1S
of
1S

5 1s
120
3 1s

7 18
5040

20

12

28

Quote and eval

LIFE’s functions use eager evaluation. This can be prevented
using a quoting operator ‘.

> X =1+427

k% Yes

Quote and eval

Dually, a function called eval may be used to compute the result
of a quoted form.

———=2> Z=eval(Y)?

**x%x Yes
X=3,Y=1+ 2, Z = 3.

Note that eval does not modify the quoted form.

Another function called evalin works like eval but evaluates the
expression side-effecting it “in-place.”

Arbitr-Arity (varargs)

In LIFE everything is a ¢-term!

This can be exploited to great benefit to express that some pred-
iIcates or functions take an unspecified number of arguments.

S:sum -> add(features(S),S).

add([H|T],V) -> V.H+add(T,V).
add([],V) -> 0.

Arbitr-Arity (varargs)

> X = sum(1,2,3,4)7

**x%x Yes
X = 10.
-—-1> Y=sum(1,2,3,4,5)7

Constrained sorts

Properties can be attached to sorts: attributes or arbitrary re-
lational or functional dependency constraints. These properties
are inherited by subsorts and verified at execution.

> :: person(age => int).
***x Yes

> man <| person.

***x Yes

> A=man?

***x Yes

A = man(age => int).

Constrained sorts

:: vehicle(make => string,
number_of_wheels => int).

car (number_of _wheels => 4).

car <| vehicle.

> X=car?

***x Yes

X = car(make => string,
number_of_wheels => 4).

-=1>

Sort definitions

man := person(gender => male).

IS sugaring for:

man <| person.
:: man(gender => male).

Sort definitions

tree := { leaf ; node(left => tree,
right => tree) }.

IS sugaring for:

leaf <| tree.
node <| tree.
:: node(left => tree, right => tree).

Constrained sorts

:: rectangle(long_side => L:real,
short_side => S:real,
area => Lx3).

square := rectangle(side => S,
long_side => 5,
short_side => S).

Constrained sorts

> R=rectangle(area => 16, short_side => 4)7
***x Yes
R = rectangle(area => 16,
long_side => 4,
short_side => 4).
--1> R=square?
*** Yes
R = square(area => 16,
long_side => _A: 4,
short_side => _A,
side => _A).

Constrained sorts

.. devout(faith => F, pray_to => X)
| holy_figure(F,X).

holy_figure(muslim,allah).
holy_figure(jewish,yahveh) .
holy_figure(christian, jesus_christ).

> X=devout?

***x Yes

X = devout(faith => muslim,
pray_to => allah).

--1> ;

*** Yes

X = devout(faith => jewish,
pray_to => yahveh).

--1>

)

**k*x Yesg
X = devout(faith => christian,
pray_to => jesus_christ).

Sorts constraints as impromptu demons

> :: I:int | write(I," ").
**x* Yes

> A=bxT77?

5 7 35

***% Yes

A = 35.

--1> B=fact(5)?
514131211101 12¢6 24 120
***% Yes

A =35, B= 120.

———=2>

Sorts constraints as impromptu demons

> :: C:cons | write(C.1), nl.
**k*x Yes

> A=[a,b,c,d] 7

d

C

b

a

xkk Yeg
A = [a,b,c,d].

Recursive sorts

Recursive sorts can also be defined. For example, the (built-in)
list sort is defined as:

list := {[] ; [@]1list]}.
But there Is a safe form of recursion and an unsafe one:

e safe recursion: the recursive occurrence of the sort is in a
strictly more specific sort.

e unsafe recursion: the recursive occurrence of the sort Is In an
equal or more general sort.

Recursive sorts

Example of unsafe recursion:
.. person(best_friend => person).

This loops for ever...

Need to declare:

> delay_check(person)?

That will prevent checking the definition of person if it has no
attributes.

Constrained sorts

:: P:person(best_friend => Q:person)
| get_along(P,Q).

%% Yes

> delay_check(person)?

**k* Yes

> cleopatra := person(nose => pretty,
occupation => queen).

k% Yes

> julius := person(last_name => caesar).

k% Yesg

Constrained sorts

> get_along(cleopatra, julius).

*** Yes

> A=person?

*** Yes

A = person.

