
An Axiomatic Approach to Feature Term

Generalization

Hassan A��t-Kaci

1

and Yutaka Sasaki

2

1

Simon Fraser University

Burnaby, BC, Canada V5A 1S6, Canada

hak@sfu.ca

2

NTT Communication Science Laboratories

2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

sasaki@cslab.kecl.ntt.co.jp

Abstract. This paper presents a missing link between Plotkin's least

general generalization formalism and generalization on the Order Sorted

Feature (OSF) foundation. A Feature Term (or -term) is an extended

logic term based on ordered sorts and is a normal form of an OSF-term.

An axiomatic de�nition of -term generalization is given as a set of OSF

clause generalization rules and the least generality of the axiomatic de�-

nition is proven in the sense of Plotkin's least general generalization (lgg).

The correctness of the de�nition is given on the basis of the axiomatic

foundation. An operational de�nition of the least general generalization

of clauses based on -terms is also shown that it is a realization of the

axiomatic de�nition.

1 Introduction

A Feature Term (or -term) is an order-sorted logic term, i.e., an extended form

of a logic term where functor symbols are ordered sorts. In addition, features (or

attribute labels) are added to a sort as argument indicators. [1{3].

For example, the following two -terms describe George and his mother as

having the same last name \Bush" and Al and his mother as having the same

last name \Gore":

George(last) Y

1

: Bush;

mother) Barbara(last) Y

1

));

Al(last) Y

2

: Gore;

mother) Pauline(last) Y

2

)):

In this example, George, Barbara, Bush, Al, Pauline, and Gore are sort

symbols, while last and mother are feature symbols. The variables Y

1

and Y

2

link George's and Al's last names to their mother's last names.

A goal of a -term generalization is to calculate (or induce) the following

generic knowledge from the two examples:

person(last) Y : name;

mother) person(last) Y))

Formally, without syntax sugaring, the schema is represented as

X : person(last) Y : name;

mother) Z : person(last) Y : >))

where > is the universal|i.e., the most general|sort, and variable tags are

systematically used for each sort.

The -term is useful in the �elds of Arti�cial Intelligence (AI) and Natural

Language Processing (NLP). For instance, the feature term [4], equivalent to

the -term, is used to represent the syntax and semantics of natural language

sentences. In case-based reasoning, feature terms are used as the data structure of

cases [9] and the generalization of cases is a key to the reuse of cases. Inductive

Logic Programming (ILP) is extended to an induction (i.e. generalization) of

logic programs based on -terms [11, 12].

While feature terms play an essential role in AI and NLP, there is a miss-

ing link between Plotkin's least general generalization formalism of classic logic

terms and generalization of -terms on the basis of the OSF foundation. This

paper presents the missing link.

2 Preliminaries on -terms

This section introduces -terms on the basis of the Order-Sorted Feature (OSF)

formalism [2, 3].

2.1 Syntax

De�nition 1 (OSF Signature) An OSF Signature is given by

�

OSF

= hS;�;u;t;Fi; s:t: :

{ S is a set of sort symbols with the sorts > and ?;

{ � is a partial order on S such that > is the greatest element and ? is the

least element;

{ hS;�;u;ti is a lattice, where s u t is de�ned as the in�mum (or glb) of s

and t and s t t is the supremum (or lub) of sorts s and t;

{ F is a set of feature symbols.

For sorts s

1

; s

2

2 S, we denote s

1

� s

2

i� s

1

� s

2

and s

1

6= s

2

.

Let V be a countable in�nite set of variables.

De�nition 2 (OSF-terms) Given �

OSF

= hS;�;u;t;Fi, if s 2 S , l

1

; : : : ; l

n

2

F , X 2 V , n � 0, and t

1

; :::; t

n

are OSF-terms, then an OSF-term has the form

X : s(l

1

) t

1

; :::; l

n

) t

n

):

2

Let = X : s(l

1

) t

1

; :::; l

n

) t

n

). X is called the root variable of , which

is described as Root(), and s is called the root sort of , which is described as

Sort().

For a lighter notation, hereafter we omit variables that are not shared and

the sort of a variable when it is >.

De�nition 3 (-terms) An OSF-term

 = X : s(l

1

)

1

; : : : ; l

n

)

n

)

is in a normal form (and is called a -term) if:

{ For any variables V

i

in , V

i

is the root variable of at most one non-top

 -term, i.e., one whose root sort is not >;

{ s is a nonbottom sort in S;

{ l

1

; : : : ; l

n

are pairwise distinct feature symbols in F ;

{

1

; : : : ;

n

are -terms.