--1> A=@(nose => pretty)?

k Yes

A = cleopatra(best_friend => julius,
nose => pretty,
occupation => queen).

Classes and Instances

It is Important to relate LIFE’s concepts to concepts that are em-
pirically known in O-O programming, like that of class and in-
stance.

Classes are declared by sort definitions:

. class(fieldl=>valuel,
field2=>value?2,

C) .

Like a struct, this adds fields to a class definition.

To say that class1 inherits all properties of class2:

classl <| class?2.

Instances are created by mentioning the class name in the pro-
gram. For example, executing:

> X=foo0?

creates an instance of the class foo. Each mention of foo cre-
ates a fresh instance. Thus,

> X=42, Y=427

creates two different instances of the class 42 in X and Y. We can
do:

> X=42, Y=42, X=0(foo => bar), Y=0(foo => buz)?

This would not be possible if X and Y were the same instance.

Classes and Instances

Wild LIFE assumes that mentioning a class name in the program
always creates a fresh instance that is different from all other
Instances of the class.

For example:
> X=23, Y=237
creates two different instances of the class 23.

If we have the function defined as:

f(A,A) -> hello.

then the call £(X,Y) will not fire, since X and Y are different in-
stances.

Classes and Instances

To make £ (X,Y) fire, X and Y must be the same instance.

In Wild LIFE, the only way to do this is to unify them explicitly:

> X=23, Y=23, X=Y, write(f(X,Y))7

will write hello (i.e., the function £ will fire).

Examples of LIFE Programs

Dictionary

delay_check(tree)?

:: tree(name => string,
def => string,
left => tree,
right => tree).

contains (tree(name => N,def => D),N,D).
contains (T:tree(name => N) , Name,Def)
:— cond(N $> Name,
contains(T.left, Name, Def),
contains(T.right, Name, Def)).

Dictionary

test_dictionary :-

CN = "cat", CD = "furry feline",

DN = "dog", DD = "furry canine',
contains(T,CN,CD), % Insert cat definition
contains(T,DN,DD), 7% Insert dog definition
contains(T,CN,Def), % Look up cat definition
nl,write("A ",CN," is a ",Def),nl,!.

> test_dictionary?
A cat 1s a furry feline
***x Yes

Hamming numbers

mult_list(F,N,[H|IT]) ->
cond(R: (FxH) =< N,
[RImult_list(F,N,T)],
[1).
merge(L, []) -> L.
merge([],L) -> L.
merge (L1:[H1|T1],L2: [H2|T2]) ->
cond(H1 =:= H2,
[H1 |merge(T1,T2)],
cond(H1 > H2,
[H2 |[merge (L1,T2)],
[H1|merge(T1,L2)])).

Hamming numbers

hamming(N) ->
S:[1|merge(mult_list(2,N,S),
merge (mult_list(3,N,S),
mult_list(5,N,S)))].

> H=hamming (26) 7
H=1[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25]
**x%x Yes

>

Quick Sort

qg_sort(L,order => 0)
-> undlist(dgsort(L,order => 0)).

undlist(X\Y) -> X | Y=[].

dgsort([]) -> L\L.
dgsort ([H|T] ,order => 0)
-> (L1\L2)
| (Less,More) = split(H,T,([],[]),order => 0),
dgsort(Less,order => 0),
dgsort (More,order => 0).

(LIN[H|L3])
(L3\L2)

split (@, [],P) —> P.
split (X, [H|T], (Less,More) ,order => 0)
-> cond (0(H,X),
split(X,T, ([H|Less],More) ,order => 0),
split (X, T, (Less, [H|More]) ,order => 0)).

> L = g_sort([2,1,3],order => <)7
**% Yes

L = [1, 2, 3]

> L = g_sort([2,1,3],order => >)7
**x* Yes

L = [3, 2, 1]

SEND+MORE=MONEY

smm :- % M=0 is uninteresting:

M=1,

/» Arithmetic constraints:
C3 + S + M =0 + 10%M,
C2 + E+0=N + 10xC3,
Cl + N +R =E + 10%C2,

D+ E =Y + 104C1,

% Disequality constraints:

diff_list([S,E,N,D,M,0,R,Y]),

SEND+MORE=MONEY

/» Generate binary digits:
Cl=carry,

C2=carry,
C3=carry,

% Generate decimal digits:
S=decimal, E=decimal,
N=decimal, D=decimal,
O=decimal, R=decimal,
Y=decimal,

SEND+MORE=MONEY

7%, Print the result:
nl, write(" SEND ",S,E,N,D), nl,
write("+MORE +" ,M,0,R,E), nl,

write("MONEY ",M,0,N,E,Y), nl,
% Fail to iterate:
fail.

decimal -> {0;1;2:;3;4:;5;6;7;8;9%.
carry —> {0;1}.