We will see that OSF-terms can be normalized to -terms by OSF clause nor-

malization rules, which are given in Section 2.3, or thus proven to be inconsistent

by being reduced to ?.

Let = X : s(l

1

)

1

; :::; l

n

)

n

). s(l

1

)

1

; :::; l

n

)

n

) is called an

untagged -term.

De�nition 4 (Feature Projection) Given a -term t = X : s(l

1

) t

1

; : : : ; l

n

)

t

n

), the l

i

projection of t (written as t:l

i

) is de�ned as t:l

i

= t

i

.

The de�nitions of atoms, literals, clauses, Horn clauses, and de�nite clauses

are as usual with the di�erence being that terms are -terms. If features are

non-zero integers 1; : : : ; n, then a -term X : s(1) t

1

; 2) t

2

; : : : ; n) t

n

) can

be abbreviated to X : s(t

1

; t

2

; : : : ; t

n

).

2.2 Semantics

De�nition 5 (OSF Algebras) An OSF Algebra is a structureA = hD

A

; (s

A

)

s2S

; (l

A

)

l2F

i

s.t.:

{ D

A

is a non-empty set, called a domain of A;

{ for each sort symbol s 2 S, s

A

� D

A

; in particular, >

A

= D

A

and ?

A

= ;;

{ (s u s

0

)

A

= s

A

\ s

0A

for two sorts s; s

0

2 S;

{ (s t s

0

)

A

= s

A

[s

0A

for two sorts s; s

0

2 S;

{ for each feature symbol l 2 F , l

A

: D

A

! D

A

.

De�nition 6 (A-Valuation) Given �

OSF

= hS;�;u;t;Fi, an A-valuation

is a function � : V ! D

A

.

3

De�nition 7 (Term Denotation) Let t be a -term of the form

t = X : s(l

1

) t

1

; : : : ; l

n

) t

n

):

Given an OSF Algebra A and an A-valuation �, the term denotation of t is

given by

[[t]]

A;�

= f�(X)g \ s

A

\

\

1�i�n

(l

A

i

)

�1

([[t

i

]]

A;�

):

[[t]]

A

=

[

�:V!D

A

[[t]]

A;�

:

2.3 Uni�cation of -terms

An alternative syntactic presentation of the information conveyed by OSF-terms

can be translated into a constraint clause [2].

De�nition 8 (OSF-Constraints) An order-sorted feature constraint (OSF-

constraint) is one of the following forms:

{ X : s

{ X

:

= Y

{ X:l

:

= Y

where X and Y are variables in V, s is a sort in S, and l is a feature in F .

De�nition 9 (OSF-clauses) An OSF-clause �

1

& : : : & �

n

is a �nite, pos-

sibly empty conjunction of OSF-constraints �

1

; : : : ; �

n

(n � 0).

1

We can associate an OSF-term with a corresponding OSF-clause.

Let be a -term of the form

 = X : s(l

1

)

1

; :::; l

n

)

n

):

An OSF-clause �() corresponding to an OSF-term has the following form:

�() = X : s & X:l

1

:

= X

0

1

& : : : & X:l

n

:

= X

0

n

& �(

1

) & : : : & �(

n

);

where X;X

0

1

; : : : ; X

0

n

are the root variables of ;

1

; : : : ;

n

, respectively. We say

�() is dissolved from the OSF-term .

Example 1 Let = X : s(l

1

) Y : t; l

2

) Y : >)). The OSF-clause of is:

�() = X : s & X:l

1

:

= Y & Y : t & X:l

2

:

= Y & Y : >

1

We sometimes regard an OSF-clause as a set of OSF constraints.

4

Sort Intersection:

� & X : s & X : s

0

� & X : s u s

0

Inconsistent Sort:

� & X : ?

X : ?

Variable Elimination:

� & X

:

= X

0

�[X=X

0

] & X

:

= X

0

if X 6= X

0

and X 2 V ar(�)

Feature Decomposition:

� & X:l

:

= X

0

& X:l

:

= X

00

� & X:l

:

= X

0

& X

0

:

= X

00

Fig. 1. OSF Clause Normalization Rules

On the other hand, an OSF-clause � can be converted to an OSF-term (�)

as follows: �rst complete it by adding as many V :> constraints as needed so that

there is exactly one sort constraint for every occurrence of a variable V in an

X.l=V constraint, where X is a variable and l is a feature symbol; then convert

it by the following transform:

 (�) = X : s(l

1

) (�(Y

1

)); : : : ; l

n

) (�(Y

n

)))

where X is a root variable of �, � contains X : s, and X:l

1

:

= Y

1

,. . . ,X:l

n

:

= Y

n

are all of the other constraints in � with an occurrence of variable X on the

left-hand side. �(Y) denotes the maximal subclause of � rooted by Y .

De�nition 10 (Solved OSF-Constraint) An OSF-clause � is called solved

if for every variable X, � contains:

{ at most one sort constraint of the form X : s, with ? � s;

{ at most one feature constraint of the form X:l

:

= Y for each X:l;

{ no equality constraint of the form X

:

= Y .

Given � in a normal form, we will refer to its part in a solved form as

Solved(�).

Example 2 Let � = X : s & X:l

1

:

= Y & Y : t & X:l

2

:

= Y & Y : >. The

solved normal form of � is :

Solved(�) = X : s & X:l

1

:

= Y & Y : t & X:l

2

:

= Y .

Theorem 1 [2] The rules of Fig. 1 are solution-preserving, �nite-terminating,

and con
uent (modulo variable renaming). Furthermore, they always result in a

normal form that is either an inconsistent OSF clause or an OSF clause in a

solved form together with a conjunction of equality constraints.

Note that V ar(�) is the set of variables occurring in an OSF-clause � and

�[X=Y] stands for the OSF-clause obtained from � after replacing all occurrences

of Y by X.

5

Sort Induction (SI):

fX

1

nXg [�

1

;fX

2

nXg [�

2

` � & ((X

1

:s

1

& �

1

) _ (X

2

:s

2

& �

2

))

fX

1

nXg [�

1

; fX

2

nXg [�

2

` � & (X :s

1

t s

2

) & ((X

1

:s & �

1

) _ (X

2

:s

2

& �

2

))

if :9s (X :s 2 �)

Feature Induction (FI):

fX

1

nXg [�

1

;fX

2

nXg [�

2

` � & ((X

1

:l

:

= Y

1

& �

1

) _ (X

2

:l

:

= Y

2

& �

2

))

fX

1

nX; Y

1

nY g [�

1

; fX

2

nX; Y

2

nY g [�

2

` � & X:l

:

= Y & ((X

1

:l

:

= Y

1

& �

1

) _ (X

2

:l

:

= Y

2

& �

2

))

if :9 y (Y

1

ny 2 fX

1

nXg [�

1

and Y

2

ny 2 fX

2

nXg [�

2

)

Coreference Induction (CI):

fX

1

nX;Y

1

nY g [�

1

;fX

2

nX; Y

2

nY g [�

2

` � & ((X

1

:l

:

= Y

1

& �

1

) _ (X

2

:l

:

= Y

2

& �

2

))

fX

1

nX; Y

1

nY g [�

1

; fX

2

nX; Y

2

nY g [�

2

` � & X:l

:

= Y & ((X

1

:l

:

= Y

1

& �

1

) _ (X

2

:l

:

= Y

2

& �

2

))

if X:l

:

= Y 62 �

Fig. 2. OSF Clause Generalization Rules

Theorem 2 (-term Uni�cation) [2] Let

1

and

2

be two -terms. Let �

be the normal form of the OSF-clause �(

1

) & �(

2

) & X

1

:

= X

2

, where X

1

and X

2

are the root variables of

1

and

2

, respectively. Then,

� is an inconsistent clause i� their glb is ?. If � is not an inconsistent clause,

then their glb

1

u

2

is given by the normal OSF-term (Solved(�)).

3 Axiomatic -term Generalization

As a dual of -term uni�cation, -term generalization (or anti-uni�cation) can

be de�ned as OSF clause generalization rules.

To de�ne generalization, we introduce a new constraint symbols A_B, which

means the generalization of two OSF clauses A and B.

A -term generalization rule is of the form:

�

1

; �

2

` � & (�

1

_ �

2

)

�

0

1

; �

0

2

` �

0

& (�

1

_ �

2

)

where �

1

and �

2

are sets of variable substitutions of the form fX

1

nX

0

1

; : : : ; X

n

nX

0

n

g

2

,

� and �

0

are OSF-clauses, and �

1

and �

2

are solved normal form of OSF-clauses

of target -terms

1

and

2

, respectively.