SEND+MORE=MONEY

diff_list([]).

diff_list([HIT]) :- generate_diffs(H,T),
diff_list(T),
H=<9, H>=O0.

generate_diffs(H, []).
generate_diffs(H, [A|T]) :- generate_diffs(H,T),
A =\= H.

Primes

prime := P:int | factors(P) = one.

factors(N) -> cond(N < 2, {}, factors_from(N,2)).

factors_from(N:int,P:int) ->
cond(P*xP > N,
one,
cond(R: (N/P) =:= floor(R),
many,
factors_from(N,P + 1))).

Primes

primes_to(N:int) :-
write(int_to(N) & prime),
nl, fail.

int_to(N:int) ->
cond(N < 1,

{},
{1:1 + int_to(N-1)}).

Primes

> primes_to(20)7

2: prime
3: prime
5: prime
7: prime
11: prime
13: prime
17: prime
19: prime
x*xx NoO

>

Backtrackable Tag Assignment

The statement X<-Y overwrites X with Y. Backtracking past this
statement will restore the original value of X.

> X=1,write(X),nl, (X <= 2,write(X),nl,fail ; true) 7
1

2
xkxk Yeg
X =1

This is very useful for building “black boxes” that have clean log-

ical behavior when viewed from the outside but that need de-
structive assignment to be implemented efficiently.

PERT Scheduling

Define the class of task objects:

:: A:task (duration => D:real,
earlyStart => early(R),
lateStart => {infinity;reall,
prerequisites => R:{[];list})

| I, late(A,R).

infinity -> 1e500.

This waits until the value Is an integer before assigning it:

assign(A,B:int) —> succeed | A<-B.

PERT Scheduling

Pass 1: Calculate the earliest time when A can start.

early([]) -> 0.
early([B|Tasks]) —->
max(B.earlyStart+B.duration,
early(Tasks)) .

PERT Scheduling

Pass 2: Calculate the latest time when A’s prerequisites can start
and still finish before A starts.

late(A, []) -> succeed.
late(A, [B:task|Tasks])
-> late(A,Tasks)
| assign(LSB: (B.lateStart),
min(LSB, A.earlyStart-B.duration)).

PERT Scheduling

A sample input for the PERT scheduler: any permutation of the
specified order of tasks would work, illustrating that calculations
In LIFE do not depend on order of execution.

schedule :-

Al=task(duration=>10),

A2=task (duration=>20),
A3=task(duration=>30),
Ad=task(duration=>18,prerequisites=>[A1,A2]
A5=task(duration=>8 ,prerequisites=>[A2,A3]
A6=task(duration=>3 ,prerequisites=>[A1l,A4
A7=task(duration=>4 ,prerequisites=>[A5,A6]

“

S
-

display_tasks([A1,A2,A3,A4,A5,A6,A7]).

> schedule?

Task

Task

Task

Task

Task

Task

Task

1:

2:

3:

>k >k >k >k >k >k %k >k %k >k

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k %k %k >k %

>k 3k >k %k >k %k >k %

Encapsulated programming

Create a routine that behaves like a process with encapsulated
data. The caller cannot access the routine’s local data except
through the access functions (“methods”) provided by the rou-
tine.

Initialization:
new_counter(C) :- counter(C,0).

Access predicate:

send(X,C) :- C=[X]|C2], C<-C2.

Encapsulated programming

counter([inc|S],V) ->
counter([set(X)|S8],V) —->
counter([see(X) |S],V) ->
counter ([stoplS],V) >
counter ([],V) >
counter([_|S],V) ->

counter(S,V+1).
counter(S,X) .

counter(S,V) | X=V.

true

| write("Counter stopped.").
true

| write("End of counter.").
counter(S,V)

| write("Bad message.\n").

The internal state of the process is the value of the counter,
which is held in the second argument.