De�nition 11 (Axiomatic Generalization) Let �

1

and �

2

be a solved nor-

mal from of

1

and

2

, respectively, and �

1

and �

2

be variable substitutions.

Then, a generalized OSF-clause � of

�

1

; �

2

` � & (�

1

_ �

2

)

2

This means that X

0

i

is substituted by X

i

.

6

is obtained by applying OSF clause generalization rules (Fig. 2) until no rule is

applicable, initiated with

fX

1

nXg; fX

2

nXg ` (�

1

_ �

2

)

where X

1

= Root(

2

), X

2

= Root(

2

), and X is a fresh variable.

A generalized -term is given as (�).

Proposition 1 The result of the axiomatic generalization is an OSF-clause in

the normal form.

Proposition 2 The OSF clause generalization is �nite terminating.

Proof. Termination follows from the fact that the number of variables in �

1

is

�nite because OSF-clauses are �nite, and each of the three rules SI, FI, and CI

strictly decreases the number of combinations of variables in �

1

and �

2

that

satisfy the preconditions of the OSF generalization rules.

From the de�nition of �(�) and OSF clause normalization rules (Fig. 1), the

number of variables in �

i

is �nite since

i

is �nite by the de�nition of OSF-

terms. The Sort Induction (SI) strictly decreases the number of variable pairs

that satisfy the conditions of the generalization rules. That is, the variable pair

X

1

of X

1

: s

1

and X

2

of X

2

: s

2

does not satisfy the precondition of SI after its

application. The Feature Induction (FI) strictly decreases the number of pairs of

variable pairs that satisfy the rule conditions. The pair of variable pairs hX

1

; Y

1

i

and hX

2

; Y

2

i does not satisfy the precondition of FI after its application. Since

FI is only applicable a �nite number of time, FI increases the �nite number of

pairs applicable to the SI and CI rules. Same as FI, the Coreference Induction

(CI) strictly decreases the number of pairs of variable pairs that satisfy the rule

conditions. The pair of variable pairs hX

1

; Y

1

i and hX

2

; Y

2

i does not satisfy the

precondition of CI after its application.

3.1 Least General Generalization

This section newly introduces the least general generalization of -terms along

the line with Plotkin's least general generalization (lgg) [10].

De�nition 12 (Sorted Substitution) A sorted substitution has the form

fX

1

:s

1

/Y

1

:t

1

,. . . ,X

n

:s

n

/Y

n

:t

n

g, where X

1

; : : : ; X

n

are pairwise distinct vari-

ables and Y

1

; : : : ; Y

n

are variables in V, s

1

; : : : ; s

n

and t

1

; : : : ; t

n

are sort symbols

with ? � s

i

� t

i

for every i. If expression E is a term, a literal, or a clause, E�

is the result of replacing all occurrences of Y

i

:t

i

by X

i

:s

i

and Y

i

by X

i

simulta-

neously for every i.

Note that the sorted substitution changes only variable names and sorts; it

does not add or remove constraint of the form X:l

:

= Y . This means that the

sorted substitution preserves the structure of an original expression.

7

De�nition 13 (Sorted Ordering of -terms) Let

1

and

2

be two -terms.

Let �

1

and �

2

be a solved normal form of OSF clauses of

1

and

2

, respec-

tively.

1

�

2

i� there exists a sorted substitution � such that �

1

� � �

2

3

and

(Root(

2

) : Sort(

2

)=Root(

1

) : Sort(

1

)) 2 �.

We read

1

�

2

as meaning that

1

is more general than

2

.

Example 3 (X:s) � Y :t(l) Z:u) with t � s because for �=fY :t/X:sg, (X :s)�

= fY :tg � (Y :t & Y:l

:

= Z & Z:u).

Proposition 3 If � is the result of the -term generalization of the OSF-clauses

of -terms

1

and

2

and = (�), then �

1

and �

2

in terms of sorted

ordering �.

Proof. Prove �

1

. Let �

1

be a solved normal form of

1

. Let the �nal

result of the -term generalization be �

1

; �

2

` � & (�

1

_ �

2

) with �

1

=

fX

0

1

nX

1

; : : : ; X

0

n

nX

n

g: Let s

0

i

be the sort of X

0

i

:s

0

i

2 �(

1

) and s

i

be the sort

of X

i

:s

i

2 �(). A sorted substitution � = fX

0

1

:s

0

1

/X

1

:s

1

,: : :, X

0

n

:s

0

n

/X

n

:s

n

g

clearly satis�es the relation �� � �

1

according to the OSF generalization rules.