Create a new counter object (with initial value 0), increment it
twice, and access its value:

> new_counter(C)?
k% Yes

C = Q.

--1> send(inc,C)?
X%k Yes

C = Q".

-——-2> send(inc,C)?
**k*x Yes

C = Q.

—————— 3> send(see(X),C)?
X%k Yes
C=0", X = 2.

Tiny linguistics
A simple term expansion facility:

op(1200,xfx, -->)7

(A --> B) :-

Rule = (gram(A&Q(L:[]),In,0Out):-expand(B,In,0Out,L)),
assert(Rule).

expand ((A,B),In,Out,History)
-> gram(A,In,0Out2), expand(B,0ut2,0ut,H2)
| History <- [A|H2].

expand (A, In,Out,H) -> gram(A,In,Out) | H <- [A].

Tiny linguistics
The main call is:

gram(Analysis,Instream,Leftover)

dynamic(gram)?

gram(A:0(X), [X|T],T) :- X :=< A.

analyse(P) :-
gram(A,P, []1),
pretty_write(A),
nl.

Tiny linguistics

A tiny French grammar:

phrase --> sujet, verbe_intransitif?

phrase --> sujet, verbe_transitif,
complement_d_objet 7

phrase --> sujet, pronom, verbe_transitif?

phrase —--> sujet, verbe_transitif_indirect,
complement_d_objet_indirect 7

phrase --> sujet, verbe_etre, adjectif?

Tiny linguistics

complement_d_objet --> groupe_nominal 7
complement_d_objet_indirect
—-—> conjonction, groupe_nominal 7

sujet —--> groupe_nominal 7

groupe_nominal --> article, nom_commun?

groupe_nominal --> article, nom_commun,
adjectif_postfixe?

groupe_nominal --> article, adjectif_prefixe,
nom_commun’

groupe_nominal —--> nom_propre?

Tiny linguistics

Higher classes of words:

adjectif_postfixe <| adjectif.
adjectif_prefixe <| adjectif.
article_indefini <| article.
nom_propre <| etre_anime.

verbe_etre <| verbe_transitif.

Tiny linguistics
A lexicon of word sorts:

a <| conjonction.

a <| verbe_transitif.
anglais <| adjectif_postfixe.
anglais <| nom_commun.

animal <| etre_anime.
apres <| conjonction.
article <| nom_commun.
belle <| adjectif_prefixe.
belle <| nom_commun.

Tiny linguistics

blanc <| adjectif_postfixe.
blanche <| adjectif_postfixe.
blanche <| femme. 7 Special!

femme <| personne.

fille <| personne.
francais <| adjectif_postfixe.
francais <| nom_commun.
garcon <| personne_.

Tiny linguistics

la
la
le
le

AN N N AN

article.
pronom.
article.
pronom.

les <| pronom.
noir <| adjectif_postfixe.
noir <| homme. % Special!

noire

porte
porte
volle
volile

<| adjectif_postfixe.
<| nom_commun.

<| verbe_transitif.

<| nom_commun.

<| verbe_transitif.

Tiny linguistics

> analyse([la,femme,blanche,porte,le,voile])?

phrase([sujet ([groupe_nominal
([article(la),
nom_comnmun (femme) ,
adjectif_postfixe(blanche)])]),
verbe_transitif (porte),
complement_d_objet
([groupe_nominal
([article(le),
nom_commun(voile)])])])

Tiny linguistics

> analyse([ted,est,un,noir,blanc])?

phrase([sujet ([groupe_nominal ([nom_propre(ted)])]),
verbe_transitif (est),
complement_d_objet
([groupe_nominal
([article(un),
nom_comnmun (noir) ,
adjectif _postfixe(blanc)])])])

Tiny linguistics

> analyse([ted,est,noir])?

phrase([sujet ([groupe_nominal ([nom_propre(ted)])]),
verbe_etre(est),
adjectif (noir)])

Conclusion

LIFE offers conveniences meant to reconcile different program-
ming styles.

It is particularly suited for:

e structured objects

e computational linguistics
e constrained graphics

e expert systems

More features can be added to complement it with like:

e other CLP constraint solving:

— arithmetic

— boolean

— finite domains
— Intervals

e better language features:

— extensional sorts

— partial features

— lexical scoping

— method encapsulation

— compositional inheritance