The proof of �

2

is the same.

De�nition 14 (Least General Generalization) Let

1

and

2

be -terms.

 is the least general generalization (lgg) of

1

and

2

i�

(1) �

1

and �

2

.

(2) If

0

�

1

and

0

�

2

, then

0

� .

Theorem 3 (Least Generality of Generalization) The axiomatic -term gen-

eralization is a least general generalization with respect to sorted ordering of

 -terms.

Proof. (1) �

1

and �

2

are immediate from Proposition 3. (2) Let

1

and

2

be -terms and be the result of -term generalization of

1

and

2

.

Assume that there exists a -term

0

such that

0

�

1

,

0

�

2

, and <

0

,

i.e., is strictly more general than

0

. Let �, �

1

, �

2

and �

0

be a solved normal

form of ,

1

,

2

, and

0

, respectively. The assumption <

0

requires that

there exist an OSF constraint C

0

in �

0

such that no sorted substitution � satis�es

C

0

� 2 � and �

0

� � �. There are two cases to be considered: (case 1) C

0

is of the

form X

0

: s

0

; (case 2) C

0

is of the form X

0

:l

:

= Y

0

.

Case 1: From the assumption

0

�

1

and

0

�

2

,X

0

: s

0

can be substituted

to X

1

: s

1

in �

1

and X

2

: s

2

in �

2

. Therefore, s

1

� s

0

and s

2

� s

0

. Since sorted

substitutions preserve the structure of -terms, according to -term generaliza-

tion rules, if X

1

: s

1

and X

2

: s

2

correspond to the same constraint X

0

: s, then

X : s should be included in �. By SI, sort s in is the least upper bound (lub)

of a sort s

1

in

1

and a sort s

2

in

2

. This contradicts s

1

� s

0

, s

2

� s

0

, and

s

0

� s.

3

We regard a clause as a set of constraints here.

8

Case 2: Similarly, from the assumption of

0

�

1

and

0

�

2

,X

0

:l

:

= Y

0

can

be substituted toX

1

:1

:

= Y

1

in �

1

and X

2

:l

:

= Y

2

in �

2

. Since sorted substitutions

preserve the structure of -terms, if X

1

:l

:

= Y

1

and X

2

:l

:

= Y

2

correspond to the

same constraint X

0

:l

:

= Y

0

, then X:l

:

= Y should be in �. This is a contradiction.

4 Operational -term Generalization

On the other hand, an operational de�nition of -term generalization [11] has

been de�ned as an extension of Plotkin's least general generalization (lgg) using

the following notations. a and b represent untagged -terms. s, t, and u represent

 -terms. f , g, and h represent sorts. X, Y , and Z represent variables in V.

De�nition 15 (lgg of -terms) Let

1

and

2

be -terms. lgg(

1

,

2

) is

de�ned as follows with the initial history Hist = fg.

1. lgg(X : a;X : a) = X : a.

2. lgg(X : a; Y : b) = Z : >, where X 6= Y and the tuple (X;Y; Z) is already

in the history Hist.

3. If s = X:f (l

s

1

) s

1

; : : : ; l

s

n

) s

n

) and t = Y :g(l

t

1

) t

1

; : : : ; l

t

m

) t

m

), then

lgg(s; t)=Z:(f t g)(l

1

) lgg(s � l

1

; t � l

1

); : : : ; l

jLj

) lgg(s � l

jLj

; t � l

jLj

)), where

l

i

2 L = fl

s

1

; : : : ; l

s

n

g \ fl

t

1

; : : : ; l

t

m

g. Then, (X;Y; Z) is added to Hist.

Note that in this de�nition s � l is de�ned as s � l = X : a if s:l = X : > and

X : a 2

1

with a 6= > else s � l = s:l. t � l is de�ned similarly.

For example, the lgg of X:passenger(of)X

0

:10) and Y :man(of)Y

0

:2) is

Z : person(of) Z

0

: number);

if passenger tman = person and 10 t 2 = number.

Theorem 4 (Correctness) The result of the operational -term generaliza-

tion is the least general generalization of -terms

1

and

2

in terms of the

sorted ordering.

Proof. (Sketch) Each step of the operational de�nition can be translated into

OSF generalization rules. Step 1 is a special case of Sort Induction.

Step 2 is Coreference Induction where tuple (X,Y,Z) in Hist corresponds to

XnZ in �

1

and Y nZ in �

2

.

Step 3 is Sort Induction of X : f t g and Feature Induction, where tuple

(X;Y; Z) added to Hist corresponds to XnZ and Y nZ which are added to vari-

able substitutions. All of the steps of the operational de�nition are realizations

of the OSF clause generalization. Therefore, the result of the operational gener-

alization is the least general generalization of -terms.

9

5 Generalization of Clauses based on -terms

This section presents a least general generalization of logic programs based on

 -terms along the line with Plotkin's lgg of atom and clauses [10].

De�nition 16 (Ordering of Atoms) Let A

1

= p(

1

; : : : ;

n

) and A

2

= q(

0

1

; : : : ;

0

n

)

be atomic formulae based on -terms. A

1

� A

2

i� A

1

� = A

2

for some sorted

substitution � which includes substitutions replacing the root variable of

i

by

the root variable of

0

i

.

De�nition 17 (Ordering of Clauses) Let C

1

and C

2

be clauses based on -

terms. C

1

� C

2

i� C

1

� � C

2

for some sorted substitution � which includes

substitutions replacing the root variables of -terms in C

1

by the corresponding

root variables of -terms in C

2

.

De�nition 18 (Lgg of Atoms) Given a signature�

OSF

= hS;�;u;t;Fi and

a set of predicate symbols P, let P and Q be atomic formulae. An operational

de�nition of a function lgg(P;Q) that computes the least general generalization

of P and Q is as follows.

1. If P = p(s

1

; : : : ; s

n

) and Q = p(t

1

; : : : ; t

n

),

lgg(P;Q) = p(lgg(s

1

; t

1

); : : : ; lgg(s

n

; t

n

))

with the sharing of history Hist.

2. Otherwise, lgg(P;Q) is unde�ned.

De�nition 19 (Lgg of Literals) Let P and Q be atoms and L

1

and L

2

be

literals. The lgg of literals is de�ned as follows [8].

1. If L

1

and L

2

are atoms, then lgg(L

1

; L

2

) is the lgg of the atoms.

2. If L

1

and L

2

are the form :P and :Q, respectively, then lgg(L

1

; L

2

) =

lgg(:P;:Q) = :lgg(P;Q).

3. Otherwise, lgg(L

1

; L

2

) is unde�ned.

De�nition 20 (Lgg of Clauses) Let clauses C = fL

1

; : : : ; L

n

g and D = fK

1

; : : : ;K

m

g.

Then lgg(C;D) = f lgg(L

i

;K

j

) j L

i

2 C;K

j

2 D and lgg(L

i

;K

j

) is not unde-

�nedg.

The least general generality of lggs of atoms, literals, and clauses is conser-

vative extension of Plotkin's lgg since the operational -term generalization is a

lgg of terms.

6 Related Work

The de�nition of the least general generalization (lgg) was �rst investigated in

[10]. The lgg of -terms has already been illustrated [1]; however, axiomatic

and operational de�nitions have been left untouched. The lgg of a subset of

description logics, called the least common subsumer (LCS), was studied in [5].

The lgg of feature terms, which are equivalent to -terms, can be found in [9].

The generalization for Sorted First Order Predicate Calculus (SFOPC) [7] is

presented in [6].

10

7 Conclusion and Remarks

Two generalization approaches have been presented and related. An axiomatic

de�nition of -term generalization was presented as -term generalization rules.

The de�nition is proven to be a least general generalization (lgg) in terms of

Plotkin's lgg. The correctness of an operational de�nition of -term general-

ization was provided on the basis of the generalization rules. The operational

de�nition was shown to be one realization of the axiomatic generalization. The

lgg of clauses based on -terms was presented, and a fundamental bridge be-

tween -term generalization and the lgg useful for inductive logic programming

was given. The main bene�t of this paper is that it expresses generalization (and

hence induction) as an OSF constraint construction process. This approach may

lead to other axiomatic constraint systems provided with inductive algorithms.

References

1. Hassan A��t-Kaci and Roger Nasr. LOGIN: A logic programming language with

built-in inheritance. Journal of Logic Programming, 3:185{215, 1986.

2. Hassan A��t-Kaci and Andreas Podelski. Towards a meaning of LIFE. Logic Pro-

gram., 16(3-4):195{234, July-August 1993.

3. Hassan A��t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature

theory uni�cation. Journal of Logic Programming, 30(2):99{124, 1997.

4. Bob Carpenter. The Logic of Typed Feature Structures, volume 32 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,

UK, 1992.

5. William W. Cohen, Alexander Borgida, and Helen Hirsch. Computing least com-

mon subsumers in description logics. In Twelfth National Conference on Arti�cial

Intelligence, pages 754{760, San Jose, CA, 1992. AAAI-92.

6. Alan M. Frisch and C. David Page Jr. Generalization with taxonomic information.

In Proceedings of the 8th National Conference on Arti�cial Intelligence, pages 755{

761, Boston, MA, 1990. AAAI-90.

7. Alan M. Frisch. A general framework for sorted deduction: Fundamental results on

hybrid reasoning. In Proceedings of the 1st International Conference on Principles

of Knowledge Representation and Reasoning, pages 126{136, 1989.

8. Nada Lavra�c and Sa�so D�zeroski. Inductive Logic Programming: Techniques and

Applications. Ellis Horwood, 1994.

9. Enric Plaza. Cases as terms: A feature term approach to the structured represen-

tation of cases. In Proceedings of the 1st International Conference on Case-Based

Reasoning, pages 263{27, 1995.

10. Gordon Plotkin. A note on inductive generalization. InMachine Intelligence, pages

153{163. Edinburgh University Press, 1969.

11. Yutaka Sasaki. Induction of logic programs based on -terms. In Proceedings of

the 10th International Conference on Algorithmic Learning Theory, pages 169{181,

Tokyo, Japan, 1999. ALT-99, Springer-Verlag LNAI 1720.

12. Yutaka Sasaki. Hierarchically Sorted Inductive Logic Programming and Its Ap-

plication to Information Extraction. Ph.D thesis, Graduate School of Systems and

Information Engineering, University of Tsukuba, Japan, September 2000.

11

Appendix (Example of Axiomatic -term generalization)

Suppose that we have two -terms

1

and

2

, and u=s t t.

1

= X : s(a) Z : s; b) Z)

2

= Y : t(a)W : t; b) U : u)

The normal form of OSF clauses of these -terms are:

�(

1

) = X : s & X:a

:

= Z & Z : s & X:b

:

= Z;

�(

2

) = Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : u:

A generalization of of these two OSF clauses is obtained by applying generaliza-

tion rules to the OSF clause:

C = (X :s & X:a

:

= Z & Z :s & X:b

:

= Z)

_ (Y : t & Y:a

:

= W & W :t & Y:b

:

= U & U : t)

The following steps show the process to achieve a generalization.

fXnV g; fY nV g `

((X :s & X:a

:

= Z & Z :s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t))

fXnV g; fY nV g ` (V :u)

& ((X :s & X:a

:

= Z & Z :s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t)) (by SI)

fXnV;ZnV

0

g;fY nV;WnV

0

g ` (V :u & V:a

:

= V

0

)

& ((X :s & X:a

:

= Z & Z :s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t)) (by FI)

fXnV;ZnV

0

g;fY nV;WnV

0

g ` (V :u & V:a

:

= V

0

& V

0

:u)

& ((X :s & X:a

:

= Z & Z :s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t)) (by SI)

fXnV;ZnV

0

; ZnV

00

g; fY nV;WnV

0

; UnV

00

g ` (V : u & V:a

:

= V

0

& V

0

: u & V:b

:

= V

00

)

& ((X :s & X:a

:

= Z & Z :s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t)) (by FI)

fXnV;ZnV

0

; ZnV

00

g; fY nV;WnV

0

; UnV

00

g ` (V :u & V:a

:

= V

0

& V

0

:u & V:b

:

= V

00

& V

00

:u)

& ((X : s & X:a

:

= Z & Z : s & X:b

:

= Z)_

(Y : t & Y:a

:

= W & W : t & Y:b

:

= U & U : t)) (by SI)

Therefore, an OSF clause

3

of a -term generalization of

1

and

2

is:

�

3

= V : u & V:a

:

= V

0

& V

0

: u & V:b

:

= V

00

& V

00

: u

The -term of

3

is:

 (�

3

) = V : u(a) V

0

: u; b) V

00

: u)

12

